summaryrefslogtreecommitdiff
path: root/genisoimage/sha1.c
blob: ae410acc29a1aabb580c58534c5be4fa0d9703d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/* sha1.c - Functions to compute SHA1 message digest of files or
   memory blocks according to the NIST specification FIPS-180-1.

   Copyright (C) 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software Foundation,
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */

/* Written by Scott G. Miller
   Credits:
      Robert Klep <robert@ilse.nl>  -- Expansion function fix
*/

#include "sha1.h"

#include <stddef.h>
#include <string.h>

/* SWAP does an endian swap on architectures that are little-endian,
   as SHA1 needs some data in a big-endian form.  */

#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
#else
# define SWAP(n) \
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#endif

#define BLOCKSIZE 4096
#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
#endif

/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };


/*
  Takes a pointer to a 160 bit block of data (five 32 bit ints) and
  intializes it to the start constants of the SHA1 algorithm.  This
  must be called before using hash in the call to sha1_hash.
*/
void
sha1_init_ctx (struct sha1_ctx *ctx)
{
  ctx->A = 0x67452301;
  ctx->B = 0xefcdab89;
  ctx->C = 0x98badcfe;
  ctx->D = 0x10325476;
  ctx->E = 0xc3d2e1f0;

  ctx->total[0] = ctx->total[1] = 0;
  ctx->buflen = 0;
}

/* Put result from CTX in first 20 bytes following RESBUF.  The result
   must be in little endian byte order.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
void *
sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
{
  ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A);
  ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B);
  ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C);
  ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D);
  ((md5_uint32 *) resbuf)[4] = SWAP (ctx->E);

  return resbuf;
}

/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.

   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32 bits value.  */
void *
sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
{
  /* Take yet unprocessed bytes into account.  */
  md5_uint32 bytes = ctx->buflen;
  size_t pad;

  /* Now count remaining bytes.  */
  ctx->total[0] += bytes;
  if (ctx->total[0] < bytes)
    ++ctx->total[1];

  pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
  memcpy (&ctx->buffer[bytes], fillbuf, pad);

  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
  *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP (ctx->total[0] << 3);
  *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) |
						    (ctx->total[0] >> 29));

  /* Process last bytes.  */
  sha1_process_block (ctx->buffer, bytes + pad + 8, ctx);

  return sha1_read_ctx (ctx, resbuf);
}

/* Compute SHA1 message digest for bytes read from STREAM.  The
   resulting message digest number will be written into the 16 bytes
   beginning at RESBLOCK.  */
int
sha1_stream (FILE *stream, void *resblock)
{
  struct sha1_ctx ctx;
  char buffer[BLOCKSIZE + 72];
  size_t sum;

  /* Initialize the computation context.  */
  sha1_init_ctx (&ctx);

  /* Iterate over full file contents.  */
  while (1)
    {
      /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
	 computation function processes the whole buffer so that with the
	 next round of the loop another block can be read.  */
      size_t n;
      sum = 0;

      /* Read block.  Take care for partial reads.  */
      while (1)
	{
	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);

	  sum += n;

	  if (sum == BLOCKSIZE)
	    break;

	  if (n == 0)
	    {
	      /* Check for the error flag IFF N == 0, so that we don't
		 exit the loop after a partial read due to e.g., EAGAIN
		 or EWOULDBLOCK.  */
	      if (ferror (stream))
		return 1;
	      goto process_partial_block;
	    }

	  /* We've read at least one byte, so ignore errors.  But always
	     check for EOF, since feof may be true even though N > 0.
	     Otherwise, we could end up calling fread after EOF.  */
	  if (feof (stream))
	    goto process_partial_block;
	}

      /* Process buffer with BLOCKSIZE bytes.  Note that
			BLOCKSIZE % 64 == 0
       */
      sha1_process_block (buffer, BLOCKSIZE, &ctx);
    }

 process_partial_block:;

  /* Process any remaining bytes.  */
  if (sum > 0)
    sha1_process_bytes (buffer, sum, &ctx);

  /* Construct result in desired memory.  */
  sha1_finish_ctx (&ctx, resblock);
  return 0;
}

/* Compute MD5 message digest for LEN bytes beginning at BUFFER.  The
   result is always in little endian byte order, so that a byte-wise
   output yields to the wanted ASCII representation of the message
   digest.  */
void *
sha1_buffer (const char *buffer, size_t len, void *resblock)
{
  struct sha1_ctx ctx;

  /* Initialize the computation context.  */
  sha1_init_ctx (&ctx);

  /* Process whole buffer but last len % 64 bytes.  */
  sha1_process_bytes (buffer, len, &ctx);

  /* Put result in desired memory area.  */
  return sha1_finish_ctx (&ctx, resblock);
}

void
sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
{
  /* When we already have some bits in our internal buffer concatenate
     both inputs first.  */
  if (ctx->buflen != 0)
    {
      size_t left_over = ctx->buflen;
      size_t add = 128 - left_over > len ? len : 128 - left_over;

      memcpy (&ctx->buffer[left_over], buffer, add);
      ctx->buflen += add;

      if (ctx->buflen > 64)
	{
	  sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);

	  ctx->buflen &= 63;
	  /* The regions in the following copy operation cannot overlap.  */
	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
		  ctx->buflen);
	}

      buffer = (const char *) buffer + add;
      len -= add;
    }

  /* Process available complete blocks.  */
  if (len >= 64)
    {
#if !_STRING_ARCH_unaligned
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (md5_uint32) != 0)
      if (UNALIGNED_P (buffer))
	while (len > 64)
	  {
	    sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
	    buffer = (const char *) buffer + 64;
	    len -= 64;
	  }
      else
#endif
	{
	  sha1_process_block (buffer, len & ~63, ctx);
	  buffer = (const char *) buffer + (len & ~63);
	  len &= 63;
	}
    }

  /* Move remaining bytes in internal buffer.  */
  if (len > 0)
    {
      size_t left_over = ctx->buflen;

      memcpy (&ctx->buffer[left_over], buffer, len);
      left_over += len;
      if (left_over >= 64)
	{
	  sha1_process_block (ctx->buffer, 64, ctx);
	  left_over -= 64;
	  memcpy (ctx->buffer, &ctx->buffer[64], left_over);
	}
      ctx->buflen = left_over;
    }
}

/* --- Code below is the primary difference between md5.c and sha1.c --- */

/* SHA1 round constants */
#define K1 0x5a827999L
#define K2 0x6ed9eba1L
#define K3 0x8f1bbcdcL
#define K4 0xca62c1d6L

/* Round functions.  Note that F2 is the same as F4.  */
#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
#define F2(B,C,D) (B ^ C ^ D)
#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
#define F4(B,C,D) (B ^ C ^ D)

/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.
   Most of this code comes from GnuPG's cipher/sha1.c.  */

void
sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
{
  const md5_uint32 *words = buffer;
  size_t nwords = len / sizeof (md5_uint32);
  const md5_uint32 *endp = words + nwords;
  md5_uint32 x[16];
  md5_uint32 a = ctx->A;
  md5_uint32 b = ctx->B;
  md5_uint32 c = ctx->C;
  md5_uint32 d = ctx->D;
  md5_uint32 e = ctx->E;

  /* First increment the byte count.  RFC 1321 specifies the possible
     length of the file up to 2^64 bits.  Here we only compute the
     number of bytes.  Do a double word increment.  */
  ctx->total[0] += len;
  if (ctx->total[0] < len)
    ++ctx->total[1];

#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))

#define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
		    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
	       , (x[I&0x0f] = rol(tm, 1)) )

#define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
				      + F( B, C, D )  \
				      + K	      \
				      + M;	      \
				 B = rol( B, 30 );    \
			       } while(0)

  while (words < endp)
    {
      md5_uint32 tm;
      int t;
      for (t = 0; t < 16; t++)
	{
	  x[t] = SWAP (*words);
	  words++;
	}

      R( a, b, c, d, e, F1, K1, x[ 0] );
      R( e, a, b, c, d, F1, K1, x[ 1] );
      R( d, e, a, b, c, F1, K1, x[ 2] );
      R( c, d, e, a, b, F1, K1, x[ 3] );
      R( b, c, d, e, a, F1, K1, x[ 4] );
      R( a, b, c, d, e, F1, K1, x[ 5] );
      R( e, a, b, c, d, F1, K1, x[ 6] );
      R( d, e, a, b, c, F1, K1, x[ 7] );
      R( c, d, e, a, b, F1, K1, x[ 8] );
      R( b, c, d, e, a, F1, K1, x[ 9] );
      R( a, b, c, d, e, F1, K1, x[10] );
      R( e, a, b, c, d, F1, K1, x[11] );
      R( d, e, a, b, c, F1, K1, x[12] );
      R( c, d, e, a, b, F1, K1, x[13] );
      R( b, c, d, e, a, F1, K1, x[14] );
      R( a, b, c, d, e, F1, K1, x[15] );
      R( e, a, b, c, d, F1, K1, M(16) );
      R( d, e, a, b, c, F1, K1, M(17) );
      R( c, d, e, a, b, F1, K1, M(18) );
      R( b, c, d, e, a, F1, K1, M(19) );
      R( a, b, c, d, e, F2, K2, M(20) );
      R( e, a, b, c, d, F2, K2, M(21) );
      R( d, e, a, b, c, F2, K2, M(22) );
      R( c, d, e, a, b, F2, K2, M(23) );
      R( b, c, d, e, a, F2, K2, M(24) );
      R( a, b, c, d, e, F2, K2, M(25) );
      R( e, a, b, c, d, F2, K2, M(26) );
      R( d, e, a, b, c, F2, K2, M(27) );
      R( c, d, e, a, b, F2, K2, M(28) );
      R( b, c, d, e, a, F2, K2, M(29) );
      R( a, b, c, d, e, F2, K2, M(30) );
      R( e, a, b, c, d, F2, K2, M(31) );
      R( d, e, a, b, c, F2, K2, M(32) );
      R( c, d, e, a, b, F2, K2, M(33) );
      R( b, c, d, e, a, F2, K2, M(34) );
      R( a, b, c, d, e, F2, K2, M(35) );
      R( e, a, b, c, d, F2, K2, M(36) );
      R( d, e, a, b, c, F2, K2, M(37) );
      R( c, d, e, a, b, F2, K2, M(38) );
      R( b, c, d, e, a, F2, K2, M(39) );
      R( a, b, c, d, e, F3, K3, M(40) );
      R( e, a, b, c, d, F3, K3, M(41) );
      R( d, e, a, b, c, F3, K3, M(42) );
      R( c, d, e, a, b, F3, K3, M(43) );
      R( b, c, d, e, a, F3, K3, M(44) );
      R( a, b, c, d, e, F3, K3, M(45) );
      R( e, a, b, c, d, F3, K3, M(46) );
      R( d, e, a, b, c, F3, K3, M(47) );
      R( c, d, e, a, b, F3, K3, M(48) );
      R( b, c, d, e, a, F3, K3, M(49) );
      R( a, b, c, d, e, F3, K3, M(50) );
      R( e, a, b, c, d, F3, K3, M(51) );
      R( d, e, a, b, c, F3, K3, M(52) );
      R( c, d, e, a, b, F3, K3, M(53) );
      R( b, c, d, e, a, F3, K3, M(54) );
      R( a, b, c, d, e, F3, K3, M(55) );
      R( e, a, b, c, d, F3, K3, M(56) );
      R( d, e, a, b, c, F3, K3, M(57) );
      R( c, d, e, a, b, F3, K3, M(58) );
      R( b, c, d, e, a, F3, K3, M(59) );
      R( a, b, c, d, e, F4, K4, M(60) );
      R( e, a, b, c, d, F4, K4, M(61) );
      R( d, e, a, b, c, F4, K4, M(62) );
      R( c, d, e, a, b, F4, K4, M(63) );
      R( b, c, d, e, a, F4, K4, M(64) );
      R( a, b, c, d, e, F4, K4, M(65) );
      R( e, a, b, c, d, F4, K4, M(66) );
      R( d, e, a, b, c, F4, K4, M(67) );
      R( c, d, e, a, b, F4, K4, M(68) );
      R( b, c, d, e, a, F4, K4, M(69) );
      R( a, b, c, d, e, F4, K4, M(70) );
      R( e, a, b, c, d, F4, K4, M(71) );
      R( d, e, a, b, c, F4, K4, M(72) );
      R( c, d, e, a, b, F4, K4, M(73) );
      R( b, c, d, e, a, F4, K4, M(74) );
      R( a, b, c, d, e, F4, K4, M(75) );
      R( e, a, b, c, d, F4, K4, M(76) );
      R( d, e, a, b, c, F4, K4, M(77) );
      R( c, d, e, a, b, F4, K4, M(78) );
      R( b, c, d, e, a, F4, K4, M(79) );

      a = ctx->A += a;
      b = ctx->B += b;
      c = ctx->C += c;
      d = ctx->D += d;
      e = ctx->E += e;
    }
}