summaryrefslogtreecommitdiff
path: root/doc/arm/Bv9ARM.ch04.html
blob: 2e00c1d7056f38317d7ed575f02946479151e9a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
<HTML
><HEAD
><TITLE
>Advanced Concepts</TITLE
><META
NAME="GENERATOR"
CONTENT="Modular DocBook HTML Stylesheet Version 1.73
"><LINK
REL="HOME"
TITLE="BIND 9 Administrator Reference Manual"
HREF="Bv9ARM.html"><LINK
REL="PREVIOUS"
TITLE="Nameserver Configuration"
HREF="Bv9ARM.ch03.html"><LINK
REL="NEXT"
TITLE="The BIND 9 Lightweight Resolver"
HREF="Bv9ARM.ch05.html"></HEAD
><BODY
CLASS="chapter"
BGCOLOR="#FFFFFF"
TEXT="#000000"
LINK="#0000FF"
VLINK="#840084"
ALINK="#0000FF"
><DIV
CLASS="NAVHEADER"
><TABLE
SUMMARY="Header navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TH
COLSPAN="3"
ALIGN="center"
>BIND 9 Administrator Reference Manual</TH
></TR
><TR
><TD
WIDTH="10%"
ALIGN="left"
VALIGN="bottom"
><A
HREF="Bv9ARM.ch03.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="80%"
ALIGN="center"
VALIGN="bottom"
></TD
><TD
WIDTH="10%"
ALIGN="right"
VALIGN="bottom"
><A
HREF="Bv9ARM.ch05.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
></TABLE
><HR
ALIGN="LEFT"
WIDTH="100%"></DIV
><DIV
CLASS="chapter"
><H1
><A
NAME="ch04"
>Chapter 4. Advanced Concepts</A
></H1
><DIV
CLASS="TOC"
><DL
><DT
><B
>Table of Contents</B
></DT
><DT
>4.1. <A
HREF="Bv9ARM.ch04.html#dynamic_update"
>Dynamic Update</A
></DT
><DT
>4.2. <A
HREF="Bv9ARM.ch04.html#incremental_zone_transfers"
>Incremental Zone Transfers (IXFR)</A
></DT
><DT
>4.3. <A
HREF="Bv9ARM.ch04.html#AEN727"
>Split DNS</A
></DT
><DT
>4.4. <A
HREF="Bv9ARM.ch04.html#tsig"
>TSIG</A
></DT
><DT
>4.5. <A
HREF="Bv9ARM.ch04.html#AEN887"
>TKEY</A
></DT
><DT
>4.6. <A
HREF="Bv9ARM.ch04.html#AEN902"
>SIG(0)</A
></DT
><DT
>4.7. <A
HREF="Bv9ARM.ch04.html#DNSSEC"
>DNSSEC</A
></DT
><DT
>4.8. <A
HREF="Bv9ARM.ch04.html#AEN987"
>IPv6 Support in <SPAN
CLASS="acronym"
>BIND</SPAN
> 9</A
></DT
></DL
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="dynamic_update"
>4.1. Dynamic Update</A
></H1
><P
>Dynamic update is the term used for the ability under
    certain specified conditions to add, modify or delete records or
    RRsets in the master zone files. Dynamic update is fully described
    in RFC 2136.</P
><P
>Dynamic update is enabled on a zone-by-zone basis, by
    including an <B
CLASS="command"
>allow-update</B
> or
    <B
CLASS="command"
>update-policy</B
> clause in the
    <B
CLASS="command"
>zone</B
> statement.</P
><P
>Updating of secure zones (zones using DNSSEC) follows
    RFC 3007: SIG and NXT records affected by updates are automatically
    regenerated by the server using an online zone key.
    Update authorization is based
    on transaction signatures and an explicit server policy.</P
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="journal"
>4.1.1. The journal file</A
></H2
><P
>All changes made to a zone using dynamic update are stored in the
    zone's journal file.  This file is automatically created by the
    server when when the first dynamic update takes place.  The name of
    the journal file is formed by appending the
    extension <TT
CLASS="filename"
>.jnl</TT
> to the
    name of the corresponding zone file.  The journal file is in a
    binary format and should not be edited manually.</P
><P
>The server will also occasionally write ("dump")
    the complete contents of the updated zone to its zone file.
    This is not done immediately after
    each dynamic update, because that would be too slow when a large
    zone is updated frequently.  Instead, the dump is delayed by 15
    minutes, allowing additional updates to take place.</P
><P
>When a server is restarted after a shutdown or crash, it will replay
    the journal file to incorporate into the zone any updates that took
    place after the last zone dump.</P
><P
>Changes that result from incoming incremental zone transfers are also
    journalled in a similar way.</P
><P
>The zone files of dynamic zones cannot normally be edited by
    hand because they are not guaranteed to contain the most recent
    dynamic changes - those are only in the journal file.
    The only way to ensure that the zone file of a dynamic zone
    is up to date is to run <B
CLASS="command"
>rndc stop</B
>.</P
><P
>If you have to make changes to a dynamic zone
    manually, the following procedure will work: Shut down
    the server using <B
CLASS="command"
>rndc stop</B
> (sending a signal
    or using <B
CLASS="command"
>rndc halt</B
> is <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>not</I
></SPAN
>
    sufficient). Wait for the server to exit,
    then <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>remove</I
></SPAN
> the zone's 
    <TT
CLASS="filename"
>.jnl</TT
> file, edit the zone file,
    and restart the server.  Removing the <TT
CLASS="filename"
>.jnl</TT
>
    file is necessary because the manual edits will not be
    present in the journal, rendering it inconsistent with the
    contents of the zone file.</P
></DIV
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="incremental_zone_transfers"
>4.2. Incremental Zone Transfers (IXFR)</A
></H1
><P
>The incremental zone transfer (IXFR) protocol is a way for
    slave servers to transfer only changed data, instead of having to
    transfer the entire zone. The IXFR protocol is documented in RFC
    1995. See <A
HREF="Bv9ARM.ch09.html#proposed_standards"
>Proposed Standards</A
>.</P
><P
>When acting as a master, <SPAN
CLASS="acronym"
>BIND</SPAN
> 9 supports IXFR for those zones
where the necessary change history information is available. These
include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR, but not manually maintained master
zones nor slave zones obtained by performing a full zone transfer
(AXFR).</P
><P
>When acting as a slave, <SPAN
CLASS="acronym"
>BIND</SPAN
> 9 will attempt to use IXFR unless
it is explicitly disabled. For more information about disabling
IXFR, see the description of the <B
CLASS="command"
>request-ixfr</B
> clause
of the <B
CLASS="command"
>server</B
> statement.</P
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="AEN727"
>4.3. Split DNS</A
></H1
><P
>Setting up different views, or visibility, of DNS space to
internal and external resolvers is usually referred to as a <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>Split
DNS</I
></SPAN
> setup. There are several reasons an organization
would want to set up its DNS this way.</P
><P
>One common reason for setting up a DNS system this way is
to hide "internal" DNS information from "external" clients on the
Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers,
for example) and most savvy "attackers" can find the information
they need using other means.</P
><P
>Another common reason for setting up a Split DNS system is
to allow internal networks that are behind filters or in RFC 1918
space (reserved IP space, as documented in RFC 1918) to resolve DNS
on the Internet. Split DNS can also be used to allow mail from outside
back in to the internal network.</P
><P
>Here is an example of a split DNS setup:</P
><P
>Let's say a company named <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>Example, Inc.</I
></SPAN
> (example.com)
has several corporate sites that have an internal network with reserved
Internet Protocol (IP) space and an external demilitarized zone (DMZ),
or "outside" section of a network, that is available to the public.</P
><P
><SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>Example, Inc.</I
></SPAN
> wants its internal clients
to be able to resolve external hostnames and to exchange mail with
people on the outside. The company also wants its internal resolvers
to have access to certain internal-only zones that are not available
at all outside of the internal network.</P
><P
>In order to accomplish this, the company will set up two sets
of nameservers. One set will be on the inside network (in the reserved
IP space) and the other set will be on bastion hosts, which are "proxy"
hosts that can talk to both sides of its network, in the DMZ.</P
><P
>The internal servers will be configured to forward all queries,
except queries for <TT
CLASS="filename"
>site1.internal</TT
>, <TT
CLASS="filename"
>site2.internal</TT
>, <TT
CLASS="filename"
>site1.example.com</TT
>,
and <TT
CLASS="filename"
>site2.example.com</TT
>, to the servers in the
DMZ. These internal servers will have complete sets of information
for <TT
CLASS="filename"
>site1.example.com</TT
>, <TT
CLASS="filename"
>site2.example.com</TT
>,<SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
> </I
></SPAN
><TT
CLASS="filename"
>site1.internal</TT
>,
and <TT
CLASS="filename"
>site2.internal</TT
>.</P
><P
>To protect the <TT
CLASS="filename"
>site1.internal</TT
> and <TT
CLASS="filename"
>site2.internal</TT
> domains,
the internal nameservers must be configured to disallow all queries
to these domains from any external hosts, including the bastion
hosts.</P
><P
>The external servers, which are on the bastion hosts, will
be configured to serve the "public" version of the <TT
CLASS="filename"
>site1</TT
> and <TT
CLASS="filename"
>site2.example.com</TT
> zones.
This could include things such as the host records for public servers
(<TT
CLASS="filename"
>www.example.com</TT
> and <TT
CLASS="filename"
>ftp.example.com</TT
>),
and mail exchange (MX)  records (<TT
CLASS="filename"
>a.mx.example.com</TT
> and <TT
CLASS="filename"
>b.mx.example.com</TT
>).</P
><P
>In addition, the public <TT
CLASS="filename"
>site1</TT
> and <TT
CLASS="filename"
>site2.example.com</TT
> zones
should have special MX records that contain wildcard (`*') records
pointing to the bastion hosts. This is needed because external mail
servers do not have any other way of looking up how to deliver mail
to those internal hosts. With the wildcard records, the mail will
be delivered to the bastion host, which can then forward it on to
internal hosts.</P
><P
>Here's an example of a wildcard MX record:</P
><PRE
CLASS="programlisting"
><TT
CLASS="literal"
>*   IN MX 10 external1.example.com.</TT
></PRE
><P
>Now that they accept mail on behalf of anything in the internal
network, the bastion hosts will need to know how to deliver mail
to internal hosts. In order for this to work properly, the resolvers on
the bastion hosts will need to be configured to point to the internal
nameservers for DNS resolution.</P
><P
>Queries for internal hostnames will be answered by the internal
servers, and queries for external hostnames will be forwarded back
out to the DNS servers on the bastion hosts.</P
><P
>In order for all this to work properly, internal clients will
need to be configured to query <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>only</I
></SPAN
> the internal
nameservers for DNS queries. This could also be enforced via selective
filtering on the network.</P
><P
>If everything has been set properly, <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>Example, Inc.</I
></SPAN
>'s
internal clients will now be able to:</P
><P
></P
><UL
><LI
><P
>Look up any hostnames in the <TT
CLASS="literal"
>site1</TT
> and 
<TT
CLASS="literal"
>site2.example.com</TT
> zones.</P
></LI
><LI
><P
>Look up any hostnames in the <TT
CLASS="literal"
>site1.internal</TT
> and 
<TT
CLASS="literal"
>site2.internal</TT
> domains.</P
></LI
><LI
><P
>Look up any hostnames on the Internet.</P
></LI
><LI
><P
>Exchange mail with internal AND external people.</P
></LI
></UL
><P
>Hosts on the Internet will be able to:</P
><P
></P
><UL
><LI
><P
>Look up any hostnames in the <TT
CLASS="literal"
>site1</TT
> and 
<TT
CLASS="literal"
>site2.example.com</TT
> zones.</P
></LI
><LI
><P
>Exchange mail with anyone in the <TT
CLASS="literal"
>site1</TT
> and 
<TT
CLASS="literal"
>site2.example.com</TT
> zones.</P
></LI
></UL
><P
>Here is an example configuration for the setup we just
    described above. Note that this is only configuration information;
    for information on how to configure your zone files, see <A
HREF="Bv9ARM.ch03.html#sample_configuration"
>Section 3.1</A
></P
><P
>Internal DNS server config:</P
><PRE
CLASS="programlisting"
>&#13;
acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { <TT
CLASS="varname"
>bastion-ips-go-here</TT
>; };

options {
    ...
    ...
    forward only;
    forwarders {                                // forward to external servers
        <TT
CLASS="varname"
>bastion-ips-go-here</TT
>; 
    };
    allow-transfer { none; };                   // sample allow-transfer (no one)
    allow-query { internals; externals; };      // restrict query access
    allow-recursion { internals; };             // restrict recursion
    ...
    ...
};

zone "site1.example.com" {                      // sample master zone
  type master;
  file "m/site1.example.com";
  forwarders { };                               // do normal iterative
                                                // resolution (do not forward)
  allow-query { internals; externals; };
  allow-transfer { internals; };
};

zone "site2.example.com" {
  type slave;
  file "s/site2.example.com";
  masters { 172.16.72.3; };
  forwarders { };
  allow-query { internals; externals; };
  allow-transfer { internals; };
};

zone "site1.internal" {
  type master;
  file "m/site1.internal";
  forwarders { };
  allow-query { internals; };
  allow-transfer { internals; }
};

zone "site2.internal" {
  type slave;
  file "s/site2.internal";
  masters { 172.16.72.3; };
  forwarders { };
  allow-query { internals };
  allow-transfer { internals; }
};
</PRE
><P
>External (bastion host) DNS server config:</P
><PRE
CLASS="programlisting"
>&#13;acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
  ...
  ...
  allow-transfer { none; };                     // sample allow-transfer (no one)
  allow-query { internals; externals; };        // restrict query access
  allow-recursion { internals; externals; };    // restrict recursion
  ...
  ...
};

zone "site1.example.com" {                      // sample slave zone
  type master;
  file "m/site1.foo.com";
  allow-query { any; };
  allow-transfer { internals; externals; };
};

zone "site2.example.com" {
  type slave;
  file "s/site2.foo.com";
  masters { another_bastion_host_maybe; };
  allow-query { any; };
  allow-transfer { internals; externals; }
};
</PRE
><P
>In the <TT
CLASS="filename"
>resolv.conf</TT
> (or equivalent) on
the bastion host(s):</P
><PRE
CLASS="programlisting"
>&#13;search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4
</PRE
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="tsig"
>4.4. TSIG</A
></H1
><P
>This is a short guide to setting up Transaction SIGnatures
(TSIG) based transaction security in <SPAN
CLASS="acronym"
>BIND</SPAN
>. It describes changes
to the configuration file as well as what changes are required for
different features, including the process of creating transaction
keys and using transaction signatures with <SPAN
CLASS="acronym"
>BIND</SPAN
>.</P
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> primarily supports TSIG for server to server communication.
This includes zone transfer, notify, and recursive query messages.
Resolvers based on newer versions of <SPAN
CLASS="acronym"
>BIND</SPAN
> 8 have limited support
for TSIG.</P
><P
>TSIG might be most useful for dynamic update. A primary
    server for a dynamic zone should use access control to control
    updates, but IP-based access control is insufficient. Key-based
    access control is far superior, see <A
HREF="Bv9ARM.ch09.html#proposed_standards"
>Proposed Standards</A
>. The <B
CLASS="command"
>nsupdate</B
>
    program supports TSIG via the <TT
CLASS="option"
>-k</TT
> and
    <TT
CLASS="option"
>-y</TT
> command line options.</P
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN818"
>4.4.1. Generate Shared Keys for Each Pair of Hosts</A
></H2
><P
>A shared secret is generated to be shared between <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
> and <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host2</I
></SPAN
>.
An arbitrary key name is chosen: "host1-host2.". The key name must
be the same on both hosts.</P
><DIV
CLASS="sect3"
><H3
CLASS="sect3"
><A
NAME="AEN823"
>4.4.1.1. Automatic Generation</A
></H3
><P
>The following command will generate a 128 bit (16 byte) HMAC-MD5
key as described above. Longer keys are better, but shorter keys
are easier to read. Note that the maximum key length is 512 bits;
keys longer than that will be digested with MD5 to produce a 128
bit key.</P
><P
><TT
CLASS="userinput"
><B
>dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.</B
></TT
></P
><P
>The key is in the file <TT
CLASS="filename"
>Khost1-host2.+157+00000.private</TT
>.
Nothing directly uses this file, but the base-64 encoded string
following "<TT
CLASS="literal"
>Key:</TT
>"
can be extracted from the file and used as a shared secret:</P
><PRE
CLASS="programlisting"
>Key: La/E5CjG9O+os1jq0a2jdA==</PRE
><P
>The string "<TT
CLASS="literal"
>La/E5CjG9O+os1jq0a2jdA==</TT
>" can
be used as the shared secret.</P
></DIV
><DIV
CLASS="sect3"
><H3
CLASS="sect3"
><A
NAME="AEN834"
>4.4.1.2. Manual Generation</A
></H3
><P
>The shared secret is simply a random sequence of bits, encoded
in base-64. Most ASCII strings are valid base-64 strings (assuming
the length is a multiple of 4 and only valid characters are used),
so the shared secret can be manually generated.</P
><P
>Also, a known string can be run through <B
CLASS="command"
>mmencode</B
> or
a similar program to generate base-64 encoded data.</P
></DIV
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN839"
>4.4.2. Copying the Shared Secret to Both Machines</A
></H2
><P
>This is beyond the scope of DNS. A secure transport mechanism
should be used. This could be secure FTP, ssh, telephone, etc.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN842"
>4.4.3. Informing the Servers of the Key's Existence</A
></H2
><P
>Imagine <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
> and <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host 2</I
></SPAN
> are
both servers. The following is added to each server's <TT
CLASS="filename"
>named.conf</TT
> file:</P
><PRE
CLASS="programlisting"
>&#13;key host1-host2. {
  algorithm hmac-md5;
  secret "La/E5CjG9O+os1jq0a2jdA==";
};
</PRE
><P
>The algorithm, hmac-md5, is the only one supported by <SPAN
CLASS="acronym"
>BIND</SPAN
>.
The secret is the one generated above. Since this is a secret, it
is recommended that either <TT
CLASS="filename"
>named.conf</TT
> be non-world
readable, or the key directive be added to a non-world readable
file that is included by <TT
CLASS="filename"
>named.conf</TT
>.</P
><P
>At this point, the key is recognized. This means that if the
server receives a message signed by this key, it can verify the
signature. If the signature succeeds, the response is signed by
the same key.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN854"
>4.4.4. Instructing the Server to Use the Key</A
></H2
><P
>Since keys are shared between two hosts only, the server must
be told when keys are to be used. The following is added to the <TT
CLASS="filename"
>named.conf</TT
> file
for <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
>, if the IP address of <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host2</I
></SPAN
> is
10.1.2.3:</P
><PRE
CLASS="programlisting"
>&#13;server 10.1.2.3 {
  keys { host1-host2. ;};
};
</PRE
><P
>Multiple keys may be present, but only the first is used.
This directive does not contain any secrets, so it may be in a world-readable
file.</P
><P
>If <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
> sends a message that is a request
to that address, the message will be signed with the specified key. <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
> will
expect any responses to signed messages to be signed with the same
key.</P
><P
>A similar statement must be present in <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host2</I
></SPAN
>'s
configuration file (with <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
>'s address) for <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host2</I
></SPAN
> to
sign request messages to <SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>host1</I
></SPAN
>.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN870"
>4.4.5. TSIG Key Based Access Control</A
></H2
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> allows IP addresses and ranges to be specified in ACL
definitions and
<B
CLASS="command"
>allow-{ query | transfer | update }</B
> directives.
This has been extended to allow TSIG keys also. The above key would
be denoted <B
CLASS="command"
>key host1-host2.</B
></P
><P
>An example of an allow-update directive would be:</P
><PRE
CLASS="programlisting"
>&#13;allow-update { key host1-host2. ;};
</PRE
><P
>This allows dynamic updates to succeed only if the request
      was signed by a key named
      "<B
CLASS="command"
>host1-host2.</B
>".</P
><P
>You may want to read about the more
      powerful <B
CLASS="command"
>update-policy</B
> statement in <A
HREF="Bv9ARM.ch06.html#dynamic_update_policies"
>Section 6.2.22.4</A
>.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN883"
>4.4.6. Errors</A
></H2
><P
>The processing of TSIG signed messages can result in
      several errors. If a signed message is sent to a non-TSIG aware
      server, a FORMERR will be returned, since the server will not
      understand the record. This is a result of misconfiguration,
      since the server must be explicitly configured to send a TSIG
      signed message to a specific server.</P
><P
>If a TSIG aware server receives a message signed by an
      unknown key, the response will be unsigned with the TSIG
      extended error code set to BADKEY. If a TSIG aware server
      receives a message with a signature that does not validate, the
      response will be unsigned with the TSIG extended error code set
      to BADSIG. If a TSIG aware server receives a message with a time
      outside of the allowed range, the response will be signed with
      the TSIG extended error code set to BADTIME, and the time values
      will be adjusted so that the response can be successfully
      verified. In any of these cases, the message's rcode is set to
      NOTAUTH.</P
></DIV
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="AEN887"
>4.5. TKEY</A
></H1
><P
><B
CLASS="command"
>TKEY</B
> is a mechanism for automatically
    generating a shared secret between two hosts.  There are several
    "modes" of <B
CLASS="command"
>TKEY</B
> that specify how the key is
    generated or assigned.  <SPAN
CLASS="acronym"
>BIND</SPAN
> implements only one of these modes,
    the Diffie-Hellman key exchange.  Both hosts are required to have
    a Diffie-Hellman KEY record (although this record is not required
    to be present in a zone).  The <B
CLASS="command"
>TKEY</B
> process
    must use signed messages, signed either by TSIG or SIG(0).  The
    result of <B
CLASS="command"
>TKEY</B
> is a shared secret that can be
    used to sign messages with TSIG.  <B
CLASS="command"
>TKEY</B
> can also
    be used to delete shared secrets that it had previously
    generated.</P
><P
>The <B
CLASS="command"
>TKEY</B
> process is initiated by a client
    or server by sending a signed <B
CLASS="command"
>TKEY</B
> query
    (including any appropriate KEYs) to a TKEY-aware server.  The
    server response, if it indicates success, will contain a
    <B
CLASS="command"
>TKEY</B
> record and any appropriate keys.  After
    this exchange, both participants have enough information to
    determine the shared secret; the exact process depends on the
    <B
CLASS="command"
>TKEY</B
> mode.  When using the Diffie-Hellman
    <B
CLASS="command"
>TKEY</B
> mode, Diffie-Hellman keys are exchanged,
    and the shared secret is derived by both participants.</P
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="AEN902"
>4.6. SIG(0)</A
></H1
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> 9 partially supports DNSSEC SIG(0) transaction
    signatures as specified in RFC 2535.  SIG(0) uses public/private
    keys to authenticate messages.  Access control is performed in the
    same manner as TSIG keys; privileges can be granted or denied
    based on the key name.</P
><P
>When a SIG(0) signed message is received, it will only be
    verified if the key is known and trusted by the server; the server
    will not attempt to locate and/or validate the key.</P
><P
>SIG(0) signing of multiple-message TCP streams is not
    supported.</P
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> 9 does not ship with any tools that generate SIG(0)
    signed messages.</P
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="DNSSEC"
>4.7. DNSSEC</A
></H1
><P
>Cryptographic authentication of DNS information is possible
    through the DNS Security (<SPAN
CLASS="emphasis"
><I
CLASS="emphasis"
>DNSSEC</I
></SPAN
>) extensions,
    defined in RFC 2535. This section describes the creation and use
    of DNSSEC signed zones.</P
><P
>In order to set up a DNSSEC secure zone, there are a series
    of steps which must be followed.  <SPAN
CLASS="acronym"
>BIND</SPAN
> 9 ships
    with several tools
    that are used in this process, which are explained in more detail
    below.  In all cases, the "<TT
CLASS="option"
>-h</TT
>" option prints a
    full list of parameters.  Note that the DNSSEC tools require the
    keyset and signedkey files to be in the working directory, and
    that the tools shipped with BIND 9.0.x are not fully compatible
    with the current ones.</P
><P
>There must also be communication with the administrators of
    the parent and/or child zone to transmit keys and signatures.  A
    zone's security status must be indicated by the parent zone for a
    DNSSEC capable resolver to trust its data.</P
><P
>For other servers to trust data in this zone, they must
    either be statically configured with this zone's zone key or the
    zone key of another zone above this one in the DNS tree.</P
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN919"
>4.7.1. Generating Keys</A
></H2
><P
>The <B
CLASS="command"
>dnssec-keygen</B
> program is used to
      generate keys.</P
><P
>A secure zone must contain one or more zone keys.  The
      zone keys will sign all other records in the zone, as well as
      the zone keys of any secure delegated zones.  Zone keys must
      have the same name as the zone, a name type of
      <B
CLASS="command"
>ZONE</B
>, and must be usable for authentication.
      It is recommended that zone keys use a cryptographic algorithm
      designated as "mandatory to implement" by the IETF; currently
      these are RSASHA1 (which is not yet supported in BIND 9.2)
      and DSA.</P
><P
>The following command will generate a 768 bit DSA key for
      the <TT
CLASS="filename"
>child.example</TT
> zone:</P
><P
><TT
CLASS="userinput"
><B
>dnssec-keygen -a DSA -b 768 -n ZONE child.example.</B
></TT
></P
><P
>Two output files will be produced:
      <TT
CLASS="filename"
>Kchild.example.+003+12345.key</TT
> and
      <TT
CLASS="filename"
>Kchild.example.+003+12345.private</TT
> (where
      12345 is an example of a key tag).  The key file names contain
      the key name (<TT
CLASS="filename"
>child.example.</TT
>), algorithm (3
      is DSA, 1 is RSA, etc.), and the key tag (12345 in this case).
      The private key (in the <TT
CLASS="filename"
>.private</TT
> file) is
      used to generate signatures, and the public key (in the
      <TT
CLASS="filename"
>.key</TT
> file) is used for signature
      verification.</P
><P
>To generate another key with the same properties (but with
      a different key tag), repeat the above command.</P
><P
>The public keys should be inserted into the zone file with
      <B
CLASS="command"
>$INCLUDE</B
> statements, including the
      <TT
CLASS="filename"
>.key</TT
> files.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN939"
>4.7.2. Creating a Keyset</A
></H2
><P
>The <B
CLASS="command"
>dnssec-makekeyset</B
> program is used
      to create a key set from one or more keys.</P
><P
>Once the zone keys have been generated, a key set must be
      built for transmission to the administrator of the parent zone,
      so that the parent zone can sign the keys with its own zone key
      and correctly indicate the security status of this zone.  When
      building a key set, the list of keys to be included and the TTL
      of the set must be specified, and the desired signature validity
      period of the parent's signature may also be specified.</P
><P
>The list of keys to be inserted into the key set may also
      included non-zone keys present at the top of the zone.
      <B
CLASS="command"
>dnssec-makekeyset</B
> may also be used at other
      names in the zone.</P
><P
>The following command generates a key set containing the
      above key and another key similarly generated, with a TTL of
      3600 and a signature validity period of 10 days starting from
      now.</P
><P
><TT
CLASS="userinput"
><B
>dnssec-makekeyset -t 3600 -e +864000 Kchild.example.+003+12345 Kchild.example.+003+23456</B
></TT
></P
><P
>One output file is produced:
      <TT
CLASS="filename"
>keyset-child.example.</TT
>.  This file should be
      transmitted to the parent to be signed.  It includes the keys,
      as well as signatures over the key set generated by the zone
      keys themselves, which are used to prove ownership of the
      private keys and encode the desired validity period.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN951"
>4.7.3. Signing the Child's Keyset</A
></H2
><P
>The <B
CLASS="command"
>dnssec-signkey</B
> program is used to
      sign one child's keyset.</P
><P
>If the <TT
CLASS="filename"
>child.example</TT
> zone has any
      delegations which are secure, for example,
      <TT
CLASS="filename"
>grand.child.example</TT
>, the
      <TT
CLASS="filename"
>child.example</TT
> administrator should receive
      keyset files for each secure subzone.  These keys must be signed
      by this zone's zone keys.</P
><P
>The following command signs the child's key set with the
      zone keys:</P
><P
><TT
CLASS="userinput"
><B
>dnssec-signkey keyset-grand.child.example. Kchild.example.+003+12345 Kchild.example.+003+23456</B
></TT
></P
><P
>One output file is produced:
      <TT
CLASS="filename"
>signedkey-grand.child.example.</TT
>.  This file
      should be both transmitted back to the child and retained.  It
      includes all keys (the child's keys) from the keyset file and
      signatures generated by this zone's zone keys.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN964"
>4.7.4. Signing the Zone</A
></H2
><P
>The <B
CLASS="command"
>dnssec-signzone</B
> program is used to
      sign a zone.</P
><P
>Any <TT
CLASS="filename"
>signedkey</TT
> files corresponding to
      secure subzones should be present, as well as a
      <TT
CLASS="filename"
>signedkey</TT
> file for this zone generated by
      the parent (if there is one). The zone signer will generate
      <TT
CLASS="literal"
>NXT</TT
> and <TT
CLASS="literal"
>SIG</TT
> records for
      the zone, as well as incorporate the zone key signature from the
      parent and indicate the security status at all delegation
      points.</P
><P
>The following command signs the zone, assuming it is in a
      file called <TT
CLASS="filename"
>zone.child.example</TT
>.  By
      default, all zone keys which have an available private key are
      used to generate signatures.</P
><P
><TT
CLASS="userinput"
><B
>dnssec-signzone -o child.example zone.child.example</B
></TT
></P
><P
>One output file is produced:
      <TT
CLASS="filename"
>zone.child.example.signed</TT
>.  This file
      should be referenced by <TT
CLASS="filename"
>named.conf</TT
> as the
      input file for the zone.</P
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN980"
>4.7.5. Configuring Servers</A
></H2
><P
>Unlike in <SPAN
CLASS="acronym"
>BIND</SPAN
> 8, 
data is not verified on load in <SPAN
CLASS="acronym"
>BIND</SPAN
> 9,
so zone keys for authoritative zones do not need to be specified
in the configuration file.</P
><P
>The public key for any security root must be present in
the configuration file's <B
CLASS="command"
>trusted-keys</B
>
statement, as described later in this document. </P
></DIV
></DIV
><DIV
CLASS="sect1"
><H1
CLASS="sect1"
><A
NAME="AEN987"
>4.8. IPv6 Support in <SPAN
CLASS="acronym"
>BIND</SPAN
> 9</A
></H1
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> 9 fully supports all currently
    defined forms of IPv6 name to address and address to name
    lookups.  It will also use IPv6 addresses to make queries when
    running on an IPv6 capable system.</P
><P
>For forward lookups, <SPAN
CLASS="acronym"
>BIND</SPAN
> 9 supports
    both A6 and AAAA records.  The use of A6 records has been moved
    to experimental (RFC 3363) and should be treated as deprecated.</P
><P
>The use of "bitstring" labels for IPv6 has been moved to
    experimental (RFC 3363) reverting to a nibble format.  The
    suffix for the IPv6 reverse lookups has also changed from
    <TT
CLASS="literal"
>IP6.INT</TT
> to <TT
CLASS="literal"
>IP6.ARPA</TT
> (RFC
    3152).</P
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> 9 now defaults to nibble
    <TT
CLASS="literal"
>IP6.ARPA</TT
> format lookups.</P
><P
><SPAN
CLASS="acronym"
>BIND</SPAN
> 9 includes a new lightweight resolver library and
    resolver daemon which new applications may choose to use to avoid
    the complexities of A6 chain following and bitstring labels, see <A
HREF="Bv9ARM.ch05.html"
>Chapter 5</A
>.</P
><P
>For an overview of the format and structure of IPv6 addresses,
    see <A
HREF="Bv9ARM.ch09.html#ipv6addresses"
>Section A.3.1</A
>.</P
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN1005"
>4.8.1. Address Lookups Using AAAA Records</A
></H2
><P
>The AAAA record is a parallel to the IPv4 A record.  It
      specifies the entire address in a single record.  For
      example,</P
><PRE
CLASS="programlisting"
>&#13;$ORIGIN example.com.
host            3600    IN      AAAA    3ffe:8050:201:1860:42::1
</PRE
></DIV
><DIV
CLASS="sect2"
><H2
CLASS="sect2"
><A
NAME="AEN1009"
>4.8.2. Address to Name Lookups Using Nibble Format</A
></H2
><P
>When looking up an address in nibble format, the address
      components are simply reversed, just as in IPv4, and
      <TT
CLASS="literal"
>IP6.ARPA.</TT
> is appended to the resulting name.
      For example, the following would provide reverse name lookup for
      a host with address
      <TT
CLASS="literal"
>3ffe:8050:201:1860:42::1</TT
>.</P
><PRE
CLASS="programlisting"
>&#13;$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.IP6.ARPA.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0   14400 IN      PTR     host.example.com.
</PRE
></DIV
></DIV
></DIV
><DIV
CLASS="NAVFOOTER"
><HR
ALIGN="LEFT"
WIDTH="100%"><TABLE
SUMMARY="Footer navigation table"
WIDTH="100%"
BORDER="0"
CELLPADDING="0"
CELLSPACING="0"
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
><A
HREF="Bv9ARM.ch03.html"
ACCESSKEY="P"
>Prev</A
></TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
><A
HREF="Bv9ARM.html"
ACCESSKEY="H"
>Home</A
></TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
><A
HREF="Bv9ARM.ch05.html"
ACCESSKEY="N"
>Next</A
></TD
></TR
><TR
><TD
WIDTH="33%"
ALIGN="left"
VALIGN="top"
>Nameserver Configuration</TD
><TD
WIDTH="34%"
ALIGN="center"
VALIGN="top"
>&nbsp;</TD
><TD
WIDTH="33%"
ALIGN="right"
VALIGN="top"
>The <SPAN
CLASS="acronym"
>BIND</SPAN
> 9 Lightweight Resolver</TD
></TR
></TABLE
></DIV
></BODY
></HTML
>