
- 1 -

n." A Consumer Library Interface to DWARF

David Anderson

1. INTRODUCTION

This document describes an interface tolibdwarf, a library of functions to provide access to DWARF
debugging information records, DWARF line number information, DWARF address range and global
names information, weak names information, DWARF frame description information, DWARF static
function names, DWARF static variables, and DWARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices the DWARF committee was formed around 1991."Unix
International" was disbanded in the 1990s and no longer exists.

The DWARF committee published DWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the committee never endorsed, having
decided not to endorse or approve any particular library interface) was made available on the internet by
Silicon Graphics, Inc.

In 2005 the DWARF committee began an aff i liation with FreeStandards.org. In 2007 FreeStandards.org
merged with The Linux Foundation. TheDWARF committee dropped its affi liation with FreeStandards.org
in 2007 and established the dwarfstd.org website. See"http://www.dwarfstd.org" for current information
on standardization activities and a copy of the standard.

1.1 Copyright

Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2011 David Anderson.

Permission is hereby granted to copy or republish or use any or all of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to access DWARF debugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interface to DWARF").

Additionally, the focus of this document is the functional interface, and as such, implementation as well as
optimization issues are intentionally ignored.

1.3 Document History

A document was written about 1991 which had similar layout and interfaces. Writtenby people from Hal

rev 2.02, December 13, 2011 - 1 -

- 2 -

Corporation, That document described a library for reading DWARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a supported interface
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you are now reading in 1993 with a similar layout and content and organization,
but it was complete document rewrite with the intent to read DWARF2 (the DWARF version then in
existence). Theintent was (and is) to also cover future revisions of DWARF. All the function interfaces
were changed in 1994 to uniformly return a simple integer success-code (see DW_DLV_OK etc), generally
following the recommendations in the chapter titled "Candy Machine Interfaces" of "Writing Solid Code",
a book by Steve Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are the segments of information placed in the.debug_*
sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source-level debugging. Referto the latest "DWARF Debugging Information
Format" f rom www.dwarfstd.org for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" versions
2,3, and 4.It originally focused on the implementation at Silicon Graphics, Inc., but now attempts to be
more generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interface tolibdwarf, first by describing
the purpose of additional types defined by the interface, followed by descriptions of the available
operations. Thisdocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We separate the functions into several categories to emphasize that not all consumers want to use all the
functions. We call the categories Debugger, Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the rather large set of function calls easier to
understand.

Unless otherwise specified, all functions and structures should be taken as being designed for Debugger
consumers.

The Debugger Interface of this library is intended to be used by debuggers. Theinterface is low-level
(close to dwarf) but suppresses irrelevant detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sections except at need. And even then will probably
want to absorb only the information in a single compilation unit at a time.A debugger does not care about
implementation details of the library.

The Internal-level Interface is for a DWARF prettyprinter and checker. A thorough prettyprinter will want
to know all kinds of internal things (like actual FORM numbers and actual offsets) so it can check for
appropriate structure in the DWARF data and print (on request) all that internal information for human
users and libdwarf authors and compiler-writers. Callsin this interface provide data a debugger does not
care about.

The High-level Interface is for higher level access (it is not really a high level interface!). Programssuch as
disassemblers will want to be able to display relevant information about functions and line numbers without
having to invest too much effort in looking at DWARF.

The miscellaneous interface is just what is left over: the error handler functions.

The following is a brief mention of the changes in this libdwarf from the libdwarf draft for DWARF Version
1 and recent changes.

rev 2.02, December 13, 2011 - 2 -

- 3 -

1.6 Items Changed

Added new functions (some for libdwarf client code) and internal logic support for the DWARF4
.debug_types section. The new functions are dwarf_next_cu_header_c(), dwarf_siblingof_b(),
dwarf_offdie_b(), dwarf_get_cu_die_offset_given_cu_header_offset_b(), dwarf_get_die_infotypes_flag(),
dwarf_get_section_max_offsets_b().

New functions and logic support additional detailed error reporting so that more compiler bugs can be
reported sensibly by consumer code (as opposed to having libdwarf just assume things are ok and blindly
continuing on with erroneous data). November 20, 2010

It seems impossible to default to both DW_FRAME_CFA_COL and DW_FRAME_CFA_COL3 in a single
build of libdwarf, so the default is now unambiguously DW_FRAME_CFA_COL3 unless the configure
option --enable-oldframecol is specified at configure time. The function dwarf_set_frame_cfa_value() may
be used to override the default : using that function gives consumer applications full control (its use is
highly recommended). (January 17,2010)

Added dwarf_set_reloc_application() and the default automatic application of Elf ’rela’ relocations to
DWARF sections (such rela sections appear in .o files, not in executables or shared objects, in general).
The dwarf_set_reloc_application() routine lets a consumer turn off the automatic application of ’rela’
relocations if desired (it is not clear why anyone would really want to do that, but possibly a consumer
could write its own relocation application). An example application that traverses a set of DIEs was added
to the new dwarfexample directory (not in this libdwarf directory, but in parallel to it). (July 10, 2009)

Added dwarf_get_TAG_name() (and the FORM AT and so on) interface functions so applications can get
the string of the TAG, Attribute, etc as needed. (June 2009)

Added dwarf_get_ranges_a() and dwarf_loclist_from_expr_a() functions which add arguments allowing a
correct address_size when the address_size varies by compilation unit (a varying address_size is quite rare
as of May 2009). (May 2009)

Added dwarf_set_frame_same_value(), and dwarf_set_frame_undefined_value() to complete the set of
frame-information functions needed to allow an application get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABIs. Documented dwarf_set_frame_cfa_value().
Corrected spelling to dwarf_set_frame_rule_initial_value(). (April2009).

Added support for various DWARF3 features, but primarily a new frame-information interface tailorable at
run-time to more than a single ABI. See dwarf_set_frame_rule_initial_value(),
dwarf_set_frame_rule_table_size(), dwarf_set_frame_cfa_value(). Seealso dwarf_get_fde_info_for_reg3()
and dwarf_get_fde_info_for_cfa_reg3(). (April 2006)

Added support for DWARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,
adding new functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_nextglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pointer arguments.
This makes writing safe and correct library-using-code far easier. For justification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" by Steve Maguire.

1.7 Items Removed

Dwarf_Type was removed since types are no longer special.

dwarf_typeof() was removed since types are no longer special.

Dwarf_Ellist was removed since element lists no longer are a special format.

rev 2.02, December 13, 2011 - 3 -

- 4 -

Dwarf_Bounds was removed since bounds have been generalized.

dwarf_nextdie() was replaced by dwarf_next_cu_header() to reflect the real way DWARF is organized.
The dwarf_nextdie() was only useful for getting to compilation unit beginnings, so it does not seem harmful
to remove it in favor of a more direct function.

dwarf_childcnt() is removed on grounds that no good use was apparent.

dwarf_prevline() and dwarf_nextline() were removed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was removed.

dwarf_is1stline() was removed as it was not meaningful for the revised DWARF line operations.

Any libdwarf implementation might well decide to support all the removed functionality and to retain the
DWARF Version 1 meanings of that functionality. This would be difficult because the original libdwarf
draft specification used traditional C library interfaces which confuse the values returned by successful
calls with exceptional conditions like failures and ’no more data’ indications.

1.8 Revision History

October 2011 DWARF4 support for reading .debug_types added.

March 93 Work on DWARF2 SGI draft begins

June 94 The function returns are changed to return an error/success code only.

April 2006: Support for DWARF3 consumer operations is close to completion.

November 2010: Added various new functions and improved error checking.

2. Types Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects oflibdwarf. The types defined by typedefs contained inlibdwarf.h all use the
convention of addingDwarf_ as a prefix and can be placed in three categories:

• Scalar types : The scalar types defined inlibdwarf.h are defined primarily for notational convenience
and identification. Dependingon the individual definition, they are interpreted as a value, a pointer,
or as a flag.

• Aggregate types : Some values can not be represented by a single scalar type; they must be
represented by a collection of, or as a union of, scalar and/or aggregate types.

• Opaque types : The complete definition of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
query, or an instance of a scalar or aggregate type, which is the actual result.

2.2 Scalar Types

The following are the defined bylibdwarf.h:

rev 2.02, December 13, 2011 - 4 -

- 5 -

typedef int Dwarf_Bool;
typedef unsigned long long Dwarf_Off;
typedef unsigned long long Dwarf_Unsigned;
typedef unsigned short Dwarf_Half;
typedef unsigned char Dwarf_Small;
typedef signed long long Dwarf_Signed;
typedef unsigned long long Dwarf_Addr;
typedef void *Dwarf_Ptr;
typedef void (*Dwarf_Handler)(Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the library, not for representing pc-
values/addresses within the target object file. Dwarf_Addr is for pc-values within the target object file.
The sample scalar type assignments above are for a libdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types must bedefined appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environment is given in
Figure 1.

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Signed large integer
Dwarf_Addr 8 8 Program address

(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer

(host program)
Dwarf_Handler 4|8 4|8 Pointerto

error handler function

Figure 1. Scalar Types

2.3 Aggregate Types

The following aggregate types are defined by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwarf_Block, Dwarf_Frame_Op. Dwarf_Regtable. Dwarf_Regtable3. While most of
libdwarf acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwarf_Loc type identifies a single atom of a location description or a location expression.

typedef struct {
Dwarf_Small lr_atom;
Dwarf_Unsigned lr_number;
Dwarf_Unsigned lr_number2;
Dwarf_Unsigned lr_offset;

} Dwarf_Loc;

Thelr_atom identifies the atom corresponding to theDW_OP_* definition in dwarf.h and it represents

rev 2.02, December 13, 2011 - 5 -

- 6 -

the operation to be performed in order to locate the item in question.

Thelr_number field is the operand to be used in the calculation specified by thelr_atom field; not all
atoms use this field. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwarf_Signed type for those operations.

Thelr_number2 field is the second operand specified by thelr_atom field; onlyDW_OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwarf_Signed type for those operations.

For a DW_OP_implicit_value operator thelr_number2 field is a pointer to the bytes of the value.
The field pointed to islr_number bytes long. There is no explicit terminator. Do not attempt tofree
the bytes whichlr_number2 points at and do not alter those bytes. The pointer value remains valid till
the open Dwarf_Debug is closed. This is a rather ugly use of a host integer to hold a pointer. You will
normally have to do a ’cast’ operation to use the value.

The lr_offset field is the byte offset (within the block the location record came from) of the atom
specified by thelr_atom field. Thisis set on all atoms. This is useful for operationsDW_OP_SKIP and
DW_OP_BRA.

2.3.2 Location Description

TheDwarf_Locdesc type represents an ordered list ofDwarf_Loc records used in the calculation to
locate an item. Note that in many cases, the location can only be calculated at runtime of the associated
program.

typedef struct {
Dwarf_Addr ld_lopc;
Dwarf_Addr ld_hipc;
Dwarf_Unsigned ld_cents;
Dwarf_Loc* ld_s;

} Dwarf_Locdesc;

The ld_lopc andld_hipc fields provide an address range for which this location descriptor is valid.
Both of these fields are set tozero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addresses, not offsets-from-something. Thevirtual
memory addresses do not account for dso movement (none of the pc values from libdwarf do that, it is up to
the consumer to do that).

Theld_cents field contains a count of the number ofDwarf_Loc entries pointed to by theld_s field.

Theld_s field points to an array ofDwarf_Loc records.

2.3.3 Data Block

The Dwarf_Block type is used to contain the value of an attribute whose form is either
DW_FORM_block1, DW_FORM_block2, DW_FORM_block4, DW_FORM_block8, or
DW_FORM_block. Its intended use is to deliver the value for an attribute of any of these forms.

rev 2.02, December 13, 2011 - 6 -

- 7 -

typedef struct {
Dwarf_Unsigned bl_len;
Dwarf_Ptr bl_data;

} Dwarf_Block;

Thebl_len field contains the length in bytes of the data pointed to by thebl_data field.

Thebl_data field contains a pointer to the uninterpreted data. Since we usea Dwarf_Ptr here one
must copy the pointer to some other type (typically anunsigned char *) so one can add increments to
index through the data. The data pointed to bybl_data is not necessarily at any useful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate for DWARF2 but not for DWARF3. A separate interface usable for DWARF3
and for DWARF2 is described below. This interface is deprecated. Use the interface for DWARF3 and
DWARF2. Seealso the section "Low Lev el Frame Operations" below.

The DWARF2Dwarf_Frame_Op type is used to contain the data of a single instruction of an instruction-
sequence of low-level information from the section containing frame information.This is ordinarily used
by Internal-level Consumers trying to print everything in detail.

typedef struct {
Dwarf_Small fp_base_op;
Dwarf_Small fp_extended_op;
Dwarf_Half fp_register;
Dwarf_Signed fp_offset;
Dwarf_Offset fp_instr_offset;

} Dwarf_Frame_Op;

fp_base_op is the 2-bit basic op code.fp_extended_op is the 6-bit extended opcode (if
fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in theCall Frame Instruction
Encodings figure in thedwarf document. Ifnot used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined in theCall Frame
Instruction Encodings figure in thedwarf document. Ifthis is anaddress then the value
should be cast to(Dwarf_Addr) before being used. In any implementation this field *must* be as large
as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the op it is 0.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this
operation. Itstarts at 0 for a given frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate for DWARF2 and MIPS but not for DWARF3. Aseparate and preferred interface
usable for DWARF3 and for DWARF2 is described below. See also the section "Low Lev el Frame
Operations" below.

TheDwarf_Regtable type is used to contain the register-restore information for all registers at a given
PC value. Normallyused by debuggers. If you wish to default to this interface and to the use of
DW_FRAME_CFA_COL, specify --enable_oldframecol at libdwarf configure time. Or add a call
dwarf_set_frame_cfa_value(dbg,DW_FRAME_CFA_COL) after your dwarf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA_COL.

rev 2.02, December 13, 2011 - 7 -

- 8 -

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h
*/
#define DW_REG_TABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwarf_Small dw_offset_relevant;
Dwarf_Half dw_regnum;
Dwarf_Addr dw_offset;

} rules[DW_REG_TABLE_SIZE];
} Dwarf_Regtable;

The array is indexed by register number. The field values for each index are described next. For clarity we
describe the field values for index rules[M] (M being any leg al array element index).

dw_offset_relevant is non-zero to indicate thedw_offset field is meaningful. If zero then the
dw_offset is zero and should be ignored.

dw_regnum is the register number applicable.If dw_offset_relevant is zero, then this is the
register number of the register containing the value for register M.If dw_offset_relevant is non-
zero, then this is the register number of the register to use as a base (M may be DW_FRAME_CFA_COL,
for example) and thedw_offset value applies. The value of register M is therefore the value of register
dw_regnum.

dw_offset should be ignored ifdw_offset_relevant is zero. If dw_offset_relevant is non-
zero, then the consumer code should add the value to the value of the registerdw_regnum to produce the
value.

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate for DWARF3 and for DWARF2 (and DWARF4). It is new in libdwarf in April
2006. Seealso the section "Low Lev el Frame Operations" below.

The DWARF2 Dwarf_Frame_Op3 type is used to contain the data of a single instruction of an
instruction-sequence of low-level information from the section containing frame information.This is
ordinarily used by Internal-level Consumers trying to print everything in detail.

typedef struct {
Dwarf_Small fp_base_op;
Dwarf_Small fp_extended_op;
Dwarf_Half fp_register;

/* Value may be signed, depends on op.
Any applicable data_alignment_factor has
not been applied, this is the raw offset. */

Dwarf_Unsigned fp_offset_or_block_len;
Dwarf_Small *fp_expr_block;

Dwarf_Off fp_instr_offset;
} Dwarf_Frame_Op3;

fp_base_op is the 2-bit basic op code.fp_extended_op is the 6-bit extended opcode (if
fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in theCall Frame Instruction
Encodings figure in thedwarf document. Ifnot used with the Op it is 0.

rev 2.02, December 13, 2011 - 8 -

- 9 -

fp_offset_or_block_len is the address, delta, offset, or second register as defined in theCall
Frame Instruction Encodings figure in thedwarf document. Or (depending on the op, it may
be the length of the dwarf-expression block pointed to byfp_expr_block. If this is anaddress then
the value should be cast to(Dwarf_Addr) before being used. In any implementation this field *must*
be as large as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the
op it is 0.

fp_expr_block (if applicable to the op) points to a dwarf-expression block which is
fp_offset_or_block_len bytes long.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this
operation. Itstarts at 0 for a given frame descriptor.

2.3.7 Frame Regtable: DWARF 3

This interface is adequate for DWARF3 and for DWARF2. It is new in libdwarf as of April 2006.The
default configure of libdwarf inserts DW_FRAME_CFA_COL3 as the default CFA column. Oradd a call
dwarf_set_frame_cfa_value(dbg,DW_FRAME_CFA_COL3) after your dwarf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA_COL3.

TheDwarf_Regtable3 type is used to contain the register-restore information for all registers at a given
PC value. Normallyused by debuggers.

typedef struct Dwarf_Regtable_Entry3_s {
Dwarf_Small dw_offset_relevant;
Dwarf_Small dw_value_type;
Dwarf_Half dw_regnum;
Dwarf_Unsigned dw_offset_or_block_len;
Dwarf_Ptr dw_block_ptr;

}Dwarf_Regtable_Entry3;

typedef struct Dwarf_Regtable3_s {
struct Dwarf_Regtable_Entry3_s rt3_cfa_rule;

Dwarf_Half rt3_reg_table_size;
struct Dwarf_Regtable_Entry3_s * rt3_rules;

} Dwarf_Regtable3;

The array is indexed by register number. The field values for each index are described next. For clarity we
describe the field values for index rules[M] (M being any leg al array element index).
(DW_FRAME_CFA_COL3 DW_FRAME_SAME_VAL, DW_FRAME_UNDEFINED_VAL are not legal
array indexes, nor is any index < 0 or >= rt3_reg_table_size); The caller of routines using this struct must
create data space for rt3_reg_table_size entries of struct Dwarf_Regtable_Entry3_s and arrange that
rt3_rules points to that space and that rt3_reg_table_size is set correctly. The caller need not (but may)
initialize the contents of the rt3_cfa_rule or the rt3_rules array. The following applies to each rt3_rules rule
M:

dw_regnum is the register number applicable. If dw_regnum is
DW_FRAME_UNDEFINED_VAL, then the register I has undefined value. If dw_regnum is
DW_FRAME_SAME_VAL, then the register I has the same value as in the previous frame.

If dw_regnum is neither of these two, then the following apply:

dw_value_type determines the meaning of the other fields. It is one of DW_EXPR_OFFSET
(0), DW_EXPR_VAL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

rev 2.02, December 13, 2011 - 9 -

- 10 -

If dw_value_type is DW_EXPR_OFFSET (0) then this is as in DWARF2 and the offset(N)
rule orthe register(R) rule of the DWARF3 and DWARF2 document applies. The value is either:

If dw_offset_relevant is non-zero, thendw_regnum is effectively ignored but
must be identical to DW_FRAME_CFA_COL3 (and thedw_offset value applies.
The value of register M is therefore the value of CFA plus the value ofdw_offset.
The result of the calculation is the address in memory where the value of register M
resides. Thisis the offset(N) rule of the DWARF2 and DWARF3 documents.

dw_offset_relevant is zero it indicates thedw_offset field is not meaningful.
The value of register M is the value currently in register dw_regnum (the value
DW_FRAME_CFA_COL3 must not appear, only real registers). Thisis the register(R)
rule of the DWARF3 spec.

If dw_value_type is DW_EXPR_OFFSET (1) then this is the the val_offset(N) rule of the
DWARF3 spec applies.The calculation is identical to that of DW_EXPR_OFFSET (0) but the
value is interpreted as the value of register M (rather than the address where register M’s value is
stored).

If dw_value_type is DW_EXPR_EXPRESSION (2) then this is the the expression(E) rule of
the DWARF3 document.

dw_offset_or_block_len is the length in bytes of the in-memory blockpointed
at by dw_block_ptr. dw_block_ptr is a DWARF expression. Evaluate that
expression and the result is the address where the previous value of register M is found.

If dw_value_type is DW_EXPR_VAL_EXPRESSION (3) then this is the the
val_expression(E) rule of the DWARF3 spec.

dw_offset_or_block_len is the length in bytes of the in-memory blockpointed
at by dw_block_ptr. dw_block_ptr is a DWARF expression. Evaluate that
expression and the result is the previous value of register M.

The rulert3_cfa_rule is the current value of the CFA. It is interpreted exactly like any
register M rule (as described just above) except that dw_regnum cannot be
CW_FRAME_CFA_REG3 or DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record

TheDwarf_Macro_Details type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro_Details_s {
Dwarf_Off dmd_offset;
Dwarf_Small dmd_type;
Dwarf_Signed dmd_lineno;
Dwarf_Signed dmd_fileindex;
char * dmd_macro;

};
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dmd_offset is the byte offset, within the .debug_macinfo section, of this macro information.

dmd_type is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unit.See DW_MACINFO_define, etc in the DWARF
document.

rev 2.02, December 13, 2011 - 10 -

- 11 -

dmd_lineno is the line number where this entry was found, or 0 if there is no applicable line number.

dmd_fileindex is the file index of the file involved. This is only guaranteed meaningful on a
DW_MACINFO_start_file dmd_type. Set to -1 if unknown (see the functional interface for more
details).

dmd_macro is the applicable string.For a DW_MACINFO_define this is the macro name and value.
For a DW_MACINFO_undef, or this is the macro name.For a DW_MACINFO_vendor_ext this is the
vendor-defined string value. For otherdmd_types this is 0.

2.4 Opaque Types

The opaque types declared inlibdwarf.h are used as descriptors for queries against DWARF information
stored in various debugging sections. Each time an instance of an opaque type is returned as a result of a
libdwarf operation (Dwarf_Debug excepted), it should be freed, usingdwarf_dealloc() when it is
no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf_dealloc() is not directly called: see
dwarf_srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Library, and their intended use is described below.

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of theDwarf_Debug type is created as a result of a successful call todwarf_init(), or
dwarf_elf_init(), and is used as a descriptor for subsequent access to mostlibdwarf functions on
that object. The storage pointed to by this descriptor should be not be freed, using the
dwarf_dealloc() function. Insteadfree it withdwarf_finish().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of aDwarf_Die type is returned from a successful call to thedwarf_siblingof(),
dwarf_child, or dwarf_offdie_b() function, and is used as a descriptor for queries about
information related to that DIE. The storage pointed to by this descriptor should be freed, using
dwarf_dealloc() with the allocation typeDW_DLA_DIE when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwarf_Line type are returned from a successful call to thedwarf_srclines()
function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usingdwarf_dealloc() with the allocation type
DW_DLA_LINE when no longer needed.

typedef struct Dwarf_Global_s* Dwarf_Global;

Instances ofDwarf_Global type are returned from a successful call to thedwarf_get_globals()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak_s* Dwarf_Weak;

Instances of Dwarf_Weak type are returned from a successful call to the SGI-specific
dwarf_get_weaks() function, and are used as descriptors for queries about weak names.The storage
pointed to by these descriptors should be individually freed, usingdwarf_dealloc() with the
allocation type DW_DLA_WEAK_CONTEXT (or DW_DLA_WEAK, an older name, supported for
compatibility) when no longer needed.

rev 2.02, December 13, 2011 - 11 -

- 12 -

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf_Func type are returned from a successful call to the SGI-specific
dwarf_get_funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specific
dwarf_get_types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type are returned from a successful call to the SGI-specific
dwarf_get_vars() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detected bylibdwarf.
Users typically provide a location forlibdwarf to store this descriptor for the user to obtain more
information about the error. The storage pointed to by this descriptor should be freed, using
dwarf_dealloc() with the allocation typeDW_DLA_ERROR when no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances ofDwarf_Attribute type are returned from a successful call to thedwarf_attrlist(),
or dwarf_attr() functions, and are used as descriptors for queries about attribute values. Thestorage
pointed to by this descriptor should be individually freed, usingdwarf_dealloc() with the allocation
typeDW_DLA_ATTR when no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of aDwarf_Abbrev type is returned from a successful call todwarf_get_abbrev(),
and is used as a descriptor for queries about abbreviations in the .debug_abbrev section. Thestorage
pointed to by this descriptor should be freed, usingdwarf_dealloc() with the allocation type
DW_DLA_ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances ofDwarf_Fde type are returned from a successful call to thedwarf_get_fde_list(),
dwarf_get_fde_for_die(), or dwarf_get_fde_at_pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances ofDwarf_Cie type are returned from a successful call to thedwarf_get_fde_list()
function, and are used as descriptors for queries about information that is common to several frames.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances ofDwarf_Arange type are returned from successful calls to thedwarf_get_aranges(),
or dwarf_get_arange() functions, and are used as descriptors for queries about address ranges.The
storage pointed to by this descriptor should be individually freed, usingdwarf_dealloc() with the
allocation typeDW_DLA_ARANGE when no longer needed.

rev 2.02, December 13, 2011 - 12 -

- 13 -

3. Error Handling

The method for detection and disposition of error conditions that arise during access of debugging
information vialibdwarf is consistent across alllibdwarf functions that are capable of producing an error.
This section describes the method used bylibdwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer to aDwarf_Error descriptor where a
Dwarf_Error descriptor is stored if an error is detected by the function.Routines in the client program
that provide this argument can query theDwarf_Error descriptor to determine the nature of the error and
perform appropriate processing.

A client program can also specify a function to be invoked upon detection of an error at the time the library
is initialized (seedwarf_init()). Whena libdwarf routine detects an error, this function is called with
two arguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(again seedwarf_init()). This pointer argument can be used to relay information between the error
handler and other routines of the client program.A client program can specify or change both the error
handling function and the pointer argument after initialization usingdwarf_seterrhand() and
dwarf_seterrarg().

In the case wherelibdwarf functions are not provided a pointer to aDwarf_Error descriptor, and no
error handling function was provided at initialization,libdwarf functions terminate execution by calling
abort(3C).

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer, allocate and initialize aDwarf_Error
descriptor with information describing the error, place this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If an errhand argument was provided todwarf_init() at initialization, callerrhand()
passing it the error descriptor and the value of theerrarg argument provided to
dwarf_init(). If the error handling function returns, return a value indicating an error
condition.

3. Terminate program execution by callingabort(3C).

In all cases, it is clear from the value returned from a function that an error occurred in executing the
function, since DW_DLV_ERROR is returned.

As can be seen from the above steps, the client program can provide an error handler at initialization, and
still provide anerror argument tolibdwarf functions when it is not desired to have the error handler
invoked.

If a libdwarf function is called with invalid arguments, the behavior is undefined. In particular,
supplying aNULL pointer to alibdwarf function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behavior; the return value in such cases is
undefined, and the function may fail to invoke the caller supplied error handler or to return a meaningful
error number. Implementations also may abort execution for such cases.

Some errors are so inconsequential that it does not warrant rejecting an object or returning an error. An
example would be a frame length not being a multiple of an address-size (right now this is the only such
inconsequential error). To make it possible for a client to report such errors the function
dwarf_get_harmless_error_list returns strings with error text in them. This function may be

rev 2.02, December 13, 2011 - 13 -

- 14 -

ignored if client code does not want to bother with such error reporting. See
DW_DLE_DEBUG_FRAME_LENGTH_NOT_MULTIPLE in the libdwarf source code.

3.1 Returned values in the functional interface

Values returned bylibdwarf functions to indicate success and errors are enumerated in Figure 2.The
DW_DLV_NO_ENTRY case is useful for functions need to indicate that while there was no data to return
there was no error either. For example,dwarf_siblingof() may returnDW_DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers in the above figure.

If DW_DLV_ERROR is returned and a pointer to aDwarf_Error pointer is passed to the function, then a
Dwarf_Error handle is returned through the pointer. No other pointer value in the interface returns a value.
After the Dwarf_Error is no longer of interest, a
dwarf_dealloc(dbg,dw_err,DW_DLA_ERROR) on the error pointer is appropriate to free any
space used by the error information.

If DW_DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW_DLV_OK is returned, theDwarf_Error pointer, if supplied, is not touched, but any other values to
be returned through pointers are returned. In this case calls (depending on the exact function returning the
error) todwarf_dealloc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allow values to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point of view of the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of view of the user of the library. The caller might
code:

Dwarf_Line line;
Dwarf_Signed ret_loff;
Dwarf_Error err;
int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Line line,Dwarf_Signed *return_lineoff,
Dwarf_Error* err);

and this document refers to the function as returning the value through *err or *return_lineoff or uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory Management

Several of the functions that compriselibdwarf return pointers (opaque descriptors) to structures that have
been dynamically allocated by the library. To aid in the management of dynamic memory, the function
dwarf_dealloc() is provided to free storage allocated as a result of a call to alibdwarf function. This

rev 2.02, December 13, 2011 - 14 -

- 15 -

section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a result of alibdwarf Consumer Library call should be
assumed to point to read-only memory. The results are undefined forlibdwarf clients that attempt to write
to a region pointed to by a value returned by alibdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional interface", above, for the general rules where calls to
dwarf_dealloc() is appropriate.

In some cases the pointers returned by alibdwarf call are pointers to data which is not freeable. The library
knows from the allocation type provided to it whether the space is freeable or not and will not free
inappropriately whendwarf_dealloc() is called. So it is vital thatdwarf_dealloc() be called
with the proper allocation type.

For most storage allocated bylibdwarf, the client can free the storage for reuse by calling
dwarf_dealloc(), providing it with theDwarf_Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and an identifier that specifies what the pointer
points to (the allocation type).For example, to free aDwarf_Die die belonging the the object
represented byDwarf_Debug dbg, allocated by a call todwarf_siblingof(), the call to
dwarf_dealloc() would be:

dwarf_dealloc(dbg, die, DW_DLA_DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, followed by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf_attrlist() as an example to illustrate a technique that can be used to free
storage from anylibdwarf routine that returns a list:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&atcnt, &error);
if (errv == DW_DLV_OK) {

for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

The Dwarf_Debug returned fromdwarf_init() or dwarf_elf_init() cannot be freed using
dwarf_dealloc(). The functiondwarf_finish() will deallocate all dynamic storage associated
with an instance of aDwarf_Debug type. Inparticular, it will deallocate all dynamically allocated space
associated with theDwarf_Debug descriptor, and finally make the descriptor invalid.

An Dwarf_Error returned fromdwarf_init() or dwarf_elf_init() in case of a failure cannot
be freed usingdwarf_dealloc(). The only way to free theDwarf_Error from either of those calls
is to usefree(3) directly. Every Dwarf_Error must be freed bydwarf_dealloc() except those
returned bydwarf_init() or dwarf_elf_init().

rev 2.02, December 13, 2011 - 15 -

- 16 -

The codes that identify the storage pointed to in calls todwarf_dealloc() are described in figure 3.

IDENTIFIER USED TO FREE
DW_DLA_STRING char*
DW_DLA_LOC Dwarf_Loc
DW_DLA_LOCDESC Dwarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dwarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dwarf_Frame_Op
DW_DLA_CIE Dwarf_Cie
DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used)
DW_DLA_FUNC_CONTEXT Dwarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwarf_Pubtype

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface

This section describes the functions available in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the function’s operation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf_init()

rev 2.02, December 13, 2011 - 16 -

- 17 -

int dwarf_init(
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

When it returnsDW_DLV_OK, the functiondwarf_init() returns throughdbg a Dwarf_Debug
descriptor that represents a handle for accessing debugging records associated with the open file descriptor
fd. DW_DLV_NO_ENTRY is returned if the object does not contain DWARF debugging information.
DW_DLV_ERROR is returned if an error occurred.Theaccess argument indicates what access is allowed
for the section.The DW_DLC_READ parameter is valid for read access (only read access is defined or
discussed in this document).The errhand argument is a pointer to a function that will be invoked
whenever an error is detected as a result of alibdwarf operation. Theerrarg argument is passed as an
argument to theerrhand function. Thefi le descriptor associated with thefd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc entry, etc.), be opened with the at least as much
permission as specified by theaccess argument, and cannot be closed or used as an argument to any
system calls by the client until afterdwarf_finish() is called. The seek position of the file associated
with fd is undefined upon return ofdwarf_init().

With SGI IRIX, by default it is allowed that the appclose() fd immediately after calling
dwarf_init(), but that is nota portable approach (that it works is an accidental side effect of the fact
that SGI IRIX usesELF_C_READ_MMAP in its hidden internal call toelf_begin()). The portable
approach is to consider thatfd must be left open till after the corresponding dwarf_finish() call has
returned.

Sincedwarf_init() uses the same error handling processing as otherlibdwarf functions (seeError
Handling above), client programs will generally supply anerror parameter to bypass the default actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_elf_init()

int dwarf_elf_init(
Elf * elf_file_pointer,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

The functiondwarf_elf_init() is identical todwarf_init() except that an openElf * pointer
is passed instead of a file descriptor. In systems supportingELF object files this may be more space or
time-efficient than usingdwarf_init(). The client is allowed to use theElf * pointer for its own
purposes without restriction during the time theDwarf_Debug is open, except that the client should not
elf_end() the pointer till afterdwarf_finish is called.

5.1.3 dwarf_get_elf()

rev 2.02, December 13, 2011 - 17 -

- 18 -

int dwarf_get_elf(
Dwarf_Debug dbg,
Elf ** elf,
Dwarf_Error *error)

When it returnsDW_DLV_OK, the functiondwarf_get_elf() returns through the pointerelf theElf
* handle used to access the object represented by theDwarf_Debug descriptordbg. It returns
DW_DLV_ERROR on error.

Becauseint dwarf_init() opens an Elf descriptor on its fd anddwarf_finish() does not close
that descriptor, an app should usedwarf_get_elf and should callelf_end with the pointer returned
through theElf** handle created byint dwarf_init().

This function is not meaningful for a system that does not use the Elf format for objects.

5.1.4 dwarf_finish()

int dwarf_finish(
Dwarf_Debug dbg,
Dwarf_Error *error)

The functiondwarf_finish() releases allLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW_DLV_ERROR if there is an error during the finishing operation.It
returnsDW_DLV_OK for a successful operation.

Becauseint dwarf_init() opens an Elf descriptor on its fd anddwarf_finish() does not close
that descriptor, an app should usedwarf_get_elf and should callelf_end with the pointer returned
through theElf** handle created byint dwarf_init().

5.1.5 dwarf_set_stringcheck()

int dwarf_set_stringcheck(
int stringcheck)

The functionint dwarf_set_stringcheck() sets a global flag and returns the previous value of
the global flag.

If the stringcheck global flag is zero (the default) libdwarf does not do string length validity checks. If the
stringcheck global flag is non-zero libdwarf does do string length validity checks (the checks do slow
libdwarf down).

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

5.1.6 dwarf_set_reloc_application()

int dwarf_set_reloc_application(
int apply)

The functionint dwarf_set_reloc_application() sets a global flag and returns the previous
value of the global flag.

rev 2.02, December 13, 2011 - 18 -

- 19 -

If the reloc_application global flag is non-zero (the default) then the applicable .rela section (if one exists)
will be processed and applied to any DWARF section when it is read in. If the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but then very few relocation
types apply to DWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

5.1.7 dwarf_record_cmdline_options()

int dwarf_record_cmdline_options(
Dwarf_Cmdline_Options options)

The function int dwarf_record_cmdline_options() copies a Dwarf_Cmdline_Options
structure from consumer code to libdwarf.

The structure is defined inlibdwarf.h.

The initial version of this structure has a single field check_verbose_mode which, if non-zero, tells
libdwarf to print some detailed messages to stdout in case certain errors are detected.

The default for this value is FALSE (0) so the extra messages are off by default.

5.2 Section size operations

These operations are informative but not normally needed.

5.2.1 dwarf_get_section_max_offsets_b()

int dwarf_get_section_max_offsets_b(Dwarf_debug dbg,
Dwarf_Unsigned * /*debug_info_size*/,
Dwarf_Unsigned * /*debug_abbrev_size*/,
Dwarf_Unsigned * /*debug_line_size*/,
Dwarf_Unsigned * /*debug_loc_size*/,
Dwarf_Unsigned * /*debug_aranges_size*/,
Dwarf_Unsigned * /*debug_macinfo_size*/,
Dwarf_Unsigned * /*debug_pubnames_size*/,
Dwarf_Unsigned * /*debug_str_size*/,
Dwarf_Unsigned * /*debug_frame_size*/,
Dwarf_Unsigned * /*debug_ranges_size*/,
Dwarf_Unsigned * /*debug_pubtypes_size*/,
Dwarf_Unsigned * /*debug_types_size*/);

The functiondwarf_get_section_max_offsets_b() an open Dwarf_Dbg and reports on the
section sizes by pushing section size values backthrough the pointers.

Created in October 2011.

rev 2.02, December 13, 2011 - 19 -

- 20 -

5.2.2 dwarf_get_section_max_offsets()

int dwarf_get_section_max_offsets(Dwarf_debug dbg,
Dwarf_Unsigned * /*debug_info_size*/,
Dwarf_Unsigned * /*debug_abbrev_size*/,
Dwarf_Unsigned * /*debug_line_size*/,
Dwarf_Unsigned * /*debug_loc_size*/,
Dwarf_Unsigned * /*debug_aranges_size*/,
Dwarf_Unsigned * /*debug_macinfo_size*/,
Dwarf_Unsigned * /*debug_pubnames_size*/,
Dwarf_Unsigned * /*debug_str_size*/,
Dwarf_Unsigned * /*debug_frame_size*/,
Dwarf_Unsigned * /*debug_ranges_size*/,
Dwarf_Unsigned * /*debug_pubtypes_size*/);

The function is the same asdwarf_get_section_max_offsets_b() except it is missing the
debug_types_size() argument. Thoughobsolete it is still supported.

5.3 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.3.1 dwarf_next_cu_header_c()

int dwarf_next_cu_header_c(
Dwarf_debug dbg,
Dwarf_Bool is_info,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Half *offset_size,
Dwarf_Half *extension_size,
Dwarf_Sig8 *signature,
Dwarf_Unsigned *typeoffset
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

The function dwarf_next_cu_header_c() operates on the either the .debug_info section(if
is_info is non-zero) or .debug_types section (ifis_info is zero). It returnsDW_DLV_ERROR if it
fails, andDW_DLV_OK if it succeeds.

If it succeeds,*next_cu_header is set to the offset in the .debug_info section of the next compilation-
unit header if it succeeds. On reading the last compilation-unit header in the .debug_info section it contains
the size of the .debug_info or debug_types section. The next call todwarf_next_cu_header_b()
returns DW_DLV_NO_ENTRY without reading a compilation-unit or setting*next_cu_header.
Subsequent calls todwarf_next_cu_header() repeat the cycle by reading the first compilation-unit
and so on.

The other values returned through pointers are the values in the compilation-unit header. If any of
cu_header_length, version_stamp, abbrev_offset, address_size, offset_size,

rev 2.02, December 13, 2011 - 20 -

- 21 -

extension_size, signature, or typeoffset, isNULL, the argument is ignored (meaning it is not
an error to provide aNULL pointer for any or all of these arguments).

cu_header_length returns the length in bytes of the compilation unit header.

version_stamp returns the section version, which would be (for .debug_info) 2 for DWARF2, 3 for
DWARF4, or 4 for DWARF4.

abbrev_offset returns the .debug_abbrev section offset of the abbreviations for this compilation unit.

address_size returns the size of an address in this compilation unit. Which is usually 4 or 8.

offset_size returns the size in bytes of an offset for the compilation unit. The offset size is 4 for 32bit
dwarf and 8 for 64bit dwarf. Thisis the offset size in dwarf data, not the address size inside the executable
code. Theoffset size can be 4 even if embedded in a 64bit elf file (which is normal for 64bit elf), and can
be 8 even in a 32bit elf file (which probably will never be seen in practice).

Theextension_size pointer is only relevant if theoffset_size pointer returns 8. The value is not
normally useful but is returned through the pointer for completeness. The pointerextension_size
returns 0 if the CU is MIPS/IRIX non-standard 64bit dwarf (MIPS/IRIX 64bit dwarf was created years
before DWARF3 defined 64bit dwarf) and returns 4 if the dwarf uses the standard 64bit extension (the 4 is
the size in bytes of the 0xffffffff i n the initial length field which indicates the following 8 bytes in the
.debug_info section are the real length). See the DWARF3 or DWARF4 standard, section 7.4.

Thesignature pointer is only relevant if is_info is zero, and if relevant the 8 byte type signature of
the .debug_types CU header is assigned through the pointer.

Thetypeoffset pointer is only relevant if is_info is zero, and if relevant the local offset within the
CU of the the type offset the .debug_types entry represents is assigned through the pointer. The
typeoffset matters because a DW_AT_type referencing the type unit may reference an inner type, such
as a C++ class in a C++ namespace, but the type itself has the enclosing namespace in the .debug_type
type_unit.

5.3.2 dwarf_next_cu_header_b()

int dwarf_next_cu_header_b(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Half *offset_size,
Dwarf_Half *extension_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

This is obsolete as of October 2011 though supported.

The functiondwarf_next_cu_header_b() operates on the .debug_info section. It operates exactly
like dwarf_next_cu_header_c() but is missing thesignature, andtypeoffset fields. Thisis
kept for compatibility. All code using this should be changed to usedwarf_next_cu_header_c()

5.3.3 dwarf_next_cu_header()

The following is the original form, missing theoffset_size, extension_size, signature, and
typeoffset fields indwarf_next_cu_header_c(). This is kept for compatibility. All code using
this should be changed to usedwarf_next_cu_header_c()

rev 2.02, December 13, 2011 - 21 -

- 22 -

int dwarf_next_cu_header(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

5.3.4 dwarf_siblingof_b()

int dwarf_siblingof_b(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Bool is_info,
Dwarf_Die *return_sib,
Dwarf_Error *error)

The functiondwarf_siblingof_b() returnsDW_DLV_ERROR and sets theerror pointer on error.
If there is no sibling it returnsDW_DLV_NO_ENTRY. When it succeeds,dwarf_siblingof_b()
returnsDW_DLV_OK and sets*return_sib to theDwarf_Die descriptor of the sibling ofdie.

If is_info is non-zero then thedie is assumed to refer to a .debug_info DIE. If is_info is zero then
the die is assumed to refer to a .debug_types DIE. Note that the first call (the call that gets the
compilation-unit DIE in a compilation unit) passes in a NULLdie so having the caller pass inis_info
is essential. And ifdie is non-NULL it is still essential for the call to pass inis_info set properly to
reflect the section the DIE came from. The functiondwarf_get_die_infotypes_flag() is of
interest as it returns the proper is_info value from any non-NULL die pointer.

If die is NULL, theDwarf_Die descriptor of the first die in the compilation-unit is returned. This die
has theDW_TAG_compile_unit, DW_TAG_partial_unit, or DW_TAG_type_unit tag.

Dwarf_Die return_sib = 0;
Dwarf_Error error = 0;
int res;
Dwarf_Bool is_info = 1;
/* in_die might be NULL or a valid Dwarf_Die */
res = dwarf_siblingof_b(dbg,in_die,is_info,&return_sib, &error);
if (res == DW_DLV_OK) {

/* Use return_sib here. */
dwarf_dealloc(dbg, return_sib, DW_DLA_DIE);
/* return_sib is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_sib = 0;

}

5.3.5 dwarf_siblingof()

rev 2.02, December 13, 2011 - 22 -

- 23 -

int dwarf_siblingof(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Die *return_sib,
Dwarf_Error *error)

int dwarf_siblingof() operates exactly the same asint dwarf_siblingof_b(), but int
dwarf_siblingof() refers only to .debug_info DIEs.

5.3.6 dwarf_child()

int dwarf_child(
Dwarf_Die die,
Dwarf_Die *return_kid,
Dwarf_Error *error)

The functiondwarf_child() returnsDW_DLV_ERROR and sets theerror die on error. If there is no
child it returnsDW_DLV_NO_ENTRY. When it succeeds,dwarf_child() returnsDW_DLV_OK and
sets *return_kid to the Dwarf_Die descriptor of the first child of die. The function
dwarf_siblingof() can be used with the return value ofdwarf_child() to access the other
children ofdie.

Dwarf_Die return_kid = 0;
Dwarf_Error error = 0;
int res;

res = dwarf_child(dbg,in_die,&return_kid, &error);
if (res == DW_DLV_OK) {

/* Use return_kid here. */
dwarf_dealloc(dbg, return_kid, DW_DLA_DIE);
/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_kid = 0;

}

5.3.7 dwarf_offdie_b()

int dwarf_offdie_b(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Bool is_info,
Dwarf_Die *return_die,
Dwarf_Error *error)

The functiondwarf_offdie_b() returnsDW_DLV_ERROR and sets theerror die on error. When it
succeeds,dwarf_offdie_b() returnsDW_DLV_OK and sets*return_die to the theDwarf_Die
descriptor of the debugging information entry atoffset in the section containing debugging information
entries i.e the .debug_info section.A return of DW_DLV_NO_ENTRY means that theoffset in the
section is of a byte containing all 0 bits, indicating that there is no abbreviation code. Meaning this ’die
offset’ is not the offset of a real die, but is instead an offset of a null die, a padding die, or of some random

rev 2.02, December 13, 2011 - 23 -

- 24 -

zero byte: this should not be returned in normal use.

It is the user’s responsibility to make sure thatoffset is the start of a valid debugging information entry.
The result of passing it an invalid offset could be chaos.

If is_info is non-zero theoffset must refer to a .debug_info section offset. If is_info zero the
offset must refer to a .debug_types section offset. Errorreturns or misleading values may result if the
is_info flag or theoffset value are incorrect.

Dwarf_Error error = 0;
Dwarf_Die return_die = 0;
int res;

res = dwarf_offdie_b(dbg,die_offset,&return_die, &error);
if (res == DW_DLV_OK) {

/* Use return_die here. */
dwarf_dealloc(dbg, return_die, DW_DLA_DIE);
/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_die = 0;

}

5.3.8 dwarf_offdie()

int dwarf_offdie(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die *return_die,
Dwarf_Error *error)

The functiondwarf_offdie() is obsolete, usedwarf_offdie_b() instead. Thefunction is still
supported in the library, but only references the .debug_info section.

5.3.9 dwarf_validate_die_sibling()

int validate_die_sibling(
Dwarf_Die sibling,
Dwarf_Off *offset)

When used correctly in a depth-first walk of a DIE tree this function validates that any DW_AT_sibling
attribute gives the same offset as the direct tree walk. Thatis the only purpose of this function.

The functiondwarf_validate_die_sibling() returnsDW_DLV_OK if the last die processed in a
depth-first DIE tree walk was the same offset as generated by a call todwarf_siblingof(). Meaning
that the DW_AT_sibling attribute value, if any, was correct.

If the conditions are not met then DW_DLV_ERROR is returned and*offset is set to the offset in the
.debug_info section of the last DIE processed.If the application prints the offset a knowledgeable user may
be able to figure out what the compiler did wrong.

rev 2.02, December 13, 2011 - 24 -

- 25 -

5.4 Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a descriptor that can be
used on subsequent queries when given aDwarf_Die descriptor. Note that some operations are specific
to debugging information entries that are represented by aDwarf_Die descriptor of a specific type.For
example, not all debugging information entries contain an attribute having a name, so consequently, a call
to dwarf_diename() using aDwarf_Die descriptor that does not have a name attribute will return
DW_DLV_NO_ENTRY. This is not an error, i.e. calling a function that needs a specific attribute is not an
error for a die that does not contain that specific attribute.

There are several methods that can be used to obtain the value of an attribute in a given die:

1. Call dwarf_hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supplyanerror argument, and check its value after the call to a query indicates an unsuccessful
return, to determine the nature of the problem.Theerror argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to have an error handling function invoked upon detection of an error (see
dwarf_init()).

4. Calldwarf_attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.4.1 dwarf_get_die_infotypes_flag()

Dwarf_Bool dwarf_get_die_infotypes_flag(Dwarf_Die die)

The functiondwarf_tag() returns the section flag indicating which section the DIE originates from.If
the returned value is non-zero the DIE originates from the .debug_info section. If the returned value is zero
the DIE originates from the .debug_types section.

5.4.2 dwarf_tag()

int dwarf_tag(
Dwarf_Die die,
Dwarf_Half *tagval,
Dwarf_Error *error)

The functiondwarf_tag() returns thetag of die through the pointertagval if it succeeds.It
returnsDW_DLV_OK if it succeeds. It returnsDW_DLV_ERROR on error.

5.4.3 dwarf_dieoffset()

rev 2.02, December 13, 2011 - 25 -

- 26 -

int dwarf_dieoffset(
Dwarf_Die die,
Dwarf_Off * return_offset,
Dwarf_Error *error)

When it succeeds, the functiondwarf_dieoffset() returns DW_DLV_OK and sets
*return_offset to the position ofdie in the section containing debugging information entries (the
return_offset is a section-relative offset). Inother words, it setsreturn_offset to the offset of
the start of the debugging information entry described bydie in the section containing dies i.e
.debug_info. ItreturnsDW_DLV_ERROR on error.

5.4.4 dwarf_die_CU_offset()

int dwarf_die_CU_offset(
Dwarf_Die die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_die_CU_offset() is similar todwarf_dieoffset(), except that it puts the
offset of the DIE represented by theDwarf_Die die, from the start of the compilation-unit that it
belongs to rather than the start of .debug_info (thereturn_offset is a CU-relative offset).

5.4.5 dwarf_die_offsets()

int dwarf_die_offsets(
Dwarf_Die die,
Dwarf_Off *global_off,
Dwarf_Off *cu_off,
Dwarf_Error *error)

The function dwarf_die_offsets() is a combination of dwarf_dieoffset() and
dwarf_die_cu_offset() in that it returns both the global .debug_info offset and the CU-relative
offset of thedie in a single call.

5.4.6 dwarf_ptr_CU_offset()

int dwarf_ptr_CU_offset(
Dwarf_CU_Context cu_context,
Dwarf_Byte_ptr di_ptr ,
Dwarf_Off *cu_off)

Given a valid CU context pointer and a pointer into that CU context, the function
dwarf_ptr_CU_offset() returns DW_DLV_OK and sets*cu_off to the CU-relative (local) offset
in that CU.

5.4.7 dwarf_CU_dieoffset_given_die()

rev 2.02, December 13, 2011 - 26 -

- 27 -

int dwarf_CU_dieoffset_given_die(
Dwarf_Die given_die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_CU_dieoffset_given_die() is similar to dwarf_die_CU_offset(),
except that it puts the global offset of the CU DIE owning given_die of .debug_info (the
return_offset is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_offset can be passed todwarf_offdie_b() to return a pointer to the CU die of the CU
owning thegiven_die passed todwarf_CU_dieoffset_given_die(). The consumer can extract
information from the CU die and thegiven_die (in the normal way) and print it.

An example (asnippet) of code using this function follows. It assumes thatin_die is a DIE that, for
some reason, you have decided needs CU context printed (assumingprint_die_data does some
reasonable printing).

int res;
Dwarf_Off cudieoff = 0;
Dwarf_Die cudie = 0;

print_die_data(dbg,in_die);
res = dwarf_CU_dieoffset_given_die(in_die,&cudieoff,&error);
if(res != DW_DLV_OK) {

printf("FAIL: dwarf_CU_dieoffset_given_die did not work0);
exit(1);

}
res = dwarf_offdie_b(dbg,cudieoff,&cudie,&error);
if(res != DW_DLV_OK) {

printf("FAIL: dwarf_offdie did not work0);
exit(1);

}
print_die_data(dbg,cudie);
dwarf_dealloc(dbg,cudie, DW_DLA_DIE);

5.4.8 dwarf_die_CU_offset_range()

int dwarf_die_CU_offset_range(
Dwarf_Die die,
Dwarf_Off *cu_global_offset,
Dwarf_Off *cu_length,
Dwarf_Error *error)

The functiondwarf_die_CU_offset_range() returns the offset of the beginning of the CU and the
length of the CU. The offset and length are of the entire CU that this DIE is a part of.It is used by
dwarfdump (for example) to check the validity of offsets. Mostapplications will have no reason to call this
function.

rev 2.02, December 13, 2011 - 27 -

- 28 -

5.4.9 dwarf_diename()

int dwarf_diename(
Dwarf_Die die,
char ** return_name,
Dwarf_Error *error)

When it succeeds, the functiondwarf_diename() returnsDW_DLV_OK and sets*return_name to a
pointer to a null-terminated string of characters that represents the name attribute ofdie. It returns
DW_DLV_NO_ENTRY if die does not have a name attribute. It returnsDW_DLV_ERROR if an error
occurred. Thestorage pointed to by a successful return ofdwarf_diename() should be freed using the
allocation typeDW_DLA_STRING when no longer of interest (seedwarf_dealloc()).

5.4.10 dwarf_die_abbrev_code()

int dwarf_die_abbrev_code(Dwarf_Die die)

The function returns the abbreviation code of the DIE.That is, it returns the abbreviation "index" into the
abbreviation table for the compilation unit of which the DIE is a part.It cannot fail. No errors are possible.
The pointerdie() must not be NULL.

5.4.11 dwarf_die_abbrev_children_flag()

int dwarf_die_abbrev_children_flag(Dwarf_Die die,
Dwarf_Half *has_child)

The function returns the has-children flag of thedie passed in through the*has_child passed in and
returnsDW_DLV_OK on success.A non-zero value of*has_child means thedie has children.

On failure it returnsDW_DLV_ERROR.

The function was developed to let consumer code do better error reporting in some circumstances, it is not
generally needed.

5.4.12 dwarf_get_version_of_die()

int dwarf_get_version_of_die(Dwarf_Die die,
Dwarf_Half *version,
Dwarf_Half *offset_size)

The function returns the CU context version through*version and the CU context offset-size through
*offset_size and returnsDW_DLV_OK on success.

In case of error, the only errors possible involve an inappropriate NULLdie pointer so no Dwarf_Debug
pointer is available. Thereforesetting a Dwarf_Error would not be very meaningful (there is no
Dwarf_Debug to attach it to). The function returns DW_DLV_ERROR on error.

The values returned through the pointers are the values two arguments to dwarf_get_form_class() requires.

rev 2.02, December 13, 2011 - 28 -

- 29 -

5.4.13 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Signed *attrcount,
Dwarf_Error *error)

When it returnsDW_DLV_OK, the functiondwarf_attrlist() setsattrbuf to point to an array of
Dwarf_Attribute descriptors corresponding to each of the attributes in die, and returns the number of
elements in the array throughattrcount. DW_DLV_NO_ENTRY is returned if the count is zero (no
attrbuf is allocated in this case).DW_DLV_ERROR is returned on error. On a successful return from
dwarf_attrlist(), each of theDwarf_Attribute descriptors should be individually freed using
dwarf_dealloc() with the allocation typeDW_DLA_ATTR, followed by free-ing the list pointed to by
*attrbuf using dwarf_dealloc() with the allocation typeDW_DLA_LIST, when no longer of
interest (seedwarf_dealloc()).

Freeing the attrlist:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&atcnt, &error);
if (errv == DW_DLV_OK) {

for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

5.4.14 dwarf_hasattr()

int dwarf_hasattr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

When it succeeds, the functiondwarf_hasattr() returnsDW_DLV_OK and sets*return_bool to
non-zero if die has the attributeattr andzero otherwise. Ifit fails, it returnsDW_DLV_ERROR.

5.4.15 dwarf_attr()

int dwarf_attr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Attribute *return_attr,
Dwarf_Error *error)

rev 2.02, December 13, 2011 - 29 -

- 30 -

When it returns DW_DLV_OK, the function dwarf_attr() sets *return_attr to the
Dwarf_Attribute descriptor ofdie having the attribute attr. It returnsDW_DLV_NO_ENTRY if
attr is not contained indie. It returnsDW_DLV_ERROR if an error occurred.

5.4.16 dwarf_lowpc()

int dwarf_lowpc(
Dwarf_Die die,
Dwarf_Addr * return_lowpc,
Dwarf_Error * error)

The functiondwarf_lowpc() returnsDW_DLV_OK and sets*return_lowpc to the low program
counter value associated with thedie descriptor ifdie represents a debugging information entry with this
attribute. It returnsDW_DLV_NO_ENTRY if die does not have this attribute. It returnsDW_DLV_ERROR
if an error occurred.

5.4.17 dwarf_highpc()

int dwarf_highpc(
Dwarf_Die die,
Dwarf_Addr * return_highpc,
Dwarf_Error *error)

The functiondwarf_highpc() returnsDW_DLV_OK and sets*return_highpc the high program
counter value associated with thedie descriptor ifdie represents a debugging information entry with this
attribute. It returnsDW_DLV_NO_ENTRY if die does not have this attribute. It returnsDW_DLV_ERROR
if an error occurred.

5.4.18 dwarf_bytesize()

Dwarf_Signed dwarf_bytesize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds,dwarf_bytesize() returnsDW_DLV_OK and sets*return_size to the number
of bytes needed to contain an instance of the aggregate debugging information entry represented bydie. It
returnsDW_DLV_NO_ENTRY if die does not contain the byte size attribute DW_AT_byte_size. It
returnsDW_DLV_ERROR if an error occurred.

5.4.19 dwarf_bitsize()

int dwarf_bitsize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

rev 2.02, December 13, 2011 - 30 -

- 31 -

When it succeeds,dwarf_bitsize() returnsDW_DLV_OK and sets*return_size to the number of
bits occupied by the bit field value that is an attribute of the given die. It returnsDW_DLV_NO_ENTRY if
die does not contain the bit size attribute DW_AT_bit_size. It returnsDW_DLV_ERROR if an error
occurred.

5.4.20 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds,dwarf_bitoffset() returnsDW_DLV_OK and sets*return_size to the number
of bits to the left of the most significant bit of the bit field value. Thisbit offset is not necessarily the net bit
offset within the structure or class , sinceDW_AT_data_member_location may give a byte offset to
this DIE and the bit offset returned through the pointer does not include the bits in the byte offset. It
returnsDW_DLV_NO_ENTRY if die does not contain the bit offset attribute DW_AT_bit_offset. It
returnsDW_DLV_ERROR if an error occurred.

5.4.21 dwarf_srclang()

int dwarf_srclang(
Dwarf_Die die,
Dwarf_Unsigned *return_lang,
Dwarf_Error *error)

When it succeeds,dwarf_srclang() returns DW_DLV_OK and sets*return_lang to a code
indicating the source language of the compilation unit represented by the descriptordie. It returns
DW_DLV_NO_ENTRY if die does not represent a source file debugging information entry (i.e. contain the
attributeDW_AT_language). It returnsDW_DLV_ERROR if an error occurred.

5.4.22 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Die die,
Dwarf_Unsigned *return_order,
Dwarf_Error *error)

When it succeeds,dwarf_arrayorder() returnsDW_DLV_OK and sets*return_order a code
indicating the ordering of the array represented by the descriptordie. It returnsDW_DLV_NO_ENTRY if
die does not contain the array order attributeDW_AT_ordering. It returnsDW_DLV_ERROR if an error
occurred.

5.5 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpreted attribute data.
Since it is not always obvious from the return value of these functions if an error occurred, one should
always supply anerror parameter or have arranged to have an error handling function invoked (see
dwarf_init()) to determine the validity of the returned value and the nature of any errors that may have
occurred.

rev 2.02, December 13, 2011 - 31 -

- 32 -

A Dwarf_Attribute descriptor describes an attribute of a specific die. Thus, each
Dwarf_Attribute descriptor is implicitly associated with a specific die.

5.5.1 dwarf_hasform()

int dwarf_hasform(
Dwarf_Attribute attr,
Dwarf_Half form,
Dwarf_Bool *return_hasform,
Dwarf_Error *error)

The functiondwarf_hasform() returnsDW_DLV_OK and andputs anon-zero
value in the*return_hasform boolean if the attribute represented by theDwarf_Attribute
descriptorattr has the attribute formform. If the attribute does not have that form zero is put into
*return_hasform. DW_DLV_ERROR is returned on error.

5.5.2 dwarf_whatform()

int dwarf_whatform(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds,dwarf_whatform() returnsDW_DLV_OK and sets*return_form to the attribute
form code of the attribute represented by theDwarf_Attribute descriptor attr. It returns
DW_DLV_ERROR on error. An attribute using DW_FORM_indirect effectively has two forms. This
function returns the ’final’ form forDW_FORM_indirect, not theDW_FORM_indirect itself. This
function is what most applications will want to call.

5.5.3 dwarf_whatform_direct()

int dwarf_whatform_direct(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds,dwarf_whatform_direct() returnsDW_DLV_OK and sets*return_form to
the attribute form code of the attribute represented by theDwarf_Attribute descriptorattr. It
returns DW_DLV_ERROR on error. An attribute usingDW_FORM_indirect effectively has two forms.
This returns the form ’directly’ in the initial form field. Sowhen the form field isDW_FORM_indirect
this call returns theDW_FORM_indirect form, which is sometimes useful for dump utilities.

5.5.4 dwarf_whatattr()

int dwarf_whatattr(
Dwarf_Attribute attr,
Dwarf_Half *return_attr,
Dwarf_Error *error)

rev 2.02, December 13, 2011 - 32 -

- 33 -

When it succeeds,dwarf_whatattr() returnsDW_DLV_OK and sets*return_attr to the attribute
code represented by theDwarf_Attribute descriptorattr. It returnsDW_DLV_ERROR on error.

5.5.5 dwarf_formref()

int dwarf_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds,dwarf_formref() returnsDW_DLV_OK and sets*return_offset to the CU-
relative offset represented by the descriptorattr if the form of the attribute belongs to theREFERENCE
class. attr must be a CU-local reference, not formDW_FORM_ref_addr and not
DW_FORM_sec_offset . It is an error for the form to not belong to theREFERENCE class. Itreturns
DW_DLV_ERROR on error.

Beginning November 2010: All DW_DLV_ERROR returns set*return_offset. Most errors set
*return_offset to zero, but for errorDW_DLE_ATTR_FORM_OFFSET_BAD the function sets
*return_offset to the invalid offset (which allows the caller to print a more detailed error message).

See alsodwarf_global_formref below.

5.5.6 dwarf_global_formref()

int dwarf_global_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds,dwarf_global_formref() returnsDW_DLV_OK and sets*return_offset to
the section-relative offset represented by the descriptorattr if the form of the attribute belongs to the
REFERENCE or other section-references classes.

attr can be any leg al REFERENCE class form plus DW_FORM_ref_addr or
DW_FORM_sec_offset. It is an error for the form to not belong to one of the reference classes.It
returnsDW_DLV_ERROR on error. See alsodwarf_formref above.

The caller must determine which section the offset returned applies to. The function
dwarf_get_form_class() is useful to determine the applicable section.

The function converts CU relative offsets from forms such as DW_FORM_ref4 into global section offsets.

5.5.7 dwarf_convert_to_global_offset()

int dwarf_convert_to_global_offset(
Dwarf_Attribute attr,
Dwarf_Off offset,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds,dwarf_convert_to_global_offset() returns DW_DLV_OK and sets

rev 2.02, December 13, 2011 - 33 -

- 34 -

*return_offset to the section-relative offset represented by the cu-relative offsetoffset if the form
of the attribute belongs to theREFERENCE class. attr must be a CU-local reference (DWARF class
REFERENCE) or formDW_FORM_ref_addr and theattr must be directly relevant for the calculated
*return_offset to mean anything.

The function returnsDW_DLV_ERROR on error.

The function is not strictly necessary but may be a convenience for attribute printing in case of error.

5.5.8 dwarf_formaddr()

int dwarf_formaddr(
Dwarf_Attribute attr,
Dwarf_Addr * return_addr,
Dwarf_Error *error)

When it succeeds,dwarf_formaddr() returnsDW_DLV_OK and sets*return_addr to the address
represented by the descriptorattr if the form of the attribute belongs to theADDRESS class. Itis an error
for the form to not belong to this class. It returnsDW_DLV_ERROR on error.

5.5.9 dwarf_formflag()

int dwarf_formflag(
Dwarf_Attribute attr,
Dwarf_Bool * return_bool,
Dwarf_Error *error)

When it succeeds,dwarf_formflag() returnsDW_DLV_OK and sets*return_bool 1 (i.e. true) (if
the attribute has a non-zero value) or0 (i.e. false) (if the attribute has a zero value). It returns
DW_DLV_ERROR on error or if theattr does not have form flag.

5.5.10 dwarf_formudata()

int dwarf_formudata(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_uvalue,
Dwarf_Error * error)

The function dwarf_formudata() returns DW_DLV_OK and sets*return_uvalue to the
Dwarf_Unsigned value of the attribute represented by the descriptorattr if the form of the attribute
belongs to theCONSTANT class. It is an error for the form to not belong to this class. It returns
DW_DLV_ERROR on error.

Never returnsDW_DLV_NO_ENTRY.

For DWARF2 and DWARF3,DW_FORM_data4 andDW_FORM_data8 are possibly classCONSTANT,
and for DWARF4 and later they are definitely classCONSTANT.

rev 2.02, December 13, 2011 - 34 -

- 35 -

5.5.11 dwarf_formsdata()

int dwarf_formsdata(
Dwarf_Attribute attr,
Dwarf_Signed * return_svalue,
Dwarf_Error *error)

The function dwarf_formsdata() returns DW_DLV_OK and sets*return_svalue to the
Dwarf_Signed value of the attribute represented by the descriptorattr if the form of the attribute
belongs to theCONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size of theDwarf_Signed type, its value is sign extended. It
returnsDW_DLV_ERROR on error.

Never returnsDW_DLV_NO_ENTRY.

For DWARF2 and DWARF3,DW_FORM_data4 andDW_FORM_data8 are possibly classCONSTANT,
and for DWARF4 and later they are definitely classCONSTANT.

5.5.12 dwarf_formblock()

int dwarf_formblock(
Dwarf_Attribute attr,
Dwarf_Block ** return_block,
Dwarf_Error * error)

The functiondwarf_formblock() returnsDW_DLV_OK and sets*return_block to a pointer to a
Dwarf_Block structure containing the value of the attribute represented by the descriptorattr if the
form of the attribute belongs to theBLOCK class. Itis an error for the form to not belong to this class.The
storage pointed to by a successful return ofdwarf_formblock() should be freed using the allocation
type DW_DLA_BLOCK, when no longer of interest (seedwarf_dealloc()). It returns
DW_DLV_ERROR on error.

5.5.13 dwarf_formstring()

int dwarf_formstring(
Dwarf_Attribute attr,
char ** return_string,
Dwarf_Error *error)

The functiondwarf_formstring() returnsDW_DLV_OK and sets*return_string to a pointer to
a null-terminated string containing the value of the attribute represented by the descriptorattr if the form
of the attribute belongs to theSTRING class. Itis an error for the form to not belong to this class.The
storage pointed to by a successful return ofdwarf_formstring() should not be freed.The pointer
points into existing DWARF memory and the pointer becomes stale/invalid after a call to
dwarf_finish. dwarf_formstring() returnsDW_DLV_ERROR on error.

5.5.14 dwarf_formsig8()

rev 2.02, December 13, 2011 - 35 -

- 36 -

int dwarf_formsig8(
Dwarf_Attribute attr,
Dwarf_Sig8 * return_sig8,
Dwarf_Error * error)

The function dwarf_formsig8() returns DW_DLV_OK and copies the 8 byte signature to a
Dwarf_Sig8 structure provided by the caller if the form of the attribute is of form
DW_FORM_ref_sig8 (a member of theREFERENCE class). Itis an error for the form to be anything
but DW_FORM_ref_sig8. It returnsDW_DLV_ERROR on error.

This form is used to refer to a type unit.

5.5.15 dwarf_formsig8()

int dwarf_formexprloc(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_exprlen,
Dwarf_Ptr * block_ptr,
Dwarf_Error * error)

The functiondwarf_formexprloc() returnsDW_DLV_OK and sets the two values thru the pointers to
the length and bytes of the DW_FORM_exprloc entry if the form of the attribute is of form
DW_FORM_experloc. It is an error for the form to be anything but DW_FORM_exprloc. It returns
DW_DLV_ERROR on error.

On success the value set through thereturn_exprlen pointer is the length of the location expression.
On success the value set through theblock_ptr pointer is a pointer to the bytes of the location
expression itself.

5.5.16 dwarf_get_form_class()

enum Dwarf_Form_Class dwarf_get_form_class(
Dwarf_Half dwversion,
Dwarf_Half attrnum,
Dwarf_Half offset_size,
Dwarf_Half form)

The function is just for the convenience of libdwarf clients that might wish to categorize the FORM of a
particular attribute. TheDWARF specification divides FORMs into classes in Chapter 7 and this function
figures out the correct class for a form.

Thedwversion passed in shall be the dwarf version of the compilation unit involved (2 for DWARF2, 3
for DWARF3, 4 for DWARF 4). The attrnum passed in shall be the attribute number of the attribute
involved (for example,DW_AT_name). Theoffset_size passed in shall be the length of an offset in
the current compilation unit (4 for 32bit dwarf or 8 for 64bit dwarf). Theform passed in shall be the
attribute form number. If form DW_FORM_indirect is passed inDW_FORM_CLASS_UNKNOWN will
be returned as this form has no defined ’class’.

When it returnsDW_FORM_CLASS_UNKNOWN the function is simply saying it could not determine the
correct class given the arguments presented. Some user-defined attributes might have this problem.

The functiondwarf_get_version_of_die() may be helpful in filling out arguments for a call to
dwarf_get_form_class().

rev 2.02, December 13, 2011 - 36 -

- 37 -

5.5.17 dwarf_loclist_n()

int dwarf_loclist_n(
Dwarf_Attribute attr,
Dwarf_Locdesc ***llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

The functiondwarf_loclist_n() sets*llbuf to point to an array ofDwarf_Locdesc pointers
corresponding to each of the location expressions in a location list, and sets*listlen to the number of
elements in the array and returnsDW_DLV_OK if the attribute is appropriate.

This is the preferred function for Dwarf_Locdesc as it is the interface allowing access to an entire loclist.
(use ofdwarf_loclist_n() is suggested as the better interface, thoughdwarf_loclist() is still
supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of theDwarf_Locdesc(s) returned.

If the attribute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwarf_Locdesc values of the singleDwarf_Locdesc record are set to ’sensible’ but arbitrary values.
Specifically, ld_lopc is set to 0 and ld_hipc is set to all-bits-on. And*listlen is set to 1.

It returnsDW_DLV_ERROR on error.

dwarf_loclist_n() works on DW_AT_location, DW_AT_data_member_location,
DW_AT_vtable_elem_location, DW_AT_string_length, DW_AT_use_location, and
DW_AT_return_addr attributes.

If the attribute is DW_AT_data_member_location the value may be of class CONSTANT.
dwarf_loclist_n() is unable to read class CONSTANT, so you need to first determine the class using
dwarf_get_form_class() and if it is class CONSTANT call dwarf_formsdata() or
dwarf_formudata() to get the constant value (you may need to call both as DWARF4 does not define
the signedness of the constant value).

Storage allocated by a successful call ofdwarf_loclist_n() should be deallocated when no longer of
interest (seedwarf_dealloc()). The block of Dwarf_Loc structs pointed to by theld_s field of
eachDwarf_Locdesc structure should be deallocated with the allocation typeDW_DLA_LOC_BLOCK.
and thellbuf[] space pointed to should be deallocated with allocation typeDW_DLA_LOCDESC. This
should be followed by deallocation of thellbuf using the allocation typeDW_DLA_LIST.

Dwarf_Signed lcnt;
Dwarf_Locdesc **llbuf;
int lres;

lres = dwarf_loclist_n(someattr, &llbuf,&lcnt &error);
if (lres == DW_DLV_OK) {

for (i = 0; i < lcnt; ++i) {
/* use llbuf[i] */

dwarf_dealloc(dbg, llbuf[i]->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(dbg,llbuf[i], DW_DLA_LOCDESC);

}
dwarf_dealloc(dbg, llbuf, DW_DLA_LIST);

}

rev 2.02, December 13, 2011 - 37 -

- 38 -

5.5.18 dwarf_loclist()

int dwarf_loclist(
Dwarf_Attribute attr,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

The functiondwarf_loclist() sets*llbuf to point to aDwarf_Locdesc pointer for the single
location expression it can return. It sets*listlen to 1. and returnsDW_DLV_OK if the attribute is
appropriate.

It is less flexible thandwarf_loclist_n() in thatdwarf_loclist() can handle a maximum of
one location expression, not a full location list. If a location-list is present it returns only the first location-
list entry location description. Usedwarf_loclist_n() instead.

It returns DW_DLV_ERROR on error. dwarf_loclist() works on DW_AT_location,
DW_AT_data_member_location, DW_AT_vtable_elem_location,
DW_AT_string_length, DW_AT_use_location, andDW_AT_return_addr attributes.

Storage allocated by a successful call ofdwarf_loclist() should be deallocated when no longer of
interest (seedwarf_dealloc()). The block of Dwarf_Loc structs pointed to by theld_s field of
eachDwarf_Locdesc structure should be deallocated with the allocation typeDW_DLA_LOC_BLOCK.
This should be followed by deallocation of thellbuf using the allocation typeDW_DLA_LOCDESC.

Dwarf_Signed lcnt;
Dwarf_Locdesc *llbuf;
int lres;

lres = dwarf_loclist(someattr, &llbuf,&lcnt,&error);
if (lres == DW_DLV_OK) {

/* lcnt is always 1, (and has always been 1) */ */

/* Use llbuf here. */

dwarf_dealloc(dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

/* Earlier version.
* for (i = 0; i < lcnt; ++i) {
* /* use llbuf[i] */
*
* /* Deallocate Dwarf_Loc block of llbuf[i] */
* dwarf_dealloc(dbg, llbuf[i].ld_s, DW_DLA_LOC_BLOCK);
* }
* dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);
*/

}

5.5.19 dwarf_loclist_from_expr()

rev 2.02, December 13, 2011 - 38 -

- 39 -

int dwarf_loclist_from_expr(
Dwarf_Ptr bytes_in,
Dwarf_Unsigned bytes_len,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

The functiondwarf_loclist_from_expr() sets*llbuf to point to aDwarf_Locdesc pointer
for the single location expression which is pointed to by*bytes_in (whose length is*bytes_len). It
sets*listlen to 1. and returnsDW_DLV_OK if decoding is successful.Some sources of bytes of
expressions are dwarf expressions in frame operations like DW_CFA_def_cfa_expression,
DW_CFA_expression, and DW_CFA_val_expression.

Any address_size data in the location expression is assumed to be the same size as the default address_size
for the object being read (normally 4 or 8).

It returnsDW_DLV_ERROR on error.

Storage allocated by a successful call ofdwarf_loclist_from_expr() should be deallocated when
no longer of interest (seedwarf_dealloc()). The block of Dwarf_Loc structs pointed to by the
ld_s field of eachDwarf_Locdesc structure should be deallocated with the allocation type
DW_DLA_LOC_BLOCK. This should be followed by deallocation of thellbuf using the allocation type
DW_DLA_LOCDESC.

Dwarf_Signed lcnt;
Dwarf_Locdesc *llbuf;
int lres;
/* Example with an empty buffer here. */
Dwarf_Ptr data = "";
Dwarf_Unsigned len = 0;

lres = dwarf_loclist_from_expr(data,len, &llbuf,&lcnt, &error);
if (lres == DW_DLV_OK) {

/* lcnt is always 1 */

/* Use llbuf here.*/

dwarf_dealloc(dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
dwarf_dealloc(dbg, llbuf, DW_DLA_LOCDESC);

}

5.5.20 dwarf_loclist_from_expr_a()

int dwarf_loclist_from_expr_a(
Dwarf_Ptr bytes_in,
Dwarf_Unsigned bytes_len,
Dwarf_Half addr_size,
Dwarf_Locdesc **llbuf,
Dwarf_Signed *listlen,
Dwarf_Error *error)

The functiondwarf_loclist_from_expr_a() is identical to dwarf_loclist_from_expr()
in every way except that the caller passes the additional argumentaddr_size containing the address size
(normally 4 or 8) applying this location expression.

rev 2.02, December 13, 2011 - 39 -

- 40 -

The addr_size argument (added 27April2009) is needed to correctly interpret frame information as
different compilation units can have different address sizes.DWARF4 adds address_size to the CIE header.

5.6 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the interface talks of "lines" what is really meant is "statements". In case there
is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line number. If column number is also being represented they will have the column numbers of the
start of the statements also represented.

There can also be more than one Dwarf_Line per statement.For example, if a file is preprocessed by a
language translator, this could result in translator output showing 2 or more sets of line numbers per
translated line of output.

5.6.1 Get A Set of Lines

The function returns information about every source line for a particular compilation-unit.The
compilation-unit is specified by the corresponding die.

5.6.1.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Die die,
Dwarf_Line **linebuf,
Dwarf_Signed *linecount,
Dwarf_Error *error)

The functiondwarf_srclines() places all line number descriptors for a single compilation unit into a
single block, sets*linebuf to point to that block, sets*linecount to the number of descriptors in this
block and returnsDW_DLV_OK. The compilation-unit is indicated by the given die which must be a
compilation-unit die. It returnsDW_DLV_ERROR on error. On successful return, line number information
should be freed usingdwarf_srclines_dealloc() when no longer of interest.

Dwarf_Signed cnt;
Dwarf_Line *linebuf;
int sres;

sres = dwarf_srclines(somedie, &linebuf,&cnt, &error);
if (sres == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use linebuf[i] */

}
dwarf_srclines_dealloc(dbg, linebuf, cnt);

}

The following dealloc code (the only documented method before July 2005) still works, but does not
completely free all data allocated.Thedwarf_srclines_dealloc() routine was created to fix the
problem of incomplete deallocation.

rev 2.02, December 13, 2011 - 40 -

- 41 -

Dwarf_Signed cnt;
Dwarf_Line *linebuf;
int sres;

sres = dwarf_srclines(somedie, &linebuf,&cnt, &error);
if (sres == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use linebuf[i] */
dwarf_dealloc(dbg, linebuf[i], DW_DLA_LINE);

}
dwarf_dealloc(dbg, linebuf, DW_DLA_LIST);

}

5.6.2 Get the set of Source File Names

The function returns the names of the source files that have contributed to the compilation-unit represented
by the given DIE. Only the source files named in the statement program prologue are returned.

int dwarf_srcfiles(
Dwarf_Die die,
char ***srcfiles,
Dwarf_Signed *srccount,
Dwarf_Error *error)

When it succeedsdwarf_srcfiles() returnsDW_DLV_OK and puts the number of source files named
in the statement program prologue indicated by the given die into *srccount. Source files defined in
the statement program are ignored.The given die should have the tagDW_TAG_compile_unit,
DW_TAG_partial_unit, or DW_TAG_type_unit The location pointed to bysrcfiles is set to
point to a list of pointers to null-terminated strings that name the source files. Ona successful return from
this function, each of the strings returned should be individually freed usingdwarf_dealloc() with the
allocation typeDW_DLA_STRING when no longer of interest. This should be followed by free-ing the list
using dwarf_dealloc() with the allocation typeDW_DLA_LIST. It returnsDW_DLV_ERROR on
error. It returnsDW_DLV_NO_ENTRY if there is no corresponding statement program (i.e., if there is no
line information).

Dwarf_Signed cnt;
char **srcfiles;
int res;

res = dwarf_srcfiles(somedie, &srcfiles,&cnt &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use srcfiles[i] */
dwarf_dealloc(dbg, srcfiles[i], DW_DLA_STRING);

}
dwarf_dealloc(dbg, srcfiles, DW_DLA_LIST);

}

rev 2.02, December 13, 2011 - 41 -

- 42 -

5.6.3 Get information about a Single Table Line

The following functions can be used on theDwarf_Line descriptors returned bydwarf_srclines()
to obtain information about the source lines.

5.6.3.1 dwarf_linebeginstatement()

int dwarf_linebeginstatement(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The functiondwarf_linebeginstatement() returnsDW_DLV_OK and sets*return_bool to
non-zero (if line represents a line number entry that is marked as beginning a statement).or zero ((if
line represents a line number entry that is not marked as beginning a statement). It returns
DW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.6.3.2 dwarf_lineendsequence()

int dwarf_lineendsequence(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The functiondwarf_lineendsequence() returnsDW_DLV_OK and sets*return_bool non-zero
(in which caseline represents a line number entry that is marked as ending a text sequence) orzero (in
which caseline represents a line number entry that is not marked as ending a text sequence).A l ine
number entry that is marked as ending a text sequence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see the DWARF specification)).

The function dwarf_lineendsequence() returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.6.3.3 dwarf_lineno()

int dwarf_lineno(
Dwarf_Line line,
Dwarf_Unsigned * returned_lineno,
Dwarf_Error * error)

The function dwarf_lineno() returns DW_DLV_OK and sets*return_lineno to the source
statement line number corresponding to the descriptorline. It returnsDW_DLV_ERROR on error. It
never returnsDW_DLV_NO_ENTRY.

5.6.3.4 dwarf_line_srcfileno()

int dwarf_line_srcfileno(
Dwarf_Line line,
Dwarf_Unsigned * returned_fileno,
Dwarf_Error * error)

rev 2.02, December 13, 2011 - 42 -

- 43 -

The functiondwarf_line_srcfileno() returnsDW_DLV_OK and sets*returned_fileno to the
source statement line number corresponding to the descriptorfile number. When the number returned
through*returned_fileno is zero it means the file name is unknown (see the DWARF2/3 line table
specification). Whenthe number returned through*returned_fileno is non-zero it is a file number:
subtract 1 from this file number to get an index into the array of strings returned bydwarf_srcfiles()
(verify the resulting index is in range for the array of strings before indexing into the array of strings).The
fi le number may exceed the size of the array of strings returned bydwarf_srcfiles() because
dwarf_srcfiles() does not return files names defined with theDW_DLE_define_file operator.
The function dwarf_line_srcfileno() returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.6.3.5 dwarf_lineaddr()

int dwarf_lineaddr(
Dwarf_Line line,
Dwarf_Addr *return_lineaddr,
Dwarf_Error *error)

The functiondwarf_lineaddr() returnsDW_DLV_OK and sets*return_lineaddr to the address
associated with the descriptorline. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.6.3.6 dwarf_lineoff()

int dwarf_lineoff(
Dwarf_Line line,
Dwarf_Signed * return_lineoff,
Dwarf_Error *error)

The functiondwarf_lineoff() returnsDW_DLV_OK and sets*return_lineoff to the column
number at which the statement represented byline begins.

It setsreturn_lineoff to zero if the column number of the statement is not represented (meaning the
producer library call was given zero as the column number).Zero is the correct value meaning "left edge"
as defined in the DWARF2/3/4 specication (section 6.2.2).

Before December 2011 zero was not returned through thereturn_lineoff pointer, -1 was returned
through the pointer. The reason for this oddity is unclear, lost in history. But there is no good reason for -1.

The type of return_lineoff is a pointer-to-signed, but there is no good reason for the value to be
signed, the DWARF specification does not deal with negative column numbers.However, changing the
declaration would cause compilation errors for little benefit, so the pointer-to-signed is left unchanged.

On error it returnsDW_DLV_ERROR. It nev er returnsDW_DLV_NO_ENTRY.

5.6.3.7 dwarf_linesrc()

int dwarf_linesrc(
Dwarf_Line line,
char ** return_linesrc,
Dwarf_Error *error)

The functiondwarf_linesrc() returnsDW_DLV_OK and sets*return_linesrc to a pointer to a
null-terminated string of characters that represents the name of the source-file whereline occurs. It

rev 2.02, December 13, 2011 - 43 -

- 44 -

returnsDW_DLV_ERROR on error.

If the applicable file name in the line table Statement Program Prolog does not start with a ’/’ character the
string in DW_AT_comp_dir (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Prolog to make
a full path.

The storage pointed to by a successful return ofdwarf_linesrc() should be freed using
dwarf_dealloc() with the allocation typeDW_DLA_STRING when no longer of interest. It never
returnsDW_DLV_NO_ENTRY.

5.6.3.8 dwarf_lineblock()

int dwarf_lineblock(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The functiondwarf_lineblock() returnsDW_DLV_OK and sets*return_linesrc to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line is marked as not
beginning a basic block). It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.6.3.9 dwarf_is_addr_set()

int dwarf_line_is_addr_set(
Dwarf_Line line,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

The functiondwarf_line_is_addr_set() returnsDW_DLV_OK and sets*return_bool to non-
zero (i.e. true)(if the line is marked as being a DW_LNE_set_address operation) or zero (i.e. false) (if the
line is marked as not being a DW_LNE_set_address operation). It returnsDW_DLV_ERROR on error. It
never returnsDW_DLV_NO_ENTRY.

This is intended to allow consumers to do a more useful job printing and analyzing DWARF data, it is not
strictly necessary.

5.6.3.10 dwarf_prologue_end_etc()

int dwarf_prologue_end_etc(Dwarf_Line line,
Dwarf_Bool * prologue_end,
Dwarf_Bool * epilogue_begin,
Dwarf_Unsigned * isa,
Dwarf_Unsigned * discriminator,
Dwarf_Error * error)

The functiondwarf_prologue_end_etc() returnsDW_DLV_OK and sets the returned fields to
values currently set. While it is pretty safe to assume that theisa anddiscriminator values returned
are very small integers, there is no restriction in the standard. It returnsDW_DLV_ERROR on error. It nev er
returnsDW_DLV_NO_ENTRY.

This function is new in December 2011.

rev 2.02, December 13, 2011 - 44 -

- 45 -

5.7 Global Name Space Operations

These operations operate on the .debug_pubnames section of the debugging information.

5.8 Global Name Space Operations

These operations operate on the .debug_pubnames section of the debugging information.

5.8.1 Debugger Interface Operations

5.8.1.1 dwarf_get_globals()

int dwarf_get_globals(
Dwarf_Debug dbg,
Dwarf_Global **globals,
Dwarf_Signed * return_count,
Dwarf_Error *error)

The functiondwarf_get_globals() returnsDW_DLV_OK and sets*return_count to the count of
pubnames represented in the section containing pubnames i.e. .debug_pubnames. Italso stores at
*globals, a pointer to a list ofDwarf_Global descriptors, one for each of the pubnames in the
.debug_pubnames section. The returned results are for the entire section. It returnsDW_DLV_ERROR on
error. It returnsDW_DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return fromdwarf_get_globals(), theDwarf_Global descriptors should be freed
usingdwarf_globals_dealloc(). dwarf_globals_dealloc() is new as of July 15, 2005 and
is the preferred approach to freeing this memory..

Dwarf_Signed cnt;
Dwarf_Global *globs;
int res;

res = dwarf_get_globals(dbg, &globs,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use globs[i] */

}
dwarf_globals_dealloc(dbg, globs, cnt);

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach
still works as well as it ever did. On a successful return fromdwarf_get_globals(), the
Dwarf_Global descriptors should be individually freed usingdwarf_dealloc() with the allocation
type DW_DLA_GLOBAL_CONTEXT, (or DW_DLA_GLOBAL, an older name, supported for compatibility)
followed by the deallocation of the list itself with the allocation typeDW_DLA_LIST when the descriptors
are no longer of interest.

rev 2.02, December 13, 2011 - 45 -

- 46 -

Dwarf_Signed cnt;
Dwarf_Global *globs;
int res;

res = dwarf_get_globals(dbg, &globs,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use globs[i] */
dwarf_dealloc(dbg, globs[i], DW_DLA_GLOBAL_CONTEXT);

}
dwarf_dealloc(dbg, globs, DW_DLA_LIST);

}

5.8.1.2 dwarf_globname()

int dwarf_globname(
Dwarf_Global global,
char ** return_name,
Dwarf_Error *error)

The functiondwarf_globname() returnsDW_DLV_OK and sets*return_name to a pointer to a
null-terminated string that names the pubname represented by theDwarf_Global descriptor,global.
It returnsDW_DLV_ERROR on error. On a successful return from this function, the string should be freed
usingdwarf_dealloc(), with the allocation typeDW_DLA_STRING when no longer of interest.It
never returnsDW_DLV_NO_ENTRY.

5.8.1.3 dwarf_global_die_offset()

int dwarf_global_die_offset(
Dwarf_Global global,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_global_die_offset() returnsDW_DLV_OK and sets*return_offset to
the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is
described by theDwarf_Global descriptor,glob. It returnsDW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.8.1.4 dwarf_global_cu_offset()

int dwarf_global_cu_offset(
Dwarf_Global global,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_global_cu_offset() returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the pubname described by theDwarf_Global descriptor,global. It returns
DW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

rev 2.02, December 13, 2011 - 46 -

- 47 -

5.8.1.5 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset_b(
Dwarf_Debug dbg,
Dwarf_Off in_cu_header_offset,
Dwarf_Bool is_info,
Dwarf_Off * out_cu_die_offset,
Dwarf_Error *error)

The functiondwarf_get_cu_die_offset_given_cu_header_offset() returnsDW_DLV_OK
and sets*out_cu_die_offset to the offset of the compilation-unit DIE given the offset
in_cu_header_offset of a compilation-unit header. It returnsDW_DLV_ERROR on error. It nev er
returnsDW_DLV_NO_ENTRY.

If is_info is non-zero thein_cu_header_offset must refer to a .debug_info section offset. If
is_info zero thein_cu_header_offset must refer to a .debug_types section offset. Chaosmay
result if theis_info flag is incorrect.

This effectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header).This function is also sometimes useful with the
dwarf_weak_cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(), and
int dwarf_var_cu_offset() functions, though for those functions the data is only in .debug_info
by definition.

5.8.1.6 dwarf_get_cu_die_offset_given_cu_header_offset()

int dwarf_get_cu_die_offset_given_cu_header_offset(
Dwarf_Debug dbg,
Dwarf_Off in_cu_header_offset,
Dwarf_Off * out_cu_die_offset,
Dwarf_Error *error)

This function is superseded bydwarf_get_cu_die_offset_given_cu_header_offset_b(),
a function which is still supported thought it refers only to the .debug_info section.

dwarf_get_cu_die_offset_given_cu_header_offset() added Rev 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if the version of libdwarf linked into an application has this
function.

5.8.1.7 dwarf_global_name_offsets()

int dwarf_global_name_offsets(
Dwarf_Global global,
char **return_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The functiondwarf_global_name_offsets() returnsDW_DLV_OK and sets*return_name to a
pointer to a null-terminated string that gives the name of the pubname described by theDwarf_Global

rev 2.02, December 13, 2011 - 47 -

- 48 -

descriptorglobal. It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. It also
returns in the locations pointed to bydie_offset, andcu_offset, the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname, respectively. On a
successful return fromdwarf_global_name_offsets() the storage pointed to byreturn_name
should be freed usingdwarf_dealloc(), with the allocation typeDW_DLA_STRING when no longer
of interest.

5.9 DWARF3 Type Names Operations

Section ".debug_pubtypes" is new in DWARF3.

These functions operate on the .debug_pubtypes section of the debugging information.The
.debug_pubtypes section contains the names of file-scope user-defined types, the offsets of theDIEs that
represent the definitions of those types, and the offsets of the compilation-units that contain the definitions
of those types.

5.9.1 Debugger Interface Operations

5.9.1.1 dwarf_get_pubtypes()

int dwarf_get_pubtypes(
Dwarf_Debug dbg,
Dwarf_Type **types,
Dwarf_Signed *typecount,
Dwarf_Error *error)

The functiondwarf_get_pubtypes() returnsDW_DLV_OK and sets*typecount to the count of
user-defined type names represented in the section containing user-defined type names, i.e.
.debug_pubtypes. Italso stores at*types, a pointer to a list ofDwarf_Pubtype descriptors, one for
each of the user-defined type names in the .debug_pubtypes section. The returned results are for the entire
section. ItreturnsDW_DLV_NOCOUNT on error. It returnsDW_DLV_NO_ENTRY if the .debug_pubtypes
section does not exist.

On a successful return fromdwarf_get_pubtypes(), theDwarf_Type descriptors should be freed
using dwarf_types_dealloc(). dwarf_types_dealloc() is used for both
dwarf_get_pubtypes() anddwarf_get_types() as the data types are the same.

Dwarf_Signed cnt;
Dwarf_Pubtype *types;
int res;

res = dwarf_get_pubtypes(dbg, &types,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use types[i] */

}
dwarf_types_dealloc(dbg, types, cnt);

}

rev 2.02, December 13, 2011 - 48 -

- 49 -

5.9.1.2 dwarf_pubtypename()

int dwarf_pubtypename(
Dwarf_Pubtype type,
char **return_name,
Dwarf_Error *error)

The functiondwarf_pubtypename() returnsDW_DLV_OK and sets*return_name to a pointer to a
null-terminated string that names the user-defined type represented by theDwarf_Pubtype descriptor,
type. It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. On a successful
return from this function, the string should be freed usingdwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.9.1.3 dwarf_pubtype_die_offset()

int dwarf_pubtype_die_offset(
Dwarf_Pubtype type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_pubtype_die_offset() returnsDW_DLV_OK and sets*return_offset to
the offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the user-defined type that
is described by theDwarf_Pubtype descriptor,type. It returnsDW_DLV_ERROR on error. It nev er
returnsDW_DLV_NO_ENTRY.

5.9.1.4 dwarf_pubtype_cu_offset()

int dwarf_pubtype_cu_offset(
Dwarf_Pubtype type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_pubtype_cu_offset() returnsDW_DLV_OK and sets*return_offset to
the offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the
compilation-unit that contains the user-defined type described by theDwarf_Pubtype descriptor,type.
It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.9.1.5 dwarf_pubtype_name_offsets()

int dwarf_pubtype_name_offsets(
Dwarf_Pubtype type,
char ** returned_name,
Dwarf_Off * die_offset,
Dwarf_Off * cu_offset,
Dwarf_Error *error)

The functiondwarf_pubtype_name_offsets() returnsDW_DLV_OK and sets*returned_name
to a pointer to a null-terminated string that gives the name of the user-defined type described by the
Dwarf_Pubtype descriptortype. It also returns in the locations pointed to bydie_offset, and
cu_offset, the offsets of the DIE representing the user-defined type, and the DIE representing the
compilation-unit containing the user-defined type, respectively. It returnsDW_DLV_ERROR on error. It

rev 2.02, December 13, 2011 - 49 -

- 50 -

never returns DW_DLV_NO_ENTRY. On a successful return from
dwarf_pubtype_name_offsets() the storage pointed to byreturned_name should be freed
usingdwarf_dealloc(), with the allocation typeDW_DLA_STRING when no longer of interest.

5.10 User Defined Static Variable Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug_varnames section of the debugging information.The
.debug_varnames section contains the names of file-scope static variables, the offsets of theDIEs that
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.11 Weak Name Space Operations

These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standard DWARF.

5.11.1 Debugger Interface Operations

5.11.1.1 dwarf_get_weaks()

int dwarf_get_weaks(
Dwarf_Debug dbg,
Dwarf_Weak **weaks,
Dwarf_Signed *weak_count,
Dwarf_Error *error)

The functiondwarf_get_weaks() returnsDW_DLV_OK and sets*weak_count to the count of weak
names represented in the section containing weak names i.e. .debug_weaknames. Itreturns
DW_DLV_ERROR on error. It returnsDW_DLV_NO_ENTRY if the section does not exist. It also stores in
*weaks, a pointer to a list ofDwarf_Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, theDwarf_Weak descriptors should be freed using
dwarf_weaks_dealloc() when the data is no longer of interest.dwarf_weaks_dealloc()is
new as of July 15, 2005.

rev 2.02, December 13, 2011 - 50 -

- 51 -

Dwarf_Signed cnt;
Dwarf_Weak *weaks;
int res;

res = dwarf_get_weaks(dbg, &weaks, &cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use weaks[i] */

}
dwarf_weaks_dealloc(dbg, weaks, cnt);

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach
still works as well as it ever did. Ona successful return fromdwarf_get_weaks() theDwarf_Weak
descriptors should be individually freed usingdwarf_dealloc() with the allocation type
DW_DLA_WEAK_CONTEXT, (or DW_DLA_WEAK, an older name, supported for compatibility) followed by
the deallocation of the list itself with the allocation typeDW_DLA_LIST when the descriptors are no
longer of interest.

Dwarf_Signed cnt;
Dwarf_Weak *weaks;
int res;

res = dwarf_get_weaks(dbg, &weaks, &cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use weaks[i] */
dwarf_dealloc(dbg, weaks[i], DW_DLA_WEAK_CONTEXT);

}
dwarf_dealloc(dbg, weaks, DW_DLA_LIST);

}

5.11.1.2 dwarf_weakname()

int dwarf_weakname(
Dwarf_Weak weak,
char ** return_name,
Dwarf_Error *error)

The functiondwarf_weakname() returnsDW_DLV_OK and sets*return_name to a pointer to a
null-terminated string that names the weak name represented by theDwarf_Weak descriptor,weak. It
returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usingdwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

rev 2.02, December 13, 2011 - 51 -

- 52 -

int dwarf_weak_die_offset(
Dwarf_Weak weak,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_weak_die_offset() returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the weak name that is
described by theDwarf_Weak descriptor,weak. It returnsDW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.11.1.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_offset(
Dwarf_Weak weak,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_weak_cu_offset() returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by theDwarf_Weak descriptor, weak. It returns
DW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.11.1.4 dwarf_weak_name_offsets()

int dwarf_weak_name_offsets(
Dwarf_Weak weak,
char ** weak_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_weak_name_offsets() returns DW_DLV_OK and sets*weak_name to a
pointer to a null-terminated string that gives the name of the weak name described by theDwarf_Weak
descriptorweak. It also returns in the locations pointed to bydie_offset, and cu_offset, the
offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respectively. It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. On
a successful return fromdwarf_weak_name_offsets() the storage pointed to byweak_name
should be freed usingdwarf_dealloc(), with the allocation typeDW_DLA_STRING when no longer
of interest.

5.12 Static Function Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These function operate on the .debug_funcnames section of the debugging information.The
.debug_funcnames section contains the names of static functions defined in the object, the offsets of the
DIEs that represent the definitions of the corresponding functions, and the offsets of the start of the
compilation-units that contain the definitions of those functions.

5.12.1 Debugger Interface Operations

rev 2.02, December 13, 2011 - 52 -

- 53 -

5.12.1.1 dwarf_get_funcs()

int dwarf_get_funcs(
Dwarf_Debug dbg,
Dwarf_Func **funcs,
Dwarf_Signed *func_count,
Dwarf_Error *error)

The functiondwarf_get_funcs() returnsDW_DLV_OK and sets*func_count to the count of static
function names represented in the section containing static function names, i.e. .debug_funcnames. Italso
stores, at*funcs, a pointer to a list ofDwarf_Func descriptors, one for each of the static functions in
the .debug_funcnames section.The returned results are for the entire section. It returnsDW_DLV_ERROR
on error. It returnsDW_DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return fromdwarf_get_funcs(), theDwarf_Func descriptors should be freed using
dwarf_funcs_dealloc(). dwarf_funcs_dealloc() is new as of July 15, 2005.

Dwarf_Signed cnt;
Dwarf_Func *funcs;
int fres;

fres = dwarf_get_funcs(dbg, &funcs, &cnt, &error);
if (fres == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use funcs[i] */

}
dwarf_funcs_dealloc(dbg, funcs, cnt);

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach
still works as well as it ever did. Ona successful return fromdwarf_get_funcs(), theDwarf_Func
descriptors should be individually freed usingdwarf_dealloc() with the allocation type
DW_DLA_FUNC_CONTEXT, (or DW_DLA_FUNC, an older name, supported for compatibility) followed by
the deallocation of the list itself with the allocation typeDW_DLA_LIST when the descriptors are no
longer of interest.

Dwarf_Signed cnt;
Dwarf_Func *funcs;
int fres;

fres = dwarf_get_funcs(dbg, &funcs, &error);
if (fres == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use funcs[i] */
dwarf_dealloc(dbg, funcs[i], DW_DLA_FUNC_CONTEXT);

}
dwarf_dealloc(dbg, funcs, DW_DLA_LIST);

}

rev 2.02, December 13, 2011 - 53 -

- 54 -

5.12.1.2 dwarf_funcname()

int dwarf_funcname(
Dwarf_Func func,
char ** return_name,
Dwarf_Error *error)

The functiondwarf_funcname() returnsDW_DLV_OK and sets*return_name to a pointer to a
null-terminated string that names the static function represented by theDwarf_Func descriptor,func. It
returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usingdwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.12.1.3 dwarf_func_die_offset()

int dwarf_func_die_offset(
Dwarf_Func func,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_func_die_offset(), returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the static function that is
described by theDwarf_Func descriptor,func. It returnsDW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.12.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwarf_Func func,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_func_cu_offset() returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by theDwarf_Func descriptor,func. It returns
DW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.12.1.5 dwarf_func_name_offsets()

int dwarf_func_name_offsets(
Dwarf_Func func,
char **func_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The function dwarf_func_name_offsets() returns DW_DLV_OK and sets*func_name to a
pointer to a null-terminated string that gives the name of the static function described by theDwarf_Func
descriptorfunc. It also returns in the locations pointed to bydie_offset, and cu_offset, the
offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respectively. It returns DW_DLV_ERROR on error. It nev er returns

rev 2.02, December 13, 2011 - 54 -

- 55 -

DW_DLV_NO_ENTRY. On a successful return fromdwarf_func_name_offsets() the storage
pointed to by func_name should be freed usingdwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.13 User Defined Type Names Operations

Section "debug_typenames" is SGI specific and is not part of standard DWARF version 2.(However, an
identical section is part of DWARF version 3 named ".debug_pubtypes", seedwarf_get_pubtypes()
above.)

These functions operate on the .debug_typenames section of the debugging information.The
.debug_typenames section contains the names of file-scope user-defined types, the offsets of theDIEs that
represent the definitions of those types, and the offsets of the compilation-units that contain the definitions
of those types.

5.13.1 Debugger Interface Operations

5.13.1.1 dwarf_get_types()

int dwarf_get_types(
Dwarf_Debug dbg,
Dwarf_Type **types,
Dwarf_Signed *typecount,
Dwarf_Error *error)

The functiondwarf_get_types() returnsDW_DLV_OK and sets*typecount to the count of user-
defined type names represented in the section containing user-defined type names, i.e. .debug_typenames.
It also stores at*types, a pointer to a list ofDwarf_Type descriptors, one for each of the user-defined
type names in the .debug_typenames section. The returned results are for the entire section.It returns
DW_DLV_NOCOUNT on error. It returnsDW_DLV_NO_ENTRY if the .debug_typenames section does not
exist.

On a successful return fromdwarf_get_types(), theDwarf_Type descriptors should be freed using
dwarf_types_dealloc(). dwarf_types_dealloc() is new as of July 15, 2005 and frees all
memory allocated bydwarf_get_types().

Dwarf_Signed cnt;
Dwarf_Type *types;
int res;

res = dwarf_get_types(dbg, &types,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use types[i] */

}
dwarf_types_dealloc(dbg, types, cnt);

}

rev 2.02, December 13, 2011 - 55 -

- 56 -

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach
still works as well as it ever did. Ona successful return fromdwarf_get_types(), theDwarf_Type
descriptors should be individually freed usingdwarf_dealloc() with the allocation type
DW_DLA_TYPENAME_CONTEXT, (or DW_DLA_TYPENAME, an older name, supported for compatibility)
followed by the deallocation of the list itself with the allocation typeDW_DLA_LIST when the descriptors
are no longer of interest.

Dwarf_Signed cnt;
Dwarf_Type *types;
int res;

res = dwarf_get_types(dbg, &types,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use types[i] */
dwarf_dealloc(dbg, types[i], DW_DLA_TYPENAME_CONTEXT);

}
dwarf_dealloc(dbg, types, DW_DLA_LIST);

}

5.13.1.2 dwarf_typename()

int dwarf_typename(
Dwarf_Type type,
char **return_name,
Dwarf_Error *error)

The functiondwarf_typename() returnsDW_DLV_OK and sets*return_name to a pointer to a
null-terminated string that names the user-defined type represented by theDwarf_Type descriptor,type.
It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usingdwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.13.1.3 dwarf_type_die_offset()

int dwarf_type_die_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_type_die_offset() returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the user-defined type that is
described by theDwarf_Type descriptor,type. It returnsDW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.13.1.4 dwarf_type_cu_offset()

rev 2.02, December 13, 2011 - 56 -

- 57 -

int dwarf_type_cu_offset(
Dwarf_Type type,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_type_cu_offset() returnsDW_DLV_OK and sets*return_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the user-defined type described by theDwarf_Type descriptor,type. It returns
DW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.13.1.5 dwarf_type_name_offsets()

int dwarf_type_name_offsets(
Dwarf_Type type,
char ** returned_name,
Dwarf_Off * die_offset,
Dwarf_Off * cu_offset,
Dwarf_Error *error)

The functiondwarf_type_name_offsets() returnsDW_DLV_OK and sets*returned_name to a
pointer to a null-terminated string that gives the name of the user-defined type described by the
Dwarf_Type descriptortype. It also returns in the locations pointed to bydie_offset, and
cu_offset, the offsets of the DIE representing the user-defined type, and the DIE representing the
compilation-unit containing the user-defined type, respectively. It returnsDW_DLV_ERROR on error. It
never returnsDW_DLV_NO_ENTRY. On a successful return fromdwarf_type_name_offsets() the
storage pointed to byreturned_name should be freed usingdwarf_dealloc(), with the allocation
typeDW_DLA_STRING when no longer of interest.

5.14 User Defined Static Variable Names Operations

This section is SGI specific and is not part of standard DWARF version 2.

These functions operate on the .debug_varnames section of the debugging information. The
.debug_varnames section contains the names of file-scope static variables, the offsets of theDIEs that
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

5.14.1 Debugger Interface Operations

5.14.1.1 dwarf_get_vars()

int dwarf_get_vars(
Dwarf_Debug dbg,
Dwarf_Var **vars,
Dwarf_Signed *var_count,
Dwarf_Error *error)

The functiondwarf_get_vars() returnsDW_DLV_OK and sets*var_count to the count of file-
scope static variable names represented in the section containing file-scope static variable names, i.e.

rev 2.02, December 13, 2011 - 57 -

- 58 -

.debug_varnames. Italso stores, at*vars, a pointer to a list ofDwarf_Var descriptors, one for each of
the file-scope static variable names in the .debug_varnames section.The returned results are for the entire
section. ItreturnsDW_DLV_ERROR on error. It returnsDW_DLV_NO_ENTRY if the .debug_varnames
section does not exist.

The following is new as of July 15, 2005. On a successful return fromdwarf_get_vars(), the
Dwarf_Var descriptors should be freed usingdwarf_vars_dealloc().

Dwarf_Signed cnt;
Dwarf_Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars,&cnt &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use vars[i] */

}
dwarf_vars_dealloc(dbg, vars, cnt);

}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach
still works as well as it ever did. On a successful return fromdwarf_get_vars(), the Dwarf_Var
descriptors should be individually freed usingdwarf_dealloc() with the allocation type
DW_DLA_VAR_CONTEXT, (or DW_DLA_VAR, an older name, supported for compatibility) followed by the
deallocation of the list itself with the allocation typeDW_DLA_LIST when the descriptors are no longer of
interest.

Dwarf_Signed cnt;
Dwarf_Var *vars;
int res;

res = dwarf_get_vars(dbg, &vars,&cnt &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use vars[i] */
dwarf_dealloc(dbg, vars[i], DW_DLA_VAR_CONTEXT);

}
dwarf_dealloc(dbg, vars, DW_DLA_LIST);

}

5.14.1.2 dwarf_varname()

int dwarf_varname(
Dwarf_Var var,
char ** returned_name,
Dwarf_Error *error)

The functiondwarf_varname() returnsDW_DLV_OK and sets*returned_name to a pointer to a
null-terminated string that names the file-scope static variable represented by theDwarf_Var descriptor,

rev 2.02, December 13, 2011 - 58 -

- 59 -

var. It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY. On a successful return
from this function, the string should be freed usingdwarf_dealloc(), with the allocation type
DW_DLA_STRING when no longer of interest.

5.14.1.3 dwarf_var_die_offset()

int dwarf_var_die_offset(
Dwarf_Var var,
Dwarf_Off *returned_offset,
Dwarf_Error *error)

The functiondwarf_var_die_offset() returnsDW_DLV_OK and sets*returned_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scope static variable
that is described by theDwarf_Var descriptor,var. It returnsDW_DLV_ERROR on error. It nev er
returnsDW_DLV_NO_ENTRY.

5.14.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_offset(
Dwarf_Var var,
Dwarf_Off *returned_offset,
Dwarf_Error *error)

The functiondwarf_var_cu_offset() returnsDW_DLV_OK and sets*returned_offset to the
offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the file-scope static variable described by theDwarf_Var descriptor,var. It returns
DW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.14.1.5 dwarf_var_name_offsets()

int dwarf_var_name_offsets(
Dwarf_Var var,
char **returned_name,
Dwarf_Off *die_offset,
Dwarf_Off *cu_offset,
Dwarf_Error *error)

The functiondwarf_var_name_offsets() returnsDW_DLV_OK and sets*returned_name to a
pointer to a null-terminated string that gives the name of the file-scope static variable described by the
Dwarf_Var descriptor var. It also returns in the locations pointed to bydie_offset, and
cu_offset, the offsets of the DIE representing the file-scope static variable, and the DIE representing the
compilation-unit containing the file-scope static variable, respectively. It returnsDW_DLV_ERROR on
error. It nev er returns DW_DLV_NO_ENTRY. On a successful return from
dwarf_var_name_offsets() the storage pointed to byreturned_name should be freed using
dwarf_dealloc(), with the allocation typeDW_DLA_STRING when no longer of interest.

5.15 Macro Information Operations

rev 2.02, December 13, 2011 - 59 -

- 60 -

5.15.1 General Macro Operations

5.15.1.1 dwarf_find_macro_value_start()

char *dwarf_find_macro_value_start(char * macro_string);

Given a macro string in the standard form defined in the DWARF document ("name <space> value" or
"name(args)<space>value") this returns a pointer to the first byte of the macro value. Itdoes not alter the
string pointed to by macro_string or copy the string: it returns a pointer into the string whose address was
passed in.

5.15.2 Debugger Interface Macro Operations

Macro information is accessed from the .debug_info section via the DW_AT_macro_info attribute (whose
value is an offset into .debug_macinfo).

No Functions yet defined.

5.15.3 Low Lev el Macro Information Operations

5.15.3.1 dwarf_get_macro_details()

int dwarf_get_macro_details(Dwarf_Debug /*dbg*/,
Dwarf_Off macro_offset,
Dwarf_Unsigned maximum_count,
Dwarf_Signed * entry_count,
Dwarf_Macro_Details ** details,
Dwarf_Error * err);

dwarf_get_macro_details() returnsDW_DLV_OK and setsentry_count to the number of
details records returned through thedetails pointer. The data returned throughdetails should
be freed by a call todwarf_dealloc() with the allocation typeDW_DLA_STRING. If DW_DLV_OK is
returned, theentry_count will be at least 1, since a compilation unit with macro information but no
macros will have at least one macro data byte of 0.

dwarf_get_macro_details() begins at themacro_offset offset you supply and ends at the end
of a compilation unit or atmaximum_count detail records (whichever comes first). If
maximum_count is 0, it is treated as if it were the maximum possible unsigned integer.

dwarf_get_macro_details() attempts to setdmd_fileindex to the correct file in every
details record. If it is unable to do so (or whenever the current file index is unknown, it sets
dmd_fileindex to -1.

dwarf_get_macro_details() returnsDW_DLV_ERROR on error. It returnsDW_DLV_NO_ENTRY
if there is no more macro information at thatmacro_offset. If macro_offset is passed in as 0, a
DW_DLV_NO_ENTRY return means there is no macro information.

rev 2.02, December 13, 2011 - 60 -

- 61 -

Dwarf_Unsigned max = 0;
Dwarf_Off cur_off = 0;
Dwarf_Signed count = 0;
Dwarf_Macro_Details *maclist;
int errv;

/* Loop through all the compilation units macro info.
This is not guaranteed to work because DWARF does not
guarantee every byte in the section is meaningful:
there can be garbage between the macro info
for CUs. But this loop will usually work.

*/
while((errv = dwarf_get_macro_details(dbg, cur_off,max,

&count,&maclist,&error))== DW_DLV_OK) {
for (i = 0; i < count; ++i) {
/* use maclist[i] */

}
cur_off = maclist[count-1].dmd_offset + 1;
dwarf_dealloc(dbg, maclist, DW_DLA_STRING);

}

5.16 Low Lev el Frame Operations

These functions provide information about stack frames to be used to perform stack traces.The
information is an abstraction of a table with a row per instruction and a column per register and a column
for the canonical frame address (CFA, which corresponds to the notion of a frame pointer), as well as a
column for the return address.

From 1993-2006 the interface we’ll here refer to as DWARF2 made the CFA be a column in the matrix, but
left DW_FRAME_UNDEFINED_VAL, and DW_FRAME_SAME_VAL out of the matrix (giving them
high numbers). As of the DWARF3 interfaces introduced in this document in April 2006, there are *two*
interfaces (the original set and a new set). Several frame functions work transparently for either set, we will
focus on the ones that are not equally suitable now.

The original DWARF2 interface set still exists (dwarf_get_fde_info_for_reg(),
dwarf_get_fde_info_for_cfa_reg(), and dwarf_get_fde_info_for_all_regs()) and works adequately for
MIPS/IRIX DWARF2 and ABI/ISA sets that are sufficiently similar to MIPS.These functions not a good
choice for non-MIPS architectures nor were they a good design for MIPS either. It’s better to switch
entirely to the new functions mentioned in the next paragraph. This DWARF2 interface set assumes and
uses DW_FRAME_CFA_COL and that is assumed when libdwarf is configured with --enable-oldframecol
.

A new DWARF3 interface set of dwarf_get_fde_info_for_reg3(), dwarf_get_fde_info_for_cfa_reg3(),
dwarf_get_fde_info_for_all_regs3(), dwarf_set_frame_rule_table_size() dwarf_set_frame_cfa_value(),
dwarf_set_frame_same_value(), dwarf_set_frame_undefined_value(), and
dwarf_set_frame_rule_initial_value() is more flexible and will work for many more architectures. It is also
entirely suitable for use with DWARF2 and DWARF4. Thesetting of the ’frame cfa column number’
defaults to DW_FRAME_CFA_COL3 and it can be set at runtime with dwarf_set_frame_cfa_value().

Mixing use of the DWARF2 interface set with use of the new DWARF3 interface set on a single open
Dwarf_Debug instance is a mistake. Donot do it.

We will pretend, from here on unless otherwise specified, that DW_FRAME_CFA_COL3,
DW_FRAME_UNDEFINED_VAL, and DW_FRAME_SAME_VAL are the synthetic column numbers.
These columns may be user-chosen by calls of dwarf_set_frame_cfa_value()

rev 2.02, December 13, 2011 - 61 -

- 62 -

dwarf_set_frame_undefined_value(), and dwarf_set_frame_same_value() respectively.

Each cell in the table contains one of the following:

1. A register + offset(a)(b)

2. A register(c)(d)

3. A marker (DW_FRAME_UNDEFINED_VAL) meaningregister value undefined

4. A marker (DW_FRAME_SAME_VAL) meaningregister value same as in caller

(a old DWARF2 interface) When the column is DW_FRAME_CFA_COL: the register number is a real
hardware register, not a reference to DW_FRAME_CFA_COL, not DW_FRAME_UNDEFINED_VAL,
and not DW_FRAME_SAME_VAL. The CFA rule value should be the stack pointer plus offset 0 when no
other value makes sense.A value of DW_FRAME_SAME_VAL would be semi-logical, but since the CFA
is not a real register, not really correct.A value of DW_FRAME_UNDEFINED_VAL would imply the
CFA is undefined -- this seems to be a useless notion, as the CFA is a means to finding real registers, so
those real registers should be marked DW_FRAME_UNDEFINED_VAL, and the CFA column content
(whatever register it specifies) becomes unreferenced by anything.

(a new April 2006 DWARF2/3 interface): The CFA is separately accessible and not part of the table.The
’rule number’ for the CFA is a number outside the table. So the CFA is a marker, not a register number.
See DW_FRAME_CFA_COL3 in libdwarf.h and dwarf_get_fde_info_for_cfa_reg3() and
dwarf_set_frame_rule_cfa_value().

(b) When the column is not DW_FRAME_CFA_COL3, the ’register’ will and must be
DW_FRAME_CFA_COL3(COL), implying that to get the final location for the column one must add the
offset here plus the DW_FRAME_CFA_COL3 rule value.

(c) When the column is DW_FRAME_CFA_COL3, then the ’register’ number is (must be) a real hardware
register . (This paragraph does not apply to the April 2006 new interface). If it were
DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL it would be a marker, not a register
number.

(d) When the column is not DW_FRAME_CFA_COL3, the register may be a hardware register. It will not
be DW_FRAME_CFA_COL3.

There is no ’column’ for DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL. Nor for
DW_FRAME_CFA_COL3.

Figure 3 is machine dependent and represents MIPS CPU register assignments.The
DW_FRAME_CFA_COL define in dwarf.h is historical and really belongs in libdwarf.h, not dwarf.h.

rev 2.02, December 13, 2011 - 62 -

- 63 -

NAME value PURPOSE
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer register 1
DW_FRAME_REG2 2 integer register 2
--- obvious names and values here
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREG0 32 floating point register 0
DW_FRAME_FREG1 33 floating point register 1
--- obvious names and values here
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA_COL 64 column recording ra
DW_FRAME_UNDEFINED_VAL 1034 register val undefined
DW_FRAME_SAME_VAL 1035 register same as in caller

Figure 4. Frame Information Rule Assignments MIPS

The following table shows SGI/MIPS specific special cell values: these values mean that the cell has the
value undefined or same value respectively, rather than containing aregister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished or even sensible for some
architectures.

NAME value PURPOSE
DW_FRAME_UNDEFINED_VAL 1034 meansundefined value.

Not a column or register value
DW_FRAME_SAME_VAL 1035 means ’same value’ as

caller had. Not a column or
register value

DW_FRAME_CFA_COL 0 means register zero is
usurped by the CFA column.

Figure 5. Frame Information Special Values any architecture

The following table shows more general special cell values. Thesevalues mean that the cell register-
number refers to thecfa-register or undefined-value or same-value respectively, rather than referring to a
register in the table. The generality arises from making DW_FRAME_CFA_COL3 be outside the set of
registers and making the cfa rule accessible from outside the rule-table.

NAME value PURPOSE
DW_FRAME_UNDEFINED_VAL 1034 meansundefined value.

Not a column or register value
DW_FRAME_SAME_VAL 1035 means ’same value’ as

caller had. Not a column or
register value

DW_FRAME_CFA_COL3 1436 means ’cfa register’ is referred to,
not a real register, not a column, but the cfa (the cfa
does have a value, but in the DWARF3 libdwarf interface
it does not have a ’real register number’).

rev 2.02, December 13, 2011 - 63 -

- 64 -

5.16.0.1 dwarf_get_fde_list()

int dwarf_get_fde_list(
Dwarf_Debug dbg,
Dwarf_Cie **cie_data,
Dwarf_Signed *cie_element_count,
Dwarf_Fde **fde_data,
Dwarf_Signed *fde_element_count,
Dwarf_Error *error);

dwarf_get_fde_list() stores a pointer to a list ofDwarf_Cie descriptors in*cie_data, and the
count of the number of descriptors in*cie_element_count. There is a descriptor for each CIE in the
.debug_frame section.Similarly, it stores a pointer to a list ofDwarf_Fde descriptors in*fde_data,
and the count of the number of descriptors in*fde_element_count. There is one descriptor per FDE
in the .debug_frame section.dwarf_get_fde_list() returnsDW_DLV_ERROR on error. It returns
DW_DLV_NO_ENTRY if it cannot find frame entries. It returnsDW_DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_dealloc(). This dealloc approach is new as of July 15, 2005.

Dwarf_Signed cnt;
Dwarf_Cie *cie_data;
Dwarf_Signed cie_count;
Dwarf_Fde *fde_data;
Dwarf_Signed fde_count;
int fres;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {
dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,

fde_data,fde_count);
}

The following code is deprecated as of July 15, 2005 as it does not free all relevant memory. This approach
still works as well as it ever did.

rev 2.02, December 13, 2011 - 64 -

- 65 -

Dwarf_Signed cnt;
Dwarf_Cie *cie_data;
Dwarf_Signed cie_count;
Dwarf_Fde *fde_data;
Dwarf_Signed fde_count;
int fres;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {

for (i = 0; i < cie_count; ++i) {
/* use cie[i] */
dwarf_dealloc(dbg, cie_data[i], DW_DLA_CIE);

}
for (i = 0; i < fde_count; ++i) {

/* use fde[i] */
dwarf_dealloc(dbg, fde_data[i], DW_DLA_FDE);

}
dwarf_dealloc(dbg, cie_data, DW_DLA_LIST);
dwarf_dealloc(dbg, fde_data, DW_DLA_LIST);

}

5.16.0.2 dwarf_get_fde_list_eh()

int dwarf_get_fde_list_eh(
Dwarf_Debug dbg,
Dwarf_Cie **cie_data,
Dwarf_Signed *cie_element_count,
Dwarf_Fde **fde_data,
Dwarf_Signed *fde_element_count,
Dwarf_Error *error);

dwarf_get_fde_list_eh() is identical to dwarf_get_fde_list() except that
dwarf_get_fde_list_eh() reads the GNU gcc section named .eh_frame (C++ exception handling
information).

dwarf_get_fde_list_eh() stores a pointer to a list ofDwarf_Cie descriptors in*cie_data,
and the count of the number of descriptors in*cie_element_count. There is a descriptor for each
CIE in the .debug_frame section.Similarly, it stores a pointer to a list ofDwarf_Fde descriptors in
*fde_data, and the count of the number of descriptors in*fde_element_count. There is one
descriptor per FDE in the .debug_frame section.dwarf_get_fde_list() returnsDW_DLV_ERROR
on error. It returns DW_DLV_NO_ENTRY if it cannot find exception handling entries. It returns
DW_DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf_fde_cie_list_dealloc(). This dealloc approach is new as of July 15, 2005.

rev 2.02, December 13, 2011 - 65 -

- 66 -

Dwarf_Signed cnt;
Dwarf_Cie *cie_data;
Dwarf_Signed cie_count;
Dwarf_Fde *fde_data;
Dwarf_Signed fde_count;
int fres;

fres = dwarf_get_fde_list(dbg,&cie_data,&cie_count,
&fde_data,&fde_count,&error);

if (fres == DW_DLV_OK) {
dwarf_fde_cie_list_dealloc(dbg, cie_data, cie_count,

fde_data,fde_count);
}

5.16.0.3 dwarf_get_cie_of_fde()

int dwarf_get_cie_of_fde(Dwarf_Fde fde,
Dwarf_Cie *cie_returned,
Dwarf_Error *error);

dwarf_get_cie_of_fde() stores aDwarf_Cie into the Dwarf_Cie thatcie_returned points
at.

If one has called dwarf_get_fde_list and does not wish to dwarf_dealloc() all the individual FDEs
immediately, one must also avoid dwarf_dealloc-ing the CIEs for those FDEs not immediately dealloc’d.
Failing to observe this restriction will cause the FDE(s) not dealloc’d to become invalid: an FDE contains
(hidden in it) a CIE pointer which will be be invalid (stale, pointing to freed memory) if the CIE is
dealloc’d. Theinvalid CIE pointer internal to the FDE cannot be detected as invalid by libdwarf. If one
later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning DW_DLV_ERROR) at best and it is possible a coredump or worse will
happen (eventually).

dwarf_get_cie_of_fde() returnsDW_DLV_OK if it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW_DLV_ERROR if the fde is invalid (NULL).

EachDwarf_Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get_fde_for_die is SGI/MIPS specific.

5.16.0.4 dwarf_get_fde_for_die()

int dwarf_get_fde_for_die(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Fde * return_fde,
Dwarf_Error *error)

When it succeeds,dwarf_get_fde_for_die() returnsDW_DLV_OK and sets*return_fde to a
Dwarf_Fde descriptor representing frame information for the given die. It looks for the
DW_AT_MIPS_fde attribute in the given die. If it f inds it, is uses the value of the attribute as the offset

rev 2.02, December 13, 2011 - 66 -

- 67 -

in the .debug_frame section where the FDE begins. If there is noDW_AT_MIPS_fde it returns
DW_DLV_NO_ENTRY. If there is an error it returnsDW_DLV_ERROR.

5.16.0.5 dwarf_get_fde_range()

int dwarf_get_fde_range(
Dwarf_Fde fde,
Dwarf_Addr *low_pc,
Dwarf_Unsigned *func_length,
Dwarf_Ptr *fde_bytes,
Dwarf_Unsigned *fde_byte_length,
Dwarf_Off *cie_offset,
Dwarf_Signed *cie_index,
Dwarf_Off *fde_offset,
Dwarf_Error *error);

On success,dwarf_get_fde_range() returnsDW_DLV_OK.

The location pointed to bylow_pc is set to the low pc value for this function.

The location pointed to byfunc_length is set to the length of the function in bytes. This is essentially
the length of the text section for the function.

The location pointed to byfde_bytes is set to the address where the FDE begins in the .debug_frame
section.

The location pointed to byfde_byte_length is set to the length in bytes of the portion of
.debug_frame for this FDE. This is the same as the value returned bydwarf_get_fde_range.

The location pointed to bycie_offset is set to the offset in the .debug_frame section of the CIE used by
this FDE.

The location pointed to bycie_index is set to the index of the CIE used by this FDE. The index is the
index of the CIE in the list pointed to bycie_data as set by the functiondwarf_get_fde_list().
However, if the functiondwarf_get_fde_for_die() was used to obtain the given fde, this index
may not be correct.

The location pointed to byfde_offset is set to the offset of the start of this FDE in the .debug_frame
section.

dwarf_get_fde_range() returnsDW_DLV_ERROR on error.

5.16.0.6 dwarf_get_cie_info()

rev 2.02, December 13, 2011 - 67 -

- 68 -

int dwarf_get_cie_info(
Dwarf_Cie cie,
Dwarf_Unsigned *bytes_in_cie,
Dwarf_Small *version,
char **augmenter,
Dwarf_Unsigned *code_alignment_factor,
Dwarf_Signed *data_alignment_factor,
Dwarf_Half *return_address_register_rule,
Dwarf_Ptr *initial_instructions,
Dwarf_Unsigned *initial_instructions_length,
Dwarf_Error *error);

dwarf_get_cie_info() is primarily for Internal-level Interface consumers. If successful, it returns
DW_DLV_OK and sets*bytes_in_cie to the number of bytes in the portion of the frames section for
the CIE represented by the given Dwarf_Cie descriptor,cie. The other fields are directly taken from the
cie and returned, via the pointers to the caller. It returnsDW_DLV_ERROR on error.

5.16.0.7 dwarf_get_cie_index()

int dwarf_get_cie_index(
Dwarf_Cie cie,
Dwarf_Signed *cie_index,
Dwarf_Error *error);

On success,dwarf_get_cie_index() returns DW_DLV_OK. On error this function returns
DW_DLV_ERROR.

The location pointed to bycie_index is set to the index of the CIE of this FDE. The index is the index
of the CIE in the list pointed to bycie_data as set by the functiondwarf_get_fde_list().

So one must have useddwarf_get_fde_list() or dwarf_get_fde_list_eh() to get a cie list
before this is meaningful.

This function is occasionally useful, but is little used.

5.16.0.8 dwarf_get_fde_instr_bytes()

int dwarf_get_fde_instr_bytes(
Dwarf_Fde fde,
Dwarf_Ptr *outinstrs,
Dwarf_Unsigned *outlen,
Dwarf_Error *error);

dwarf_get_fde_instr_bytes() returnsDW_DLV_OK and sets*outinstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde.It also sets*outlen to the length, in bytes,
of the frame instructions. It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.
The intent is to allow low-level consumers like a dwarf-dumper to print the bytes in some fashion. The
memory pointed to byoutinstrs must not be changed and there is nothing to free.

5.16.0.9 dwarf_get_fde_info_for_reg()

This interface is suitable for DWARF2 but is not sufficient for DWARF3. See int
dwarf_get_fde_info_for_reg3.

rev 2.02, December 13, 2011 - 68 -

- 69 -

int dwarf_get_fde_info_for_reg(
Dwarf_Fde fde,
Dwarf_Half table_column,
Dwarf_Addr pc_requested,
Dwarf_Signed *offset_relevant,
Dwarf_Signed *register_num,
Dwarf_Signed *offset,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_reg() returnsDW_DLV_OK and sets*offset_relevant to non-
zero if the offset is relevant for the row specified by pc_requested and column specified by
table_column, for the FDE specified byfde. The intent is to return the rule for the given pc value and
register. The location pointed to byregister_num is set to the register value for the rule. The location
pointed to byoffset is set to the offset value for the rule. If offset is not relevant for this rule,
*offset_relevant is set to zero. Since more than one pc value will have rows with identical entries,
the user may want to know the earliest pc value after which the rules for all the columns remained
unchanged. Recallthat in the virtual table that the frame information represents there may be one or more
table rows with identical data (each such table row at a different pc value). Given a pc_requested
which refers to a pc in such a group of identical rows, the location pointed to byrow_pc is set to the
lowest pc value within the group of identical rows. The value put in*register_num any of the
DW_FRAME_* table columns values specified inlibdwarf.h or dwarf.h.

dwarf_get_fde_info_for_reg returnsDW_DLV_ERROR if there is an error.

It is usable with eitherdwarf_get_fde_n() or dwarf_get_fde_at_pc().

dwarf_get_fde_info_for_reg() is tailored to MIPS, please use
dwarf_get_fde_info_for_reg3() instead for all architectures.

5.16.0.10 dwarf_get_fde_info_for_all_regs()

int dwarf_get_fde_info_for_all_regs(
Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Regtable *reg_table,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_all_regs() returnsDW_DLV_OK and sets*reg_table for the row
specified bypc_requested for the FDE specified byfde.

The intent is to return the rules for decoding all the registers, given a pc value. reg_table is an array of
rules, one for each register specified indwarf.h. The rule for each register contains three items -
dw_regnum which denotes the register value for that rule,dw_offset which denotes the offset value for
that rule anddw_offset_relevant which is set to zero if offset is not relevant for that rule. See
dwarf_get_fde_info_for_reg() for a description ofrow_pc.

dwarf_get_fde_info_for_all_regs returnsDW_DLV_ERROR if there is an error.

int dwarf_get_fde_info_for_all_regs is tailored to SGI/MIPS, please use
dwarf_get_fde_info_for_all_regs3() instead for all architectures.

rev 2.02, December 13, 2011 - 69 -

- 70 -

5.16.0.11 dwarf_set_frame_rule_table_size()

This allows consumers to set the size of the (internal to libdwarf) rule table when using the ’reg3’ interfaces
(these interfaces are strongly preferred over the older ’reg’ interfaces). Itshould be at least as large as the
number of real registers in the ABI which is to be read in for the dwarf_get_fde_info_for_reg3() or
dwarf_get_fde_info_for_all_regs3() functions to work properly.

The frame rule table size must be less than the marker values DW_FRAME_UNDEFINED_VAL,
DW_FRAME_SAME_VAL, DW_FRAME_CFA_COL3 (dwarf_set_frame_rule_undefined_value()
dwarf_set_frame_same_value() dwarf_set_frame_cfa_value() effectively set these markers so the frame
rule table size can actually be any value regardless of the macro values in libdwarf.h as long as the table
size does not overlap these markers).

Dwarf_Half
dwarf_set_frame_rule_table_size(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_table_size() sets the value value as the size of libdwarf-internal
rules tables ofdbg.

The function returns the previous value of the rules table size setting (taken from thedbg structure).

5.16.0.12 dwarf_set_frame_rule_initial_value()

This allows consumers to set the initial value for rows in the frame tables. By default it is taken from
libdwarf.h and is DW_FRAME_REG_INITIAL_VALUE (which itself is either
DW_FRAME_SAME_VAL or DW_FRAME_UNDEFINED_VAL). The MIPS/IRIX default is
DW_FRAME_SAME_VAL. Consumercode should set this appropriately and for many architectures (but
probably not MIPS) DW_FRAME_UNDEFINED_VAL is an appropriate setting. Note: an earlier spelling
of dwarf_set_frame_rule_inital_value() is still supported as an interface, but please change to use the new
correctly spelled name.

Dwarf_Half
dwarf_set_frame_rule_initial_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_initial_value() sets the valuevalue as the initial value for thisdbg
when initializing rules tables.

The function returns the previous value of initial value (taken from thedbg structure).

5.16.0.13 dwarf_set_frame_cfa_value()

This allows consumers to set the number of the CFA register for rows in the frame tables. By default it is
taken from libdwarf.h and isDW_FRAME_CFA_COL. Consumer code should set this appropriately and for
nearly all architecturesDW_FRAME_CFA_COL3 is an appropriate setting.

Dwarf_Half
dwarf_set_frame_rule_cfa_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_cfa_value() sets the valuevalue as the number of the cfa ’register
rule’ for thisdbg when initializing rules tables.

The function returns the previous value of the pseudo-register (taken from thedbg structure).

rev 2.02, December 13, 2011 - 70 -

- 71 -

5.16.0.14 dwarf_set_frame_same_value()

This allows consumers to set the number of the pseudo-register when DW_CFA_same_value is the
operation. Bydefault it is taken from libdwarf.h and isDW_FRAME_SAME_VAL. Consumer code should
set this appropriately, though for many architecturesDW_FRAME_SAME_VAL is an appropriate setting.

Dwarf_Half
dwarf_set_frame_rule_same_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_same_value() sets the valuevalue as the number of the register that
is the pseudo-register set by the DW_CFA_same_value frame operation.

The function returns the previous value of the pseudo-register (taken from thedbg structure).

5.16.0.15 dwarf_set_frame_undefined_value()

This allows consumers to set the number of the pseudo-register
when DW_CFA_undefined_value is the operation. By default it is taken from libdwarf.h and is
DW_FRAME_UNDEFINED_VAL. Consumer code should set this appropriately, though for many
architecturesDW_FRAME_UNDEFINED_VAL is an appropriate setting.

Dwarf_Half
dwarf_set_frame_rule_undefined_value(Dwarf_Debug dbg,

Dwarf_Half value);

dwarf_set_frame_rule_undefined_value() sets the value value as the number of the
register that is the pseudo-register set by the DW_CFA_undefined_value frame operation.

The function returns the previous value of the pseudo-register (taken from thedbg structure).

5.16.0.16 dwarf_set_default_address_size()

This allows consumers to set a default address size. When one has an object where the default address_size
does not match the frame address size where there is no debug_info available to get a frame-specific
address-size, this function is useful.For example, if an Elf64 object has a .debug_frame whose real
address_size is 4 (32 bits). This a very rare situation.

Dwarf_Small
dwarf_set_default_address_size(Dwarf_Debug dbg,

Dwarf_Small value);

dwarf_set_default_address_size() sets the valuevalue as the default address size for this
activation of the reader, but only if value is greater than zero (otherwise the default address size is not
changed).

The function returns the previous value of the default address size (taken from thedbg structure).

5.16.0.17 dwarf_get_fde_info_for_reg3()

This interface is suitable for DWARF3 and DWARF2. It returns the values for a particular real register
(Not for the CFA register, see dwarf_get_fde_info_for_cfa_reg3() below). If the application is going to
retrieve the value for more than a few table_column values at thispc_requested (by calling this
function multiple times) it is much more efficient to call dwarf_get_fde_info_for_all_regs3() (in spite of the

rev 2.02, December 13, 2011 - 71 -

- 72 -

additional setup that requires of the caller).

int dwarf_get_fde_info_for_reg3(
Dwarf_Fde fde,
Dwarf_Half table_column,
Dwarf_Addr pc_requested,
Dwarf_Small *value_type,
Dwarf_Signed *offset_relevant,
Dwarf_Signed *register_num,
Dwarf_Signed *offset_or_block_len,
Dwarf_Ptr *block_ptr,
Dwarf_Addr *row_pc,
Dwarf_Error *error);

dwarf_get_fde_info_for_reg3() returnsDW_DLV_OK on success. It sets*value_type to
one of DW_EXPR_OFFSET (0), DW_EXPR_VAL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3). Oncall, table_column must be set to the register number of a
real register. Not the cfa ’register’ or DW_FRAME_SAME_VALUE or
DW_FRAME_UNDEFINED_VALUE.

if *value_type has the value DW_EXPR_OFFSET (0) then:

It sets*offset_relevant to non-zero if the offset is relevant for the row specified by
pc_requested and column specified bytable_column or, for the FDE specified byfde.
In this case the *register_num will be set to DW_FRAME_CFA_COL3 (. This is an
offset(N) rule as specified in the DWARF3/2 documents. Adding the value of
*offset_or_block_len to the value of the CFA register gives the address of a location
holding the previous value of registertable_column.

If offset is not relevant for this rule,*offset_relevant is set to zero.*register_num
will be set to the number of the real register holding the value of thetable_column register.
This is the register(R) rule as specified in DWARF3/2 documents.

The intent is to return the rule for the given pc value and register. The location pointed to by
register_num is set to the register value for the rule. The location pointed to byoffset is
set to the offset value for the rule.Since more than one pc value will have rows with identical
entries, the user may want to know the earliest pc value after which the rules for all the columns
remained unchanged.Recall that in the virtual table that the frame information represents there
may be one or more table rows with identical data (each such table row at a different pc value).
Given a pc_requested which refers to a pc in such a group of identical rows, the location
pointed to byrow_pc is set to the lowest pc value within the group of identical rows.

If *value_type has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a val_offset(N) rule as specified in the DWARF3/2 documents so
*offset_relevant will be non zero. The calculation is identical to the
DW_EXPR_OFFSET (0) calculation with*offset_relevant non-zero, but the value
resulting is the actualtable_column value (rather than the address where the value may be
found).

If *value_type has the value DW_EXPR_EXPRESSION (1) then:
*offset_or_block_len is set to the length in bytes of a block of memory with a DWARF
expression in the block.*block_ptr is set to point at the block of memory. The consumer
code shouldevaluate the block as a DWARF-expression. The result is the address where the

rev 2.02, December 13, 2011 - 72 -

- 73 -

previous value of the register may be found. This is a DWARF3/2 expression(E) rule.

If *value_type has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is exactly as for DW_EXPR_EXPRESSION (1) but the result of the DWARF-
expression evaluation is the value of thetable_column (not the address of the value). This
is a DWARF3/2 val_expression(E) rule.

dwarf_get_fde_info_for_reg returnsDW_DLV_ERROR if there is an error and if there is an error
only theerror pointer is set, none of the other output arguments are touched.

It is usable with eitherdwarf_get_fde_n() or dwarf_get_fde_at_pc().

5.16.0.18 dwarf_get_fde_info_for_cfa_reg3()

int dwarf_get_fde_info_for_cfa_reg3(Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Small * value_type,
Dwarf_Signed* offset_relevant,
Dwarf_Signed* register_num,
Dwarf_Signed* offset_or_block_len,
Dwarf_Ptr * block_ptr ,
Dwarf_Addr * row_pc_out,
Dwarf_Error * error)

This is identical todwarf_get_fde_info_for_reg3() except the returned values are for the CFA
rule. Soregister number*register_num will be set to a real register, not one of the pseudo registers
(which are usually DW_FRAME_CFA_COL3, DW_FRAME_SAME_VALUE, or
DW_FRAME_UNDEFINED_VALUE).

5.16.0.19 dwarf_get_fde_info_for_all_regs3()

int dwarf_get_fde_info_for_all_regs3(
Dwarf_Fde fde,
Dwarf_Addr pc_requested,
Dwarf_Regtable3 *reg_table,
Dwarf_Addr *row_pc,
Dwarf_Error *error)

dwarf_get_fde_info_for_all_regs3() returnsDW_DLV_OK and sets*reg_table for the
row specified by pc_requested for the FDE specified byfde. The intent is to return the rules for
decoding all the registers, given a pc value. reg_table is an array of rules, the array size specified by
the caller. plus a rule for the CFA. The rule for the cfa returned in*reg_table defines the CFA value
at pc_requested The rule for each register containsseveral values that enable the consumer to
determine the previous value of the register (see the earlier documentation of Dwarf_Regtable3).
dwarf_get_fde_info_for_reg3() and the Dwarf_Regtable3 documentation above for a
description of the values for each row.

dwarf_get_fde_info_for_all_regs3 returnsDW_DLV_ERROR if there is an error.

It is up to the caller to allocate space for*reg_table and initialize it properly.

rev 2.02, December 13, 2011 - 73 -

- 74 -

5.16.0.20 dwarf_get_fde_n()

int dwarf_get_fde_n(
Dwarf_Fde *fde_data,
Dwarf_Unsigned fde_index,
Dwarf_Fde *returned_fde
Dwarf_Error *error)

dwarf_get_fde_n() returnsDW_DLV_OK and setsreturned_fde to theDwarf_Fde descriptor
whose index isfde_index in the table ofDwarf_Fde descriptors pointed to byfde_data. The index
starts with 0.The table pointed to by fde_data is required to contain at least one entry. If the table has no
entries at all the error checks may refer to uninitialized memory. ReturnsDW_DLV_NO_ENTRY if the
index does not exist in the table ofDwarf_Fde descriptors. ReturnsDW_DLV_ERROR if there is an error.
This function cannot be used unless the block ofDwarf_Fde descriptors has been created by a call to
dwarf_get_fde_list().

5.16.0.21 dwarf_get_fde_at_pc()

int dwarf_get_fde_at_pc(
Dwarf_Fde *fde_data,
Dwarf_Addr pc_of_interest,
Dwarf_Fde *returned_fde,
Dwarf_Addr *lopc,
Dwarf_Addr *hipc,
Dwarf_Error *error)

dwarf_get_fde_at_pc() returns DW_DLV_OK and setsreturned_fde to a Dwarf_Fde
descriptor for a function which contains the pc value specified bypc_of_interest. In addition, it sets
the locations pointed to bylopc andhipc to the low address and the high address covered by this FDE,
respectively. The table pointed to by fde_data is required to contain at least one entry. If the table has no
entries at all the error checks may refer to uninitialized memory. It returnsDW_DLV_ERROR on error. It
returnsDW_DLV_NO_ENTRY if pc_of_interest is not in any of the FDEs represented by the block of
Dwarf_Fde descriptors pointed to byfde_data. This function cannot be used unless the block of
Dwarf_Fde descriptors has been created by a call todwarf_get_fde_list().

5.16.0.22 dwarf_expand_frame_instructions()

int dwarf_expand_frame_instructions(
Dwarf_Cie cie,
Dwarf_Ptr instruction,
Dwarf_Unsigned i_length,
Dwarf_Frame_Op **returned_op_list,
Dwarf_Signed * returned_op_count,
Dwarf_Error *error);

dwarf_expand_frame_instructions() is a High-level interface function which expands a frame
instruction byte stream into an array ofDwarf_Frame_Op structures. To indicate success, it returns
DW_DLV_OK. The address where the byte stream begins is specified byinstruction, and the length of
the byte stream is specified byi_length. The location pointed to byreturned_op_list is set to
point to a table ofreturned_op_count pointers toDwarf_Frame_Op which contain the frame
instructions in the byte stream.It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY. After a successful return, the array of structures should be freed using

rev 2.02, December 13, 2011 - 74 -

- 75 -

dwarf_dealloc() with the allocation typeDW_DLA_FRAME_BLOCK (when they are no longer of
interest).

Not all CIEs have the same address-size, so it is crucial that a CIE pointer to the frame’s CIE be passed in.

Dwarf_Signed cnt;
Dwarf_Frame_Op *frameops;
Dwarf_Ptr instruction;
Dwarf_Unsigned len;
int res;

res = expand_frame_instructions(dbg,instruction,len, &frameops,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use frameops[i] */

}
dwarf_dealloc(dbg, frameops, DW_DLA_FRAME_BLOCK);

}

5.16.0.23 dwarf_get_fde_exception_info()

int dwarf_get_fde_exception_info(
Dwarf_Fde fde,
Dwarf_Signed * offset_into_exception_tables,
Dwarf_Error * error);

dwarf_get_fde_exception_info() is an IRIX specific function which returns an exception table
signed offset through offset_into_exception_tables. The function never returns
DW_DLV_NO_ENTRY. If DW_DLV_NO_ENTRY is NULL the function returnsDW_DLV_ERROR. For
non-IRIX objects the offset returned will always be zero.For non-C++ objects the offset returned will
always be zero. The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (see above) determines whether the value returned has meaning.

5.17 Location Expression Evaluation

An "interpreter" which evaluates a location expression is required in any debugger. There is no interface
defined here at this time.

One problem with defining an interface is that operations are machine dependent: they depend on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

5.17.1 Location List Internal-level Interface

rev 2.02, December 13, 2011 - 75 -

- 76 -

5.17.1.1 dwarf_get_loclist_entry()

int dwarf_get_loclist_entry(
Dwarf_Debug dbg,
Dwarf_Unsigned offset,
Dwarf_Addr *hipc_offset,
Dwarf_Addr *lopc_offset,
Dwarf_Ptr *data,
Dwarf_Unsigned *entry_len,
Dwarf_Unsigned *next_entry,
Dwarf_Error *error)

The function reads a location list entry starting atoffset and returns through pointers (when successful)
the high pchipc_offset, low pc lopc_offset, a pointer to the location description datadata, the
length of the location description dataentry_len, and the offset of the next location description entry
next_entry.

This function will usually work correctly (meaning with most objects) but will not work correctly (and can
crash an application calling it) if either some location list applies to a compilation unit with an address_size
different from the overall address_size of the object file being read or if the .debug_loc section being read
has random padding bytes between loclists. Neither of these characteristics necessarily represents a bug in
the compiler/linker toolset that produced the object file being read. The DWARF standard allows both
characteristics.

dwarf_dwarf_get_loclist_entry() returnsDW_DLV_OK if successful.DW_DLV_NO_ENTRY is
returned when the offset passed in is beyond the end of the .debug_loc section (expected if you start at
offset zero and proceed through all the entries).DW_DLV_ERROR is returned on error.

Thehipc_offset, low pc lopc_offset are offsets from the beginning of the current procedure, not
genuine pc values.

rev 2.02, December 13, 2011 - 76 -

- 77 -

/* Looping through the dwarf_loc section finding loclists:
an example. */

int res;
Dwarf_Unsigned next_entry;
Dwarf_unsigned offset=0;
Dwarf_Addr hipc_off;
Dwarf_Addr lopc_off;
Dwarf_Ptr data;
Dwarf_Unsigned entry_len;
Dwarf_Unsigned next_entry;
Dwarf_Error err;

for(;;) {
res = dwarf_get_loclist_entry(dbg,newoffset,&hipc_off,

&lowpc_off, &data, &entry_len,&next_entry,&err);
if (res == DW_DLV_OK) {

/* A valid entry. */
newoffset = next_entry;
continue;

} else if (res ==DW_DLV_NO_ENTRY) {
/* Done! */
break;

} else {
/* Error! */
break;

}

}
}

5.18 Abbreviations access

These are Internal-level Interface functions. Debuggers can ignore this.

5.18.1 dwarf_get_abbrev()

int dwarf_get_abbrev(
Dwarf_Debug dbg,
Dwarf_Unsigned offset,
Dwarf_Abbrev *returned_abbrev,
Dwarf_Unsigned *length,
Dwarf_Unsigned *attr_count,
Dwarf_Error *error)

The function dwarf_get_abbrev() returns DW_DLV_OK and sets*returned_abbrev to
Dwarf_Abbrev descriptor for an abbreviation at offset *offset in the abbreviations section (i.e
.debug_abbrev) on success. The user is responsible for making sure that a valid abbreviation begins at
offset in the abbreviations section. The location pointed to bylength is set to the length in bytes of
the abbreviation in the abbreviations section. The location pointed to byattr_count is set to the
number of attributes in the abbreviation. An abbreviation entry with a length of 1 is the 0 byte of the last

rev 2.02, December 13, 2011 - 77 -

- 78 -

abbreviation entry of a compilation unit.dwarf_get_abbrev() returnsDW_DLV_ERROR on error. If
the call succeeds, the storage pointed to by*returned_abbrev should be freed, using
dwarf_dealloc() with the allocation typeDW_DLA_ABBREV when no longer needed.

5.18.2 dwarf_get_abbrev_tag()

int dwarf_get_abbrev_tag(
Dwarf_abbrev abbrev,
Dwarf_Half *return_tag,
Dwarf_Error *error);

If successful,dwarf_get_abbrev_tag() returnsDW_DLV_OK and sets*return_tag to thetag of
the given abbreviation. It returnsDW_DLV_ERROR on error. It nev er returnsDW_DLV_NO_ENTRY.

5.18.3 dwarf_get_abbrev_code()

int dwarf_get_abbrev_code(
Dwarf_abbrev abbrev,
Dwarf_Unsigned *return_code,
Dwarf_Error *error);

If successful,dwarf_get_abbrev_code() returnsDW_DLV_OK and sets*return_code to the
abbreviation code of the given abbreviation. It returns DW_DLV_ERROR on error. It nev er returns
DW_DLV_NO_ENTRY.

5.18.4 dwarf_get_abbrev_children_flag()

int dwarf_get_abbrev_children_flag(
Dwarf_Abbrev abbrev,
Dwarf_Signed *returned_flag,
Dwarf_Error *error)

The function dwarf_get_abbrev_children_flag() returns DW_DLV_OK and sets
returned_flag to DW_children_no (if the given abbreviation indicates that a die with that
abbreviation has no children) orDW_children_yes (if the given abbreviation indicates that a die with
that abbreviation has a child). It returnsDW_DLV_ERROR on error.

5.18.5 dwarf_get_abbrev_entry()

int dwarf_get_abbrev_entry(
Dwarf_Abbrev abbrev,
Dwarf_Signed index,
Dwarf_Half *attr_num,
Dwarf_Signed *form,
Dwarf_Off *offset,
Dwarf_Error *error)

rev 2.02, December 13, 2011 - 78 -

- 79 -

If successful,dwarf_get_abbrev_entry() returns DW_DLV_OK and sets*attr_num to the
attribute code of the attribute whose index is specified by index in the given abbreviation. Theindex
starts at 0. The location pointed to byform is set to the form of the attribute. Thelocation pointed to by
offset is set to the byte offset of the attribute in the abbreviations section. It returns
DW_DLV_NO_ENTRY if the index specified is outside the range of attributes in this abbreviation. It returns
DW_DLV_ERROR on error.

5.19 String Section Operations

The .debug_str section contains only strings.Debuggers need never use this interface: it is only for
debugging problems with the string section itself.

5.19.1 dwarf_get_str()

int dwarf_get_str(
Dwarf_Debug dbg,
Dwarf_Off offset,
char **string,
Dwarf_Signed *returned_str_len,
Dwarf_Error *error)

The functiondwarf_get_str() returnsDW_DLV_OK and sets*returned_str_len to the length
of the string, not counting the null terminator, that begins at the offset specified byoffset in the
.debug_str section. The location pointed to bystring is set to a pointer to this string.The next string in
the .debug_str section begins at the previousoffset + 1 +*returned_str_len. A zero-length string
is NOT the end of the section. If there is no .debug_str section,DW_DLV_NO_ENTRY is returned. If there
is an error, DW_DLV_ERROR is returned. If we are at the end of the section (that is,offset is one past
the end of the section)DW_DLV_NO_ENTRY is returned. If theoffset is some other too-large value then
DW_DLV_ERROR is returned.

5.20 Address Range Operations

These functions provide information about address ranges.Address ranges map ranges of pc values to the
corresponding compilation-unit die that covers the address range.

5.20.1 dwarf_get_aranges()

int dwarf_get_aranges(
Dwarf_Debug dbg,
Dwarf_Arange **aranges,
Dwarf_Signed * returned_arange_count,
Dwarf_Error *error)

The functiondwarf_get_aranges() returnsDW_DLV_OK and sets*returned_arange_count
to the count of the number of address ranges in the .debug_aranges section (for all compilation units).It
sets*aranges to point to a block ofDwarf_Arange descriptors, one for each address range. It returns
DW_DLV_ERROR on error. It returnsDW_DLV_NO_ENTRY if there is no .debug_aranges section.

rev 2.02, December 13, 2011 - 79 -

- 80 -

Dwarf_Signed cnt;
Dwarf_Arange *arang;
int res;

res = dwarf_get_aranges(dbg, &arang,&cnt, &error);
if (res == DW_DLV_OK) {

for (i = 0; i < cnt; ++i) {
/* use arang[i] */
dwarf_dealloc(dbg, arang[i], DW_DLA_ARANGE);

}
dwarf_dealloc(dbg, arang, DW_DLA_LIST);

}

5.20.2 dwarf_get_arange()

int dwarf_get_arange(
Dwarf_Arange *aranges,
Dwarf_Unsigned arange_count,
Dwarf_Addr address,
Dwarf_Arange *returned_arange,
Dwarf_Error *error);

The functiondwarf_get_arange() takes as input a pointer to a block ofDwarf_Arange pointers,
and a count of the number of descriptors in the block.It then searches for the descriptor that covers the
given address. If it f inds one, it returnsDW_DLV_OK and sets*returned_arange to the descriptor.
It returnsDW_DLV_ERROR on error. It returnsDW_DLV_NO_ENTRY if there is no .debug_aranges entry
covering that address.

5.20.3 dwarf_get_cu_die_offset()

int dwarf_get_cu_die_offset(
Dwarf_Arange arange,
Dwarf_Off *returned_cu_die_offset,
Dwarf_Error *error);

The functiondwarf_get_cu_die_offset() takes aDwarf_Arange descriptor as input, and if
successful returnsDW_DLV_OK and sets*returned_cu_die_offset to the offset in the .debug_info
section of the compilation-unit DIE for the compilation-unit represented by the given address range.It
returnsDW_DLV_ERROR on error.

5.20.4 dwarf_get_arange_cu_header_offset()

rev 2.02, December 13, 2011 - 80 -

- 81 -

int dwarf_get_arange_cu_header_offset(
Dwarf_Arange arange,
Dwarf_Off *returned_cu_header_offset,
Dwarf_Error *error)

The functiondwarf_get_arange_cu_header_offset() takes aDwarf_Arange descriptor as
input, and if successful returnsDW_DLV_OK and sets*returned_cu_header_offset to the offset
in the .debug_info section of the compilation-unit header for the compilation-unit represented by the given
address range. It returnsDW_DLV_ERROR on error.

This function added Rev 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if the version of libdwarf linked into an application has this
function.

5.20.5 dwarf_get_arange_info()

int dwarf_get_arange_info(
Dwarf_Arange arange,
Dwarf_Addr *start,
Dwarf_Unsigned *length,
Dwarf_Off *cu_die_offset,
Dwarf_Error *error)

The functiondwarf_get_arange_info() returnsDW_DLV_OK and stores the starting value of the
address range in the location pointed to bystart, the length of the address range in the location pointed
to by length, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It returnsDW_DLV_ERROR on error.

5.21 General Low Lev el Operations

This function is low-level and intended for use only by programs such as dwarf-dumpers.

5.21.1 dwarf_get_address_size()

int dwarf_get_address_size(Dwarf_Debug dbg,
Dwarf_Half *addr_size,
Dwarf_Error *error)

The function dwarf_get_address_size() returns DW_DLV_OK on success and sets the
*addr_size to the size in bytes of an address.In case of error, it returnsDW_DLV_ERROR and does not
set*addr_size.

The address size returned is the overall address size, which can be misleading if different compilation units
have different address sizes.Many ABIs have only a single address size per executable, but differing
address sizes are becoming more common.

Usedwarf_get_die_address_size() instead whenever possible.

rev 2.02, December 13, 2011 - 81 -

- 82 -

5.21.2 dwarf_get_die_address_size()

int dwarf_get_die_address_size(Dwarf_Die die,
Dwarf_Half *addr_size,
Dwarf_Error *error)

The function dwarf_get_die_address_size() returns DW_DLV_OK on success and sets the
*addr_size to the size in bytes of an address.In case of error, it returnsDW_DLV_ERROR and does not
set*addr_size.

The address size returned is the address size of the compilation unit owning thedie

This is the preferred way to get address size when theDwarf_Die is known.

5.22 Ranges Operations (.debug_ranges)

5.23 Ranges Operations (.debug_ranges)

These functions provide information about the address ranges indicated by aDW_AT_ranges attribute
(the ranges are recorded in the.debug_ranges section) of a DIE. Each call of
dwarf_get_ranges_a() or dwarf_get_ranges() returns a an array of Dwarf_Ranges structs,
each of which represents a single ranges entry. The struct is defined inlibdwarf.h.

5.23.1 dwarf_get_ranges()

This is the original call and it will work fine when all compilation units have the same address_size.There
is nodie argument to this original version of the function. Other arguments (and deallocation) match the
use of dwarf_get_ranges_a() (described next).

5.23.2 dwarf_get_ranges_a()

int dwarf_get_ranges_a(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die die,
Dwarf_Ranges **ranges,
Dwarf_Signed * returned_ranges_count,
Dwarf_Unsigned * returned_byte_count,
Dwarf_Error *error)

The functiondwarf_get_ranges_a() returnsDW_DLV_OK and sets*returned_ranges_count
to the count of the number of address ranges in the group of ranges in the .debug_ranges section at offset
offset (which ends with a pair of zeros of pointer-size). Thisfunction is new as of 27 April 2009.

The offset argument should be the value of aDW_AT_ranges attribute of a Debugging Information
Entry.

rev 2.02, December 13, 2011 - 82 -

- 83 -

The die argument should be the value of aDwarf_Die pointer of aDwarf_Die with the attribute
containing this range set offset. Becauseeach compilation unit has its own address_size field this argument
is necessary to to correctly read ranges. (Most executables have the same address_size in every compilation
unit, but some ABIs allow multiple address sized in an executable). If a NULL pointer is passed in
libdwarf assumes a single address_size is appropriate for all ranges records.

The call sets*ranges to point to a block ofDwarf_Ranges structs, one for each address range.It
returnsDW_DLV_ERROR on error. It returnsDW_DLV_NO_ENTRY if there is no .debug_ranges
section or ifoffset is past the end of the.debug_ranges section.

If the *returned_byte_count pointer is passed as non-NULL the number of bytes that the returned
ranges were taken from is returned through the pointer (for example if the returned_ranges_count is 2 and
the pointer-size is 4, then returned_byte_count will be 8). If the*returned_byte_count pointer is
passed as NULL the parameter is ignored.The *returned_byte_count is only of use to certain
dumper applications, most applications will not use it.

Dwarf_Signed cnt;
Dwarf_Ranges *ranges;
Dwarf_Unsigned bytes;
int res;
res = dwarf_get_ranges_a(dbg,off,dieptr, &ranges,&cnt,&bytes,&error);
if (res == DW_DLV_OK) {

Dwarf_Signed i;
for(i = 0; i < cnt; ++i) {

Dwarf_Ranges *cur = ranges+i;
/* Use cur. */

}
dwarf_ranges_dealloc(dbg,ranges,cnt);

}

5.23.3 dwarf_ranges_dealloc()

int dwarf_ranges_dealloc(
Dwarf_Debug dbg,
Dwarf_Ranges *ranges,
Dwarf_Signed range_count,
);

The functiondwarf_ranges_dealloc() takes as input a pointer to a block ofDwarf_Ranges array
and the number of structures in the block. It frees all the data in the array of structures.

5.24 TAG ATTR etc names as strings

These functions turn a value into a string. So applications wanting the string "DW_TAG_compile_unit"
given the value 0x11 (the value defined for this TAG) can do so easily.

The general form is

rev 2.02, December 13, 2011 - 83 -

- 84 -

int dwarf_get_<something>_name(
unsigned value,
char **s_out,
);

If the value passed in is known, the function returnsDW_DLV_OK and places a pointer to the appropriate
string into *s_out. The string is in static storage and applications must never free the string. If the
value is not known,DW_DLV_NO_ENTRY is returned and*s_out is not set.DW_DLV_ERROR is never
returned.

Libdwarf generates these functions at libdwarf build time by reading dwarf.h.

All these follow this pattern rigidly, so the details of each are not repeated for each function.

The choice of ’unsigned’ for the value type argument (the code value) argument is somewhat arbitrary, ’ int’
could have been used.

The library simply assumes the value passed in is applicable.So, for example, passing a TAG value code to
dwarf_get_ACCESS_name() is a coding error which libdwarf will process as if it was an accessibility
code value. Examplesof bad and good usage are:

const char * out;
int res;
/* The following is wrong, do not do it! */
res = dwarf_get_ACCESS_name(DW_TAG_entry_point,&out);
/* Nothing one does here with ’res’ or ’out’

is meaningful. */

/* The following is meaningful.*/
res = dwarf_get_TAG_name(DW_TAG_entry_point,&out);
if(res == DW_DLV_OK) {

/* Here ’out’ is a pointer one can use which
points to the string "DW_TAG_entry_point". */

} else {
/* Here ’out’ has not been touched, it is

uninitialized. Do not use it. */
}

5.25 dwarf_get_ACCESS_name()

Returns an accessibility code name through thes_out pointer.

5.26 dwarf_get_AT_name()

Returns an attribute code name through thes_out pointer.

5.27 dwarf_get_ATE_name()

Returns a base type encoding name through thes_out pointer.

rev 2.02, December 13, 2011 - 84 -

- 85 -

5.28 dwarf_get_ADDR_name()

Returns an address type encoding name through thes_out pointer. As of this writing only
DW_ADDR_none is defined indwarf.h.

5.29 dwarf_get_ATCF_name()

Returns a SUN code flag encoding namethrough thes_out pointer. This code flag is entirely a DWARF
extension.

5.30 dwarf_get_CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data) through thes_out
pointer. The only value this recognizes for a ’yes’ value is 1.As a flag value this is not quite correct (any
non-zero value means yes) but dealing with this is left up to client code (normally compilers really do emit
a value of 1 for a flag).

5.31 dwarf_get_children_name()

Returns a child determination name through thes_out pointer, though this version is really a libdwarf
artifact. Thestandard function isdwarf_get_CHILDREN_name() which appears just above. As a
flag value this is not quite correct (any non-zero value means yes) but dealing with this is left up to client
code (normally compilers really do emit a value of 1 for a flag).

5.32 dwarf_get_CC_name()

Returns acalling convention case code name through thes_out pointer.

5.33 dwarf_get_CFA_name()

Returns acall frame information instruction name through thes_out pointer.

5.34 dwarf_get_DS_name()

Returns a decimal sign code name through thes_out pointer.

5.35 dwarf_get_DSC_name()

Returns adiscriminant descriptor code name through thes_out pointer.

5.36 dwarf_get_EH_name()

Returns aGNU exception header code name through thes_out pointer.

5.37 dwarf_get_END_name()

Returns an endian code name through thes_out pointer.

5.38 dwarf_get_FORM_name()

Returns an form code name through thes_out pointer.

5.39 dwarf_get_FRAME_name()

Returns a frame code name through thes_out pointer. These are dependent on the particular ABI, so
unless thedwarf.h used to generate libdwarf matches your ABI these names are unlikely to be very
useful and certainly won’t be entirely appropriate.

5.40 dwarf_get_ID_name()

Returns anidentifier case code name through thes_out pointer.

rev 2.02, December 13, 2011 - 85 -

- 86 -

5.41 dwarf_get_INL_name()

Returns aninline code name through thes_out pointer.

5.42 dwarf_get_LANG_name()

Returns alanguage code name through thes_out pointer.

5.43 dwarf_get_LNE_name()

Returns aline table extended opcode code name through thes_out pointer.

5.44 dwarf_get_LNS_name()

Returns aline table standard opcode code name through thes_out pointer.

5.45 dwarf_get_MACINFO_name()

Returns amacro information macinfo code name through thes_out pointer.

5.46 dwarf_get_OP_name()

Returns aDWARF expression operation code name through thes_out pointer.

5.47 dwarf_get_ORD_name()

Returns anarray ordering code name through thes_out pointer.

5.48 dwarf_get_TAG_name()

Returns aTA G name through thes_out pointer.

5.49 dwarf_get_VIRTUALITY_name()

Returns avirtuality code name through thes_out pointer.

5.50 dwarf_get_VIS_name()

Returns a visibility code name through thes_out pointer.

5.51 Section Operations

In checking DWARF in linkonce sections for correctness it has been found useful to have certain section-
oriented operations when processing object files. Normallythese operations are not needed or useful in a
fully-linked executable or shared library.

While the code is written with Elf sections in mind, it is quite possible to process non-Elf objects with code
that implements certain function pointers (seestruct Dwarf_Obj_Access_interface_s).

So far no one with such non-elf code has come forward to open-source it.

5.51.1 dwarf_get_section_count()

int dwarf_get_section_count(
Dwarf_Debug dbg)

Returns a count of the number of object sections found.

rev 2.02, December 13, 2011 - 86 -

- 87 -

5.51.2 dwarf_get_section_info_by_name()

int dwarf_get_section_info_by_name(
const char *section_name,
Dwarf_Addr *section_addr,
Dwarf_Unsigned *section_size,
Dwarf_Error *error)

The functiondwarf_get_section_info_by_name() returnsDW_DLV_OK if the section given by
section_name was seen by libdwarf. On success it sets*section_addr to the virtual address
assigned to the section by the linker or compiler and*section_size to the size of the object section.

It returns DW_DLV_ERROR on error.

5.51.3 dwarf_get_section_info_by_index()

int dwarf_get_section_info_by_index(
int section_index,
const char **section_name,
Dwarf_Addr *section_addr,
Dwarf_Unsigned *section_size,
Dwarf_Error *error)

The functiondwarf_get_section_info_by_index() returnsDW_DLV_OK if the section given by
section_index was seen by libdwarf. *section_addr to the virtual address assigned to the section
by the linker or compiler and*section_size to the size of the object section.

No free or deallocate of information returned should be done by callers.

5.52 Utility Operations

These functions aid in the management of errors encountered when using functions in thelibdwarf library
and releasing memory allocated as a result of alibdwarf operation.

5.52.1 dwarf_errno()

Dwarf_Unsigned dwarf_errno(
Dwarf_Error error)

The functiondwarf_errno() returns the error number corresponding to the error specified byerror.

5.52.2 dwarf_errmsg()

const char* dwarf_errmsg(
Dwarf_Error error)

The functiondwarf_errmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified byerror. The string returned bydwarf_errmsg() should not be deallocated
usingdwarf_dealloc().

rev 2.02, December 13, 2011 - 87 -

- 88 -

5.52.3 dwarf_get_harmless_error_list()

int dwarf_get_harmless_error_list(Dwarf_Debug dbg,
unsigned count,
const char ** errmsg_ptrs_array,
unsigned * newerr_count);

The harmless errors are not denoted by error returns from the other libdwarf functions. Instead, this
function returns strings of any harmless errors that have been seen in the current object. Clients never need
call this, but if a client wishes to report any such errors it may call.

Only a fixed number of harmless errors are recorded. It is a circular list, so if more than the current
maximum is encountered older harmless error messages are lost.

The caller passes in a pointer to an array of pointer-to-char as the argumenterrmsg_ptrs_array. The
caller must provide this array, libdwarf does not provide it. The caller need not initialize the array
elements.

The caller passes in the number of elements of the array of pointer-to-char thrucount. Since the

If there are no unreported harmless errors the function returnsDW_DLV_NO_ENTRY and the function
arguments are ignored. Otherwise the function returnsDW_DLV_OK and uses the arguments.

libdwarf assigns error strings to the errmsg_ptrs_array. The MININUM(count-1, number of messages
recorded) pointers are assigned to the array. The array is terminated with a NULL pointer. (That is, one
array entry is reserved for a NULL pointer). So ifcount is 5 up to 4 strings may be returned through the
array, and one array entry is set to NULL.

Because the list is circular and messages may have been dropped the function also returns the actual error
count of harmless errors encountered throughnewerr_count (unless the argument is NULL, in which
case it is ignored).

Each call to this function resets the circular error buffer and the error count.So think of this call as
reporting harmless errors since the last call to it.

The pointers returned througherrmsg_ptrs_array are only valid till the next call to libdwarf. Donot
save the pointers, they become invalid. Copy the strings if you wish to save them.

Calling this function neither allocates any space in memory nor frees any space in memory.

5.52.4 dwarf_insert_harmless_error()

void dwarf_insert_harmless_error(Dwarf_Debug dbg,
char * newerror);

This function is used to testdwarf_get_harmless_error_list. It simply adds a harmless error
string. Thereis little reason client code should use this function. It exists so that the harmless error
functions can be easily tested for correctness and leaks.

rev 2.02, December 13, 2011 - 88 -

- 89 -

5.52.5 dwarf_set_harmless_error_list_size()

unsigned dwarf_set_harmless_error_list_size(Dwarf_Debug dbg,
unsigned maxcount)

dwarf_set_harmless_error_list_size returns the number of harmless error strings the library
is currently set to hold.If maxcount is non-zero the library changes the maximum it will record to be
maxcount.

It is extremely unwise to make maxcount large becauselibdwarf allocates space formaxcount
strings immediately.

The set of errors enumerated in Figure 3 below were defined in Dwarf 1. These errors are not used by the
libdwarf implementation for Dwarf 2 or later.

SYMBOLIC NAME DESCRIPTION
DW_DLE_NE Noerror (0)
DW_DLE_VMM Version of DWARF information newer than libdwarf
DW_DLE_MAP Memorymap failure
DW_DLE_LEE Propagation of libelf error
DW_DLE_NDS Nodebug section
DW_DLE_NLS Noline section
DW_DLE_ID Requestedinformation not associated with descriptor
DW_DLE_IOF I/Ofailure
DW_DLE_MAF Memoryallocation failure
DW_DLE_IA Invalid argument
DW_DLE_MDE Mangleddebugging entry
DW_DLE_MLE Mangledline number entry
DW_DLE_FNO Filedescriptor does not refer to an open file
DW_DLE_FNR Fileis not a regular file
DW_DLE_FWA File is opened with wrong access
DW_DLE_NOB Fileis not an object file
DW_DLE_MOF Mangledobject file header
DW_DLE_EOLL Endof location list entries
DW_DLE_NOLL Nolocation list section
DW_DLE_BADOFF Invalid offset
DW_DLE_EOS Endof section
DW_DLE_ATRUNC Abbreviations section appears truncated
DW_DLE_BADBITC Addresssize passed to dwarf bad

Figure 6. List of Dwarf Error Codes

The set of errors returned byLibdwarf functions is listed below. Some of the errors are SGI specific.

rev 2.02, December 13, 2011 - 89 -

- 90 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_DBG_ALLOC Couldnot allocate Dwarf_Debug struct
DW_DLE_FSTAT_ERROR Errorin fstat()-ing object
DW_DLE_FSTAT_MODE_ERROR Errorin mode of object file
DW_DLE_INIT_ACCESS_WRONG Incorrectaccess to dwarf_init()
DW_DLE_ELF_BEGIN_ERROR Errorin elf_begin() on object
DW_DLE_ELF_GETEHDR_ERROR Errorin elf_getehdr() on object
DW_DLE_ELF_GETSHDR_ERROR Errorin elf_getshdr() on object
DW_DLE_ELF_STRPTR_ERROR Errorin elf_strptr() on object
DW_DLE_DEBUG_INFO_DUPLICATE Multiple .debug_info sections
DW_DLE_DEBUG_INFO_NULL Nodata in .debug_info section
DW_DLE_DEBUG_ABBREV_DUPLICATE Multiple .debug_abbrev sections
DW_DLE_DEBUG_ABBREV_NULL Nodata in .debug_abbrev section
DW_DLE_DEBUG_ARANGES_DUPLICATE Multiple .debug_arange sections
DW_DLE_DEBUG_ARANGES_NULL Nodata in .debug_arange section
DW_DLE_DEBUG_LINE_DUPLICATE Multiple .debug_line sections
DW_DLE_DEBUG_LINE_NULL No data in .debug_line section
DW_DLE_DEBUG_LOC_DUPLICATE Multiple .debug_loc sections
DW_DLE_DEBUG_LOC_NULL Nodata in .debug_loc section
DW_DLE_DEBUG_MACINFO_DUPLICATE Multiple .debug_macinfo sections
DW_DLE_DEBUG_MACINFO_NULL Nodata in .debug_macinfo section
DW_DLE_DEBUG_PUBNAMES_DUPLICATE Multiple .debug_pubnames sections
DW_DLE_DEBUG_PUBNAMES_NULL No data in .debug_pubnames section
DW_DLE_DEBUG_STR_DUPLICATE Multiple .debug_str sections
DW_DLE_DEBUG_STR_NULL Nodata in .debug_str section
DW_DLE_CU_LENGTH_ERROR Lengthof compilation-unit bad
DW_DLE_VERSION_STAMP_ERROR IncorrectVersion Stamp
DW_DLE_ABBREV_OFFSET_ERROR Offset in .debug_abbrev bad
DW_DLE_ADDRESS_SIZE_ERROR Sizeof addresses in target bad
DW_DLE_DEBUG_INFO_PTR_NULL Pointerinto .debug_info in DIE null
DW_DLE_DIE_NULL Null Dwarf_Die
DW_DLE_STRING_OFFSET_BAD Offset in .debug_str bad
DW_DLE_DEBUG_LINE_LENGTH_BAD Lengthof .debug_line segment bad
DW_DLE_LINE_PROLOG_LENGTH_BAD Lengthof .debug_line prolog bad
DW_DLE_LINE_NUM_OPERANDS_BAD Numberof operands to line instr bad
DW_DLE_LINE_SET_ADDR_ERROR Errorin DW_LNE_set_address instruction
DW_DLE_LINE_EXT_OPCODE_BAD Error in DW_EXTENDED_OPCODE instruction
DW_DLE_DWARF_LINE_NULL Null Dwarf_line argument
DW_DLE_INCL_DIR_NUM_BAD Error in included directory for given line
DW_DLE_LINE_FILE_NUM_BAD File number in .debug_line bad
DW_DLE_ALLOC_FAIL Failed to allocate required structs
DW_DLE_DBG_NULL Null Dwarf_Debug argument
DW_DLE_DEBUG_FRAME_LENGTH_BAD Error in length of frame
DW_DLE_FRAME_VERSION_BAD Badversion stamp for frame
DW_DLE_CIE_RET_ADDR_REG_ERROR Badregister specified for return address
DW_DLE_FDE_NULL NullDwarf_Fde argument
DW_DLE_FDE_DBG_NULL NoDwarf_Debug associated with FDE
DW_DLE_CIE_NULL Null Dwarf_Cie argument
DW_DLE_CIE_DBG_NULL NoDwarf_Debug associated with CIE
DW_DLE_FRAME_TABLE_COL_BAD Badcolumn in frame table specified

Figure 7. List of Dwarf 2 Error Codes (continued)

rev 2.02, December 13, 2011 - 90 -

- 91 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_PC_NOT_IN_FDE_RANGE PCrequested not in address range of FDE
DW_DLE_CIE_INSTR_EXEC_ERROR Errorin executing instructions in CIE
DW_DLE_FRAME_INSTR_EXEC_ERROR Errorin executing instructions in FDE
DW_DLE_FDE_PTR_NULL NullPointer to Dwarf_Fde specified
DW_DLE_RET_OP_LIST_NULL Nolocation to store pointer to Dwarf_Frame_Op
DW_DLE_LINE_CONTEXT_NULL Dwarf_Line has no context
DW_DLE_DBG_NO_CU_CONTEXT dbghas no CU context for dwarf_siblingof()
DW_DLE_DIE_NO_CU_CONTEXT Dwarf_Die has no CU context
DW_DLE_FIRST_DIE_NOT_CU FirstDIE in CU not DW_TAG_compilation_unit
DW_DLE_NEXT_DIE_PTR_NULL Errorin moving to next DIE in .debug_info
DW_DLE_DEBUG_FRAME_DUPLICATE Multiple .debug_frame sections
DW_DLE_DEBUG_FRAME_NULL Nodata in .debug_frame section
DW_DLE_ABBREV_DECODE_ERROR Errorin decoding abbreviation
DW_DLE_DWARF_ABBREV_NULL Null Dwarf_Abbrev specified
DW_DLE_ATTR_NULL Null Dwarf_Attribute specified
DW_DLE_DIE_BAD DIE bad
DW_DLE_DIE_ABBREV_BAD No abbreviation found for code in DIE
DW_DLE_ATTR_FORM_BAD Inappropriateattribute form for attribute
DW_DLE_ATTR_NO_CU_CONTEXT NoCU context for Dwarf_Attribute struct
DW_DLE_ATTR_FORM_SIZE_BAD Sizeof block in attribute value bad
DW_DLE_ATTR_DBG_NULL NoDwarf_Debug for Dwarf_Attribute struct
DW_DLE_BAD_REF_FORM Inappropriateform for reference attribute
DW_DLE_ATTR_FORM_OFFSET_BAD Offset reference attribute outside current CU
DW_DLE_LINE_OFFSET_BAD Offset of lines for current CU outside .debug_line
DW_DLE_DEBUG_STR_OFFSET_BAD Offset into .debug_str past its end
DW_DLE_STRING_PTR_NULL Pointerto pointer into .debug_str NULL
DW_DLE_PUBNAMES_VERSION_ERROR Version stamp of pubnames incorrect
DW_DLE_PUBNAMES_LENGTH_BAD Readpubnames past end of .debug_pubnames
DW_DLE_GLOBAL_NULL Null Dwarf_Global specified
DW_DLE_GLOBAL_CONTEXT_NULL No context for Dwarf_Global given
DW_DLE_DIR_INDEX_BAD Error in directory index read
DW_DLE_LOC_EXPR_BAD Badoperator read for location expression
DW_DLE_DIE_LOC_EXPR_BAD Expectedblock value for attribute not found
DW_DLE_OFFSET_BAD Offset for next compilation-unit in .debug_info bad
DW_DLE_MAKE_CU_CONTEXT_FAIL Could not make CU context
DW_DLE_ARANGE_OFFSET_BAD Offset into .debug_info in .debug_aranges bad
DW_DLE_SEGMENT_SIZE_BAD Segment size will be 0 for MIPS processors and should always be < 8.
DW_DLE_ARANGE_LENGTH_BAD Lengthof arange section in .debug_arange bad
DW_DLE_ARANGE_DECODE_ERROR Arangesdo not end at end of .debug_aranges
DW_DLE_ARANGES_NULL NULLpointer to Dwarf_Arange specified
DW_DLE_ARANGE_NULL NULL Dwarf_Arange specified
DW_DLE_NO_FILE_NAME No fi le name for Dwarf_Line struct
DW_DLE_NO_COMP_DIR NoCompilation directory for compilation-unit
DW_DLE_CU_ADDRESS_SIZE_BAD CU header address size not match Elf class
DW_DLE_ELF_GETIDENT_ERROR Errorin elf_getident() on object
DW_DLE_NO_AT_MIPS_FDE DIEdoes not have DW_AT_MIPS_fde attribute
DW_DLE_NO_CIE_FOR_FDE NoCIE specified for FDE
DW_DLE_DIE_ABBREV_LIST_NULL Noabbreviation for the code in DIE found
DW_DLE_DEBUG_FUNCNAMES_DUPLICATE Multiple .debug_funcnames sections
DW_DLE_DEBUG_FUNCNAMES_NULL No data in .debug_funcnames section

Figure 8. List of Dwarf 2 Error Codes (continued)

rev 2.02, December 13, 2011 - 91 -

- 92 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_DEBUG_FUNCNAMES_VERSION_ERROR Version stamp in .debug_funcnames bad
DW_DLE_DEBUG_FUNCNAMES_LENGTH_BAD Lengtherror in reading .debug_funcnames
DW_DLE_FUNC_NULL NULL Dwarf_Func specified
DW_DLE_FUNC_CONTEXT_NULL Nocontext for Dwarf_Func struct
DW_DLE_DEBUG_TYPENAMES_DUPLICATE Multiple .debug_typenames sections
DW_DLE_DEBUG_TYPENAMES_NULL No data in .debug_typenames section
DW_DLE_DEBUG_TYPENAMES_VERSION_ERROR Version stamp in .debug_typenames bad
DW_DLE_DEBUG_TYPENAMES_LENGTH_BAD Lengtherror in reading .debug_typenames
DW_DLE_TYPE_NULL NULL Dwarf_Type specified
DW_DLE_TYPE_CONTEXT_NULL Nocontext for Dwarf_Type given
DW_DLE_DEBUG_VARNAMES_DUPLICATE Multiple .debug_varnames sections
DW_DLE_DEBUG_VARNAMES_NULL No data in .debug_varnames section
DW_DLE_DEBUG_VARNAMES_VERSION_ERROR Version stamp in .debug_varnames bad
DW_DLE_DEBUG_VARNAMES_LENGTH_BAD Lengtherror in reading .debug_varnames
DW_DLE_VAR_NULL NULL Dwarf_Var specified
DW_DLE_VAR_CONTEXT_NULL Nocontext for Dwarf_Var given
DW_DLE_DEBUG_WEAKNAMES_DUPLICATE Multiple .debug_weaknames section
DW_DLE_DEBUG_WEAKNAMES_NULL No data in .debug_varnames section
DW_DLE_DEBUG_WEAKNAMES_VERSION_ERROR Version stamp in .debug_varnames bad
DW_DLE_DEBUG_WEAKNAMES_LENGTH_BAD Lengtherror in reading .debug_weaknames
DW_DLE_WEAK_NULL NULL Dwarf_Weak specified
DW_DLE_WEAK_CONTEXT_NULL Nocontext for Dwarf_Weak given

Figure 9. List of Dwarf 2 Error Codes

This list of errors is not complete; additional errors have been added.Some of the above errors may be
unused. Errorsmay not have the same meaning in different releases.Since most error codes are returned
from only one place (or a very small number of places) in the source it is normally very useful to simply
search thelibdwarf source to find out where a particular error code is generated.

5.52.6 dwarf_seterrhand()

Dwarf_Handler dwarf_seterrhand(
Dwarf_Debug dbg,
Dwarf_Handler errhand)

The functiondwarf_seterrhand() replaces the error handler (seedwarf_init()) with errhand.
The old error handler is returned. This function is currently unimplemented.

5.52.7 dwarf_seterrarg()

Dwarf_Ptr dwarf_seterrarg(
Dwarf_Debug dbg,
Dwarf_Ptr errarg)

The functiondwarf_seterrarg() replaces the pointer to the error handler communication area (see
dwarf_init()) with errarg. A pointer to the old area is returned.This function is currently
unimplemented.

rev 2.02, December 13, 2011 - 92 -

- 93 -

5.52.8 dwarf_dealloc()

void dwarf_dealloc(
Dwarf_Debug dbg,
void* space,
Dwarf_Unsigned type)

The functiondwarf_dealloc frees the dynamic storage pointed to byspace, and allocated to the given
Dwarf_Debug. The argumenttype is an integer code that specifies the allocation type of the region
pointed to by thespace. Refer to section 4 for details onlibdwarf memory management.

rev 2.02, December 13, 2011 - 93 -

- 94 -

rev 2.02, December 13, 2011 - 94 -

CONTENTS

1. INTRODUCTION .. 1
1.1 Copyright .. 1
1.2 Purpose and Scope... 1
1.3 Document History .. 1
1.4 Definitions .. 2
1.5 Overview .. 2
1.6 Items Changed .. 3
1.7 Items Removed ... 3
1.8 Revision History ... 4

2. Types Definitions .. 4
2.1 General Description.. 4
2.2 Scalar Types ... 4
2.3 Aggregate Types ... 5

2.3.1 Location Record .. 5
2.3.2 Location Description ... 6
2.3.3 Data Block ... 6
2.3.4 Frame Operation Codes: DWARF 2 .. 7
2.3.5 Frame Regtable: DWARF 2 ... 7
2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2) 8
2.3.7 Frame Regtable: DWARF 3 ... 9
2.3.8 Macro Details Record.. 10

2.4 Opaque Types ... 11

3. Error Handling .. 13
3.1 Returned values in the functional interface.. 14

4. Memory Management .. 14
4.1 Read-only Properties.. 15
4.2 Storage Deallocation .. 15

5. Functional Interface .. 16
5.1 Initialization Operations ... 16

5.1.1 dwarf_init() .. 16
5.1.2 dwarf_elf_init() ... 17
5.1.3 dwarf_get_elf() .. 17
5.1.4 dwarf_finish() .. 18
5.1.5 dwarf_set_stringcheck().. 18
5.1.6 dwarf_set_reloc_application()... 18
5.1.7 dwarf_record_cmdline_options().. 19

5.2 Section size operations... 19
5.2.1 dwarf_get_section_max_offsets_b()... 19
5.2.2 dwarf_get_section_max_offsets()... 20

5.3 Debugging Information Entry Delivery Operations ... 20
5.3.1 dwarf_next_cu_header_c().. 20
5.3.2 dwarf_next_cu_header_b().. 21

i

5.3.3 dwarf_next_cu_header().. 21
5.3.4 dwarf_siblingof_b() ... 22
5.3.5 dwarf_siblingof() ... 22
5.3.6 dwarf_child() ... 23
5.3.7 dwarf_offdie_b() .. 23
5.3.8 dwarf_offdie() .. 24
5.3.9 dwarf_validate_die_sibling()... 24

5.4 Debugging Information Entry Query Operations... 25
5.4.1 dwarf_get_die_infotypes_flag().. 25
5.4.2 dwarf_tag() .. 25
5.4.3 dwarf_dieoffset() ... 25
5.4.4 dwarf_die_CU_offset() .. 26
5.4.5 dwarf_die_offsets() .. 26
5.4.6 dwarf_ptr_CU_offset() .. 26
5.4.7 dwarf_CU_dieoffset_given_die() .. 26
5.4.8 dwarf_die_CU_offset_range()... 27
5.4.9 dwarf_diename() ... 28
5.4.10 dwarf_die_abbrev_code().. 28
5.4.11 dwarf_die_abbrev_children_flag().. 28
5.4.12 dwarf_get_version_of_die().. 28
5.4.13 dwarf_attrlist() ... 29
5.4.14 dwarf_hasattr() .. 29
5.4.15 dwarf_attr() .. 29
5.4.16 dwarf_lowpc() ... 30
5.4.17 dwarf_highpc() .. 30
5.4.18 dwarf_bytesize() .. 30
5.4.19 dwarf_bitsize() ... 30
5.4.20 dwarf_bitoffset() .. 31
5.4.21 dwarf_srclang() ... 31
5.4.22 dwarf_arrayorder() .. 31

5.5 Attribute Queries .. 31
5.5.1 dwarf_hasform() .. 32
5.5.2 dwarf_whatform() ... 32
5.5.3 dwarf_whatform_direct() .. 32
5.5.4 dwarf_whatattr() .. 32
5.5.5 dwarf_formref() ... 33
5.5.6 dwarf_global_formref() ... 33
5.5.7 dwarf_convert_to_global_offset() ... 33
5.5.8 dwarf_formaddr() .. 34
5.5.9 dwarf_formflag() ... 34
5.5.10 dwarf_formudata() ... 34
5.5.11 dwarf_formsdata() ... 35
5.5.12 dwarf_formblock() .. 35
5.5.13 dwarf_formstring() .. 35
5.5.14 dwarf_formsig8() ... 35
5.5.15 dwarf_formsig8() ... 36
5.5.16 dwarf_get_form_class()... 36
5.5.17 dwarf_loclist_n() ... 37

ii

5.5.18 dwarf_loclist() ... 38
5.5.19 dwarf_loclist_from_expr() .. 38
5.5.20 dwarf_loclist_from_expr_a()... 39

5.6 Line Number Operations.. 40
5.6.1 Get A Set of Lines ... 40

5.6.1.1 dwarf_srclines() ... 40
5.6.2 Get the set of Source File Names.. 41
5.6.3 Get information about a Single Table Line... 42

5.6.3.1 dwarf_linebeginstatement()... 42
5.6.3.2 dwarf_lineendsequence()... 42
5.6.3.3 dwarf_lineno() .. 42
5.6.3.4 dwarf_line_srcfileno() .. 42
5.6.3.5 dwarf_lineaddr() .. 43
5.6.3.6 dwarf_lineoff() ... 43
5.6.3.7 dwarf_linesrc() ... 43
5.6.3.8 dwarf_lineblock() ... 44
5.6.3.9 dwarf_is_addr_set() ... 44
5.6.3.10 dwarf_prologue_end_etc()... 44

5.7 Global Name Space Operations... 45
5.8 Global Name Space Operations... 45

5.8.1 Debugger Interface Operations.. 45
5.8.1.1 dwarf_get_globals() ... 45
5.8.1.2 dwarf_globname() .. 46
5.8.1.3 dwarf_global_die_offset().. 46
5.8.1.4 dwarf_global_cu_offset()... 46
5.8.1.5 dwarf_get_cu_die_offset_given_cu_header_offset() 47
5.8.1.6 dwarf_get_cu_die_offset_given_cu_header_offset() 47
5.8.1.7 dwarf_global_name_offsets().. 47

5.9 DWARF3 Type Names Operations.. 48
5.9.1 Debugger Interface Operations.. 48

5.9.1.1 dwarf_get_pubtypes().. 48
5.9.1.2 dwarf_pubtypename().. 49
5.9.1.3 dwarf_pubtype_die_offset()... 49
5.9.1.4 dwarf_pubtype_cu_offset().. 49
5.9.1.5 dwarf_pubtype_name_offsets()... 49

5.10 User Defined Static Variable Names Operations... 50
5.11Weak Name Space Operations... 50

5.11.1 Debugger Interface Operations.. 50
5.11.1.1 dwarf_get_weaks()... 50
5.11.1.2 dwarf_weakname() .. 51
5.11.1.3 dwarf_weak_cu_offset().. 52
5.11.1.4 dwarf_weak_name_offsets().. 52

5.12 Static Function Names Operations... 52
5.12.1 Debugger Interface Operations.. 52

5.12.1.1 dwarf_get_funcs() .. 53
5.12.1.2 dwarf_funcname().. 54
5.12.1.3 dwarf_func_die_offset()... 54
5.12.1.4 dwarf_func_cu_offset().. 54

iii

5.12.1.5 dwarf_func_name_offsets()... 54
5.13 User Defined Type Names Operations... 55

5.13.1 Debugger Interface Operations.. 55
5.13.1.1 dwarf_get_types() .. 55
5.13.1.2 dwarf_typename().. 56
5.13.1.3 dwarf_type_die_offset()... 56
5.13.1.4 dwarf_type_cu_offset().. 56
5.13.1.5 dwarf_type_name_offsets()... 57

5.14 User Defined Static Variable Names Operations... 57
5.14.1 Debugger Interface Operations.. 57

5.14.1.1 dwarf_get_vars() .. 57
5.14.1.2 dwarf_varname() .. 58
5.14.1.3 dwarf_var_die_offset()... 59
5.14.1.4 dwarf_var_cu_offset().. 59
5.14.1.5 dwarf_var_name_offsets()... 59

5.15 Macro Information Operations... 59
5.15.1 General Macro Operations.. 60

5.15.1.1 dwarf_find_macro_value_start().. 60
5.15.2 Debugger Interface Macro Operations.. 60
5.15.3 Low Lev el Macro Information Operations.. 60

5.15.3.1 dwarf_get_macro_details().. 60
5.16 Low Lev el Frame Operations ... 61

5.16.0.1 dwarf_get_fde_list() ... 64
5.16.0.2 dwarf_get_fde_list_eh()... 65
5.16.0.3 dwarf_get_cie_of_fde().. 66
5.16.0.4 dwarf_get_fde_for_die().. 66
5.16.0.5 dwarf_get_fde_range()... 67
5.16.0.6 dwarf_get_cie_info().. 67
5.16.0.7 dwarf_get_cie_index()... 68
5.16.0.8 dwarf_get_fde_instr_bytes().. 68
5.16.0.9 dwarf_get_fde_info_for_reg()... 68
5.16.0.10dwarf_get_fde_info_for_all_regs().. 69
5.16.0.11dwarf_set_frame_rule_table_size().. 70
5.16.0.12dwarf_set_frame_rule_initial_value().. 70
5.16.0.13dwarf_set_frame_cfa_value().. 70
5.16.0.14dwarf_set_frame_same_value()... 71
5.16.0.15dwarf_set_frame_undefined_value()... 71
5.16.0.16dwarf_set_default_address_size().. 71
5.16.0.17dwarf_get_fde_info_for_reg3()... 71
5.16.0.18dwarf_get_fde_info_for_cfa_reg3()... 73
5.16.0.19dwarf_get_fde_info_for_all_regs3().. 73
5.16.0.20dwarf_get_fde_n().. 74
5.16.0.21dwarf_get_fde_at_pc()... 74
5.16.0.22dwarf_expand_frame_instructions().. 74
5.16.0.23dwarf_get_fde_exception_info().. 75

5.17 Location Expression Evaluation... 75
5.17.1 Location List Internal-level Interface .. 75

5.17.1.1 dwarf_get_loclist_entry()... 76

iv

5.18 Abbreviations access.. 77
5.18.1 dwarf_get_abbrev() ... 77
5.18.2 dwarf_get_abbrev_tag().. 78
5.18.3 dwarf_get_abbrev_code().. 78
5.18.4 dwarf_get_abbrev_children_flag().. 78
5.18.5 dwarf_get_abbrev_entry()... 78

5.19 String Section Operations... 79
5.19.1 dwarf_get_str() .. 79

5.20 Address Range Operations... 79
5.20.1 dwarf_get_aranges().. 79
5.20.2 dwarf_get_arange() ... 80
5.20.3 dwarf_get_cu_die_offset().. 80
5.20.4 dwarf_get_arange_cu_header_offset().. 80
5.20.5 dwarf_get_arange_info()... 81

5.21 General Low Lev el Operations .. 81
5.21.1 dwarf_get_address_size().. 81
5.21.2 dwarf_get_die_address_size()... 82

5.22 Ranges Operations (.debug_ranges)... 82
5.23 Ranges Operations (.debug_ranges)... 82

5.23.1 dwarf_get_ranges().. 82
5.23.2 dwarf_get_ranges_a().. 82
5.23.3 dwarf_ranges_dealloc()... 83

5.24TA G ATTR etc names as strings.. 83
5.25 dwarf_get_ACCESS_name()... 84
5.26 dwarf_get_AT_name() ... 84
5.27 dwarf_get_ATE_name() ... 84
5.28 dwarf_get_ADDR_name() ... 85
5.29 dwarf_get_ATCF_name()... 85
5.30 dwarf_get_CHILDREN_name() .. 85
5.31 dwarf_get_children_name()... 85
5.32 dwarf_get_CC_name()... 85
5.33 dwarf_get_CFA_name()... 85
5.34 dwarf_get_DS_name()... 85
5.35 dwarf_get_DSC_name()... 85
5.36 dwarf_get_EH_name()... 85
5.37 dwarf_get_END_name() .. 85
5.38 dwarf_get_FORM_name()... 85
5.39 dwarf_get_FRAME_name()... 85
5.40 dwarf_get_ID_name() .. 85
5.41 dwarf_get_INL_name() .. 86
5.42 dwarf_get_LANG_name() ... 86
5.43 dwarf_get_LNE_name()... 86
5.44 dwarf_get_LNS_name()... 86
5.45 dwarf_get_MACINFO_name() .. 86
5.46 dwarf_get_OP_name()... 86
5.47 dwarf_get_ORD_name().. 86
5.48 dwarf_get_TAG_name() ... 86
5.49 dwarf_get_VIRTUALITY_name() ... 86

v

5.50 dwarf_get_VIS_name() .. 86
5.51 Section Operations ... 86

5.51.1 dwarf_get_section_count().. 86
5.51.2 dwarf_get_section_info_by_name().. 87
5.51.3 dwarf_get_section_info_by_index().. 87

5.52 Utility Operations ... 87
5.52.1 dwarf_errno() ... 87
5.52.2 dwarf_errmsg() .. 87
5.52.3 dwarf_get_harmless_error_list()... 88
5.52.4 dwarf_insert_harmless_error().. 88
5.52.5 dwarf_set_harmless_error_list_size()... 89
5.52.6 dwarf_seterrhand() .. 92
5.52.7 dwarf_seterrarg() ... 92
5.52.8 dwarf_dealloc() ... 93

vi

LIST OF FIGURES

Figure 1.Scalar Types ... 5

Figure 2.Error Indications .. 14

Figure 3.Allocation/Deallocation Identifiers.. 16

Figure 4.Frame Information Rule Assignments MIPS... 63

Figure 5.Frame Information Special Values any architecture .. 63

Figure 6.List of Dwarf Error Codes ... 89

Figure 7.List of Dwarf 2 Error Codes (continued)... 90

Figure 8.List of Dwarf 2 Error Codes (continued)... 91

Figure 9.List of Dwarf 2 Error Codes .. 92

vii

A Consumer Library Interface to DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to access DWARF debugging
information entries and DWARF line number information (and other DWARF2/3 information).It
does not make recommendations as to how the functions described in this document should be
implemented nor does it suggest possible optimizations.

The document is oriented to reading DWARF version 2 and version 3.There are certain sections
which are SGI-specific (those are clearly identified in the document).

rev 2.02, December 13, 2011

0. UNIX is a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

viii

