/* * e2fsck.c - superblock checks * * Copyright (C) 1993, 1994, 1995, 1996, 1997 Theodore Ts'o. * * %Begin-Header% * This file may be redistributed under the terms of the GNU Public * License. * %End-Header% */ #ifdef HAVE_ERRNO_H #include #endif #ifndef EXT2_SKIP_UUID #include "uuid/uuid.h" #endif #include "e2fsck.h" #include "problem.h" #define MIN_CHECK 1 #define MAX_CHECK 2 static void check_super_value(e2fsck_t ctx, const char *descr, unsigned long value, int flags, unsigned long min_val, unsigned long max_val) { struct problem_context pctx; if (((flags & MIN_CHECK) && (value < min_val)) || ((flags & MAX_CHECK) && (value > max_val))) { clear_problem_context(&pctx); pctx.num = value; pctx.str = descr; fix_problem(ctx, PR_0_MISC_CORRUPT_SUPER, &pctx); ctx->flags |= E2F_FLAG_ABORT; /* never get here! */ } } /* * helper function to release an inode */ struct process_block_struct { e2fsck_t ctx; char *buf; struct problem_context *pctx; int truncating; int truncate_offset; e2_blkcnt_t truncate_block; int truncated_blocks; int abort; errcode_t errcode; }; static int release_inode_block(ext2_filsys fs, blk64_t *block_nr, e2_blkcnt_t blockcnt, blk64_t ref_blk EXT2FS_ATTR((unused)), int ref_offset EXT2FS_ATTR((unused)), void *priv_data) { struct process_block_struct *pb; e2fsck_t ctx; struct problem_context *pctx; blk64_t blk = *block_nr; int retval = 0; pb = (struct process_block_struct *) priv_data; ctx = pb->ctx; pctx = pb->pctx; pctx->blk = blk; pctx->blkcount = blockcnt; if (HOLE_BLKADDR(blk)) return 0; if ((blk < fs->super->s_first_data_block) || (blk >= ext2fs_blocks_count(fs->super))) { fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_BLOCK_NUM, pctx); return_abort: pb->abort = 1; return BLOCK_ABORT; } if (!ext2fs_test_block_bitmap2(fs->block_map, blk)) { fix_problem(ctx, PR_0_ORPHAN_ALREADY_CLEARED_BLOCK, pctx); goto return_abort; } /* * If we are deleting an orphan, then we leave the fields alone. * If we are truncating an orphan, then update the inode fields * and clean up any partial block data. */ if (pb->truncating) { /* * We only remove indirect blocks if they are * completely empty. */ if (blockcnt < 0) { int i, limit; blk_t *bp; pb->errcode = io_channel_read_blk64(fs->io, blk, 1, pb->buf); if (pb->errcode) goto return_abort; limit = fs->blocksize >> 2; for (i = 0, bp = (blk_t *) pb->buf; i < limit; i++, bp++) if (*bp) return 0; } /* * We don't remove direct blocks until we've reached * the truncation block. */ if (blockcnt >= 0 && blockcnt < pb->truncate_block) return 0; /* * If part of the last block needs truncating, we do * it here. */ if ((blockcnt == pb->truncate_block) && pb->truncate_offset) { pb->errcode = io_channel_read_blk64(fs->io, blk, 1, pb->buf); if (pb->errcode) goto return_abort; memset(pb->buf + pb->truncate_offset, 0, fs->blocksize - pb->truncate_offset); pb->errcode = io_channel_write_blk64(fs->io, blk, 1, pb->buf); if (pb->errcode) goto return_abort; } pb->truncated_blocks++; *block_nr = 0; retval |= BLOCK_CHANGED; } ext2fs_block_alloc_stats2(fs, blk, -1); return retval; } /* * This function releases an inode. Returns 1 if an inconsistency was * found. If the inode has a link count, then it is being truncated and * not deleted. */ static int release_inode_blocks(e2fsck_t ctx, ext2_ino_t ino, struct ext2_inode *inode, char *block_buf, struct problem_context *pctx) { struct process_block_struct pb; ext2_filsys fs = ctx->fs; errcode_t retval; __u32 count; if (!ext2fs_inode_has_valid_blocks(inode)) return 0; pb.buf = block_buf + 3 * ctx->fs->blocksize; pb.ctx = ctx; pb.abort = 0; pb.errcode = 0; pb.pctx = pctx; if (inode->i_links_count) { pb.truncating = 1; pb.truncate_block = (e2_blkcnt_t) ((((long long)inode->i_size_high << 32) + inode->i_size + fs->blocksize - 1) / fs->blocksize); pb.truncate_offset = inode->i_size % fs->blocksize; } else { pb.truncating = 0; pb.truncate_block = 0; pb.truncate_offset = 0; } pb.truncated_blocks = 0; retval = ext2fs_block_iterate3(fs, ino, BLOCK_FLAG_DEPTH_TRAVERSE, block_buf, release_inode_block, &pb); if (retval) { com_err("release_inode_blocks", retval, _("while calling ext2fs_block_iterate for inode %d"), ino); return 1; } if (pb.abort) return 1; /* Refresh the inode since ext2fs_block_iterate may have changed it */ e2fsck_read_inode(ctx, ino, inode, "release_inode_blocks"); if (pb.truncated_blocks) ext2fs_iblk_sub_blocks(fs, inode, pb.truncated_blocks); if (ext2fs_file_acl_block(inode)) { retval = ext2fs_adjust_ea_refcount2(fs, ext2fs_file_acl_block(inode), block_buf, -1, &count); if (retval == EXT2_ET_BAD_EA_BLOCK_NUM) { retval = 0; count = 1; } if (retval) { com_err("release_inode_blocks", retval, _("while calling ext2fs_adjust_ea_refcount2 for inode %d"), ino); return 1; } if (count == 0) ext2fs_block_alloc_stats2(fs, ext2fs_file_acl_block(inode), -1); ext2fs_file_acl_block_set(inode, 0); } return 0; } /* * This function releases all of the orphan inodes. It returns 1 if * it hit some error, and 0 on success. */ static int release_orphan_inodes(e2fsck_t ctx) { ext2_filsys fs = ctx->fs; ext2_ino_t ino, next_ino; struct ext2_inode inode; struct problem_context pctx; char *block_buf; if ((ino = fs->super->s_last_orphan) == 0) return 0; /* * Win or lose, we won't be using the head of the orphan inode * list again. */ fs->super->s_last_orphan = 0; ext2fs_mark_super_dirty(fs); /* * If the filesystem contains errors, don't run the orphan * list, since the orphan list can't be trusted; and we're * going to be running a full e2fsck run anyway... */ if (fs->super->s_state & EXT2_ERROR_FS) return 0; if ((ino < EXT2_FIRST_INODE(fs->super)) || (ino > fs->super->s_inodes_count)) { clear_problem_context(&pctx); pctx.ino = ino; fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_HEAD_INODE, &pctx); return 1; } block_buf = (char *) e2fsck_allocate_memory(ctx, fs->blocksize * 4, "block iterate buffer"); e2fsck_read_bitmaps(ctx); while (ino) { e2fsck_read_inode(ctx, ino, &inode, "release_orphan_inodes"); clear_problem_context(&pctx); pctx.ino = ino; pctx.inode = &inode; pctx.str = inode.i_links_count ? _("Truncating") : _("Clearing"); fix_problem(ctx, PR_0_ORPHAN_CLEAR_INODE, &pctx); next_ino = inode.i_dtime; if (next_ino && ((next_ino < EXT2_FIRST_INODE(fs->super)) || (next_ino > fs->super->s_inodes_count))) { pctx.ino = next_ino; fix_problem(ctx, PR_0_ORPHAN_ILLEGAL_INODE, &pctx); goto return_abort; } if (release_inode_blocks(ctx, ino, &inode, block_buf, &pctx)) goto return_abort; if (!inode.i_links_count) { ext2fs_inode_alloc_stats2(fs, ino, -1, LINUX_S_ISDIR(inode.i_mode)); inode.i_dtime = ctx->now; } else { inode.i_dtime = 0; } e2fsck_write_inode(ctx, ino, &inode, "delete_file"); ino = next_ino; } ext2fs_free_mem(&block_buf); return 0; return_abort: ext2fs_free_mem(&block_buf); return 1; } /* * Check the resize inode to make sure it is sane. We check both for * the case where on-line resizing is not enabled (in which case the * resize inode should be cleared) as well as the case where on-line * resizing is enabled. */ void check_resize_inode(e2fsck_t ctx) { ext2_filsys fs = ctx->fs; struct ext2_inode inode; struct problem_context pctx; int i, gdt_off, ind_off; dgrp_t j; blk64_t blk, pblk, expect; __u32 *dind_buf = 0, *ind_buf; errcode_t retval; clear_problem_context(&pctx); /* * If the resize inode feature isn't set, then * s_reserved_gdt_blocks must be zero. */ if (!(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_RESIZE_INODE)) { if (fs->super->s_reserved_gdt_blocks) { pctx.num = fs->super->s_reserved_gdt_blocks; if (fix_problem(ctx, PR_0_NONZERO_RESERVED_GDT_BLOCKS, &pctx)) { fs->super->s_reserved_gdt_blocks = 0; ext2fs_mark_super_dirty(fs); } } } /* Read the resize inode */ pctx.ino = EXT2_RESIZE_INO; retval = ext2fs_read_inode(fs, EXT2_RESIZE_INO, &inode); if (retval) { if (fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_RESIZE_INODE) ctx->flags |= E2F_FLAG_RESIZE_INODE; return; } /* * If the resize inode feature isn't set, check to make sure * the resize inode is cleared; then we're done. */ if (!(fs->super->s_feature_compat & EXT2_FEATURE_COMPAT_RESIZE_INODE)) { for (i=0; i < EXT2_N_BLOCKS; i++) { if (inode.i_block[i]) break; } if ((i < EXT2_N_BLOCKS) && fix_problem(ctx, PR_0_CLEAR_RESIZE_INODE, &pctx)) { memset(&inode, 0, sizeof(inode)); e2fsck_write_inode(ctx, EXT2_RESIZE_INO, &inode, "clear_resize"); } return; } /* * The resize inode feature is enabled; check to make sure the * only block in use is the double indirect block */ blk = inode.i_block[EXT2_DIND_BLOCK]; for (i=0; i < EXT2_N_BLOCKS; i++) { if (i != EXT2_DIND_BLOCK && inode.i_block[i]) break; } if ((i < EXT2_N_BLOCKS) || !blk || !inode.i_links_count || !(inode.i_mode & LINUX_S_IFREG) || (blk < fs->super->s_first_data_block || blk >= ext2fs_blocks_count(fs->super))) { resize_inode_invalid: if (fix_problem(ctx, PR_0_RESIZE_INODE_INVALID, &pctx)) { memset(&inode, 0, sizeof(inode)); e2fsck_write_inode(ctx, EXT2_RESIZE_INO, &inode, "clear_resize"); ctx->flags |= E2F_FLAG_RESIZE_INODE; } if (!(ctx->options & E2F_OPT_READONLY)) { fs->super->s_state &= ~EXT2_VALID_FS; ext2fs_mark_super_dirty(fs); } goto cleanup; } dind_buf = (__u32 *) e2fsck_allocate_memory(ctx, fs->blocksize * 2, "resize dind buffer"); ind_buf = (__u32 *) ((char *) dind_buf + fs->blocksize); retval = ext2fs_read_ind_block(fs, blk, dind_buf); if (retval) goto resize_inode_invalid; gdt_off = fs->desc_blocks; pblk = fs->super->s_first_data_block + 1 + fs->desc_blocks; for (i = 0; i < fs->super->s_reserved_gdt_blocks / 4; i++, gdt_off++, pblk++) { gdt_off %= fs->blocksize/4; if (dind_buf[gdt_off] != pblk) goto resize_inode_invalid; retval = ext2fs_read_ind_block(fs, pblk, ind_buf); if (retval) goto resize_inode_invalid; ind_off = 0; for (j = 1; j < fs->group_desc_count; j++) { if (!ext2fs_bg_has_super(fs, j)) continue; expect = pblk + (j * fs->super->s_blocks_per_group); if (ind_buf[ind_off] != expect) goto resize_inode_invalid; ind_off++; } } cleanup: if (dind_buf) ext2fs_free_mem(&dind_buf); } /* * This function checks the dirhash signed/unsigned hint if necessary. */ static void e2fsck_fix_dirhash_hint(e2fsck_t ctx) { struct ext2_super_block *sb = ctx->fs->super; struct problem_context pctx; char c; if ((ctx->options & E2F_OPT_READONLY) || !(sb->s_feature_compat & EXT2_FEATURE_COMPAT_DIR_INDEX) || (sb->s_flags & (EXT2_FLAGS_SIGNED_HASH|EXT2_FLAGS_UNSIGNED_HASH))) return; c = (char) 255; clear_problem_context(&pctx); if (fix_problem(ctx, PR_0_DIRHASH_HINT, &pctx)) { if (((int) c) == -1) { sb->s_flags |= EXT2_FLAGS_SIGNED_HASH; } else { sb->s_flags |= EXT2_FLAGS_UNSIGNED_HASH; } ext2fs_mark_super_dirty(ctx->fs); } } void check_super_block(e2fsck_t ctx) { ext2_filsys fs = ctx->fs; blk64_t first_block, last_block; struct ext2_super_block *sb = fs->super; problem_t problem; blk64_t blocks_per_group = fs->super->s_blocks_per_group; __u32 bpg_max; int inodes_per_block; int ipg_max; int inode_size; int accept_time_fudge; int broken_system_clock; dgrp_t i; blk64_t should_be; struct problem_context pctx; blk64_t free_blocks = 0; ino_t free_inodes = 0; int csum_flag, clear_test_fs_flag; inodes_per_block = EXT2_INODES_PER_BLOCK(fs->super); ipg_max = inodes_per_block * (blocks_per_group - 4); if (ipg_max > EXT2_MAX_INODES_PER_GROUP(sb)) ipg_max = EXT2_MAX_INODES_PER_GROUP(sb); bpg_max = 8 * EXT2_BLOCK_SIZE(sb); if (bpg_max > EXT2_MAX_BLOCKS_PER_GROUP(sb)) bpg_max = EXT2_MAX_BLOCKS_PER_GROUP(sb); ctx->invalid_inode_bitmap_flag = (int *) e2fsck_allocate_memory(ctx, sizeof(int) * fs->group_desc_count, "invalid_inode_bitmap"); ctx->invalid_block_bitmap_flag = (int *) e2fsck_allocate_memory(ctx, sizeof(int) * fs->group_desc_count, "invalid_block_bitmap"); ctx->invalid_inode_table_flag = (int *) e2fsck_allocate_memory(ctx, sizeof(int) * fs->group_desc_count, "invalid_inode_table"); clear_problem_context(&pctx); /* * Verify the super block constants... */ check_super_value(ctx, "inodes_count", sb->s_inodes_count, MIN_CHECK, 1, 0); check_super_value(ctx, "blocks_count", ext2fs_blocks_count(sb), MIN_CHECK, 1, 0); check_super_value(ctx, "first_data_block", sb->s_first_data_block, MAX_CHECK, 0, ext2fs_blocks_count(sb)); check_super_value(ctx, "log_block_size", sb->s_log_block_size, MIN_CHECK | MAX_CHECK, 0, EXT2_MAX_BLOCK_LOG_SIZE - EXT2_MIN_BLOCK_LOG_SIZE); check_super_value(ctx, "log_frag_size", sb->s_log_frag_size, MIN_CHECK | MAX_CHECK, 0, sb->s_log_block_size); check_super_value(ctx, "frags_per_group", sb->s_frags_per_group, MIN_CHECK | MAX_CHECK, sb->s_blocks_per_group, bpg_max); check_super_value(ctx, "blocks_per_group", sb->s_blocks_per_group, MIN_CHECK | MAX_CHECK, 8, bpg_max); check_super_value(ctx, "inodes_per_group", sb->s_inodes_per_group, MIN_CHECK | MAX_CHECK, inodes_per_block, ipg_max); check_super_value(ctx, "r_blocks_count", ext2fs_r_blocks_count(sb), MAX_CHECK, 0, ext2fs_blocks_count(sb) / 2); check_super_value(ctx, "reserved_gdt_blocks", sb->s_reserved_gdt_blocks, MAX_CHECK, 0, fs->blocksize/4); if (sb->s_rev_level > EXT2_GOOD_OLD_REV) check_super_value(ctx, "first_ino", sb->s_first_ino, MIN_CHECK | MAX_CHECK, EXT2_GOOD_OLD_FIRST_INO, sb->s_inodes_count); inode_size = EXT2_INODE_SIZE(sb); check_super_value(ctx, "inode_size", inode_size, MIN_CHECK | MAX_CHECK, EXT2_GOOD_OLD_INODE_SIZE, fs->blocksize); if (inode_size & (inode_size - 1)) { pctx.num = inode_size; pctx.str = "inode_size"; fix_problem(ctx, PR_0_MISC_CORRUPT_SUPER, &pctx); ctx->flags |= E2F_FLAG_ABORT; /* never get here! */ return; } if ((ctx->flags & E2F_FLAG_GOT_DEVSIZE) && (ctx->num_blocks < ext2fs_blocks_count(sb))) { pctx.blk = ext2fs_blocks_count(sb); pctx.blk2 = ctx->num_blocks; if (fix_problem(ctx, PR_0_FS_SIZE_WRONG, &pctx)) { ctx->flags |= E2F_FLAG_ABORT; return; } } if (sb->s_log_block_size != (__u32) sb->s_log_frag_size) { pctx.blk = EXT2_BLOCK_SIZE(sb); pctx.blk2 = EXT2_FRAG_SIZE(sb); fix_problem(ctx, PR_0_NO_FRAGMENTS, &pctx); ctx->flags |= E2F_FLAG_ABORT; return; } should_be = sb->s_frags_per_group >> (sb->s_log_block_size - sb->s_log_frag_size); if (sb->s_blocks_per_group != should_be) { pctx.blk = sb->s_blocks_per_group; pctx.blk2 = should_be; fix_problem(ctx, PR_0_BLOCKS_PER_GROUP, &pctx); ctx->flags |= E2F_FLAG_ABORT; return; } should_be = (sb->s_log_block_size == 0) ? 1 : 0; if (sb->s_first_data_block != should_be) { pctx.blk = sb->s_first_data_block; pctx.blk2 = should_be; fix_problem(ctx, PR_0_FIRST_DATA_BLOCK, &pctx); ctx->flags |= E2F_FLAG_ABORT; return; } should_be = sb->s_inodes_per_group * fs->group_desc_count; if (sb->s_inodes_count != should_be) { pctx.ino = sb->s_inodes_count; pctx.ino2 = should_be; if (fix_problem(ctx, PR_0_INODE_COUNT_WRONG, &pctx)) { sb->s_inodes_count = should_be; ext2fs_mark_super_dirty(fs); } } /* * Verify the group descriptors.... */ first_block = sb->s_first_data_block; last_block = ext2fs_blocks_count(sb)-1; csum_flag = EXT2_HAS_RO_COMPAT_FEATURE(fs->super, EXT4_FEATURE_RO_COMPAT_GDT_CSUM); for (i = 0; i < fs->group_desc_count; i++) { pctx.group = i; if (!EXT2_HAS_INCOMPAT_FEATURE(fs->super, EXT4_FEATURE_INCOMPAT_FLEX_BG)) { first_block = ext2fs_group_first_block2(fs, i); last_block = ext2fs_group_last_block2(fs, i); } if ((ext2fs_block_bitmap_loc(fs, i) < first_block) || (ext2fs_block_bitmap_loc(fs, i) > last_block)) { pctx.blk = ext2fs_block_bitmap_loc(fs, i); if (fix_problem(ctx, PR_0_BB_NOT_GROUP, &pctx)) ext2fs_block_bitmap_loc_set(fs, i, 0); } if (ext2fs_block_bitmap_loc(fs, i) == 0) { ctx->invalid_block_bitmap_flag[i]++; ctx->invalid_bitmaps++; } if ((ext2fs_inode_bitmap_loc(fs, i) < first_block) || (ext2fs_inode_bitmap_loc(fs, i) > last_block)) { pctx.blk = ext2fs_inode_bitmap_loc(fs, i); if (fix_problem(ctx, PR_0_IB_NOT_GROUP, &pctx)) ext2fs_inode_bitmap_loc_set(fs, i, 0); } if (ext2fs_inode_bitmap_loc(fs, i) == 0) { ctx->invalid_inode_bitmap_flag[i]++; ctx->invalid_bitmaps++; } if ((ext2fs_inode_table_loc(fs, i) < first_block) || ((ext2fs_inode_table_loc(fs, i) + fs->inode_blocks_per_group - 1) > last_block)) { pctx.blk = ext2fs_inode_table_loc(fs, i); if (fix_problem(ctx, PR_0_ITABLE_NOT_GROUP, &pctx)) ext2fs_inode_table_loc_set(fs, i, 0); } if (ext2fs_inode_table_loc(fs, i) == 0) { ctx->invalid_inode_table_flag[i]++; ctx->invalid_bitmaps++; } free_blocks += ext2fs_bg_free_blocks_count(fs, i); free_inodes += ext2fs_bg_free_inodes_count(fs, i); if ((ext2fs_bg_free_blocks_count(fs, i) > sb->s_blocks_per_group) || (ext2fs_bg_free_inodes_count(fs, i) > sb->s_inodes_per_group) || (ext2fs_bg_used_dirs_count(fs, i) > sb->s_inodes_per_group)) ext2fs_unmark_valid(fs); should_be = 0; if (!ext2fs_group_desc_csum_verify(fs, i)) { if (fix_problem(ctx, PR_0_GDT_CSUM, &pctx)) { ext2fs_bg_flags_clear(fs, i, EXT2_BG_BLOCK_UNINIT); ext2fs_bg_flags_clear(fs, i, EXT2_BG_INODE_UNINIT); ext2fs_bg_itable_unused_set(fs, i, 0); should_be = 1; } ext2fs_unmark_valid(fs); } if (!csum_flag && (ext2fs_bg_flags_test(fs, i, EXT2_BG_BLOCK_UNINIT) || ext2fs_bg_flags_test(fs, i, EXT2_BG_INODE_UNINIT) || ext2fs_bg_itable_unused(fs, i) != 0)) { if (fix_problem(ctx, PR_0_GDT_UNINIT, &pctx)) { ext2fs_bg_flags_clear(fs, i, EXT2_BG_BLOCK_UNINIT); ext2fs_bg_flags_clear(fs, i, EXT2_BG_INODE_UNINIT); ext2fs_bg_itable_unused_set(fs, i, 0); should_be = 1; } ext2fs_unmark_valid(fs); } if (i == fs->group_desc_count - 1 && ext2fs_bg_flags_test(fs, i, EXT2_BG_BLOCK_UNINIT)) { if (fix_problem(ctx, PR_0_BB_UNINIT_LAST, &pctx)) { ext2fs_bg_flags_clear(fs, i, EXT2_BG_BLOCK_UNINIT); should_be = 1; } ext2fs_unmark_valid(fs); } if (ext2fs_bg_flags_test(fs, i, EXT2_BG_BLOCK_UNINIT) && !ext2fs_bg_flags_test(fs, i, EXT2_BG_INODE_UNINIT)) { if (fix_problem(ctx, PR_0_BB_UNINIT_IB_INIT, &pctx)) { ext2fs_bg_flags_clear(fs, i, EXT2_BG_BLOCK_UNINIT); should_be = 1; } ext2fs_unmark_valid(fs); } if (csum_flag && (ext2fs_bg_itable_unused(fs, i) > ext2fs_bg_free_inodes_count(fs, i) || ext2fs_bg_itable_unused(fs, i) > sb->s_inodes_per_group)) { pctx.blk = ext2fs_bg_itable_unused(fs, i); if (fix_problem(ctx, PR_0_GDT_ITABLE_UNUSED, &pctx)) { ext2fs_bg_itable_unused_set(fs, i, 0); should_be = 1; } ext2fs_unmark_valid(fs); } if (should_be) ext2fs_group_desc_csum_set(fs, i); /* If the user aborts e2fsck by typing ^C, stop right away */ if (ctx->flags & E2F_FLAG_SIGNAL_MASK) return; } /* * Update the global counts from the block group counts. This * is needed for an experimental patch which eliminates * locking the entire filesystem when allocating blocks or * inodes; if the filesystem is not unmounted cleanly, the * global counts may not be accurate. */ if ((free_blocks != ext2fs_free_blocks_count(sb)) || (free_inodes != sb->s_free_inodes_count)) { if (ctx->options & E2F_OPT_READONLY) ext2fs_unmark_valid(fs); else { ext2fs_free_blocks_count_set(sb, free_blocks); sb->s_free_inodes_count = free_inodes; ext2fs_mark_super_dirty(fs); } } if ((ext2fs_free_blocks_count(sb) > ext2fs_blocks_count(sb)) || (sb->s_free_inodes_count > sb->s_inodes_count)) ext2fs_unmark_valid(fs); /* * If we have invalid bitmaps, set the error state of the * filesystem. */ if (ctx->invalid_bitmaps && !(ctx->options & E2F_OPT_READONLY)) { sb->s_state &= ~EXT2_VALID_FS; ext2fs_mark_super_dirty(fs); } clear_problem_context(&pctx); #ifndef EXT2_SKIP_UUID /* * If the UUID field isn't assigned, assign it. */ if (!(ctx->options & E2F_OPT_READONLY) && uuid_is_null(sb->s_uuid)) { if (fix_problem(ctx, PR_0_ADD_UUID, &pctx)) { uuid_generate(sb->s_uuid); ext2fs_mark_super_dirty(fs); fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; } } #endif /* * Check to see if we should disable the test_fs flag */ profile_get_boolean(ctx->profile, "options", "clear_test_fs_flag", 0, 1, &clear_test_fs_flag); if (!(ctx->options & E2F_OPT_READONLY) && clear_test_fs_flag && (fs->super->s_flags & EXT2_FLAGS_TEST_FILESYS) && (fs_proc_check("ext4") || check_for_modules("ext4"))) { if (fix_problem(ctx, PR_0_CLEAR_TESTFS_FLAG, &pctx)) { fs->super->s_flags &= ~EXT2_FLAGS_TEST_FILESYS; ext2fs_mark_super_dirty(fs); fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; } } /* * For the Hurd, check to see if the filetype option is set, * since it doesn't support it. */ if (!(ctx->options & E2F_OPT_READONLY) && fs->super->s_creator_os == EXT2_OS_HURD && (fs->super->s_feature_incompat & EXT2_FEATURE_INCOMPAT_FILETYPE)) { if (fix_problem(ctx, PR_0_HURD_CLEAR_FILETYPE, &pctx)) { fs->super->s_feature_incompat &= ~EXT2_FEATURE_INCOMPAT_FILETYPE; ext2fs_mark_super_dirty(fs); fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; } } /* * If we have any of the compatibility flags set, we need to have a * revision 1 filesystem. Most kernels will not check the flags on * a rev 0 filesystem and we may have corruption issues because of * the incompatible changes to the filesystem. */ if (!(ctx->options & E2F_OPT_READONLY) && fs->super->s_rev_level == EXT2_GOOD_OLD_REV && (fs->super->s_feature_compat || fs->super->s_feature_ro_compat || fs->super->s_feature_incompat) && fix_problem(ctx, PR_0_FS_REV_LEVEL, &pctx)) { ext2fs_update_dynamic_rev(fs); ext2fs_mark_super_dirty(fs); fs->flags &= ~EXT2_FLAG_MASTER_SB_ONLY; } /* * Clean up any orphan inodes, if present. */ if (!(ctx->options & E2F_OPT_READONLY) && release_orphan_inodes(ctx)) { fs->super->s_state &= ~EXT2_VALID_FS; ext2fs_mark_super_dirty(fs); } /* * Unfortunately, due to Windows' unfortunate design decision * to configure the hardware clock to tick localtime, instead * of the more proper and less error-prone UTC time, many * users end up in the situation where the system clock is * incorrectly set at the time when e2fsck is run. * * Historically this was usually due to some distributions * having buggy init scripts and/or installers that didn't * correctly detect this case and take appropriate * countermeasures. However, it's still possible, despite the * best efforts of init script and installer authors to not be * able to detect this misconfiguration, usually due to a * buggy or misconfigured virtualization manager or the * installer not having access to a network time server during * the installation process. So by default, we allow the * superblock times to be fudged by up to 24 hours. This can * be disabled by setting options.accept_time_fudge to the * boolean value of false in e2fsck.conf. We also support * options.buggy_init_scripts for backwards compatibility. */ profile_get_boolean(ctx->profile, "options", "accept_time_fudge", 0, 1, &accept_time_fudge); profile_get_boolean(ctx->profile, "options", "buggy_init_scripts", 0, accept_time_fudge, &accept_time_fudge); ctx->time_fudge = accept_time_fudge ? 86400 : 0; profile_get_boolean(ctx->profile, "options", "broken_system_clock", 0, 0, &broken_system_clock); /* * Check to see if the superblock last mount time or last * write time is in the future. */ if (!broken_system_clock && !(ctx->flags & E2F_FLAG_TIME_INSANE) && fs->super->s_mtime > (__u32) ctx->now) { pctx.num = fs->super->s_mtime; problem = PR_0_FUTURE_SB_LAST_MOUNT; if (fs->super->s_mtime <= (__u32) ctx->now + ctx->time_fudge) problem = PR_0_FUTURE_SB_LAST_MOUNT_FUDGED; if (fix_problem(ctx, problem, &pctx)) { fs->super->s_mtime = ctx->now; ext2fs_mark_super_dirty(fs); } } if (!broken_system_clock && !(ctx->flags & E2F_FLAG_TIME_INSANE) && fs->super->s_wtime > (__u32) ctx->now) { pctx.num = fs->super->s_wtime; problem = PR_0_FUTURE_SB_LAST_WRITE; if (fs->super->s_wtime <= (__u32) ctx->now + ctx->time_fudge) problem = PR_0_FUTURE_SB_LAST_WRITE_FUDGED; if (fix_problem(ctx, problem, &pctx)) { fs->super->s_wtime = ctx->now; ext2fs_mark_super_dirty(fs); } } /* * Move the ext3 journal file, if necessary. */ e2fsck_move_ext3_journal(ctx); /* * Fix journal hint, if necessary */ e2fsck_fix_ext3_journal_hint(ctx); /* * Add dirhash hint if necessary */ e2fsck_fix_dirhash_hint(ctx); return; } /* * Check to see if we should backup the master sb to the backup super * blocks. Returns non-zero if the sb should be backed up. */ /* * A few flags are set on the fly by the kernel, but only in the * primary superblock. This is actually a bad thing, and we should * try to discourage it in the future. In particular, for the newer * ext4 files, especially EXT4_FEATURE_RO_COMPAT_DIR_NLINK and * EXT3_FEATURE_INCOMPAT_EXTENTS. So some of these may go away in the * future. EXT3_FEATURE_INCOMPAT_RECOVER may also get set when * copying the primary superblock during online resize. * * The kernel will set EXT2_FEATURE_COMPAT_EXT_ATTR, but * unfortunately, we shouldn't ignore it since if it's not set in the * backup, the extended attributes in the filesystem will be stripped * away. */ #define FEATURE_RO_COMPAT_IGNORE (EXT2_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_DIR_NLINK) #define FEATURE_INCOMPAT_IGNORE (EXT3_FEATURE_INCOMPAT_EXTENTS| \ EXT3_FEATURE_INCOMPAT_RECOVER) int check_backup_super_block(e2fsck_t ctx) { ext2_filsys fs = ctx->fs; errcode_t retval; dgrp_t g; blk64_t sb; int ret = 0; char buf[SUPERBLOCK_SIZE]; struct ext2_super_block *backup_sb; /* * If we are already writing out the backup blocks, then we * don't need to test. Also, if the filesystem is invalid, or * the check was aborted or cancelled, we also don't want to * do the backup. If the filesystem was opened read-only then * we can't do the backup. */ if (((fs->flags & EXT2_FLAG_MASTER_SB_ONLY) == 0) || !ext2fs_test_valid(fs) || (fs->super->s_state & EXT2_ERROR_FS) || (ctx->flags & (E2F_FLAG_ABORT | E2F_FLAG_CANCEL)) || (ctx->options & E2F_OPT_READONLY)) return 0; for (g = 1; g < fs->group_desc_count; g++) { if (!ext2fs_bg_has_super(fs, g)) continue; sb = fs->super->s_first_data_block + (g * fs->super->s_blocks_per_group); retval = io_channel_read_blk(fs->io, sb, -SUPERBLOCK_SIZE, buf); if (retval) continue; backup_sb = (struct ext2_super_block *) buf; #ifdef WORDS_BIGENDIAN ext2fs_swap_super(backup_sb); #endif if ((backup_sb->s_magic != EXT2_SUPER_MAGIC) || (backup_sb->s_rev_level > EXT2_LIB_CURRENT_REV) || ((backup_sb->s_log_block_size + EXT2_MIN_BLOCK_LOG_SIZE) > EXT2_MAX_BLOCK_LOG_SIZE) || (EXT2_INODE_SIZE(backup_sb) < EXT2_GOOD_OLD_INODE_SIZE)) continue; #define SUPER_INCOMPAT_DIFFERENT(x) \ ((fs->super->x & ~FEATURE_INCOMPAT_IGNORE) != \ (backup_sb->x & ~FEATURE_INCOMPAT_IGNORE)) #define SUPER_RO_COMPAT_DIFFERENT(x) \ ((fs->super->x & ~FEATURE_RO_COMPAT_IGNORE) != \ (backup_sb->x & ~FEATURE_RO_COMPAT_IGNORE)) #define SUPER_DIFFERENT(x) \ (fs->super->x != backup_sb->x) if (SUPER_DIFFERENT(s_feature_compat) || SUPER_INCOMPAT_DIFFERENT(s_feature_incompat) || SUPER_RO_COMPAT_DIFFERENT(s_feature_ro_compat) || SUPER_DIFFERENT(s_blocks_count) || SUPER_DIFFERENT(s_inodes_count) || memcmp(fs->super->s_uuid, backup_sb->s_uuid, sizeof(fs->super->s_uuid))) ret = 1; break; } return ret; }