summaryrefslogtreecommitdiff
path: root/doc/draft/draft-ietf-idn-brace-00.txt
blob: be93f6a91a88a52df7012fc437ff1924406a3c96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
INTERNET-DRAFT                                          Adam M. Costello
draft-ietf-idn-brace-00.txt                                  2000-Sep-14
Expires 2001-Mar-14

       BRACE: Bi-mode Row-based ASCII-Compatible Encoding for IDN
                              version 0.1.2

Status of this Memo

    This document is an Internet-Draft and is in full conformance with
    all provisions of Section 10 of RFC2026.

    Internet-Drafts are working documents of the Internet Engineering
    Task Force (IETF), its areas, and its working groups.  Note
    that other groups may also distribute working documents as
    Internet-Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time.  It is inappropriate to use Internet- Drafts as
    reference material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
    http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
    http://www.ietf.org/shadow.html

    Distribution of this document is unlimited.  Please send comments
    to the author at amc@cs.berkeley.edu, or to the idn working group
    at idn@ops.ietf.org.  A newer version of this specification may be
    available at http://www.cs.berkeley.edu/~amc/charset/brace

Abstract

    BRACE is a reversible function from Unicode (UTF-16) [UNICODE]
    text strings to host name labels.  Host name labels are defined by
    [RFC952] and [RFC1123] as case-insensitive strings of ASCII letters,
    digits, and hyphens, neither beginning nor ending with a hyphen.
    [RFC1034] restricts the length of labels to 63 characters.

Contents

    Primary goals
    Secondary goals
    Overview
    Encoding procedure
    Base-32 characters
    Encoding styles
    Decoding procedure
    Comparison with RACE
    Example strings
    Security considerations
    References
    Author
    Example implementation

Primary goals

    Efficient encoding:  Small ratio of encoded size to original size,
    for all UTF-16 strings.

    Uniqueness:  Every UTF-16 string maps to at most one label.

    Completeness:  Every UTF-16 string maps to a label, provided it is
    not too long.  Restrictions on which UTF-16 strings are allowed is
    purely a matter of policy.

    Degeneration:  All valid host name labels that do not end with the
    BRACE signature "-8Q9" (or "-8q9") are the BRACE encodings of their
    own UTF-16 representations.

Secondary goals

    Conceptual simplicity:  This has been somewhat compromised for the
    sake of efficient encoding.

    Readability:  ASCII letters and digits in the original string are
    represented literally in the encoded string.  This comes for free
    because it is the most efficient encoding anyway.

Overview

    The encoded string alternates between two modes.  ASCII letters,
    digits, and hyphens in the Unicode string (which will henceforth be
    called LDH characters) are encoded literally, except that hyphens
    are doubled.  Non-LDH codes in the Unicode string are encoded
    using base-32 mode, in which each character of the encoded string
    represents five bits.  Single hyphens in the encoded string indicate
    mode changes.

    The base-32 mode uses exactly one of four styles.  Half-row style is
    used for Unicode strings in which all the non-LDH codes belong to
    a single half-row (have the same upper 9 bits).  Full-row style is
    used for Unicode strings in which all the non-LDH codes belong to a
    single row (have the same upper 8 bits) but not all the same half.
    Mixed style is used when when many of the non-LDH characters (but
    not all of them) belong to the same row.  No-row style is used for
    all other strings.

Encoding procedure

    If the UTF-16 string contains more than 63 16-bit codes, it's too
    long, so abort.

    If the upper bytes are all zero, and the string formed by the lower
    bytes is a valid host name label and does not end with "-8Q9" or
    "-8q9", output the low bytes and stop.

    The encoder needs a bit queue capable of holding up to 22 bits, a
    buffer of LDH characters capable of holding up to 124 characters,
    and a 4-value encoding style indicator.  The LDH buffer is initially
    empty.  The initial contents of the bit queue, and the value of the
    style indicator, depend on which encoding style is chosen (which
    is explained below).  Bit strings are enqueued and dequeued in
    big-endian order (most significant bit first).

    After choosing the style and initializing the bit queue, perform the
    following actions:

        while the bit queue contains at least 5 bits
            dequeue 5 bits
            output the corresponding base-32 character
        endwhile

        for each 16-bit code of the UTF-16 string (in order) do
            if the code is 0x002D ("-", ASCII hyphen) then
                append two hyphens to the ASCII buffer
            else if the code is an LDH character then
                if the LDH buffer contains no non-hyphens then
                    append one hyphen to the LDH buffer
                endif

                append the code to the LDH buffer
            else (the code is not an LDH character)
                if the LDH buffer contains any non-hyphens then
                    append one hyphen to the LDH buffer
                endif

                if the bit queue is empty then
                    output the LDH buffer and reset it to empty
                endif

                enqueue the bit string corresponding to the code
                (the bit string depends on the encoding style)
                dequeue 5 bits
                output the corresponding base-32 character
                output the LDH buffer and reset it to empty

                while the bit queue contains at least 5 bits
                    dequeue 5 bits
                    output the corresponding base-32 character
                endwhile
            endif
        endfor

        if the bit queue is not empty
            enqueue zero bits until it contains 5 bits
            dequeue 5 bits
            output the corresponding base-32 character
        endif

        output the LDH buffer
        output the LDH characters "-8Q9"

    If the total number of characters output was greater than 63, the
    string is too long for a host name label.

    Notice that a group of LDH characters appears in the output as soon
    as all the bits of the preceeding non-LDH codes have appeared.  The
    base-32 character that appears just before the switch to literal
    mode may contain at most four bits of information from the first
    non-LDH character that comes after the LDH group.

Base-32 characters

    "2" =  0 = 00000
    "3" =  1 = 00001
    "4" =  2 = 00010
    "5" =  3 = 00011
    "6" =  4 = 00100
    "7" =  5 = 00101
    "8" =  6 = 00110
    "9" =  7 = 00111
    "A" =  8 = 01000
    "B" =  9 = 01001
    "C" = 10 = 01010
    "D" = 11 = 01011
    "E" = 12 = 01100
    "F" = 13 = 01101
    "G" = 14 = 01110
    "H" = 15 = 01111
    "I" = 16 = 10000
    "J" = 17 = 10001
    "K" = 18 = 10010
    "M" = 19 = 10011
    "N" = 20 = 10100
    "P" = 21 = 10101
    "Q" = 22 = 10110
    "R" = 23 = 10111
    "S" = 24 = 11000
    "T" = 25 = 11001
    "U" = 26 = 11010
    "V" = 27 = 11011
    "W" = 28 = 11100
    "X" = 29 = 11101
    "Y" = 30 = 11110
    "Z" = 31 = 11111

    The digits "0" and "1" and the letters "O" and "L" ("l") are not
    used, to avoid transcription errors.

    The base-32 characters, like all characters in host name labels, are
    case-insensitive, so they must be recognized in both upper and lower
    case.  However, since existing LDH labels are usually stored in
    lower case, it is recommended that the base-32 portions of encoded
    names be stored in upper case, to help humans easily pick out the
    literal portions.

Encoding styles

    The choice of encoding style depends only on the codes in the UTF-16
    string that are not LDH characters.  It in no way depends on any LDH
    codes that may be present.

    Each code belongs to a particular half-row, which is given by its
    upper 9 bits.  If all of the non-LDH codes belong to the same
    half-row, use half-row style:  Initialize the bit queue by enqueuing
    two 0 bits followed by the designated half-row number (the 9-bit
    half-row number shared by all the codes).  During the encoding
    procedure the bit string corresponding to each code is its lower 7
    bits.

    If not all the non-LDH codes belong to the same half-row, but they
    all belong to the same row (same upper 8 bits), use full-row style:
    Initialize the bit queue by enqueuing a 0 bit, then a 1 bit, then
    the designated row number (the 8-bit row number shared by all the
    codes).  During the encoding procedure the bit string corresponding
    to each code is its lower 8 bits.

    If not all non-LDH codes belong to the same row, then consider
    using mixed style, which chooses a priviledged half-row.  For each
    half-row used by the non-LDH codes, count the number of codes that
    belong to that half-row.  Then, for each half-row, calculate M, the
    number of base-32 characters that would be required if that half row
    were chosen:

        N = total number of non-LDH codes
        H = number of non-LDH codes in the candidate half-row
        C = number of non-LDH codes in the complementary half-row (the
            one with the opposite lowest bit)
        M = (2 + 9 + 18*(N - H - C) + 8*H + 9*C + 4) / 5
          = 3 + (18*N - 10*H - 9*C) / 5

    (The division is integer division, which discards any remainder.)

    Choose the half-row with the smallest M, breaking ties in favor of
    lower-numbered half-rows.  Compare this M with M', the number of
    base-32 characters that would be required if no-row style were used:

        M' = (2 + 16*N + 4) / 5 = (6 + 16*N) / 5

    If M' <= M, use no-row style:  Initialize the bit queue by
    enqueueing two 1 bits.  There is no designated row number.  During
    the encoding procedure the bit string corresponding to each code is
    the full 16-bit code itself.

    If M < M', use mixed style:  Initialize the bit queue by enqueueing
    a 1 bit, then a 0 bit, then the designated 9-bit half-row number
    (the one chosen above).  During the encoding procedure the bit
    string corresponding to each code is:

        0 followed by the lower 7 bits if the code belongs to the chosen
        half-row;

        10 followed by the lower 7 bits if the code belongs to the
        complementary half-row;

        11 followed by the whole 16-bit code otherwise.

Decoding procedure

    The following description assumes that UTF-16 output is desired.

    If the input string does not end with "-8Q9" or "-8q9", output the
    input string (converted from ASCII to UTF-16) and stop.

    The decoder needs a bit queue capable of holding up to 22 bits.  It
    is initially empty.  It also needs a literal-mode flag, which is
    initially unset, and a 4-value style indicator.

    Perform the following actions:

        read the first character and enqueue its base-32 quintet
        dequeue two bits and use them to set the style indicator

        if the style uses a designated full/half row number then
          while the queue does not contain enough bits to represent it
            read the next character and enqueue its base-32
          endwhile

          dequeue enough bits to set the designated row (or half-row)
        endif

        for each remaining input character except the last four do
            if the character is an ASCII hyphen then
                if the next character is also an ASCII hyphen then
                    skip it
                    output an ASCII hyphen (converted to UTF-16)
                else
                    toggle the literal-mode flag
                endif
            else if the literal-mode flag is set then
                output the character (converted to UTF-16)
            else (the literal-mode flag is clear)
                enqueue the character's base-32 quintet

                if the bit queue contains enough bits to represent a
                    UTF-16 code (which depends on the style indicator)
                then
                    dequeue just enough bits to represent one code
                    output the code
                endif
            endif
        endfor

    At the end the bit queue may contain up to four 0 bits.  If it
    contains anything else, the input was invalid.

Comparison with RACE

    BRACE is an extension of RACE [RACE01].  For Unicode strings
    that contain no LDH characters and use the full-row or no-row
    encoding styles, BRACE is virtually identical to RACE.  For other
    strings, BRACE produces a smaller encoding than RACE.  For example,
    the encoding is substantially more compact for Unicode strings
    containing a substantial number of LDH characters, or containing
    many Japanese kana with some kanji.

    Unlike RACE, any LDH characters present in the Unicode string are
    represented literally in the BRACE-encoded string.  This may or may
    not be useful, but it happens to be the most compact way to encode
    LDH characters.

    Whereas RACE uses a signature prefix, BRACE uses a signature suffix.
    This makes it easy to guarantee that the encoded label never ends
    with a hyphen, even if the original UTF-16 string does.  (Whether
    such a UTF-16 string should be allowed is a matter of policy, not
    technical capability).

    The main drawback of BRACE is its greater complexity.

Example strings

    All of these examples use Japanese text, merely because that is the
    only kind of non-English text that the author has lying around.

    Example of no-row style:

        An actual music group name coerced into the usual format for
        host name labels:

            AMURONAMIE-with-super-monkeys

        AMURONAMIE stands for five kanji whose Unicode values are (in
        order):

            U+5B89 U+5BA4 U+5948 U+7F8E U+6075

        The BRACE encoding is:

            UVJ7FUAQCAHY982XA---with--super--monkeys-8Q9

        (Note that the RACE encoding would have been 79 characters long,
        and hence unusable.)

    Example of mixed style:

        An actual song title coerced into the usual format for host name
        labels:

            hello-another-way-SOREZORENOBASHO

        SOREZORENOBASHO stands for five hiragana followed by two kanji,
        whose Unicode values are (in order):

            U+305D U+308C U+305E U+308C U+306E U+5834 U+6240

        The BRACE encoding is:

            JI7-hello--another--way---V3JHAEFVD2UFJ62-8Q9

    Example of full-row style:

        An actual song title, SONOSUPIIDODE, which stands for two
        hiragana followed by four katakana followed by one hiragana,
        whose Unicode values are:

            U+305D U+306E U+30B9 U+30D4 U+30FC U+30C9 U+3067

        The BRACE encoding is:

            BIDPRDMP9WT7MI-8Q9

    Example of half-row style:

        An actual song title:

            PAFIIdeRUNBA

        PAFII stands for four katakana whose Unicode values are:

            U+30D1 U+30D5 U+30A3 U+30FC

        RUNBA stands for three katakana whose Unicode values are:

            U+30EB U+30F3 U+30D0

        The BRACE encoding is:

            3IU8PAZT-de-PYGI-8Q9

    Example of an ASCII string that breaks all the rules of host name
    labels:

        -> $1.00 <-

    The BRACE encoding is:

        229--T2B4-1-W-00-I9I---8Q9

Security considerations

    Users expect each host name in DNS to be controlled by a single
    authority.  If a UTF-16 string could map to multiple labels, then
    a UTF-16 host name could map to multiple real host names, each
    controlled by a different authority, some of which could be spoofs
    that hijack service requests intended for another.  Therefore BRACE
    is designed so that each UTF-16 string maps to a unique label.

    However, there can still be multiple UTF-16 representations
    of the "same" text, for various definitions of "same".  This
    problem is addressed by the Unicode standard under the topic of
    canonicalization, but the issue needs to be studied further in the
    context of host names.

    Also, some text strings may be misleading or ambiguous to humans,
    such as strings containing dots, slashes, at-signs, etc.  Policies
    for allowable Unicode strings need to be developed.

References

    [IDN] Internationalized Domain Names (IETF working group),
    http://www.i-d-n.net/, idn@ops.ietf.org.

    [RACE01] Paul Hoffman, "RACE: Row-based ASCII Compatible Encoding
    for IDN", 2000-Aug-31, draft-ietf-idn-race-01.

    [RFC952] K. Harrenstien, M. Stahl, E. Feinler, "DOD Internet Host
    Table Specification", 1985-Oct, RFC 952.

    [RFC1034] P. Mockapetris, "Domain Names - Concepts and Facilities",
    1987-Nov, RFC 1034.

    [RFC1123] Internet Engineering Task Force, R. Braden (editor),
    "Requirements for Internet Hosts -- Application and Support",
    1989-Oct, RFC 1123.

    [SACE] Dan Oscarsson, "Simple ASCII Compatible Encoding (SACE)",
    draft-ietf-idn-sace.

    [UNICODE] The Unicode Consortium, "The Unicode Standard",
    http://www.unicode.org/unicode/standard/standard.html.

    [UTF5] James Seng, Martin Duerst, Tin Wee Tan, "UTF-5, a
    Transformation Format of Unicode and ISO 10646", draft-jseng-utf5.

Author

    Adam M. Costello <amc@cs.berkeley.edu>
    http://www.cs.berkeley.edu/~amc/


Example implementation


/* brace.c 0.1.1 (2000-Sep-09-Sat)        */
/* Adam M. Costello <amc@cs.berkeley.edu> */

/* This is ANSI C code implementing BRACE version 0.1.*. */

/* Public interface (would normally go in its own .h file): */

enum {
  brace_encoder_in_max = 63,
  brace_encoder_out_max = 4 + (6 + 16 * brace_encoder_in_max) / 5 + 1,
  brace_decoder_in_max = 63 + 1,
  brace_decoder_out_max = brace_decoder_in_max - 1
};

    /* The above constants are the maximum array sizes */
    /* that the encoder/decoder will accept/produce    */
    /* (including null terminators for ASCII strings). */

void brace_encode(
  unsigned int input_length,
  unsigned short *input,
  char output[brace_encoder_out_max] );

    /* brace_encode() converts UTF-16 input to null-terminated */
    /* BRACE-encoded ASCII output.  The input_length must not  */
    /* exceed brace_encoder_in_max, and the output array must  */
    /* have at least the size indicated below.  Under those    */
    /* constraints, this function never fails.                 */

int brace_decode(
  char *input,
  unsigned int *output_length,
  unsigned short output[brace_decoder_out_max] );

    /* brace_decode() converts null-terminated BRACE-encoded ASCII   */
    /* input to UTF-16 output.  The input length (including the null */
    /* terminator) must not exceed brace_encoder_in_max, and output  */
    /* array must have at least the size indicated below.  Returns 1 */
    /* on success, 0 if the input was malformed.  If 0 is returned   */
    /* the output array may contain garbage, but *output_length will */
    /* not have been affected.                                       */


/* Implementation (would normally go in its own .c file): */

#include <assert.h>

static const char base32[] = {
  50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70, 71, 72,
  73, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
};

/* We can't use string literals for ASCII characters because */
/* an ANSI C compiler does not necessarily use ASCII.        */

enum encoding_style {
  half_row_style = 0,
  full_row_style = 1,
  mixed_style    = 2,
  no_row_style   = 3
};

/* is_ldh(code) returns 1 if the UTF-16 code represents an LDH */
/* character (ASCII letter, digit, or hyphen), 0 otherwise.    */

static int is_ldh(unsigned short code)
{
  if (code ==  45) return 1;
  if (code <   48) return 0;
  if (code <=  57) return 1;
  if (code <   65) return 0;
  if (code <=  90) return 1;
  if (code <   97) return 0;
  if (code <= 122) return 1;
  return 0;
}

void brace_encode(
  unsigned int input_length,
  unsigned short *input,
  char output[brace_encoder_out_max] )
{
  unsigned long queue;
  enum encoding_style style;
  unsigned short half_rows[brace_encoder_in_max],
                 half_row_counts[brace_encoder_in_max];
  unsigned int num_nonldh, num_half_rows, i, half_row, j, queue_length,
               best_half_row, next_literal_position, non_hyphen_flag,
               next_base32_position, code;

  assert(input_length <= brace_encoder_in_max);

  /* Count the non-LDH codes and half-rows: */

  num_nonldh = 0;
  num_half_rows = 0;

  for (i = 0;  i < input_length;  ++i) {
    if (is_ldh(input[i])) continue;
    ++num_nonldh;
    half_row = input[i] >> 7;

    for (j = 0;  j < num_half_rows;  ++j) {
      if (half_rows[j] == half_row) {
        ++half_row_counts[j];
        break;
      }
    }

    if (j == num_half_rows) {
      half_rows[num_half_rows] = half_row;
      half_row_counts[num_half_rows] = 1;
      ++num_half_rows;
    }
  }

  /* If the input is already a valid label and does not end */
  /* with the BRACE signature, output it and we're done:    */

  if (num_nonldh == 0 &&                     /* all codes are LDH and */
      input[0] != 45 &&                      /* first not hyphen and  */
      input[input_length - 1] != 45 &&       /* last not hyphen and   */
      !( input[input_length - 1] == 57 &&    /* last four not -8Q9    */
         ( input[input_length - 2] == 81 ||
           input[input_length - 2] == 113  ) &&   /* (or -8q9) */
         input[input_length - 3] == 56 &&
         input[input_length - 4] == 45 ) ) {
    for (i = 0;  i < input_length;  ++i) output[i] = input[i];
    output[input_length] = 0;  /* null terminator */
    return;
  }

  /* Choose an encoding style and initialize the bit queue: */

  if (num_half_rows == 1) {
    style = half_row_style;
    queue_length = 11;
    queue = half_rows[0];
  }
  else if ( num_half_rows == 2 &&
            (half_rows[0] >> 1) == (half_rows[1] >> 1) ) {
    style = full_row_style;
    queue_length = 10;
    queue = (1 << 8) | (half_rows[0] >> 1);
  }
  else {
    unsigned int M, H, C, Mprime, best_M = 230;  /* M is always < 230 */

    /* Find the best half-row for mixed style: */

    best_half_row = 512;  /* half_row is always < 512 */

    for (i = 0;  i < num_half_rows;  ++i) {
      half_row = half_rows[i];
      H = half_row_counts[i];
      C = 0;

      for (j = 0;  j < num_half_rows;  ++j) {
        if (j != i && (half_rows[j] >> 1) == (half_row >> 1)) {
          C = half_row_counts[j];
          break;
        }
      }

      M = 3 + (18 * num_nonldh - 10*H - 9*C) / 5;

      if (M < best_M || (M == best_M && half_row < best_half_row)) {
        best_M = M;
        best_half_row = half_row;
      }
    }

    /* Compare mixed style to no-row style: */

    Mprime = (6 + 16 * num_nonldh) / 5;

    if (Mprime <= best_M) {
      style = no_row_style;
      queue_length = 2;
      queue = 3;
    }
    else {
      style = mixed_style;
      queue_length = 11;
      queue = (1 << 10) | best_half_row;
    }
  }

  /* Flush the bit queue: */

  next_base32_position = 0;

  while (queue_length >= 5) {
    queue_length -= 5;
    output[next_base32_position++] =
      base32[(queue >> queue_length) & 0x1f];
  }

  /* To avoid unnecessary copies, we use the output       */
  /* array itself for the LDH buffer.  The following      */
  /* equalities should hold whenever the buffer is empty: */

  next_literal_position = next_base32_position + (queue_length > 0);
  non_hyphen_flag = 0;  /* set whenever buffer contains a non-hyphen */

  /* Main encoding loop: */

  for (i = 0;  i < input_length;  ++i) {
    code = input[i];

    if (code == 45) {
      /* Encode a hyphen as two hyphens into the buffer: */
      output[next_literal_position++] = 45;
      output[next_literal_position++] = 45;
    }
    else if (is_ldh(code)) {
      if (!non_hyphen_flag) {
        /* Indicate a change to literal mode: */
        output[next_literal_position++] = 45;
        non_hyphen_flag = 1;
      }

      /* Encode the LDH character literally: */
      output[next_literal_position++] = code;
    }
    else { /* non-LDH code */
      if (non_hyphen_flag) {
        /* Indicate a change to base-32 mode: */
        output[next_literal_position++] = 45;
        non_hyphen_flag = 0;  /* we will empty the buffer */
      }

      /* If the bit queue is empty, flush the LDH buffer: */

      if (queue_length == 0) {
        next_base32_position = next_literal_position;
      }

      /* Enqueue the bit string corresponding to the code: */

      if (style == half_row_style) {
        queue = (queue << 7) | (code & 0x7f);
        queue_length += 7;
      }
      else if (style == full_row_style) {
        queue = (queue << 8) | (code & 0xff);
        queue_length += 8;
      }
      else if (style == no_row_style) {
        queue = (queue << 16) | code;
        queue_length += 16;
      }
      else /* style == mixed_style */ {
        if ((code >> 7) == best_half_row) {
          queue = (queue << 8) | (code & 0x7f);
          queue_length += 8;
        }
        else if ((code >> 8) == (best_half_row >> 1)) {
          queue = (queue << 9) | (1 << 8) | (code & 0x7f);
          queue_length += 9;
        }
        else {
          queue = (queue << 18) | (3ul << 16) | code;
          queue_length += 18;
        }
      }

      /* Output one base-32 character: */
      queue_length -= 5;
      output[next_base32_position] =
        base32[(queue >> queue_length) & 0x1f];

      if (next_base32_position == next_literal_position) {
        /* LDH buffer is already empty. */
        ++next_base32_position;
      }
      else {
        /* Flush the LDH buffer: */
        next_base32_position = next_literal_position;
      }

      /* next_literal_position is momentarily invalid, */
      /* but we know the LDH buffer is empty.          */

      /* Flush the bit queue: */

      while (queue_length >= 5) {
        queue_length -= 5;
        output[next_base32_position++] =
          base32[(queue >> queue_length) & 0x1f];
      }

      /* Fix next_literal_position: */
      next_literal_position = next_base32_position + (queue_length > 0);
    }

    assert(next_literal_position < brace_encoder_out_max);
  }

  /* Flush the bit queue: */

  if (queue_length > 0) {
    assert(queue_length < 5);
    output[next_base32_position] =
      base32[(queue << (5 - queue_length)) & 0x1f];
  }

  /* Flushing the LDH buffer at this point is a no-op. */

  /* Output "-8Q9" and the null terminator: */

  assert(next_literal_position + 4 < brace_encoder_out_max);
  output[next_literal_position++] = 45;
  output[next_literal_position++] = 56;
  output[next_literal_position++] = 81;
  output[next_literal_position++] = 57;
  output[next_literal_position] = 0;
}

/* base32_decode() converts a base-32 character to a value from  */
/* 0 to 31.  If the character is valid, its value is written to  */
/* *quintet and 1 is returned.  Otherwise, *value is not changed */
/* and 0 is returned.                                            */

static int base32_decode(char c, unsigned int *quintet)
{
  if (c <  50) return 0;
  if (c <= 57) { *quintet = c - 50; return 1; }
  if (c <  65) return 0;
  if (c >= 97) c -= 32;
  if (c <= 75) { *quintet = c - 57; return 1; }
  if (c == 76) return 0;
  if (c <= 78) { *quintet = c - 58; return 1; }
  if (c == 79) return 0;
  if (c <= 90) { *quintet = c - 59; return 1; }
  return 0;
}

int brace_decode(
  char *input,
  unsigned int *output_length,
  unsigned short output[brace_decoder_out_max] )
{
  unsigned long queue;
  unsigned int i, input_length, queue_length, literal_mode_flag,
               quintet, n, next_code_position;
  enum encoding_style style;
  unsigned short common_prefix;
  char c;

  /* Check whether input ends with "-8Q9": */

  for (i = 0;  input[i];  ++i) assert(i < brace_decoder_in_max);

  if (!(input[i-1] == 57 && input[i-3] == 56 &&
        input[i-4] == 45 && (input[i-2] == 81 || input[i-2] == 113))) {

    /* Copy input to output and we're done: */

    for (i = 0;  input[i];  ++i) output[i] = input[i];
    assert(i <= brace_decoder_out_max);
    *output_length = i;
    return 1;
  }

  /* Initialize using the first base-32 character: */

  input_length = i;
  i = 0;
  if (!base32_decode(input[i], &quintet)) return 0;
  queue = quintet;
  queue_length = 3;
  literal_mode_flag = 0;
  style = quintet >> 3;

  /* Determine common_prefix: */

  if (style == no_row_style) n = 0;
  else if (style == full_row_style) n = 8;
  else n = 9;

  while (queue_length < n) {
    if (!base32_decode(input[++i], &quintet)) return 0;
    queue = (queue << 5) | quintet;
    queue_length += 5;
  }

  common_prefix = (queue >> (queue_length - n)) << (16 - n);
  queue_length -= n;

  /* Main decoding loop: */

  next_code_position = 0;

  while (++i < input_length - 4) {
    c = input[i];

    if (c == 45) {
      if (input[i+1] == 45) {
        ++i;
        output[next_code_position++] = 45;  /* "--" means "-" */
      }
      else literal_mode_flag ^= 1;  /* "-" toggles literal mode */
    }
    else if (literal_mode_flag) { /* literal non-hyphen */
      output[next_code_position++] = c;
    }
    else { /* base-32 character */
      /* Enqueue the corresponding quintet: */
      if (!base32_decode(c, &quintet)) return 0;
      queue = (queue << 5) | quintet;
      queue_length += 5;

      /* If the queue contains enough bits for a UTF-16 code, */
      /* dequeue them, decode them, and output the code:      */

      if (style == no_row_style && queue_length >= 16) {
        output[next_code_position++] =
          (queue >> (queue_length - 16)) & 0xffff;
        queue_length -= 16;
      }
      else if (style == full_row_style && queue_length >= 8) {
        output[next_code_position++] =
          common_prefix | ((queue >> (queue_length - 8)) & 0xff);
        queue_length -= 8;
      }
      else if (style == half_row_style && queue_length >= 7) {
        output[next_code_position++] =
          common_prefix | ((queue >> (queue_length - 7)) & 0x7f);
        queue_length -= 7;
      }
      else if (style == mixed_style) {
        n = (queue >> (queue_length - 2)) & 3;  /* top 2 bits */

        if (n <= 1 && queue_length >= 8) {
          output[next_code_position++] =
            common_prefix | ((queue >> (queue_length - 8)) & 0x7f);
          queue_length -= 8;
        }
        else if (n == 2  && queue_length >= 9) {
          output[next_code_position++] = (common_prefix ^ 0x80) |
            ((queue >> (queue_length - 9)) & 0x7f);
          queue_length -= 9;
        }
        else if (n == 3 && queue_length >= 18) {
          output[next_code_position++] =
            (queue >> (queue_length - 18)) & 0xffff;
          queue_length -= 18;
        }
      }
    }
  }

  assert(next_code_position <= brace_decoder_out_max);

  /* Check that the bit queue contains only zeros, at most four: */

  if (queue_length > 4) return 0;
  if ((queue & ((1 << queue_length) - 1)) != 0) return 0;

  /* Set the output length and we're done: */

  *output_length = next_code_position;
  return 1;
}


/* Wrapper for testing (would normally go in a separate .c file): */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static void usage(char **argv)
{
  fprintf(stderr,
    "%s -e reads big-endian UTF-16 and writes BRACE-format ASCII.\n"
    "%s -d reads BRACE-format ASCII and writes big-endian UTF-16.\n"
    , argv[0], argv[0]);
  exit(EXIT_FAILURE);
}

static void fail(const char *msg)
{
  fputs(msg,stderr);
  exit(EXIT_FAILURE);
}

static const char input_too_large[] = "input is too large\n";

int main(int argc, char **argv)
{
  unsigned int input_length;

  if (argc != 2) usage(argv);
  if (argv[1][0] != '-') usage(argv);
  if (argv[1][2] != '\0') usage(argv);

  if (argv[1][1] == 'e') {
    unsigned short input[brace_encoder_in_max];
    char output[brace_encoder_out_max];
    int hi, lo;

    /* Read the UTF-16 input string: */

    input_length = 0;

    for (;;) {
      hi = getchar();
      lo = getchar();

      if (lo == EOF) {
        if (hi != EOF) fail("input contained an odd number of bytes\n");
        break;
      }

      if (input_length == brace_encoder_in_max) fail(input_too_large);

      if (hi > 0xff || lo > 0xff) {
        fail("input bytes do not fit in 8 bits\n");
      }

      input[input_length++] =
        (unsigned short) hi << 8 | (unsigned short) lo;
    }

    /* Encode, and output the result: */

    brace_encode(input_length, input, output);
    if (strlen(output) > brace_decoder_in_max) fail(input_too_large);
    fputs(output,stdout);
    return EXIT_SUCCESS;
  }

  if (argv[1][1] == 'd') {
    char input[brace_decoder_in_max];
    unsigned short output[brace_decoder_out_max];
    unsigned int output_length, i;
    size_t n;

    /* Read the BRACE-encoded ASCII input string: */

    n = fread(input, 1, brace_decoder_in_max, stdin);
    if (n == brace_decoder_in_max) fail(input_too_large);
    input[n] = 0;

    /* Decode, and output the result: */

    if (!brace_decode(input, &output_length, output)) {
      fail("input was malformed\n");
    }

    for (i = 0;  i < output_length;  ++i) {
      putchar(output[i] >> 8);
      putchar(output[i] & 0xff);
    }

    return EXIT_SUCCESS;
  }

  usage(argv);
  return EXIT_SUCCESS;  /* not reached, but quiets compiler warning */
}



                   INTERNET-DRAFT expires 2001-Mar-14