1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
|
INTERNET-DRAFT Donald E. Eastlake 3rd
Obsoletes RFC 2929, Updates RFC 1183 Motorola Laboratories
Expires: February 2006 August 2005
Domain Name System (DNS) IANA Considerations
------ ---- ------ ----- ---- --------------
<draft-ietf-dnsext-2929bis-01.txt>
Status of This Document
By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79.
Distribution of this draft is unlimited. It is intended to become
the new BCP 42 obsoleting RFC 2929. Comments should be sent to the
DNS Working Group mailing list <namedroppers@ops.ietf.org>.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than a "work in progress."
The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html
The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html
Abstract
Internet Assigned Number Authority (IANA) parameter assignment
considerations are given for the allocation of Domain Name System
(DNS) classes, RR types, operation codes, error codes, RR header
bits, and AFSDB subtypes.
D. Eastlake 3rd [Page 1]
INTERNET-DRAFT DNS IANA Considerations August 2005
Table of Contents
Status of This Document....................................1
Abstract...................................................1
Table of Contents..........................................2
1. Introduction............................................3
2. DNS Query/Response Headers..............................3
2.1 One Spare Bit?.........................................4
2.2 Opcode Assignment......................................4
2.3 RCODE Assignment.......................................5
3. DNS Resource Records....................................6
3.1 RR TYPE IANA Considerations............................7
3.1.1 DNS TYPE Allocation Policy...........................8
3.1.2 Special Note on the OPT RR...........................9
3.1.3 The AFSDB RR Subtype Field...........................9
3.2 RR CLASS IANA Considerations...........................9
3.3 RR NAME Considerations................................11
4. Security Considerations................................11
Appendix: Changes from RFC 2929...........................12
Copyright and Disclaimer..................................13
Normative References......................................13
Informative References....................................14
Authors Addresses.........................................16
Expiration and File Name..................................16
D. Eastlake 3rd [Page 2]
INTERNET-DRAFT DNS IANA Considerations August 2005
1. Introduction
The Domain Name System (DNS) provides replicated distributed secure
hierarchical databases which hierarchically store "resource records"
(RRs) under domain names. DNS data is structured into CLASSes and
zones which can be independently maintained. See [RFC 1034, 1035,
2136, 2181, 4033] familiarity with which is assumed.
This document provides, either directly or by reference, general IANA
parameter assignment considerations applying across DNS query and
response headers and all RRs. There may be additional IANA
considerations that apply to only a particular RR type or
query/response opcode. See the specific RFC defining that RR type or
query/response opcode for such considerations if they have been
defined, except for AFSDB RR considerations [RFC 1183] which are
included herein. This RFC obsoletes [RFC 2929].
IANA currently maintains a web page of DNS parameters. See
<http://www.iana.org/numbers.htm>.
"IETF Standards Action", "IETF Consensus", "Specification Required",
and "Private Use" are as defined in [RFC 2434].
2. DNS Query/Response Headers
The header for DNS queries and responses contains field/bits in the
following diagram taken from [RFC 2136, 2929]:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ID |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR| Opcode |AA|TC|RD|RA| Z|AD|CD| RCODE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QDCOUNT/ZOCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ANCOUNT/PRCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| NSCOUNT/UPCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The ID field identifies the query and is echoed in the response so
they can be matched.
The QR bit indicates whether the header is for a query or a response.
D. Eastlake 3rd [Page 3]
INTERNET-DRAFT DNS IANA Considerations August 2005
The AA, TC, RD, RA, AD, and CD bits are each theoretically meaningful
only in queries or only in responses, depending on the bit. However,
many DNS implementations copy the query header as the initial value
of the response header without clearing bits. Thus any attempt to
use a "query" bit with a different meaning in a response or to define
a query meaning for a "response" bit is dangerous given existing
implementation. Such meanings may only be assigned by an IETF
Standards Action.
The unsigned fields query count (QDCOUNT), answer count (ANCOUNT),
authority count (NSCOUNT), and additional information count (ARCOUNT)
express the number of records in each section for all opcodes except
Update. These fields have the same structure and data type for
Update but are instead the counts for the zone (ZOCOUNT),
prerequisite (PRCOUNT), update (UPCOUNT), and additional information
(ARCOUNT) sections.
2.1 One Spare Bit?
There have been ancient DNS implementations for which the Z bit being
on in a query meant that only a response from the primary server for
a zone is acceptable. It is believed that current DNS
implementations ignore this bit.
Assigning a meaning to the Z bit requires an IETF Standards Action.
2.2 Opcode Assignment
Currently DNS OpCodes are assigned as follows:
OpCode Name Reference
0 Query [RFC 1035]
1 IQuery (Inverse Query, Obsolete) [RFC 3425]
2 Status [RFC 1035]
3 available for assignment
4 Notify [RFC 1996]
5 Update [RFC 2136]
6-15 available for assignment
New OpCode assignments require an IETF Standards Action as modified
by [RFC 4020].
D. Eastlake 3rd [Page 4]
INTERNET-DRAFT DNS IANA Considerations August 2005
2.3 RCODE Assignment
It would appear from the DNS header above that only four bits of
RCODE, or response/error code are available. However, RCODEs can
appear not only at the top level of a DNS response but also inside
OPT RRs [RFC 2671], TSIG RRs [RFC 2845], and TKEY RRs [RFC 2930].
The OPT RR provides an eight bit extension resulting in a 12 bit
RCODE field and the TSIG and TKEY RRs have a 16 bit RCODE field.
Error codes appearing in the DNS header and in these three RR types
all refer to the same error code space with the single exception of
error code 16 which has a different meaning in the OPT RR from its
meaning in other contexts. See table below.
RCODE Name Description Reference
Decimal
Hexadecimal
0 NoError No Error [RFC 1035]
1 FormErr Format Error [RFC 1035]
2 ServFail Server Failure [RFC 1035]
3 NXDomain Non-Existent Domain [RFC 1035]
4 NotImp Not Implemented [RFC 1035]
5 Refused Query Refused [RFC 1035]
6 YXDomain Name Exists when it should not [RFC 2136]
7 YXRRSet RR Set Exists when it should not [RFC 2136]
8 NXRRSet RR Set that should exist does not [RFC 2136]
9 NotAuth Server Not Authoritative for zone [RFC 2136]
10 NotZone Name not contained in zone [RFC 2136]
11 - 15 Available for assignment
16 BADVERS Bad OPT Version [RFC 2671]
16 BADSIG TSIG Signature Failure [RFC 2845]
17 BADKEY Key not recognized [RFC 2845]
18 BADTIME Signature out of time window [RFC 2845]
19 BADMODE Bad TKEY Mode [RPC 2930]
20 BADNAME Duplicate key name [RPF 2930]
21 BADALG Algorithm not supported [RPF 2930]
22 - 3,840
0x0016 - 0x0F00 Available for assignment
3,841 - 4,095
0x0F01 - 0x0FFF Private Use
4,096 - 65,534
0x1000 - 0xFFFE Available for assignment
65,535
0xFFFF Reserved, can only be allocated by an IETF
Standards Action.
D. Eastlake 3rd [Page 5]
INTERNET-DRAFT DNS IANA Considerations August 2005
Since it is important that RCODEs be understood for interoperability,
assignment of new RCODE listed above as "available for assignment"
requires an IETF Consensus.
3. DNS Resource Records
All RRs have the same top level format shown in the figure below
taken from [RFC 1035]:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ /
/ NAME /
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| CLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TTL |
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| RDLENGTH |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ RDATA /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
NAME is an owner name, i.e., the name of the node to which this
resource record pertains. NAMEs are specific to a CLASS as described
in section 3.2. NAMEs consist of an ordered sequence of one or more
labels each of which has a label type [RFC 1035, 2671].
TYPE is a two octet unsigned integer containing one of the RR TYPE
codes. See section 3.1.
CLASS is a two octet unsigned integer containing one of the RR CLASS
codes. See section 3.2.
TTL is a four octet (32 bit) bit unsigned integer that specifies the
number of seconds that the resource record may be cached before the
source of the information should again be consulted. Zero is
interpreted to mean that the RR can only be used for the transaction
in progress.
RDLENGTH is an unsigned 16 bit integer that specifies the length in
D. Eastlake 3rd [Page 6]
INTERNET-DRAFT DNS IANA Considerations August 2005
octets of the RDATA field.
RDATA is a variable length string of octets that constitutes the
resource. The format of this information varies according to the TYPE
and in some cases the CLASS of the resource record.
3.1 RR TYPE IANA Considerations
There are three subcategories of RR TYPE numbers: data TYPEs, QTYPEs,
and MetaTYPEs.
Data TYPEs are the primary means of storing data. QTYPES can only be
used in queries. Meta-TYPEs designate transient data associated with
an particular DNS message and in some cases can also be used in
queries. Thus far, data TYPEs have been assigned from 1 upwards plus
the block from 100 through 103 while Q and Meta Types have been
assigned from 255 downwards except for the OPT Meta-RR which is
assigned TYPE 41. There have been DNS implementations which made
caching decisions based on the top bit of the bottom byte of the RR
TYPE.
There are currently three Meta-TYPEs assigned: OPT [RFC 2671], TSIG
[RFC 2845], and TKEY [RFC 2930].
There are currently five QTYPEs assigned: * (all), MAILA, MAILB,
AXFR, and IXFR.
Considerations for the allocation of new RR TYPEs are as follows:
Decimal
Hexadecimal
0
0x0000 - TYPE zero is used as a special indicator for the SIG RR [RFC
2535] and in other circumstances and must never be allocated
for ordinary use.
1 - 127
0x0001 - 0x007F - remaining TYPEs in this range are assigned for data
TYPEs by the DNS TYPE Allocation Policy as specified in
section 3.1.1.
128 - 255
0x0080 - 0x00FF - remaining TYPEs in this rage are assigned for Q and
Meta TYPEs by the DNS TYPE Allocation Policy as specified in
section 3.1.1.
D. Eastlake 3rd [Page 7]
INTERNET-DRAFT DNS IANA Considerations August 2005
256 - 32,767
0x0100 - 0x7FFF - assigned for data, Q, or Meta TYPE use by the DNS
TYPE Allocation Policy as specified in section 3.1.1.
32,768 - 65,279
0x8000 - 0xFEFF - Specification Required as defined in [RFC 2434].
65,280 - 65534
0xFF00 - 0xFFFE - Private Use.
65,535
0xFFFF - Reserved, can only be assigned by an IETF Standards Action.
3.1.1 DNS TYPE Allocation Policy
Parameter values specified above as assigned based on DNS TYPE
Allocation Policy. That is, Expert Review with the additional
requirement that the review be based on a complete template as
specified below which has been posted for three weeks to the
namedroppers@ops.ietf.org mailing list.
Partial or draft templates may be posted with the intend of
soliciting feedback.
DNS RR TYPE PARAMETER ALLOCATION TEMPLATE
Date:
Name and email of originator:
Pointer to internet-draft or other document giving a detailed
description of the protocol use of the new RR Type:
What need is the new RR TYPE intended to fix?
What existing RR TYPE(s) come closest to filling that need and why are
they unsatisfactory?
Does the proposed RR TYPR require special handling within the DNS
different from an Unknown RR TYPE?
Comments:
D. Eastlake 3rd [Page 8]
INTERNET-DRAFT DNS IANA Considerations August 2005
3.1.2 Special Note on the OPT RR
The OPT (OPTion) RR, number 41, is specified in [RFC 2671]. Its
primary purpose is to extend the effective field size of various DNS
fields including RCODE, label type, OpCode, flag bits, and RDATA
size. In particular, for resolvers and servers that recognize it, it
extends the RCODE field from 4 to 12 bits.
3.1.3 The AFSDB RR Subtype Field
The AFSDB RR [RFC 1183] is a CLASS insensitive RR that has the same
RDATA field structure as the MX RR but the 16 bit unsigned integer
field at the beginning of the RDATA is interpreted as a subtype as
follows:
Decimal
Hexadecimal
0
0x0000 - Allocation requires IETF Standards Action.
1
0x0001 - Andrews File Service v3.0 Location Service [RFC 1183].
2
0x0002 - DCE/NCA root cell directory node [RFC 1183].
3 - 65,279
0x0003 - 0xFEFF - Allocation by IETF Consensus.
65,280 - 65,534
0xFF00 - 0xFFFE - Private Use.
65,535
0xFFFF - Reserved, allocation requires IETF Standards Action.
3.2 RR CLASS IANA Considerations
DNS CLASSes have been little used but constitute another dimension of
the DNS distributed database. In particular, there is no necessary
relationship between the name space or root servers for one CLASS and
those for another CLASS. The same name can have completely different
meanings in different CLASSes; however, the label types are the same
and the null label is usable only as root in every CLASS. However,
as global networking and DNS have evolved, the IN, or Internet, CLASS
has dominated DNS use.
D. Eastlake 3rd [Page 9]
INTERNET-DRAFT DNS IANA Considerations August 2005
There are two subcategories of DNS CLASSes: normal data containing
classes and QCLASSes that are only meaningful in queries or updates.
The current CLASS assignments and considerations for future
assignments are as follows:
Decimal
Hexadecimal
0
0x0000 - Reserved, assignment requires an IETF Standards Action.
1
0x0001 - Internet (IN).
2
0x0002 - Available for assignment by IETF Consensus as a data CLASS.
3
0x0003 - Chaos (CH) [Moon 1981].
4
0x0004 - Hesiod (HS) [Dyer 1987].
5 - 127
0x0005 - 0x007F - available for assignment by IETF Consensus for data
CLASSes only.
128 - 253
0x0080 - 0x00FD - available for assignment by IETF Consensus for
QCLASSes only.
254
0x00FE - QCLASS None [RFC 2136].
255
0x00FF - QCLASS Any [RFC 1035].
256 - 32,767
0x0100 - 0x7FFF - Assigned by IETF Consensus.
32,768 - 65,279
0x8000 - 0xFEFF - Assigned based on Specification Required as defined
in [RFC 2434].
65,280 - 65,534
0xFF00 - 0xFFFE - Private Use.
65,535
0xFFFF - Reserved, can only be assigned by an IETF Standards Action.
D. Eastlake 3rd [Page 10]
INTERNET-DRAFT DNS IANA Considerations August 2005
3.3 RR NAME Considerations
DNS NAMEs are sequences of labels [RFC 1035]. The last label in each
NAME is "ROOT" which is the zero length label. By definition, the
null or ROOT label can not be used for any other NAME purpose.
At the present time, there are two categories of label types, data
labels and compression labels. Compression labels are pointers to
data labels elsewhere within an RR or DNS message and are intended to
shorten the wire encoding of NAMEs. The two existing data label
types are sometimes referred to as Text and Binary. Text labels can,
in fact, include any octet value including zero value octets but most
current uses involve only [US-ASCII]. For retrieval, Text labels are
defined to treat ASCII upper and lower case letter codes as matching
[insensitive]. Binary labels are bit sequences [RFC 2673]. The
Binary label type is Experimental [RFC 3363].
IANA considerations for label types are given in [RFC 2671].
NAMEs are local to a CLASS. The Hesiod [Dyer 1987] and Chaos [Moon
1981] CLASSes are essentially for local use. The IN or Internet
CLASS is thus the only DNS CLASS in global use on the Internet at
this time.
A somewhat out-of-date description of name allocation in the IN Class
is given in [RFC 1591]. Some information on reserved top level
domain names is in BCP 32 [RFC 2606].
4. Security Considerations
This document addresses IANA considerations in the allocation of
general DNS parameters, not security. See [RFC 4033, 4034, 4035] for
secure DNS considerations.
D. Eastlake 3rd [Page 11]
INTERNET-DRAFT DNS IANA Considerations August 2005
Appendix: Changes from RFC 2929
RFC Editor: This Appendix should be deleted for publication.
Changes from RFC 2929 to this draft:
1. Changed many "IETF Consensus" for RR TYPEs to be "DNS TYPE
Allocation Policy" and add the specification of that policy. Change
some remaining "IETF Standards Action" allocation requirements to say
"as modified by [RFC 4020]".
2. Updated various RFC references.
3. Mentioned that the Binary label type is now Experimental and
IQuery is Obsolete.
4. Changed allocation status of RR Type 0xFFFF and RCODE 0xFFFF to be
IETF Standards Action required.
5. Add an IANA allocation policy for the AFSDB RR Subtype field.
6. Addition of reference to case insensitive draft.
D. Eastlake 3rd [Page 12]
INTERNET-DRAFT DNS IANA Considerations August 2005
Copyright and Disclaimer
Copyright (C) The Internet Society (2005). This document is subject to
the rights, licenses and restrictions contained in BCP 78, and except
as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Normative References
[RFC 1034] - Mockapetris, P., "Domain Names - Concepts and
Facilities", STD 13, RFC 1034, November 1987.
[RFC 1035] - Mockapetris, P., "Domain Names - Implementation and
Specifications", STD 13, RFC 1035, November 1987.
[RFC 1183] - Everhart, C., Mamakos, L., Ullmann, R., and P.
Mockapetris, "New DNS RR Definitions", RFC 1183, October 1990.
[RFC 1996] - Vixie, P., "A Mechanism for Prompt Notification of Zone
Changes (DNS NOTIFY)", RFC 1996, August 1996.
[RFC 2136] - Vixie, P., Thomson, S., Rekhter, Y. and J. Bound,
"Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136,
April 1997.
[RFC 2181] - Elz, R. and R. Bush, "Clarifications to the DNS
Specification", RFC 2181, July 1997.
[RFC 2434] - Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
[RFC 2671] - Vixie, P., "Extension mechanisms for DNS (EDNS0)", RFC
2671, August 1999.
[RFC 2673] - Crawford, M., "Binary Labels in the Domain Name System",
RFC 2673, August 1999.
[RFC 2845] - Vixie, P., Gudmundsson, O., Eastlake, D. and B.
Wellington, "Secret Key Transaction Authentication for DNS (TSIG)",
RFC 2845, May 2000.
D. Eastlake 3rd [Page 13]
INTERNET-DRAFT DNS IANA Considerations August 2005
[RFC 2930] - Eastlake, D., "Secret Key Establishment for DNS (TKEY
RR)", September 2000.
[RFC 3363] - Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
Hain, "Representing Internet Protocol version 6 (IPv6) Addresses in
the Domain Name System (DNS)", RFC 3363, August 2002.
[RFC 3425] - Lawrence, D., "Obsoleting IQUERY", RFC 3425, November
2002.
[RFC 4020] - Kompella, K. and A. Zinin, "Early IANA Allocation of
Standards Track Code Points", BCP 100, RFC 4020, February 2005.
[RFC 4033] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements", RFC 4033, March
2005.
[RFC 4034] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Resource Records for the DNS Security Extensions", RFC 4034,
March 2005.
[RFC 4044] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Protocol Modifications for the DNS Security Extensions", RFC
4035, March 2005.
[US-ASCII] - ANSI, "USA Standard Code for Information Interchange",
X3.4, American National Standards Institute: New York, 1968.
Informative References
[Dyer 1987] - Dyer, S., and F. Hsu, "Hesiod", Project Athena
Technical Plan - Name Service, April 1987,
[Moon 1981] - D. Moon, "Chaosnet", A.I. Memo 628, Massachusetts
Institute of Technology Artificial Intelligence Laboratory, June
1981.
[RFC 1591] - Postel, J., "Domain Name System Structure and
Delegation", RFC 1591, March 1994.
[RFC 2929] - Eastlake 3rd, D., Brunner-Williams, E., and B. Manning,
"Domain Name System (DNS) IANA Considerations", BCP 42, RFC 2929,
September 2000.
[RFC 2606] - Eastlake, D. and A. Panitz, "Reserved Top Level DNS
Names", RFC 2606, June 1999.
[insensitive] - Eastlake, D., "Domain Name System (DNS) Case
D. Eastlake 3rd [Page 14]
INTERNET-DRAFT DNS IANA Considerations August 2005
Insensitivity Clarification", draft-ietf-dnsext-insensitive-*.txt,
work in progress.
D. Eastlake 3rd [Page 15]
INTERNET-DRAFT DNS IANA Considerations August 2005
Authors Addresses
Donald E. Eastlake 3rd
Motorola Laboratories
155 Beaver Street
Milford, MA 01757 USA
Telephone: +1-508-786-7554 (w)
email: Donald.Eastlake@motorola.com
Expiration and File Name
This draft expires February 2006.
Its file name is draft-ietf-dnsext-2929bis-01.txt.
D. Eastlake 3rd [Page 16]
|