1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
|
<!--
- Copyright (C) 2004-2009 Internet Systems Consortium, Inc. ("ISC")
- Copyright (C) 2000-2003 Internet Software Consortium.
-
- Permission to use, copy, modify, and/or distribute this software for any
- purpose with or without fee is hereby granted, provided that the above
- copyright notice and this permission notice appear in all copies.
-
- THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
- REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
- AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
- INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
- LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
- OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
- PERFORMANCE OF THIS SOFTWARE.
-->
<!-- $Id: Bv9ARM.ch04.html,v 1.100 2009/09/03 01:14:42 tbox Exp $ -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Chapter 4. Advanced DNS Features</title>
<meta name="generator" content="DocBook XSL Stylesheets V1.71.1">
<link rel="start" href="Bv9ARM.html" title="BIND 9 Administrator Reference Manual">
<link rel="up" href="Bv9ARM.html" title="BIND 9 Administrator Reference Manual">
<link rel="prev" href="Bv9ARM.ch03.html" title="Chapter 3. Name Server Configuration">
<link rel="next" href="Bv9ARM.ch05.html" title="Chapter 5. The BIND 9 Lightweight Resolver">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<div class="navheader">
<table width="100%" summary="Navigation header">
<tr><th colspan="3" align="center">Chapter 4. Advanced DNS Features</th></tr>
<tr>
<td width="20%" align="left">
<a accesskey="p" href="Bv9ARM.ch03.html">Prev</a> </td>
<th width="60%" align="center"> </th>
<td width="20%" align="right"> <a accesskey="n" href="Bv9ARM.ch05.html">Next</a>
</td>
</tr>
</table>
<hr>
</div>
<div class="chapter" lang="en">
<div class="titlepage"><div><div><h2 class="title">
<a name="Bv9ARM.ch04"></a>Chapter 4. Advanced DNS Features</h2></div></div></div>
<div class="toc">
<p><b>Table of Contents</b></p>
<dl>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#notify">Notify</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#dynamic_update">Dynamic Update</a></span></dt>
<dd><dl><dt><span class="sect2"><a href="Bv9ARM.ch04.html#journal">The journal file</a></span></dt></dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#incremental_zone_transfers">Incremental Zone Transfers (IXFR)</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2570508">Split DNS</a></span></dt>
<dd><dl><dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570526">Example split DNS setup</a></span></dt></dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#tsig">TSIG</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571028">Generate Shared Keys for Each Pair of Hosts</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571101">Copying the Shared Secret to Both Machines</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571112">Informing the Servers of the Key's Existence</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571155">Instructing the Server to Use the Key</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571281">TSIG Key Based Access Control</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571330">Errors</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2571412">TKEY</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2571461">SIG(0)</a></span></dt>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#DNSSEC">DNSSEC</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571666">Generating Keys</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571813">Signing the Zone</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571894">Configuring Servers</a></span></dt>
</dl></dd>
<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2572076">IPv6 Support in <acronym class="acronym">BIND</acronym> 9</a></span></dt>
<dd><dl>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2564083">Address Lookups Using AAAA Records</a></span></dt>
<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2564104">Address to Name Lookups Using Nibble Format</a></span></dt>
</dl></dd>
</dl>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="notify"></a>Notify</h2></div></div></div>
<p>
<acronym class="acronym">DNS</acronym> NOTIFY is a mechanism that allows master
servers to notify their slave servers of changes to a zone's data. In
response to a <span><strong class="command">NOTIFY</strong></span> from a master server, the
slave will check to see that its version of the zone is the
current version and, if not, initiate a zone transfer.
</p>
<p>
For more information about <acronym class="acronym">DNS</acronym>
<span><strong class="command">NOTIFY</strong></span>, see the description of the
<span><strong class="command">notify</strong></span> option in <a href="Bv9ARM.ch06.html#boolean_options" title="Boolean Options">the section called “Boolean Options”</a> and
the description of the zone option <span><strong class="command">also-notify</strong></span> in
<a href="Bv9ARM.ch06.html#zone_transfers" title="Zone Transfers">the section called “Zone Transfers”</a>. The <span><strong class="command">NOTIFY</strong></span>
protocol is specified in RFC 1996.
</p>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
As a slave zone can also be a master to other slaves, <span><strong class="command">named</strong></span>,
by default, sends <span><strong class="command">NOTIFY</strong></span> messages for every zone
it loads. Specifying <span><strong class="command">notify master-only;</strong></span> will
cause <span><strong class="command">named</strong></span> to only send <span><strong class="command">NOTIFY</strong></span> for master
zones that it loads.
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="dynamic_update"></a>Dynamic Update</h2></div></div></div>
<p>
Dynamic Update is a method for adding, replacing or deleting
records in a master server by sending it a special form of DNS
messages. The format and meaning of these messages is specified
in RFC 2136.
</p>
<p>
Dynamic update is enabled by including an
<span><strong class="command">allow-update</strong></span> or an <span><strong class="command">update-policy</strong></span>
clause in the <span><strong class="command">zone</strong></span> statement.
</p>
<p>
If the zone's <span><strong class="command">update-policy</strong></span> is set to
<strong class="userinput"><code>local</code></strong>, updates to the zone
will be permitted for the key <code class="varname">local-ddns</code>,
which will be generated by <span><strong class="command">named</strong></span> at startup.
See <a href="Bv9ARM.ch06.html#dynamic_update_policies" title="Dynamic Update Policies">the section called “Dynamic Update Policies”</a> for more details.
</p>
<p>
The <span><strong class="command">tkey-gssapi-credential</strong></span> and
<span><strong class="command">tkey-domain</strong></span> clauses in the
<span><strong class="command">options</strong></span> statement enable the
server to negotiate keys that can be matched against those
in <span><strong class="command">update-policy</strong></span> or
<span><strong class="command">allow-update</strong></span>.
</p>
<p>
Updating of secure zones (zones using DNSSEC) follows RFC
3007: RRSIG, NSEC and NSEC3 records affected by updates are
automatically regenerated by the server using an online
zone key. Update authorization is based on transaction
signatures and an explicit server policy.
</p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="journal"></a>The journal file</h3></div></div></div>
<p>
All changes made to a zone using dynamic update are stored
in the zone's journal file. This file is automatically created
by the server when the first dynamic update takes place.
The name of the journal file is formed by appending the extension
<code class="filename">.jnl</code> to the name of the
corresponding zone
file unless specifically overridden. The journal file is in a
binary format and should not be edited manually.
</p>
<p>
The server will also occasionally write ("dump")
the complete contents of the updated zone to its zone file.
This is not done immediately after
each dynamic update, because that would be too slow when a large
zone is updated frequently. Instead, the dump is delayed by
up to 15 minutes, allowing additional updates to take place.
</p>
<p>
When a server is restarted after a shutdown or crash, it will replay
the journal file to incorporate into the zone any updates that
took
place after the last zone dump.
</p>
<p>
Changes that result from incoming incremental zone transfers are
also
journalled in a similar way.
</p>
<p>
The zone files of dynamic zones cannot normally be edited by
hand because they are not guaranteed to contain the most recent
dynamic changes — those are only in the journal file.
The only way to ensure that the zone file of a dynamic zone
is up to date is to run <span><strong class="command">rndc stop</strong></span>.
</p>
<p>
If you have to make changes to a dynamic zone
manually, the following procedure will work: Disable dynamic updates
to the zone using
<span><strong class="command">rndc freeze <em class="replaceable"><code>zone</code></em></strong></span>.
This will also remove the zone's <code class="filename">.jnl</code> file
and update the master file. Edit the zone file. Run
<span><strong class="command">rndc thaw <em class="replaceable"><code>zone</code></em></strong></span>
to reload the changed zone and re-enable dynamic updates.
</p>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="incremental_zone_transfers"></a>Incremental Zone Transfers (IXFR)</h2></div></div></div>
<p>
The incremental zone transfer (IXFR) protocol is a way for
slave servers to transfer only changed data, instead of having to
transfer the entire zone. The IXFR protocol is specified in RFC
1995. See <a href="Bv9ARM.ch09.html#proposed_standards">Proposed Standards</a>.
</p>
<p>
When acting as a master, <acronym class="acronym">BIND</acronym> 9
supports IXFR for those zones
where the necessary change history information is available. These
include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR. For manually maintained master
zones, and for slave zones obtained by performing a full zone
transfer (AXFR), IXFR is supported only if the option
<span><strong class="command">ixfr-from-differences</strong></span> is set
to <strong class="userinput"><code>yes</code></strong>.
</p>
<p>
When acting as a slave, <acronym class="acronym">BIND</acronym> 9 will
attempt to use IXFR unless
it is explicitly disabled. For more information about disabling
IXFR, see the description of the <span><strong class="command">request-ixfr</strong></span> clause
of the <span><strong class="command">server</strong></span> statement.
</p>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2570508"></a>Split DNS</h2></div></div></div>
<p>
Setting up different views, or visibility, of the DNS space to
internal and external resolvers is usually referred to as a
<span class="emphasis"><em>Split DNS</em></span> setup. There are several
reasons an organization would want to set up its DNS this way.
</p>
<p>
One common reason for setting up a DNS system this way is
to hide "internal" DNS information from "external" clients on the
Internet. There is some debate as to whether or not this is actually
useful.
Internal DNS information leaks out in many ways (via email headers,
for example) and most savvy "attackers" can find the information
they need using other means.
However, since listing addresses of internal servers that
external clients cannot possibly reach can result in
connection delays and other annoyances, an organization may
choose to use a Split DNS to present a consistent view of itself
to the outside world.
</p>
<p>
Another common reason for setting up a Split DNS system is
to allow internal networks that are behind filters or in RFC 1918
space (reserved IP space, as documented in RFC 1918) to resolve DNS
on the Internet. Split DNS can also be used to allow mail from outside
back in to the internal network.
</p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2570526"></a>Example split DNS setup</h3></div></div></div>
<p>
Let's say a company named <span class="emphasis"><em>Example, Inc.</em></span>
(<code class="literal">example.com</code>)
has several corporate sites that have an internal network with
reserved
Internet Protocol (IP) space and an external demilitarized zone (DMZ),
or "outside" section of a network, that is available to the public.
</p>
<p>
<span class="emphasis"><em>Example, Inc.</em></span> wants its internal clients
to be able to resolve external hostnames and to exchange mail with
people on the outside. The company also wants its internal resolvers
to have access to certain internal-only zones that are not available
at all outside of the internal network.
</p>
<p>
In order to accomplish this, the company will set up two sets
of name servers. One set will be on the inside network (in the
reserved
IP space) and the other set will be on bastion hosts, which are
"proxy"
hosts that can talk to both sides of its network, in the DMZ.
</p>
<p>
The internal servers will be configured to forward all queries,
except queries for <code class="filename">site1.internal</code>, <code class="filename">site2.internal</code>, <code class="filename">site1.example.com</code>,
and <code class="filename">site2.example.com</code>, to the servers
in the
DMZ. These internal servers will have complete sets of information
for <code class="filename">site1.example.com</code>, <code class="filename">site2.example.com</code>, <code class="filename">site1.internal</code>,
and <code class="filename">site2.internal</code>.
</p>
<p>
To protect the <code class="filename">site1.internal</code> and <code class="filename">site2.internal</code> domains,
the internal name servers must be configured to disallow all queries
to these domains from any external hosts, including the bastion
hosts.
</p>
<p>
The external servers, which are on the bastion hosts, will
be configured to serve the "public" version of the <code class="filename">site1</code> and <code class="filename">site2.example.com</code> zones.
This could include things such as the host records for public servers
(<code class="filename">www.example.com</code> and <code class="filename">ftp.example.com</code>),
and mail exchange (MX) records (<code class="filename">a.mx.example.com</code> and <code class="filename">b.mx.example.com</code>).
</p>
<p>
In addition, the public <code class="filename">site1</code> and <code class="filename">site2.example.com</code> zones
should have special MX records that contain wildcard (`*') records
pointing to the bastion hosts. This is needed because external mail
servers do not have any other way of looking up how to deliver mail
to those internal hosts. With the wildcard records, the mail will
be delivered to the bastion host, which can then forward it on to
internal hosts.
</p>
<p>
Here's an example of a wildcard MX record:
</p>
<pre class="programlisting">* IN MX 10 external1.example.com.</pre>
<p>
Now that they accept mail on behalf of anything in the internal
network, the bastion hosts will need to know how to deliver mail
to internal hosts. In order for this to work properly, the resolvers
on
the bastion hosts will need to be configured to point to the internal
name servers for DNS resolution.
</p>
<p>
Queries for internal hostnames will be answered by the internal
servers, and queries for external hostnames will be forwarded back
out to the DNS servers on the bastion hosts.
</p>
<p>
In order for all this to work properly, internal clients will
need to be configured to query <span class="emphasis"><em>only</em></span> the internal
name servers for DNS queries. This could also be enforced via
selective
filtering on the network.
</p>
<p>
If everything has been set properly, <span class="emphasis"><em>Example, Inc.</em></span>'s
internal clients will now be able to:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
Look up any hostnames in the <code class="literal">site1</code>
and
<code class="literal">site2.example.com</code> zones.
</li>
<li>
Look up any hostnames in the <code class="literal">site1.internal</code> and
<code class="literal">site2.internal</code> domains.
</li>
<li>Look up any hostnames on the Internet.</li>
<li>Exchange mail with both internal and external people.</li>
</ul></div>
<p>
Hosts on the Internet will be able to:
</p>
<div class="itemizedlist"><ul type="disc">
<li>
Look up any hostnames in the <code class="literal">site1</code>
and
<code class="literal">site2.example.com</code> zones.
</li>
<li>
Exchange mail with anyone in the <code class="literal">site1</code> and
<code class="literal">site2.example.com</code> zones.
</li>
</ul></div>
<p>
Here is an example configuration for the setup we just
described above. Note that this is only configuration information;
for information on how to configure your zone files, see <a href="Bv9ARM.ch03.html#sample_configuration" title="Sample Configurations">the section called “Sample Configurations”</a>.
</p>
<p>
Internal DNS server config:
</p>
<pre class="programlisting">
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { <code class="varname">bastion-ips-go-here</code>; };
options {
...
...
forward only;
// forward to external servers
forwarders {
<code class="varname">bastion-ips-go-here</code>;
};
// sample allow-transfer (no one)
allow-transfer { none; };
// restrict query access
allow-query { internals; externals; };
// restrict recursion
allow-recursion { internals; };
...
...
};
// sample master zone
zone "site1.example.com" {
type master;
file "m/site1.example.com";
// do normal iterative resolution (do not forward)
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };
};
// sample slave zone
zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };
};
zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }
};
zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }
};
</pre>
<p>
External (bastion host) DNS server config:
</p>
<pre class="programlisting">
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips-go-here; };
options {
...
...
// sample allow-transfer (no one)
allow-transfer { none; };
// default query access
allow-query { any; };
// restrict cache access
allow-query-cache { internals; externals; };
// restrict recursion
allow-recursion { internals; externals; };
...
...
};
// sample slave zone
zone "site1.example.com" {
type master;
file "m/site1.foo.com";
allow-transfer { internals; externals; };
};
zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-transfer { internals; externals; }
};
</pre>
<p>
In the <code class="filename">resolv.conf</code> (or equivalent) on
the bastion host(s):
</p>
<pre class="programlisting">
search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4
</pre>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="tsig"></a>TSIG</h2></div></div></div>
<p>
This is a short guide to setting up Transaction SIGnatures
(TSIG) based transaction security in <acronym class="acronym">BIND</acronym>. It describes changes
to the configuration file as well as what changes are required for
different features, including the process of creating transaction
keys and using transaction signatures with <acronym class="acronym">BIND</acronym>.
</p>
<p>
<acronym class="acronym">BIND</acronym> primarily supports TSIG for server
to server communication.
This includes zone transfer, notify, and recursive query messages.
Resolvers based on newer versions of <acronym class="acronym">BIND</acronym> 8 have limited support
for TSIG.
</p>
<p>
TSIG can also be useful for dynamic update. A primary
server for a dynamic zone should control access to the dynamic
update service, but IP-based access control is insufficient.
The cryptographic access control provided by TSIG
is far superior. The <span><strong class="command">nsupdate</strong></span>
program supports TSIG via the <code class="option">-k</code> and
<code class="option">-y</code> command line options or inline by use
of the <span><strong class="command">key</strong></span>.
</p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571028"></a>Generate Shared Keys for Each Pair of Hosts</h3></div></div></div>
<p>
A shared secret is generated to be shared between <span class="emphasis"><em>host1</em></span> and <span class="emphasis"><em>host2</em></span>.
An arbitrary key name is chosen: "host1-host2.". The key name must
be the same on both hosts.
</p>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="id2571045"></a>Automatic Generation</h4></div></div></div>
<p>
The following command will generate a 128-bit (16 byte) HMAC-MD5
key as described above. Longer keys are better, but shorter keys
are easier to read. Note that the maximum key length is 512 bits;
keys longer than that will be digested with MD5 to produce a
128-bit key.
</p>
<p>
<strong class="userinput"><code>dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.</code></strong>
</p>
<p>
The key is in the file <code class="filename">Khost1-host2.+157+00000.private</code>.
Nothing directly uses this file, but the base-64 encoded string
following "<code class="literal">Key:</code>"
can be extracted from the file and used as a shared secret:
</p>
<pre class="programlisting">Key: La/E5CjG9O+os1jq0a2jdA==</pre>
<p>
The string "<code class="literal">La/E5CjG9O+os1jq0a2jdA==</code>" can
be used as the shared secret.
</p>
</div>
<div class="sect3" lang="en">
<div class="titlepage"><div><div><h4 class="title">
<a name="id2571083"></a>Manual Generation</h4></div></div></div>
<p>
The shared secret is simply a random sequence of bits, encoded
in base-64. Most ASCII strings are valid base-64 strings (assuming
the length is a multiple of 4 and only valid characters are used),
so the shared secret can be manually generated.
</p>
<p>
Also, a known string can be run through <span><strong class="command">mmencode</strong></span> or
a similar program to generate base-64 encoded data.
</p>
</div>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571101"></a>Copying the Shared Secret to Both Machines</h3></div></div></div>
<p>
This is beyond the scope of DNS. A secure transport mechanism
should be used. This could be secure FTP, ssh, telephone, etc.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571112"></a>Informing the Servers of the Key's Existence</h3></div></div></div>
<p>
Imagine <span class="emphasis"><em>host1</em></span> and <span class="emphasis"><em>host 2</em></span>
are
both servers. The following is added to each server's <code class="filename">named.conf</code> file:
</p>
<pre class="programlisting">
key host1-host2. {
algorithm hmac-md5;
secret "La/E5CjG9O+os1jq0a2jdA==";
};
</pre>
<p>
The algorithm, <code class="literal">hmac-md5</code>, is the only one supported by <acronym class="acronym">BIND</acronym>.
The secret is the one generated above. Since this is a secret, it
is recommended that either <code class="filename">named.conf</code> be non-world
readable, or the key directive be added to a non-world readable
file that is included by
<code class="filename">named.conf</code>.
</p>
<p>
At this point, the key is recognized. This means that if the
server receives a message signed by this key, it can verify the
signature. If the signature is successfully verified, the
response is signed by the same key.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571155"></a>Instructing the Server to Use the Key</h3></div></div></div>
<p>
Since keys are shared between two hosts only, the server must
be told when keys are to be used. The following is added to the <code class="filename">named.conf</code> file
for <span class="emphasis"><em>host1</em></span>, if the IP address of <span class="emphasis"><em>host2</em></span> is
10.1.2.3:
</p>
<pre class="programlisting">
server 10.1.2.3 {
keys { host1-host2. ;};
};
</pre>
<p>
Multiple keys may be present, but only the first is used.
This directive does not contain any secrets, so it may be in a
world-readable
file.
</p>
<p>
If <span class="emphasis"><em>host1</em></span> sends a message that is a request
to that address, the message will be signed with the specified key. <span class="emphasis"><em>host1</em></span> will
expect any responses to signed messages to be signed with the same
key.
</p>
<p>
A similar statement must be present in <span class="emphasis"><em>host2</em></span>'s
configuration file (with <span class="emphasis"><em>host1</em></span>'s address) for <span class="emphasis"><em>host2</em></span> to
sign request messages to <span class="emphasis"><em>host1</em></span>.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571281"></a>TSIG Key Based Access Control</h3></div></div></div>
<p>
<acronym class="acronym">BIND</acronym> allows IP addresses and ranges
to be specified in ACL
definitions and
<span><strong class="command">allow-{ query | transfer | update }</strong></span>
directives.
This has been extended to allow TSIG keys also. The above key would
be denoted <span><strong class="command">key host1-host2.</strong></span>
</p>
<p>
An example of an <span><strong class="command">allow-update</strong></span> directive would be:
</p>
<pre class="programlisting">
allow-update { key host1-host2. ;};
</pre>
<p>
This allows dynamic updates to succeed only if the request
was signed by a key named "<span><strong class="command">host1-host2.</strong></span>".
</p>
<p>
See <a href="Bv9ARM.ch06.html#dynamic_update_policies" title="Dynamic Update Policies">the section called “Dynamic Update Policies”</a> for a discussion of
the more flexible <span><strong class="command">update-policy</strong></span> statement.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571330"></a>Errors</h3></div></div></div>
<p>
The processing of TSIG signed messages can result in
several errors. If a signed message is sent to a non-TSIG aware
server, a FORMERR (format error) will be returned, since the server will not
understand the record. This is a result of misconfiguration,
since the server must be explicitly configured to send a TSIG
signed message to a specific server.
</p>
<p>
If a TSIG aware server receives a message signed by an
unknown key, the response will be unsigned with the TSIG
extended error code set to BADKEY. If a TSIG aware server
receives a message with a signature that does not validate, the
response will be unsigned with the TSIG extended error code set
to BADSIG. If a TSIG aware server receives a message with a time
outside of the allowed range, the response will be signed with
the TSIG extended error code set to BADTIME, and the time values
will be adjusted so that the response can be successfully
verified. In any of these cases, the message's rcode (response code) is set to
NOTAUTH (not authenticated).
</p>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2571412"></a>TKEY</h2></div></div></div>
<p><span><strong class="command">TKEY</strong></span>
is a mechanism for automatically generating a shared secret
between two hosts. There are several "modes" of
<span><strong class="command">TKEY</strong></span> that specify how the key is generated
or assigned. <acronym class="acronym">BIND</acronym> 9 implements only one of
these modes, the Diffie-Hellman key exchange. Both hosts are
required to have a Diffie-Hellman KEY record (although this
record is not required to be present in a zone). The
<span><strong class="command">TKEY</strong></span> process must use signed messages,
signed either by TSIG or SIG(0). The result of
<span><strong class="command">TKEY</strong></span> is a shared secret that can be used to
sign messages with TSIG. <span><strong class="command">TKEY</strong></span> can also be
used to delete shared secrets that it had previously
generated.
</p>
<p>
The <span><strong class="command">TKEY</strong></span> process is initiated by a
client
or server by sending a signed <span><strong class="command">TKEY</strong></span>
query
(including any appropriate KEYs) to a TKEY-aware server. The
server response, if it indicates success, will contain a
<span><strong class="command">TKEY</strong></span> record and any appropriate keys.
After
this exchange, both participants have enough information to
determine the shared secret; the exact process depends on the
<span><strong class="command">TKEY</strong></span> mode. When using the
Diffie-Hellman
<span><strong class="command">TKEY</strong></span> mode, Diffie-Hellman keys are
exchanged,
and the shared secret is derived by both participants.
</p>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2571461"></a>SIG(0)</h2></div></div></div>
<p>
<acronym class="acronym">BIND</acronym> 9 partially supports DNSSEC SIG(0)
transaction signatures as specified in RFC 2535 and RFC 2931.
SIG(0)
uses public/private keys to authenticate messages. Access control
is performed in the same manner as TSIG keys; privileges can be
granted or denied based on the key name.
</p>
<p>
When a SIG(0) signed message is received, it will only be
verified if the key is known and trusted by the server; the server
will not attempt to locate and/or validate the key.
</p>
<p>
SIG(0) signing of multiple-message TCP streams is not
supported.
</p>
<p>
The only tool shipped with <acronym class="acronym">BIND</acronym> 9 that
generates SIG(0) signed messages is <span><strong class="command">nsupdate</strong></span>.
</p>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="DNSSEC"></a>DNSSEC</h2></div></div></div>
<p>
Cryptographic authentication of DNS information is possible
through the DNS Security (<span class="emphasis"><em>DNSSEC-bis</em></span>) extensions,
defined in RFC 4033, RFC 4034, and RFC 4035.
This section describes the creation and use of DNSSEC signed zones.
</p>
<p>
In order to set up a DNSSEC secure zone, there are a series
of steps which must be followed. <acronym class="acronym">BIND</acronym>
9 ships
with several tools
that are used in this process, which are explained in more detail
below. In all cases, the <code class="option">-h</code> option prints a
full list of parameters. Note that the DNSSEC tools require the
keyset files to be in the working directory or the
directory specified by the <code class="option">-d</code> option, and
that the tools shipped with BIND 9.2.x and earlier are not compatible
with the current ones.
</p>
<p>
There must also be communication with the administrators of
the parent and/or child zone to transmit keys. A zone's security
status must be indicated by the parent zone for a DNSSEC capable
resolver to trust its data. This is done through the presence
or absence of a <code class="literal">DS</code> record at the
delegation
point.
</p>
<p>
For other servers to trust data in this zone, they must
either be statically configured with this zone's zone key or the
zone key of another zone above this one in the DNS tree.
</p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571666"></a>Generating Keys</h3></div></div></div>
<p>
The <span><strong class="command">dnssec-keygen</strong></span> program is used to
generate keys.
</p>
<p>
A secure zone must contain one or more zone keys. The
zone keys will sign all other records in the zone, as well as
the zone keys of any secure delegated zones. Zone keys must
have the same name as the zone, a name type of
<span><strong class="command">ZONE</strong></span>, and must be usable for
authentication.
It is recommended that zone keys use a cryptographic algorithm
designated as "mandatory to implement" by the IETF; currently
the only one is RSASHA1.
</p>
<p>
The following command will generate a 768-bit RSASHA1 key for
the <code class="filename">child.example</code> zone:
</p>
<p>
<strong class="userinput"><code>dnssec-keygen -a RSASHA1 -b 768 -n ZONE child.example.</code></strong>
</p>
<p>
Two output files will be produced:
<code class="filename">Kchild.example.+005+12345.key</code> and
<code class="filename">Kchild.example.+005+12345.private</code>
(where
12345 is an example of a key tag). The key filenames contain
the key name (<code class="filename">child.example.</code>),
algorithm (3
is DSA, 1 is RSAMD5, 5 is RSASHA1, etc.), and the key tag (12345 in
this case).
The private key (in the <code class="filename">.private</code>
file) is
used to generate signatures, and the public key (in the
<code class="filename">.key</code> file) is used for signature
verification.
</p>
<p>
To generate another key with the same properties (but with
a different key tag), repeat the above command.
</p>
<p>
The <span><strong class="command">dnssec-keyfromlabel</strong></span> program is used
to get a key pair from a crypto hardware and build the key
files. Its usage is similar to <span><strong class="command">dnssec-keygen</strong></span>.
</p>
<p>
The public keys should be inserted into the zone file by
including the <code class="filename">.key</code> files using
<span><strong class="command">$INCLUDE</strong></span> statements.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571813"></a>Signing the Zone</h3></div></div></div>
<p>
The <span><strong class="command">dnssec-signzone</strong></span> program is used
to sign a zone.
</p>
<p>
Any <code class="filename">keyset</code> files corresponding to
secure subzones should be present. The zone signer will
generate <code class="literal">NSEC</code>, <code class="literal">NSEC3</code>
and <code class="literal">RRSIG</code> records for the zone, as
well as <code class="literal">DS</code> for the child zones if
<code class="literal">'-g'</code> is specified. If <code class="literal">'-g'</code>
is not specified, then DS RRsets for the secure child
zones need to be added manually.
</p>
<p>
The following command signs the zone, assuming it is in a
file called <code class="filename">zone.child.example</code>. By
default, all zone keys which have an available private key are
used to generate signatures.
</p>
<p>
<strong class="userinput"><code>dnssec-signzone -o child.example zone.child.example</code></strong>
</p>
<p>
One output file is produced:
<code class="filename">zone.child.example.signed</code>. This
file
should be referenced by <code class="filename">named.conf</code>
as the
input file for the zone.
</p>
<p><span><strong class="command">dnssec-signzone</strong></span>
will also produce a keyset and dsset files and optionally a
dlvset file. These are used to provide the parent zone
administrators with the <code class="literal">DNSKEYs</code> (or their
corresponding <code class="literal">DS</code> records) that are the
secure entry point to the zone.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2571894"></a>Configuring Servers</h3></div></div></div>
<p>
To enable <span><strong class="command">named</strong></span> to respond appropriately
to DNS requests from DNSSEC aware clients,
<span><strong class="command">dnssec-enable</strong></span> must be set to yes.
(This is the default setting.)
</p>
<p>
To enable <span><strong class="command">named</strong></span> to validate answers from
other servers, the <span><strong class="command">dnssec-enable</strong></span> and
<span><strong class="command">dnssec-validation</strong></span> options must both be
set to yes (the default setting in <acronym class="acronym">BIND</acronym> 9.5
and later), and at least one trust anchor must be configured
with a <span><strong class="command">trusted-keys</strong></span> or
<span><strong class="command">managed-keys</strong></span> statement in
<code class="filename">named.conf</code>.
</p>
<p>
<span><strong class="command">trusted-keys</strong></span> are copies of DNSKEY RRs
for zones that are used to form the first link in the
cryptographic chain of trust. All keys listed in
<span><strong class="command">trusted-keys</strong></span> (and corresponding zones)
are deemed to exist and only the listed keys will be used
to validated the DNSKEY RRset that they are from.
</p>
<p>
<span><strong class="command">managed-keys</strong></span> are trusted keys which are
automatically kept up to date via RFC 5011 trust anchor
maintenance.
</p>
<p>
<span><strong class="command">trusted-keys</strong></span> and
<span><strong class="command">managed-keys</strong></span> are described in more detail
later in this document.
</p>
<p>
Unlike <acronym class="acronym">BIND</acronym> 8, <acronym class="acronym">BIND</acronym>
9 does not verify signatures on load, so zone keys for
authoritative zones do not need to be specified in the
configuration file.
</p>
<p>
After DNSSEC gets established, a typical DNSSEC configuration
will look something like the following. It has one or
more public keys for the root. This allows answers from
outside the organization to be validated. It will also
have several keys for parts of the namespace the organization
controls. These are here to ensure that <span><strong class="command">named</strong></span>
is immune to compromises in the DNSSEC components of the security
of parent zones.
</p>
<pre class="programlisting">
managed-keys {
/* Root Key */
"." initial-key 257 3 3 "BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwS
JxrGkxJWoZu6I7PzJu/E9gx4UC1zGAHlXKdE4zYIpRh
aBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3zy2Xy
4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYg
hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/beDHyp
5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/lUUVRbke
g1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq
66gKodQj+MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ
97S+LKUTpQcq27R7AT3/V5hRQxScINqwcz4jYqZD2fQ
dgxbcDTClU0CRBdiieyLMNzXG3";
};
trusted-keys {
/* Key for our organization's forward zone */
example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB6oEDX+r0QM6
5KbhTjrW1ZaARmPhEZZe3Y9ifgEuq7vZ/z
GZUdEGNWy+JZzus0lUptwgjGwhUS1558Hb
4JKUbbOTcM8pwXlj0EiX3oDFVmjHO444gL
kBOUKUf/mC7HvfwYH/Be22GnClrinKJp1O
g4ywzO9WglMk7jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt8lgnyTUHs1t3JwCY5hKZ6Cq
FxmAVZP20igTixin/1LcrgX/KMEGd/biuv
F4qJCyduieHukuY3H4XMAcR+xia2nIUPvm
/oyWR8BW/hWdzOvnSCThlHf3xiYleDbt/o
1OTQ09A0=";
/* Key for our reverse zone. */
2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc
xOdNax071L18QqZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6c0tszYqbtvchm
gQC8CzKojM/W16i6MG/eafGU3
siaOdS0yOI6BgPsw+YZdzlYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB0lC7aOnsMyYKHHYeRvPxj
IQXmdqgOJGq+vsevG06zW+1xg
YJh9rCIfnm1GX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk8j/iI8ib";
};
options {
...
dnssec-enable yes;
dnssec-validation yes;
};
</pre>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
None of the keys listed in this example are valid. In particular,
the root key is not valid.
</div>
<p>
When DNSSEC validation is enabled and properly configured,
the resolver will reject any answers from signed, secure zones
which fail to validate, and will return SERVFAIL to the client.
</p>
<p>
Responses may fail to validate for any of several reasons,
including missing, expired, or invalid signatures, a key which
does not match the DS RRset in the parent zone, or an insecure
response from a zone which, according to its parent, should have
been secure.
</p>
<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
<h3 class="title">Note</h3>
<p>
When the validator receives a response from an unsigned zone
that has a signed parent, it must confirm with the parent
that the zone was intentionally left unsigned. It does
this by verifying, via signed and validated NSEC/NSEC3 records,
that the parent zone contains no DS records for the child.
</p>
<p>
If the validator <span class="emphasis"><em>can</em></span> prove that the zone
is insecure, then the response is accepted. However, if it
cannot, then it must assume an insecure response to be a
forgery; it rejects the response and logs an error.
</p>
<p>
The logged error reads "insecurity proof failed" and
"got insecure response; parent indicates it should be secure".
(Prior to BIND 9.7, the logged error was "not insecure".
This referred to the zone, not the response.)
</p>
</div>
</div>
</div>
<div class="sect1" lang="en">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="id2572076"></a>IPv6 Support in <acronym class="acronym">BIND</acronym> 9</h2></div></div></div>
<p>
<acronym class="acronym">BIND</acronym> 9 fully supports all currently
defined forms of IPv6 name to address and address to name
lookups. It will also use IPv6 addresses to make queries when
running on an IPv6 capable system.
</p>
<p>
For forward lookups, <acronym class="acronym">BIND</acronym> 9 supports
only AAAA records. RFC 3363 deprecated the use of A6 records,
and client-side support for A6 records was accordingly removed
from <acronym class="acronym">BIND</acronym> 9.
However, authoritative <acronym class="acronym">BIND</acronym> 9 name servers still
load zone files containing A6 records correctly, answer queries
for A6 records, and accept zone transfer for a zone containing A6
records.
</p>
<p>
For IPv6 reverse lookups, <acronym class="acronym">BIND</acronym> 9 supports
the traditional "nibble" format used in the
<span class="emphasis"><em>ip6.arpa</em></span> domain, as well as the older, deprecated
<span class="emphasis"><em>ip6.int</em></span> domain.
Older versions of <acronym class="acronym">BIND</acronym> 9
supported the "binary label" (also known as "bitstring") format,
but support of binary labels has been completely removed per
RFC 3363.
Many applications in <acronym class="acronym">BIND</acronym> 9 do not understand
the binary label format at all any more, and will return an
error if given.
In particular, an authoritative <acronym class="acronym">BIND</acronym> 9
name server will not load a zone file containing binary labels.
</p>
<p>
For an overview of the format and structure of IPv6 addresses,
see <a href="Bv9ARM.ch09.html#ipv6addresses" title="IPv6 addresses (AAAA)">the section called “IPv6 addresses (AAAA)”</a>.
</p>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2564083"></a>Address Lookups Using AAAA Records</h3></div></div></div>
<p>
The IPv6 AAAA record is a parallel to the IPv4 A record,
and, unlike the deprecated A6 record, specifies the entire
IPv6 address in a single record. For example,
</p>
<pre class="programlisting">
$ORIGIN example.com.
host 3600 IN AAAA 2001:db8::1
</pre>
<p>
Use of IPv4-in-IPv6 mapped addresses is not recommended.
If a host has an IPv4 address, use an A record, not
a AAAA, with <code class="literal">::ffff:192.168.42.1</code> as
the address.
</p>
</div>
<div class="sect2" lang="en">
<div class="titlepage"><div><div><h3 class="title">
<a name="id2564104"></a>Address to Name Lookups Using Nibble Format</h3></div></div></div>
<p>
When looking up an address in nibble format, the address
components are simply reversed, just as in IPv4, and
<code class="literal">ip6.arpa.</code> is appended to the
resulting name.
For example, the following would provide reverse name lookup for
a host with address
<code class="literal">2001:db8::1</code>.
</p>
<pre class="programlisting">
$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR (
host.example.com. )
</pre>
</div>
</div>
</div>
<div class="navfooter">
<hr>
<table width="100%" summary="Navigation footer">
<tr>
<td width="40%" align="left">
<a accesskey="p" href="Bv9ARM.ch03.html">Prev</a> </td>
<td width="20%" align="center"> </td>
<td width="40%" align="right"> <a accesskey="n" href="Bv9ARM.ch05.html">Next</a>
</td>
</tr>
<tr>
<td width="40%" align="left" valign="top">Chapter 3. Name Server Configuration </td>
<td width="20%" align="center"><a accesskey="h" href="Bv9ARM.html">Home</a></td>
<td width="40%" align="right" valign="top"> Chapter 5. The <acronym class="acronym">BIND</acronym> 9 Lightweight Resolver</td>
</tr>
</table>
</div>
</body>
</html>
|