summaryrefslogtreecommitdiff
path: root/ipl/procs/pdco.icn
diff options
context:
space:
mode:
authorIgor Pashev <pashev.igor@gmail.com>2013-01-27 23:51:56 +0000
committerIgor Pashev <pashev.igor@gmail.com>2013-01-27 23:51:56 +0000
commit6ab0c0f5bf14ed9c15370407b9ee7e0b4b089ae1 (patch)
tree926065cf45450116098db664e3c61dced9e1f21a /ipl/procs/pdco.icn
downloadicon-6ab0c0f5bf14ed9c15370407b9ee7e0b4b089ae1.tar.gz
Initial upstream version 9.4.3upstream/9.4.3
Diffstat (limited to 'ipl/procs/pdco.icn')
-rw-r--r--ipl/procs/pdco.icn1197
1 files changed, 1197 insertions, 0 deletions
diff --git a/ipl/procs/pdco.icn b/ipl/procs/pdco.icn
new file mode 100644
index 0000000..cd239c1
--- /dev/null
+++ b/ipl/procs/pdco.icn
@@ -0,0 +1,1197 @@
+############################################################################
+#
+# File: pdco.icn
+#
+# Subject: Procedures for programmer-defined control operations
+#
+# Authors: Ralph E. Griswold and Robert J. Alexander
+#
+# Date: March 4, 2003
+#
+############################################################################
+#
+# This file is in the public domain.
+#
+############################################################################
+#
+# These procedures use co-expressions to used to model the built-in
+# control structures of Icon and also provide new ones.
+#
+# AddTabbyPDCO{e, i} adds tabby to treadling sequence
+#
+# AllparAER{e1,e2, ...}
+# parallel evaluation with last result
+# used for short sequences
+#
+# AltPDCO{e1,e2} models e1 | e2
+#
+# BinopPDCO{op,e1,e2} produces the result of applying op to e1 and e2
+#
+# CFapproxPDCO{e} produce sequence of approximations for the
+# continued-fraction sequence e
+#
+# ComparePDCO{e1,e2} compares result sequences of e1 and e2
+#
+# ComplintPDCO{e} produces the integers not in e
+#
+# CondPDCO{e1,e2, ...}
+# models the generalized Lisp conditional
+#
+# CumsumPDCO{e} generates the cumulative sum of the terms of e
+#
+# CycleparAER{e1,e2, ...}
+# parallel evaluation with shorter sequences
+# re-evaluated
+#
+# DecimatePDCO{e1, e2}
+# "decimate" e1 by deleting e2-numbered terms
+# (e2 is assumed to be an increasing sequence).
+#
+# DecimationPDCO{e} produce a decimation sequence from e1 by
+# deleting even-valued terms and replacing
+# odd-valued terms by their position.
+#
+# DecollatePDCO{e, i} decollate e according to parity of i
+#
+# DeltaPDCO{e1} produces the difference of the values in e1
+#
+# ElevatePDCO{e1, m, n}
+# elevate e1 mod n to n values
+#
+# EveryPDCO{e1,e2} models every e1 do e2
+#
+# ExtendSeqPDCO{e1,i} extends e1 to i results
+#
+# ExtractAER{e1,e2, ...}
+# extract results of even-numbered arguments
+# according to odd-numbered values
+#
+# FifoAER{e1,e2, ...} reversal of lifo evaluation
+#
+# FriendlyPDCO{m, k, e3}
+# friendly sequence starting at k shaft mod m
+#
+# GaltPDCO{e1,e2, ...}
+# produces the results of concatenating the
+# sequences for e1, e2, ...
+#
+# GconjPDCO{e1,e2,...}
+# models generalized conjunction: e1 & e2 & ...
+#
+# The programmer-defined control operation above shows an interesting
+# technique for modeling conjunction via recursive generative
+# procedures.
+#
+# HistoPDCO{e,i} generates histogram for e limited to i terms;
+# default 100.
+#
+# IncreasingPDCO{e} filters out non-increasing values in integer
+# sequence
+#
+# IndexPDCO{e1,e2} produce e2-th terms from e1
+#
+# InterPDCO{e1,e2, ...}
+# produces results of e1, e2, ... alternately
+#
+# LcondPDCO{e1,e2, ...}
+# models the Lisp conditional
+#
+# LengthPDCO{e} returns the length of e
+#
+# LifoAER{e1,e2, ...} models standard Icon "lifo" evaluation
+#
+# LimitPDCO{e1,e2} models e1 \ e2
+#
+# ListPDCO{e,i} produces a list of the first i results from e
+#
+# LowerTrimPDCO{e} lower trim
+#
+# MapPDCO{e1,e2} maps values of e1 in the order they first appear
+# to values of e2 (as needed)
+#
+# OddEven{e} forces odd/even sequence
+#
+# PalinPDCO{e} x produces results of concatenating the
+# sequences for e and then its reverse.
+#
+# ParallelPDCO{e1,e2, ...}
+# synonym for InterPDCO{e1, e2, ...}
+#
+# ParallelAER{e1,e2, ...}
+# parallel evaluation terminating on
+# shortest sequence
+#
+# PatternPalinPDCO{e, i}
+# produces pattern palindrome. If i is given,
+# e is truncated to length i.
+#
+# PeriodPDCO{e, i} generates the periodic part of e; i values are
+# used to find the period
+#
+# PermutePDCO{e1,e2} permutes each n-subsequence of e1 by the
+# n positional values in lists from e2. If a list does
+# not consist of all the integers in the range 1 to
+# n, "interesting" things happen (see the use
+# of map() for transpositions).
+#
+# PivotPDCO{e, m} produces pivot points from e % m; m default 100
+#
+# PosDiffPDCO{e1,e2} produces positions at which e1 and e2 differ
+#
+# PositionsPDCO{e, i} generates the positions at which i occurs in e.
+#
+# RandomPDCO{e1,e2, ...}
+# produces results of e1, e2, ... at random
+#
+# ReducePDCO{op, x, e}
+# "reduces" the sequence e by starting with the value x
+# and repetitively applying op to the current
+# value and values from e.
+#
+# RemoveDuplPDCO{e} removes duplicate adjacent values.
+#
+# RepaltPDCO{e} models |e
+#
+# RepeatPDCO{e1, e2} repeats the sequence for e1 e2 times
+#
+# ReplPDCO{e1,e2} replicates each value in e1 by the corresponding
+# integer value in e2.
+#
+# ResumePDCO{e1,e2,e3}
+# models every e1 \ e2 do e3
+#
+# ReversePDCO{e, i} produces the results of e in reverse order. If i
+# is given, e is truncated to i values.
+#
+# RotatePDCO(e, i) rotates the sequence for e left by i; negative
+# i rotates to the right
+#
+# SelfreplPDCO{e1,i} produces e1 * i copies of e1
+#
+# SeqlistPDCO{e1, i} produce list with first i values of e1; i
+# defaults to all values
+#
+# SimpleAER{e1,e2, ...}
+# simple evaluation with only success or
+# failure
+#
+# SkipPDCO{e1,e2} generate e1 skipping each e2 terms
+#
+# SmodPDCO{e1,e2} reduce terms in e1 (shaft) modulus e2
+#
+# SpanPDCO{e,m} fill in between consecutive (integer) values in
+# e % m; m default 100
+#
+# SumlimitPDCO{e, i, j}
+# produces values of e until their sum exceeds
+# i. Values less than j are discarded.
+#
+# TrinopPDCO{op,e2,e2,e3}
+# produces the result of applying op to e1, e2, and e3
+#
+# UndulantPDCO{e} produces the undulant for e.
+#
+# UniquePDCO{e} produces the unique results of e in the order
+# they first appear
+#
+# UnopPDCO{e1,e2} produces the result of applying e1 to e2
+#
+# UpperTrimPDCO{e} upper trim
+#
+# ValrptPDCO{e1,e2} synonym for ReplPDCO
+#
+# WobblePDCO{e} produces e(1), e(2), e(1), e(2), e(3), e(2), ...
+#
+# Comments:
+#
+# Because of the handling of the scope of local identifiers in
+# co-expressions, expressions in programmer-defined control
+# operations cannot communicate through local identifiers. Some
+# constructions, such as break and return, cannot be used in argu-
+# ments to programmer-defined control operations.
+#
+############################################################################
+#
+# Requires: co-expressions
+#
+############################################################################
+#
+# Links: lists, periodic, rational
+#
+############################################################################
+
+link lists
+link periodic
+link rational
+
+procedure AddTabbyPDCO(L) #: PDCO to add tabby to treadling
+ local i
+
+ i := @L[2] | 4 # number of regular treadles
+
+ suspend InterPDCO([L[1], create |((i + 1) | (i + 2))])
+
+end
+
+procedure AllparAER(L) #: PDAE for parallel evaluation with repeats
+ local i, L1, done
+
+ L1 := list(*L)
+
+ done := list(*L,1)
+
+ every i := 1 to *L do L1[i] := @L[i] | fail
+
+ repeat {
+ suspend L1[1] ! L1[2:0]
+ every i := 1 to *L do
+ if done[i] = 1 then ((L1[i] := @L[i]) | (done[i] := 0))
+ if not(!done = 1) then fail
+ }
+
+end
+
+procedure AltPDCO(L) #: PDCO to model alternation
+
+ suspend |@L[1]
+ suspend |@L[2]
+
+end
+
+procedure BinopPDCO(L) #: PDCO to apply binary operation to sequences
+ local op, x, y
+
+ repeat {
+ op := @L[1]
+ op := proc(op, 2) | fail
+ (x := @L[2] & y := @L[3]) | fail
+ suspend op(x, y)
+ }
+
+end
+
+procedure CFapproxPDCO(L) #: PDCO for continued-fraction approximations
+ local prev_n, prev_m, n, m, t
+
+ prev_n := [1]
+ prev_m := [0, 1]
+
+ put(prev_n, (@L[1]).denom) | fail
+
+ while t := @L[1] do {
+ n := t.denom * get(prev_n) + t.numer * prev_n[1]
+ m := t.denom * get(prev_m) + t.numer * prev_m[1]
+ suspend rational(n, m, 1)
+ put(prev_n, n)
+ put(prev_m, m)
+ if t.denom ~= 0 then { # renormalize
+ every !prev_n /:= t.denom
+ every !prev_m /:= t.denom
+ }
+ }
+
+end
+
+procedure ComparePDCO(L) #: PDCO to compare sequences
+ local x1, x2
+
+ while x1 := @L[1] do
+ (x1 === @L[2]) | fail
+ if @L[2] then fail else return
+
+end
+
+procedure ComplintPDCO(L) #: PDCO to generate integers not in sequence
+ local i, j # EXPECTS MONOTONE NON-DECREASING SEQUENCE
+
+ j := 0
+
+ while i := @L[1] do {
+ i := integer(i) | stop("*** invalid value in sequence to Compl{}")
+ suspend j to i - 1
+ j := i + 1
+ }
+
+ suspend seq(j)
+
+end
+
+procedure CondPDCO(L) #: PDCO for generalized Lisp conditional
+ local i, x
+
+ every i := 1 to *L do
+ if x := @L[i] then {
+ suspend x
+ suspend |@L[i]
+ fail
+ }
+
+end
+
+procedure CumsumPDCO(L) #: PDCO to produce cumulative sum
+ local i
+
+ i := 0
+
+ while i +:= @L[1] do
+ suspend i
+
+end
+
+procedure CycleparAER(L) #: PDAE for parallel evaluation with cycling
+ local i, L1, done
+
+ L1 := list(*L)
+
+ done := list(*L,1)
+
+ every i := 1 to *L do L1[i] := @L[i] | fail
+
+ repeat {
+ suspend L1[1]!L1[2:0]
+ every i := 1 to *L do {
+ if not(L1[i] := @L[i]) then {
+ done[i] := 0
+ if !done = 1 then {
+ L[i] := ^L[i]
+ L1[i] := @L[i] | fail
+ }
+ else fail
+ }
+ }
+ }
+end
+
+procedure DecimatePDCO(L) #: PDCO to decimate sequence
+ local i, j, count
+
+ count := 0
+
+ while j := @L[2] do {
+ while i := @L[1] | fail do {
+ count +:= 1
+ if count = j then break next
+ else suspend i
+ }
+ }
+
+end
+
+procedure DecimationPDCO(L) #: PDCO to create decimation sequence
+ local i, count
+
+ count := 0
+
+ while i := @L[1] do {
+ count +:= 1
+ if i % 2 = 1 then suspend count
+ }
+
+end
+procedure DecollatePDCO(L) #: PDCO to decollate sequence
+ local i, j, x
+
+ i := @L[2] | 1
+
+ i %:= 2
+
+ j := 0
+
+ while x := @L[1] do {
+ j +:= 1
+ if j % 2 = i then suspend x
+ }
+
+end
+
+procedure DeltaPDCO(L) #: PDCO to generate difference sequence
+ local i, j
+
+ i := @L[1] | fail
+
+ while j := @L[1] do {
+ suspend j - i
+ i := j
+ }
+
+end
+
+procedure ElevatePDCO(L) #: PDCO to elevate sequence
+ local n, m, shafts, i, j, k
+
+ m := @L[2] | fail
+ n := @L[3] | fail
+
+ shafts := list(m)
+
+ every !shafts := []
+
+ every i := 1 to m do
+ every put(shafts[i], i to n by m)
+
+ while j := @L[1] do {
+ i := j % m + 1
+ k := get(shafts[i])
+ suspend k
+ put(shafts[i], k)
+ }
+
+end
+
+procedure EveryPDCO(L) #: PDCO to model iteration
+
+ while @L[1] do @^L[2]
+
+end
+
+procedure ExtendSeqPDCO(L) #: PDCO to extend sequence
+ local count
+
+ count := integer(@L[2]) | fail
+ if count < 1 then fail
+
+ repeat {
+ suspend |@L[1] do {
+ count -:= 1
+ if count = 0 then fail
+ }
+ if *L[1] == 0 then fail
+ L[1] := ^L[1]
+ }
+
+end
+
+procedure ExtractAER(L) #: PDAE to extract values
+ local i, j, n, L1
+
+ L1 := list(*L/2)
+
+ repeat {
+ i := 1
+ while i < *L do {
+ n := @L[i] | fail
+ every 1 to n do
+ L1[(i + 1)/2] := @L[i + 1] | fail
+ L[i + 1] := ^L[i + 1]
+ i +:= 2
+ }
+ suspend L1[1] ! L1[2:0]
+ }
+
+end
+
+procedure FifoAER(L) #: PDAE for reversal of lifo evaluation
+ local i, L1, j
+
+ L1 := list(*L)
+
+ j := *L
+
+ repeat {
+ repeat {
+ if L1[j] := @L[j]
+ then {
+ j -:= 1
+ (L[j] := ^L[j]) | break
+ }
+ else if (j +:= 1) > *L then fail
+ }
+ suspend L1[1] ! L1[2:0]
+ j := 1
+ }
+
+end
+
+procedure FriendlyPDCO(L) # PDCO for friendly sequences
+ local mod, state, value
+
+ mod := @L[1] | fail
+ state := @L[2]
+ if /state then state := ?mod
+
+ repeat {
+ suspend state
+ value := @L[3] | fail
+ if value % 2 = 0 then state +:= 1
+ else state -:= 1
+ state := residue(state, mod, 1)
+ }
+
+end
+
+procedure GaltPDCO(L) #: PDCO to concatenate sequences
+ local C
+
+ every C := !L do
+ suspend |@C
+
+end
+
+procedure GconjPDCO(L) #: PDCO for generalized conjunction
+
+ suspend Gconj_(L,1)
+
+end
+
+procedure Gconj_(L,i,v)
+
+ local e
+ if e := L[i] then {
+ suspend v:= |@e & Gconj_(L,i + 1,v)
+ L[i] := ^e
+ }
+ else suspend v
+
+end
+
+procedure HistoPDCO(L) #: histogram
+ local limit, results, seq
+
+ limit := @L[2] | 100
+
+ seq := []
+
+ while put(seq, @L[1])
+
+ results := list(max ! seq, 0)
+
+ every results[!seq] +:= 1
+
+ suspend !results
+
+end
+
+
+procedure IncreasingPDCO(L) #: PDCO to filter out non-increasing values
+ local last, current
+
+ last := @L[1] | fail
+
+ suspend last
+
+ while current := @L[1] do {
+ if current <= last then next
+ else {
+ suspend current
+ last := current
+ }
+ }
+
+end
+
+procedure IndexPDCO(L) #: PDCO to select terms by position
+ local i, j, x
+
+ j := @L[2] | fail
+
+ every i := seq() do { # position
+ x := @L[1] | fail
+ if j = i then {
+ suspend x
+ repeat {
+ j := @L[2] | fail
+ if j > i then break
+ }
+ }
+ }
+
+end
+
+procedure InterPDCO(L) #: PDCO to interleave sequences
+
+ suspend |@!L
+
+end
+
+procedure LcondPDCO(L) #: PDCO for Lisp conditional
+ local i
+
+ every i := 1 to *L by 2 do
+ if @L[i] then {
+ suspend |@L[i + 1]
+ fail
+ }
+
+end
+
+procedure LengthPDCO(L) #: PDCO to produce length of sequence
+ local i
+
+ i := 0
+
+ while @L[1] do i +:= 1
+
+ return i
+
+end
+
+procedure LifoAER(L) #: PDAE for standard lifo evaluation
+ local i, L1, j
+
+ L1 := list(*L)
+
+ j := 1
+
+ repeat {
+ repeat
+ if L1[j] := @L[j]
+ then {
+ j +:= 1
+ (L[j] := ^L[j]) | break
+ }
+ else if (j -:= 1) = 0
+ then fail
+ suspend L1[1] ! L1[2:0]
+ j := *L
+ }
+
+end
+
+procedure LimitPDCO(L) #: PDCO to model limitation
+ local i, x
+
+ while i := @L[2] do {
+ every 1 to i do
+ if x := @L[1] then suspend x
+ else break
+ L[1] := ^L[1]
+ }
+
+end
+
+procedure ListPDCO(L) #: list from sequence
+ local limit, result
+
+ limit := @L[2] | 100
+
+ result := []
+
+ every put(result, |@L[1]) \ limit
+
+ return result
+
+end
+
+procedure LowerTrimPDCO(L) #: lower trimming
+ local i
+
+ while i := @L[1] do {
+ i -:= 1
+ if i ~= 0 then suspend i
+ }
+
+end
+
+procedure MapPDCO(L) #: PDCO to map values
+ local maptbl, x
+
+ maptbl := table()
+
+ while x := @L[1] do {
+ /maptbl[x] := (@L[2] | fail)
+ suspend maptbl[x]
+ }
+
+end
+
+procedure OddEvenPDCO(L) #: PDCO to force odd/even sequence
+ local val, val_old
+
+ while val := @L[1] do {
+ if val % 2 = \val_old % 2 then
+ suspend val_old + 1
+ suspend val
+ val_old := val
+ }
+
+end
+
+procedure PalinPDCO(L) #: PDCO to produce palindromic sequence
+ local tail, x
+
+ tail := []
+
+ while x := @L[1] do {
+ suspend x
+ push(tail, x)
+ }
+
+ every suspend !tail
+
+end
+
+procedure ParallelPDCO(L) #: synonym for Inter
+
+ ParallelPDCO := InterPDCO # redefine for next use
+
+ suspend InterPDCO(L)
+
+end
+
+procedure ParallelAER(L) #: PDAE for parallel evaluation
+ local i, L1
+
+ L1 := list(*L)
+
+ repeat {
+ every i := 1 to *L do
+ L1[i] := @L[i] | fail
+ suspend L1[1] ! L1[2:0]
+ }
+
+end
+
+procedure PatternPalinPDCO(L) #: PDCO to produce pattern palindrome
+ local tail, x, limit
+
+ tail := []
+
+ limit := @L[2] | (2 ^ 15) # good enough
+
+ every 1 to limit do {
+ x := @L[1] | break
+ suspend x
+ push(tail, x)
+ }
+
+ get(tail)
+
+ pull(tail)
+
+ every suspend !tail
+
+end
+
+procedure PeriodPDCO(L) #: PDCO for periodic part of sequence
+ local limit, result
+
+ limit := @L[2] | 300
+
+ result := []
+
+ every put(result, |@L[1]) \ limit
+
+ result := repeater(result)
+
+ suspend !result[2]
+
+end
+
+procedure PermutePDCO(L) #: PDCO for permutations
+ local temp1, temp2, chunk, i, x
+
+ repeat {
+ temp1 := @L[2] | fail
+ temp2 := []
+ every put(temp2, i := 1 to *temp1)
+ chunk := []
+ every 1 to i do
+ put(chunk, @L[1]) | fail
+ suspend !lmap(temp1, temp2, chunk)
+ }
+
+end
+
+procedure PivotPDCO(L) #: PDCO to generate pivot points
+ local current, direction, m, new
+
+ m := @L[2]
+ /m := 100
+ direction := "+"
+
+ current := @L[1] % m | fail
+
+ suspend current
+
+ repeat {
+ new := @L[1] % m | break
+ if new = current then next
+ case direction of {
+ "+": {
+ if new > current then {
+ current := new
+ next
+ }
+ else {
+ suspend current
+ current := new
+ direction := "-"
+ }
+ }
+ "-": {
+ if new < current then {
+ current := new
+ next
+ }
+ else {
+ suspend current
+ current := new
+ direction := "+"
+ }
+ }
+ }
+
+ }
+
+ return current
+
+end
+
+procedure PositionsPDCO(L) # positions in e of i
+ local i, count, j
+
+ i := integer(@L[2]) | fail
+
+ count := 0
+
+ while j := @L[1] do {
+ count +:= 1
+ if j = i then suspend count
+ }
+
+end
+
+procedure PosDiffPDCO(L) # PDCO to generate positions of difference
+ local i, x, y
+
+ i := 0
+
+ while x := @L[1] & y := @L[2] do {
+ i +:= 1
+ if x ~=== y then suspend i
+ }
+
+end
+
+procedure RandomPDCO(L) #: PDCO to generate from sequences at random
+ local x
+
+ while x := @?L do suspend x
+
+end
+
+procedure RepaltPDCO(L) #: PDCO to model repeated alternation
+ local x
+
+ repeat {
+ suspend |@L[1]
+ if *L[1] == 0 then fail
+ L[1] := ^L[1]
+ }
+
+end
+
+procedure ReducePDCO(L) #: PDCO to reduce sequence using binary operation
+ local op, x
+
+ op := proc(@L[1], 2) | stop("*** invalid operation for Reduce{}")
+ x := @L[2] | fail
+
+ while x := op(x, @L[3])
+
+ return x
+
+end
+
+procedure RepeatPDCO(L) #: PDCO to repeat sequence
+ local i, x
+
+ while i := @L[2] do {
+ if not(i := integer(i)) then stop("*** invalid repetition in Repeat{}")
+ every 1 to i do {
+ suspend |@L[1]
+ L[1] := ^L[1]
+ }
+ }
+
+end
+
+procedure RemoveDuplPDCO(L) #: PDCO for remove duplicate values in a sequence
+ local old, new
+
+ old := @L[1] | fail
+ suspend old
+
+ repeat {
+ new := @L[1] | fail
+ if new === old then next
+ else {
+ suspend new
+ old := new
+ }
+ }
+
+end
+
+procedure ReplPDCO(L) #: PDCO to replicate values in a sequence
+ local x, i
+
+ i := 1 # default
+
+ while x := @L[1] do {
+ i := @L[2]
+ suspend (1 to i) & x
+ }
+
+end
+
+procedure ResumePDCO(L) #: PDCO to model limited iteration
+ local i
+
+ while i := @L[2] do {
+ L[1] := ^L[1]
+ every 1 to i do if @L[1] then @^L[3] else break
+ }
+
+end
+
+procedure ReversePDCO(L) #: PDCO to reverse sequence
+ local result, limit
+
+ result := []
+
+ limit := @L[2]
+
+ /limit := 2 ^ 15 # enough
+
+ every 1 to limit do
+ push(result, @L[1]) | break
+
+ suspend !result
+
+end
+
+procedure RotatePDCO(L) #: PDCO to rotate sequence
+ local result, i, x
+
+ i := integer(@L[2]) | stop("*** invalid specification in Rotate{}")
+
+ result := []
+
+ if i <= 0 then { # if not to right, works for infinite sequence
+ every 1 to -i do
+ put(result, @L[1]) | break
+ while x := @L[1] do
+ suspend x
+ suspend !result
+ }
+
+ else {
+ while put(result, @L[1])
+ suspend !lrotate(result, i)
+ }
+
+end
+
+procedure SelfreplPDCO(L) #: PDCO to produce multiple of values in sequence
+ local i, j
+
+ j := @L[2] | 1
+ j := integer(j) | stop("*** invalid second argument to Selfrepl{}")
+
+ while i := @L[1] do {
+ i := integer(i) | stop("*** invalid value in Selfrepl{}")
+ suspend (1 to i * j) & i
+ }
+
+end
+
+procedure SeqlistPDCO(L) #: PDCO to return list of values
+ local result, limit
+
+ result := []
+
+ limit := @L[2] | 2 ^ 15 # crude ...
+
+ every 1 to limit do
+ put(result, @L[1]) | break
+
+ return result
+
+end
+
+procedure SimpleAER(L) #: PDAE for simple evaluation
+ local i, L1
+
+ L1 := list(*L)
+
+ every i := 1 to *L do
+ L1[i] := @L[i] | fail
+
+ return L1[1] ! L1[2:0]
+
+end
+
+procedure SkipPDCO(L) #: PDCO to skip terms
+ local gap
+
+ suspend @L[1]
+
+ repeat {
+ gap := @L[2] | fail
+ every 1 to gap do
+ @L[1] | fail
+ suspend @L[1]
+ }
+
+end
+
+procedure SmodPDCO(L) #: generalized modular reduction
+ local i, m
+
+ while i := @L[1] do {
+ m := @L[2] | fail
+ suspend residue(i, m, 1)
+ }
+
+end
+
+procedure SpanPDCO(L) #: fill in gaps in integer sequences
+ local i, j, m
+
+ j := @L[1] | fail
+
+ m := @L[2]
+ /m := 100
+
+ while i := residue(@L[1], m, 1) do {
+ if i > j then suspend j to i - 1
+ else if i < j then suspend j to i + 1 by -1
+ j := i
+ }
+
+ suspend j
+
+end
+
+procedure SumlimitPDCO(L) #: PDCO to sum sequence to a limit
+ local sum, min, limit, i
+
+ limit := integer(@L[2]) | 2 ^ 15
+ min := integer(@L[3]) | 0
+ sum := 0
+
+ while i := @L[1] do {
+ if i < min then next
+ if (sum + i) > limit then fail
+ sum +:= i
+ suspend i
+ }
+
+end
+
+procedure TrinopPDCO(L) #: PDCO to apply trinary operator to sequences
+ local op, x, y, z
+
+ repeat {
+ op := proc(@L[1], 3) | fail
+ x := @L[2] & y := @L[3] & z := @L[4] | fail
+ suspend op(x, y, z)
+ }
+
+end
+
+procedure UndulantPDCO(L) #: PDCO to produce undulant
+ local i, j, dir
+
+ i := @L[1] | fail
+
+ suspend i # first value always is in undulant
+
+ j := i # last term in undulant
+
+ while i := @L[1] do { # get initial direction
+ if i > j then {
+ dir := -1
+ break
+ }
+ else if i < j then {
+ dir := 1
+ break
+ }
+ }
+
+ j := i
+
+ while i := @L[1] do {
+ if i < j then {
+ if dir = -1 then {
+ suspend j
+ j := i
+ dir := 1
+ }
+ else j := i
+ }
+ if i > j then {
+ if dir = 1 then {
+ suspend j
+ j := i
+ dir := -1
+ }
+ else j := i
+ }
+ }
+
+ fail
+
+end
+
+procedure UniquePDCO(L) #: PDCO to filter out duplication values
+ local done, x
+
+ done := set()
+
+ while x := @L[1] do
+ if member(done, x) then next
+ else {
+ insert(done, x)
+ suspend x
+ }
+
+end
+
+procedure UnopPDCO(L) #: PDCO to apply unary operation to sequence
+ local op, x
+
+ repeat {
+ op := @L[1]
+ op := proc(op, 1) | fail
+ x := @L[2] | fail
+ suspend op(x)
+ }
+
+end
+
+procedure UpperTrimPDCO(L) #: upper sequence trimming
+ local done, i
+
+ done := set()
+
+ while i := @L[1] do {
+ if not member(done, i) then
+ insert(done, i)
+ else suspend i
+ }
+
+end
+
+procedure ValrptPDCO(L) #: synonym for Repl
+
+ ValrptPDCO := ReplPDCO
+
+ suspend ReplPDCO(L)
+
+end
+
+procedure WobblePDCO(L) #: PDCO to produce sequence values alternately
+ local x, y
+
+ x := @L[1] | fail
+ suspend x
+
+ while y := @L[1] do {
+ suspend y | x | y
+ x := y
+ }
+
+end