/* * pass1b.c --- Pass #1b of e2fsck * * This file contains pass1B, pass1C, and pass1D of e2fsck. They are * only invoked if pass 1 discovered blocks which are in use by more * than one inode. * * Pass1B scans the data blocks of all the inodes again, generating a * complete list of duplicate blocks and which inodes have claimed * them. * * Pass1C does a tree-traversal of the filesystem, to determine the * parent directories of these inodes. This step is necessary so that * e2fsck can print out the pathnames of affected inodes. * * Pass1D is a reconciliation pass. For each inode with duplicate * blocks, the user is prompted if s/he would like to clone the file * (so that the file gets a fresh copy of the duplicated blocks) or * simply to delete the file. * * Copyright (C) 1993, 1994, 1995, 1996, 1997 Theodore Ts'o. * * %Begin-Header% * This file may be redistributed under the terms of the GNU Public * License. * %End-Header% * */ #include "config.h" #include #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_INTTYPES_H #include #endif #ifndef HAVE_INTPTR_T typedef long intptr_t; #endif /* Needed for architectures where sizeof(int) != sizeof(void *) */ #define INT_TO_VOIDPTR(val) ((void *)(intptr_t)(val)) #define VOIDPTR_TO_INT(ptr) ((int)(intptr_t)(ptr)) #include #include "e2fsck.h" #include "problem.h" #include "dict.h" /* Define an extension to the ext2 library's block count information */ #define BLOCK_COUNT_EXTATTR (-5) struct cluster_el { blk64_t cluster; struct cluster_el *next; }; struct inode_el { ext2_ino_t inode; struct inode_el *next; }; struct dup_cluster { int num_bad; struct inode_el *inode_list; }; /* * This structure stores information about a particular inode which * is sharing blocks with other inodes. This information is collected * to display to the user, so that the user knows what files he or she * is dealing with, when trying to decide how to resolve the conflict * of multiply-claimed blocks. */ struct dup_inode { ext2_ino_t dir; int num_dupblocks; struct ext2_inode inode; struct cluster_el *cluster_list; }; static int process_pass1b_block(ext2_filsys fs, blk64_t *blocknr, e2_blkcnt_t blockcnt, blk64_t ref_blk, int ref_offset, void *priv_data); static void delete_file(e2fsck_t ctx, ext2_ino_t ino, struct dup_inode *dp, char *block_buf); static int clone_file(e2fsck_t ctx, ext2_ino_t ino, struct dup_inode *dp, char* block_buf); static int check_if_fs_block(e2fsck_t ctx, blk64_t test_block); static int check_if_fs_cluster(e2fsck_t ctx, blk64_t cluster); static void pass1b(e2fsck_t ctx, char *block_buf); static void pass1c(e2fsck_t ctx, char *block_buf); static void pass1d(e2fsck_t ctx, char *block_buf); static int dup_inode_count = 0; static int dup_inode_founddir = 0; static dict_t clstr_dict, ino_dict; static ext2fs_inode_bitmap inode_dup_map; static int dict_int_cmp(const void *a, const void *b) { intptr_t ia, ib; ia = (intptr_t)a; ib = (intptr_t)b; return (ia-ib); } /* * Add a duplicate block record */ static void add_dupe(e2fsck_t ctx, ext2_ino_t ino, blk64_t cluster, struct ext2_inode *inode) { dnode_t *n; struct dup_cluster *db; struct dup_inode *di; struct cluster_el *cluster_el; struct inode_el *ino_el; n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(cluster)); if (n) db = (struct dup_cluster *) dnode_get(n); else { db = (struct dup_cluster *) e2fsck_allocate_memory(ctx, sizeof(struct dup_cluster), "duplicate cluster header"); db->num_bad = 0; db->inode_list = 0; dict_alloc_insert(&clstr_dict, INT_TO_VOIDPTR(cluster), db); } ino_el = (struct inode_el *) e2fsck_allocate_memory(ctx, sizeof(struct inode_el), "inode element"); ino_el->inode = ino; ino_el->next = db->inode_list; db->inode_list = ino_el; db->num_bad++; n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino)); if (n) di = (struct dup_inode *) dnode_get(n); else { di = (struct dup_inode *) e2fsck_allocate_memory(ctx, sizeof(struct dup_inode), "duplicate inode header"); if (ino == EXT2_ROOT_INO) { di->dir = EXT2_ROOT_INO; dup_inode_founddir++; } else di->dir = 0; di->num_dupblocks = 0; di->cluster_list = 0; di->inode = *inode; dict_alloc_insert(&ino_dict, INT_TO_VOIDPTR(ino), di); } cluster_el = (struct cluster_el *) e2fsck_allocate_memory(ctx, sizeof(struct cluster_el), "cluster element"); cluster_el->cluster = cluster; cluster_el->next = di->cluster_list; di->cluster_list = cluster_el; di->num_dupblocks++; } /* * Free a duplicate inode record */ static void inode_dnode_free(dnode_t *node, void *context EXT2FS_ATTR((unused))) { struct dup_inode *di; struct cluster_el *p, *next; di = (struct dup_inode *) dnode_get(node); for (p = di->cluster_list; p; p = next) { next = p->next; free(p); } free(di); free(node); } /* * Free a duplicate cluster record */ static void cluster_dnode_free(dnode_t *node, void *context EXT2FS_ATTR((unused))) { struct dup_cluster *dc; struct inode_el *p, *next; dc = (struct dup_cluster *) dnode_get(node); for (p = dc->inode_list; p; p = next) { next = p->next; free(p); } free(dc); free(node); } /* * Main procedure for handling duplicate blocks */ void e2fsck_pass1_dupblocks(e2fsck_t ctx, char *block_buf) { ext2_filsys fs = ctx->fs; struct problem_context pctx; #ifdef RESOURCE_TRACK struct resource_track rtrack; #endif clear_problem_context(&pctx); pctx.errcode = ext2fs_allocate_inode_bitmap(fs, _("multiply claimed inode map"), &inode_dup_map); if (pctx.errcode) { fix_problem(ctx, PR_1B_ALLOCATE_IBITMAP_ERROR, &pctx); ctx->flags |= E2F_FLAG_ABORT; return; } dict_init(&ino_dict, DICTCOUNT_T_MAX, dict_int_cmp); dict_init(&clstr_dict, DICTCOUNT_T_MAX, dict_int_cmp); dict_set_allocator(&ino_dict, NULL, inode_dnode_free, NULL); dict_set_allocator(&clstr_dict, NULL, cluster_dnode_free, NULL); init_resource_track(&rtrack, ctx->fs->io); pass1b(ctx, block_buf); print_resource_track(ctx, "Pass 1b", &rtrack, ctx->fs->io); init_resource_track(&rtrack, ctx->fs->io); pass1c(ctx, block_buf); print_resource_track(ctx, "Pass 1c", &rtrack, ctx->fs->io); init_resource_track(&rtrack, ctx->fs->io); pass1d(ctx, block_buf); print_resource_track(ctx, "Pass 1d", &rtrack, ctx->fs->io); /* * Time to free all of the accumulated data structures that we * don't need anymore. */ dict_free_nodes(&ino_dict); dict_free_nodes(&clstr_dict); ext2fs_free_inode_bitmap(inode_dup_map); } /* * Scan the inodes looking for inodes that contain duplicate blocks. */ struct process_block_struct { e2fsck_t ctx; ext2_ino_t ino; int dup_blocks; struct ext2_inode *inode; struct problem_context *pctx; }; static void pass1b(e2fsck_t ctx, char *block_buf) { ext2_filsys fs = ctx->fs; ext2_ino_t ino; struct ext2_inode inode; ext2_inode_scan scan; struct process_block_struct pb; struct problem_context pctx; clear_problem_context(&pctx); if (!(ctx->options & E2F_OPT_PREEN)) fix_problem(ctx, PR_1B_PASS_HEADER, &pctx); pctx.errcode = ext2fs_open_inode_scan(fs, ctx->inode_buffer_blocks, &scan); if (pctx.errcode) { fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx); ctx->flags |= E2F_FLAG_ABORT; return; } ctx->stashed_inode = &inode; pb.ctx = ctx; pb.pctx = &pctx; pctx.str = "pass1b"; while (1) { if (ino % (fs->super->s_inodes_per_group * 4) == 1) { if (e2fsck_mmp_update(fs)) fatal_error(ctx, 0); } pctx.errcode = ext2fs_get_next_inode(scan, &ino, &inode); if (pctx.errcode == EXT2_ET_BAD_BLOCK_IN_INODE_TABLE) continue; if (pctx.errcode) { fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx); ctx->flags |= E2F_FLAG_ABORT; return; } if (!ino) break; pctx.ino = ctx->stashed_ino = ino; if ((ino != EXT2_BAD_INO) && !ext2fs_test_inode_bitmap2(ctx->inode_used_map, ino)) continue; pb.ino = ino; pb.dup_blocks = 0; pb.inode = &inode; if (ext2fs_inode_has_valid_blocks(&inode) || (ino == EXT2_BAD_INO)) pctx.errcode = ext2fs_block_iterate3(fs, ino, BLOCK_FLAG_READ_ONLY, block_buf, process_pass1b_block, &pb); /* If the feature is not set, attrs will be cleared later anyway */ if ((fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_EXT_ATTR) && ext2fs_file_acl_block(&inode)) { blk64_t blk = ext2fs_file_acl_block(&inode); process_pass1b_block(fs, &blk, BLOCK_COUNT_EXTATTR, 0, 0, &pb); ext2fs_file_acl_block_set(&inode, blk); } if (pb.dup_blocks) { end_problem_latch(ctx, PR_LATCH_DBLOCK); if (ino >= EXT2_FIRST_INODE(fs->super) || ino == EXT2_ROOT_INO) dup_inode_count++; } if (pctx.errcode) fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx); } ext2fs_close_inode_scan(scan); e2fsck_use_inode_shortcuts(ctx, 0); } static int process_pass1b_block(ext2_filsys fs EXT2FS_ATTR((unused)), blk64_t *block_nr, e2_blkcnt_t blockcnt EXT2FS_ATTR((unused)), blk64_t ref_blk EXT2FS_ATTR((unused)), int ref_offset EXT2FS_ATTR((unused)), void *priv_data) { struct process_block_struct *p; e2fsck_t ctx; if (HOLE_BLKADDR(*block_nr)) return 0; p = (struct process_block_struct *) priv_data; ctx = p->ctx; if (!ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) return 0; /* OK, this is a duplicate block */ if (p->ino != EXT2_BAD_INO) { p->pctx->blk = *block_nr; fix_problem(ctx, PR_1B_DUP_BLOCK, p->pctx); } p->dup_blocks++; ext2fs_mark_inode_bitmap2(inode_dup_map, p->ino); add_dupe(ctx, p->ino, EXT2FS_B2C(fs, *block_nr), p->inode); return 0; } /* * Pass 1c: Scan directories for inodes with duplicate blocks. This * is used so that we can print pathnames when prompting the user for * what to do. */ struct search_dir_struct { int count; ext2_ino_t first_inode; ext2_ino_t max_inode; }; static int search_dirent_proc(ext2_ino_t dir, int entry, struct ext2_dir_entry *dirent, int offset EXT2FS_ATTR((unused)), int blocksize EXT2FS_ATTR((unused)), char *buf EXT2FS_ATTR((unused)), void *priv_data) { struct search_dir_struct *sd; struct dup_inode *p; dnode_t *n; sd = (struct search_dir_struct *) priv_data; if (dirent->inode > sd->max_inode) /* Should abort this inode, but not everything */ return 0; if ((dirent->inode < sd->first_inode) || (entry < DIRENT_OTHER_FILE) || !ext2fs_test_inode_bitmap2(inode_dup_map, dirent->inode)) return 0; n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(dirent->inode)); if (!n) return 0; p = (struct dup_inode *) dnode_get(n); if (!p->dir) { p->dir = dir; sd->count--; } return(sd->count ? 0 : DIRENT_ABORT); } static void pass1c(e2fsck_t ctx, char *block_buf) { ext2_filsys fs = ctx->fs; struct search_dir_struct sd; struct problem_context pctx; clear_problem_context(&pctx); if (!(ctx->options & E2F_OPT_PREEN)) fix_problem(ctx, PR_1C_PASS_HEADER, &pctx); /* * Search through all directories to translate inodes to names * (by searching for the containing directory for that inode.) */ sd.count = dup_inode_count - dup_inode_founddir; sd.first_inode = EXT2_FIRST_INODE(fs->super); sd.max_inode = fs->super->s_inodes_count; ext2fs_dblist_dir_iterate(fs->dblist, 0, block_buf, search_dirent_proc, &sd); } static void pass1d(e2fsck_t ctx, char *block_buf) { ext2_filsys fs = ctx->fs; struct dup_inode *p, *t; struct dup_cluster *q; ext2_ino_t *shared, ino; int shared_len; int i; int file_ok; int meta_data = 0; struct problem_context pctx; dnode_t *n, *m; struct cluster_el *s; struct inode_el *r; clear_problem_context(&pctx); if (!(ctx->options & E2F_OPT_PREEN)) fix_problem(ctx, PR_1D_PASS_HEADER, &pctx); e2fsck_read_bitmaps(ctx); pctx.num = dup_inode_count; /* dict_count(&ino_dict); */ fix_problem(ctx, PR_1D_NUM_DUP_INODES, &pctx); shared = (ext2_ino_t *) e2fsck_allocate_memory(ctx, sizeof(ext2_ino_t) * dict_count(&ino_dict), "Shared inode list"); for (n = dict_first(&ino_dict); n; n = dict_next(&ino_dict, n)) { p = (struct dup_inode *) dnode_get(n); shared_len = 0; file_ok = 1; ino = (ext2_ino_t)VOIDPTR_TO_INT(dnode_getkey(n)); if (ino == EXT2_BAD_INO || ino == EXT2_RESIZE_INO) continue; /* * Find all of the inodes which share blocks with this * one. First we find all of the duplicate blocks * belonging to this inode, and then search each block * get the list of inodes, and merge them together. */ for (s = p->cluster_list; s; s = s->next) { m = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(s->cluster)); if (!m) continue; /* Should never happen... */ q = (struct dup_cluster *) dnode_get(m); if (q->num_bad > 1) file_ok = 0; if (check_if_fs_cluster(ctx, s->cluster)) { file_ok = 0; meta_data = 1; } /* * Add all inodes used by this block to the * shared[] --- which is a unique list, so * if an inode is already in shared[], don't * add it again. */ for (r = q->inode_list; r; r = r->next) { if (r->inode == ino) continue; for (i = 0; i < shared_len; i++) if (shared[i] == r->inode) break; if (i == shared_len) { shared[shared_len++] = r->inode; } } } /* * Report the inode that we are working on */ pctx.inode = &p->inode; pctx.ino = ino; pctx.dir = p->dir; pctx.blkcount = p->num_dupblocks; pctx.num = meta_data ? shared_len+1 : shared_len; fix_problem(ctx, PR_1D_DUP_FILE, &pctx); pctx.blkcount = 0; pctx.num = 0; if (meta_data) fix_problem(ctx, PR_1D_SHARE_METADATA, &pctx); for (i = 0; i < shared_len; i++) { m = dict_lookup(&ino_dict, INT_TO_VOIDPTR(shared[i])); if (!m) continue; /* should never happen */ t = (struct dup_inode *) dnode_get(m); /* * Report the inode that we are sharing with */ pctx.inode = &t->inode; pctx.ino = shared[i]; pctx.dir = t->dir; fix_problem(ctx, PR_1D_DUP_FILE_LIST, &pctx); } if (file_ok) { fix_problem(ctx, PR_1D_DUP_BLOCKS_DEALT, &pctx); continue; } if (fix_problem(ctx, PR_1D_CLONE_QUESTION, &pctx)) { pctx.errcode = clone_file(ctx, ino, p, block_buf); if (pctx.errcode) fix_problem(ctx, PR_1D_CLONE_ERROR, &pctx); else continue; } if (fix_problem(ctx, PR_1D_DELETE_QUESTION, &pctx)) delete_file(ctx, ino, p, block_buf); else ext2fs_unmark_valid(fs); } ext2fs_free_mem(&shared); } /* * Drop the refcount on the dup_block structure, and clear the entry * in the block_dup_map if appropriate. */ static void decrement_badcount(e2fsck_t ctx, blk64_t block, struct dup_cluster *p) { p->num_bad--; if (p->num_bad <= 0 || (p->num_bad == 1 && !check_if_fs_block(ctx, block))) { if (check_if_fs_cluster(ctx, EXT2FS_B2C(ctx->fs, block))) return; ext2fs_unmark_block_bitmap2(ctx->block_dup_map, block); } } static int delete_file_block(ext2_filsys fs, blk64_t *block_nr, e2_blkcnt_t blockcnt EXT2FS_ATTR((unused)), blk64_t ref_block EXT2FS_ATTR((unused)), int ref_offset EXT2FS_ATTR((unused)), void *priv_data) { struct process_block_struct *pb; struct dup_cluster *p; dnode_t *n; e2fsck_t ctx; blk64_t c; pb = (struct process_block_struct *) priv_data; ctx = pb->ctx; if (HOLE_BLKADDR(*block_nr)) return 0; c = EXT2FS_B2C(fs, *block_nr); if (ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) { n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(c)); if (n) { p = (struct dup_cluster *) dnode_get(n); decrement_badcount(ctx, *block_nr, p); } else com_err("delete_file_block", 0, _("internal error: can't find dup_blk for %llu\n"), *block_nr); } else { ext2fs_unmark_block_bitmap2(ctx->block_found_map, *block_nr); ext2fs_block_alloc_stats2(fs, *block_nr, -1); pb->dup_blocks++; } return 0; } static void delete_file(e2fsck_t ctx, ext2_ino_t ino, struct dup_inode *dp, char* block_buf) { ext2_filsys fs = ctx->fs; struct process_block_struct pb; struct ext2_inode inode; struct problem_context pctx; unsigned int count; clear_problem_context(&pctx); pctx.ino = pb.ino = ino; pb.dup_blocks = 0; pb.ctx = ctx; pctx.str = "delete_file"; e2fsck_read_inode(ctx, ino, &inode, "delete_file"); if (ext2fs_inode_has_valid_blocks(&inode)) pctx.errcode = ext2fs_block_iterate3(fs, ino, BLOCK_FLAG_READ_ONLY, block_buf, delete_file_block, &pb); if (pctx.errcode) fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx); if (ctx->inode_bad_map) ext2fs_unmark_inode_bitmap2(ctx->inode_bad_map, ino); ext2fs_inode_alloc_stats2(fs, ino, -1, LINUX_S_ISDIR(inode.i_mode)); quota_data_sub(ctx->qctx, &inode, ino, pb.dup_blocks * fs->blocksize); quota_data_inodes(ctx->qctx, &inode, ino, -1); /* Inode may have changed by block_iterate, so reread it */ e2fsck_read_inode(ctx, ino, &inode, "delete_file"); e2fsck_clear_inode(ctx, ino, &inode, 0, "delete_file"); if (ext2fs_file_acl_block(&inode) && (fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_EXT_ATTR)) { count = 1; pctx.errcode = ext2fs_adjust_ea_refcount2(fs, ext2fs_file_acl_block(&inode), block_buf, -1, &count); if (pctx.errcode == EXT2_ET_BAD_EA_BLOCK_NUM) { pctx.errcode = 0; count = 1; } if (pctx.errcode) { pctx.blk = ext2fs_file_acl_block(&inode); fix_problem(ctx, PR_1B_ADJ_EA_REFCOUNT, &pctx); } /* * If the count is zero, then arrange to have the * block deleted. If the block is in the block_dup_map, * also call delete_file_block since it will take care * of keeping the accounting straight. */ if ((count == 0) || ext2fs_test_block_bitmap2(ctx->block_dup_map, ext2fs_file_acl_block(&inode))) { blk64_t blk = ext2fs_file_acl_block(&inode); delete_file_block(fs, &blk, BLOCK_COUNT_EXTATTR, 0, 0, &pb); ext2fs_file_acl_block_set(&inode, blk); quota_data_sub(ctx->qctx, &inode, ino, fs->blocksize); } } } struct clone_struct { errcode_t errcode; blk64_t dup_cluster; blk64_t alloc_block; ext2_ino_t dir; char *buf; e2fsck_t ctx; }; static int clone_file_block(ext2_filsys fs, blk64_t *block_nr, e2_blkcnt_t blockcnt, blk64_t ref_block EXT2FS_ATTR((unused)), int ref_offset EXT2FS_ATTR((unused)), void *priv_data) { struct dup_cluster *p; blk64_t new_block; errcode_t retval; struct clone_struct *cs = (struct clone_struct *) priv_data; dnode_t *n; e2fsck_t ctx; blk64_t c; int is_meta = 0; ctx = cs->ctx; if (HOLE_BLKADDR(*block_nr)) return 0; c = EXT2FS_B2C(fs, blockcnt); if (check_if_fs_cluster(ctx, EXT2FS_B2C(fs, *block_nr))) is_meta = 1; if (((blockcnt > 0) && c == cs->dup_cluster) || ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) { n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(EXT2FS_B2C(fs, *block_nr))); if (!n) { com_err("clone_file_block", 0, _("internal error: can't find dup_blk for %llu\n"), *block_nr); return 0; } p = (struct dup_cluster *) dnode_get(n); if (!is_meta) decrement_badcount(ctx, *block_nr, p); if (p->num_bad == 0 && !is_meta) { /* * Normally num_bad never gets to zero; but in * the case of bigalloc file systems, we don't * how many blocks might be in use by a * particular inode. So we may end up * relocating the cluster even though this * inode is the last user of the cluster. In * that case, since we've already moved some * of the blocks of that cluster, we'll * complete the relocation and free the * original cluster here. */ ext2fs_unmark_block_bitmap2(ctx->block_found_map, *block_nr); ext2fs_block_alloc_stats2(fs, *block_nr, -1); } if ((blockcnt > 0) && c == cs->dup_cluster) { new_block = cs->alloc_block; goto got_block; } cs->dup_cluster = c; retval = ext2fs_new_block2(fs, 0, ctx->block_found_map, &new_block); if (retval) { cs->errcode = retval; return BLOCK_ABORT; } cs->alloc_block = new_block; got_block: new_block &= ~EXT2FS_CLUSTER_MASK(fs); new_block += EXT2FS_CLUSTER_MASK(fs) & blockcnt; if (cs->dir && (blockcnt >= 0)) { retval = ext2fs_set_dir_block2(fs->dblist, cs->dir, new_block, blockcnt); if (retval) { cs->errcode = retval; return BLOCK_ABORT; } } #if 0 printf("Cloning block #%lld from %llu to %llu\n", blockcnt, *block_nr, new_block); #endif retval = io_channel_read_blk64(fs->io, *block_nr, 1, cs->buf); if (retval) { cs->errcode = retval; return BLOCK_ABORT; } retval = io_channel_write_blk64(fs->io, new_block, 1, cs->buf); if (retval) { cs->errcode = retval; return BLOCK_ABORT; } *block_nr = new_block; ext2fs_mark_block_bitmap2(ctx->block_found_map, new_block); ext2fs_mark_block_bitmap2(fs->block_map, new_block); return BLOCK_CHANGED; } return 0; } static int clone_file(e2fsck_t ctx, ext2_ino_t ino, struct dup_inode *dp, char* block_buf) { ext2_filsys fs = ctx->fs; errcode_t retval; struct clone_struct cs; struct problem_context pctx; blk64_t blk, new_blk; dnode_t *n; struct inode_el *ino_el; struct dup_cluster *dc; struct dup_inode *di; clear_problem_context(&pctx); cs.errcode = 0; cs.dir = 0; cs.dup_cluster = 0; cs.alloc_block = 0; cs.ctx = ctx; retval = ext2fs_get_mem(fs->blocksize, &cs.buf); if (retval) return retval; if (ext2fs_test_inode_bitmap2(ctx->inode_dir_map, ino)) cs.dir = ino; pctx.ino = ino; pctx.str = "clone_file"; if (ext2fs_inode_has_valid_blocks(&dp->inode)) pctx.errcode = ext2fs_block_iterate3(fs, ino, 0, block_buf, clone_file_block, &cs); ext2fs_mark_bb_dirty(fs); if (pctx.errcode) { fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx); retval = pctx.errcode; goto errout; } if (cs.errcode) { com_err("clone_file", cs.errcode, _("returned from clone_file_block")); retval = cs.errcode; goto errout; } /* The inode may have changed on disk, so we have to re-read it */ e2fsck_read_inode(ctx, ino, &dp->inode, "clone file EA"); blk = ext2fs_file_acl_block(&dp->inode); new_blk = blk; if (blk && (clone_file_block(fs, &new_blk, BLOCK_COUNT_EXTATTR, 0, 0, &cs) == BLOCK_CHANGED)) { ext2fs_file_acl_block_set(&dp->inode, new_blk); e2fsck_write_inode(ctx, ino, &dp->inode, "clone file EA"); /* * If we cloned the EA block, find all other inodes * which refered to that EA block, and modify * them to point to the new EA block. */ n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(EXT2FS_B2C(fs, blk))); if (!n) { com_err("clone_file", 0, _("internal error: couldn't lookup EA " "block record for %llu"), blk); retval = 0; /* OK to stumble on... */ goto errout; } dc = (struct dup_cluster *) dnode_get(n); for (ino_el = dc->inode_list; ino_el; ino_el = ino_el->next) { if (ino_el->inode == ino) continue; n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino_el->inode)); if (!n) { com_err("clone_file", 0, _("internal error: couldn't lookup EA " "inode record for %u"), ino_el->inode); retval = 0; /* OK to stumble on... */ goto errout; } di = (struct dup_inode *) dnode_get(n); if (ext2fs_file_acl_block(&di->inode) == blk) { ext2fs_file_acl_block_set(&di->inode, ext2fs_file_acl_block(&dp->inode)); e2fsck_write_inode(ctx, ino_el->inode, &di->inode, "clone file EA"); decrement_badcount(ctx, blk, dc); } } } retval = 0; errout: ext2fs_free_mem(&cs.buf); return retval; } /* * This routine returns 1 if a block overlaps with one of the superblocks, * group descriptors, inode bitmaps, or block bitmaps. */ static int check_if_fs_block(e2fsck_t ctx, blk64_t test_block) { ext2_filsys fs = ctx->fs; blk64_t first_block; dgrp_t i; first_block = fs->super->s_first_data_block; for (i = 0; i < fs->group_desc_count; i++) { /* Check superblocks/block group descriptors */ if (ext2fs_bg_has_super(fs, i)) { if (test_block >= first_block && (test_block <= first_block + fs->desc_blocks)) return 1; } /* Check the inode table */ if ((ext2fs_inode_table_loc(fs, i)) && (test_block >= ext2fs_inode_table_loc(fs, i)) && (test_block < (ext2fs_inode_table_loc(fs, i) + fs->inode_blocks_per_group))) return 1; /* Check the bitmap blocks */ if ((test_block == ext2fs_block_bitmap_loc(fs, i)) || (test_block == ext2fs_inode_bitmap_loc(fs, i))) return 1; first_block += fs->super->s_blocks_per_group; } return 0; } /* * This routine returns 1 if a cluster overlaps with one of the superblocks, * group descriptors, inode bitmaps, or block bitmaps. */ static int check_if_fs_cluster(e2fsck_t ctx, blk64_t cluster) { ext2_filsys fs = ctx->fs; blk64_t first_block; dgrp_t i; first_block = fs->super->s_first_data_block; for (i = 0; i < fs->group_desc_count; i++) { /* Check superblocks/block group descriptors */ if (ext2fs_bg_has_super(fs, i)) { if (cluster >= EXT2FS_B2C(fs, first_block) && (cluster <= EXT2FS_B2C(fs, first_block + fs->desc_blocks))) return 1; } /* Check the inode table */ if ((ext2fs_inode_table_loc(fs, i)) && (cluster >= EXT2FS_B2C(fs, ext2fs_inode_table_loc(fs, i))) && (cluster <= EXT2FS_B2C(fs, ext2fs_inode_table_loc(fs, i) + fs->inode_blocks_per_group - 1))) return 1; /* Check the bitmap blocks */ if ((cluster == EXT2FS_B2C(fs, ext2fs_block_bitmap_loc(fs, i))) || (cluster == EXT2FS_B2C(fs, ext2fs_inode_bitmap_loc(fs, i)))) return 1; first_block += fs->super->s_blocks_per_group; } return 0; }