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Chapter 1 Introduction

Parsing, finding the phrases of a program, is the first job of a compiler. The 
LL(1) parsing algorithm is probably the easiest parsing algorithm to under-
stand and the easiest program for  error recovery, but it does require skill to 
use.

This document describes the use of TCLL1, an LL(1) parser generator and 
parser, written in the Icon programming language. Topics include (a) how to 
build the parser generator, (b) how to write the grammar, and (c) how to in-
terface to the parser.

The goal of this document is to give compiler writers the training they need to 
use the TCLL1 parser generator to build parsers for their compilers. In an at-
tempt to be self contained, it includes a brief introduction to context free gram-
mars, so many readers will wish to skim or skip parts of this document.

TCLL1 is an LL(1) parser generator. It reads a context free grammar and, if pos-
sible, generates tables for a parser. The parser will call a scanner to read tokens 
(terminal symbols) and will call action routines to find the meanings of the 
phrases of the sentence.
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Chapter 2 Building the parser generator

Before reading the rest of this description of TCLL1, you should compile it on 
your own system. That will allow you to try out the test grammars as they are 
discussed.

If you do not have a copy of Icon, you can get it over the Internet: ftp it from 
ftp.cs.arizona.edu. Versions of Icon for several machines are in subdirectories 
of directory icon. Or get it through the World Wide Web,  http://cs.arizona.edu/
icon/www/.You may also want to pick up the Icon Programming Library.

If you have the Icon Programming Library (IPL) installed on a DOS/WIN-
DOWS machine, you can execute the batch file mktcll1.bat to build the parser 
generator. The five files from the IPL that the parser generator uses are included 
with this distribution and can be compiled separately. To build the parser gen-
erator by hand, you may execute

rem These are from the Icon Program Library:

icont -c xcode escape ebcdic

rem These form the parser generator proper

icont -c grananal ll1 semstk readll1 parsell1
icont -c scangram semgram
icont -fs tcll1

The first icont line compiles the files from the IPL. You may omit the line if you 
have the IPL installed. The second icont line compiles modules used by the 
parser generator. The third line compiles the parser generator’s main program. 
The flag -fs tells the translator that the parser generator calls some procedures 
by giving their names as strings. In Icon version 8, this flag is not needed; in 
version 9 it is.

To use TCLL1 to build a parsing table, execute

Under Icon version 8:

iconx tcll1 grammar.grm

Under Icon version 9:

tcll1 grammar.grm
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where grammar.grm is the grammar file. The output of the parser generator will 
be encoded parse tables in file grammar.ll1 . If you would also like a listing of 
the grammar and diagnostic information, execute

Under Icon version 8:

iconx tcll1 -p grammar.grm

Under Icon version 9:

tcll1 -p grammar.grm

Tcll1 reads its own parsing table from file tcll1.ll1 which must be in the current 
directory tcll1.
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Chapter 3 Context-Free Grammars

3.1 Context-free grammars

To use LL(1) parsers, you need to be skilled at manipulating context-free gram-
mars.

In the jargon of formal language theory, a context-free grammar (CFG) is a "4-
tuple" (N,T,s,P). That is to say, it has four parts:.

• T—a set of terminal symbols, the words in the language; 

• N—a set of nonterminal symbols which do not themselves appear in sen-
tences, but are used to generate sentences.

• s—one of the nonterminals, the start symbol.

• P—a set of productions, the rules for generating sentences.

(In a later section, we will add another part: a set of action symbols.)

A production of a CFG is typically written

LHS → RHS

Where LHS, the "left hand side" of the production, is a single nonterminal sym-
bol and RHS, the "right hand side" of the production is a string of zero or more 
symbols, terminal and nonterminal.

The arrow is a metalinguistic symbol: it is used to write the productions; it is not 
part of the language they describe.

Since we are using a particular parser generator, TCLL1, we will follow its in-
put syntax and write the productions as

LHS = RHS .

with the equal sign and period as metalinguistic symbols.

We will speak of a left hand side as "possessing" the productions or the right 
hand sides of the productions it appears in. We will also speak of the right hand 
side being a right hand side "for" the left hand side symbol.

The productions are rewriting rules. A sentence is generated by starting with a 
string composed solely of the start symbol and repeatedly replacing a nontermi-
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nal in the string with one of its right hand sides. When there are only terminal 
symbols left in the string, the string is called a sentence in the language.

Each single rewriting is called a derivation step. A sequence of derivation steps, 
especially the sequence leading from the start symbol to a sentence is a deriva-
tion. A derivation step is written

uAw ⇒ uvw

where A = v . is a production and u and v are any strings of zero or more sym-
bols. A derivation composed of zero or more derivation steps is written:

u ⇒* w

In TCLL1, a nonterminal symbol is written as an identifier. A terminal symbol 
is written as an identifier or as any string of printable symbols surrounded by 
quotes.

We will use the expression grammar Figure 1 in many of our examples. 

TCLL1 assumes the start symbol is named start. Since we really wanted e to be 
the start symbol, we put in a production

start = e .

The terminal symbols are "(", ")", "*", "+", "-", "/", and i.

The nonterminal symbols are start, e, t, and f.

3.2 Derivations

All strings derived from the start symbol are called sentential forms. A sentence 
is a sentential form composed entirely of terminals.

Figure 2 an example of the derivation of a sentence.   

Not only was this a derivation, it was a leftmost derivation; we always replaced 
the leftmost nonterminal in the string with a right hand side. We could have 

start = e .
e = e "+" t .
e = e "-" t .
e = t .
t = f "*" t .
t = f "/" t .
t = f .
f = i .
f = "(" e ")" .

Figure 1 Expression grammar



TCLL1 Parser Generator

10    Copyright © 1996. Thomas W. Christopher

done a rightmost derivation, always replacing the rightmost nonterminal. Or we 
could have replaced arbitrary nonterminals. Since the nonterminals are replaced 
without regard to the symbols that surround them, the sentences we can derive 
don’t depend on the order of replacement. That is the meaning of  "context-
free". However, the set of sentential forms we can derive do depend on the order 
of replacement.

A leftmost derivation step is written 

uAw ⇒L uvw

where u must be composed entirely of terminals and A = v . is a production. 
Similarly, ⇒L* represents a leftmost derivation; ⇒R  , a rightmost derivation 
step; and ⇒R*  , a rightmost derivation.

An LL(1) parser finds a leftmost derivation of the input sentence.

3.3 Phrases

A phrase is a substring of a sentential form that was derived from a single non-
terminal during the derivation of the sentential form. When we compile a pro-
gram, we will deduce the meanings of phrases from the meanings of the words 
and phrases within them. In the sentence (i-i*i)*i derived above, the substring 
i-i*i is a phrase; it was derived from an e. Within the i-i*i, i*i is a phrase, but i-
i is not. Although the string i-i could be derived from an e, in this derivation it 
was not. 

Notice that phrases can contain other phrases. Indeed, for two phrases in a sen-
tential form, one of the following is true:

start
e
t
f*t
(e)*t
(e-t)*t
(t-t)*t
(f-t)*t
(i-t)*t
(i-f*t)*t
(i-i*t)*t
(i-i*f)*t
(i-i*i)*t
(i-i*i)*f
(i-i*i)*i

Figure 2 The derivation of a sentence
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• one is a substring of the other, or

• they have no symbols in common, or

• they are the same string.

3.4 Bugs in grammars

Context-free grammars can have bugs in them. The grammar in Figure 3 exhib-
its three common bugs.   

If we pass this grammar through TCLL1, we get the error messages shown in 
Figure 4 (and a few others).

We got the first two errors by removing the production "e = t.". Once we have 
the symbol e in a string, we can’t get rid of it: e can only be replaced with strings 
containing an e. Since start only goes to e, start too cannot derive a string com-
posed entirely of terminals. 

The reason TCLL1 says the symbols do not appear to derive a terminal string 
has to do with its algorithm. It tries to calculate the minimum length of a string 
of terminals the nonterminal can derive. If it can’t satisfy itself that the nonter-
minal can generate a string of less than a certain large length, it reports the error. 
You can fool it by writing a grammar that will only generate sentences of greater 
than that length. 

The errors stating that p, ")", "(", and i cannot appear in a sentential form simply 
means that there is no sequence of derivation steps starting from the start sym-
bol that can derive a string containing those symbols. The bug may be that we 
should have used f rather than p in the last two productions, or we should have 
had some more productions for f including "f = p."

start = e.
e = e "+" t .
e = e "-" t .
t = t "*" t .
t = t "/" t .
t = f .
p = i .
p = "(" e ")" .

Figure 3 Grammar bugs.grm
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3.5 Ambiguous grammars

The final error 

Error: t is both left and right recursive, the grammar 
is ambiguous

reports on one of the most common bugs in grammars used for programming 
languages. To understand it, we need a few concepts first.

A sentence derived using a particular grammar is ambiguous if there is more 
than one way to divide it up into phrases. It can be proven that the sentence is 
ambiguous if and only if it has more than one leftmost derivation. A grammar 
is ambiguous if it can generate any ambiguous sentences.

Since the phrases of a sentence are used to determine its meaning, an ambiguous 
sentence can have more than one meaning. An ambiguous programming lan-
guage grammar would militate against reliable software. 

An additional problem for compiler writers is that there are no fast parsing al-
gorithms that work for ambiguous grammars. (Some parser generators will ac-
cept ambiguous grammars, but they resolve the ambiguity internally before 
generating the parsers.)

Error: start does not appear to derive a terminal string
Error: e does not appear to derive a terminal string
Error: p cannot appear in a sentential form
Error: ) cannot appear in a sentential form
Error: ( cannot appear in a sentential form
Error: i cannot appear in a sentential form
Error: t is both left and right recursive, the grammar is ambiguous
Error: t is left recursive, the grammar is not LL(1)
Error: e is left recursive, the grammar is not LL(1)
Error: overlapping selection sets for
1. t = t "*" t.
2. t = t "/" t.
  overlap: {f}
Error: overlapping selection sets for
1. t = t "*" t.
2. t = f.
  overlap: {f}
Error: overlapping selection sets for
1. t = t "/" t.
2. t = f.
  overlap: {f}
12 errors and 0 warnings

Figure 4 Error messages from bugs.grm (Figure 3).
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It would be nice if we could find out if a given grammar is ambiguous. Unfor-
tunately, it is impossible to do that in general. It is incomputable whether an ar-
bitrary context free grammar is ambiguous. There is no algorithm that can take 
an arbitrary context free grammar and report whether it is ambiguous or not. It 
is not, mind you, that we don’t know the algorithm yet. We can prove that there 
is no such algorithm possible.

For particular grammars we may be able to prove they are ambiguous or unam-
biguous, but there will always be some that we cannot be sure about. Here are 
two classes of grammars we can know about:

• If the grammar is accepted by TCLL1 without any warnings or errors, it is 
unambiguous.

• If the grammar is left and right recursive in the same nonterminal, it is am-
biguous.

A nonterminal is left recursive if it can derive a string in which it appears as the 
leftmost symbol. It is right recursive if it can derive a string in which it appears 
as the rightmost symbol. Don’t consider only leftmost derivations for this defi-
nition of right recursive: the symbol might be followed by some nonterminals 
that derive the empty string that we have to get rid of. Consider the grammar 

A = i A B | i.
B = . 

A is right recursive which can be seen from the derivation

A
i A B
i A

but not from the rightmost derivation

A
i A B
i i B

If a grammar is both left and right recursive in the same nonterminal then the 
grammar is ambiguous. As a proof, suppose A is both left and right recursive in 
a reduced grammar (i.e., a grammar without bugs in it), then

A ⇒L* A v

A ⇒L* x A w

A ⇒L* y

w ⇒L*

v ⇒L* z
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where

v ∈ (N ∪ T)*

x ∈ T*

w ∈N*

y ∈ T*

z ∈ T*

(that is to say, x, y, and z are strings of terminals, w is a string of nonterminals, 
and v is a string of any symbols).

This allows two different leftmost derivations of xyz from A shown by these sen-
tential forms along the derivation:

Since a nonterminal being both left- and right-recursive is a common bug in pro-
gramming language grammars, TCLL1 checks for it. But remember, there are 
many other ways for grammars to be ambiguous as well.

3.6 Leftmost derivation algorithm

Sentences can be generated with a leftmost derivation using a prediction stack. 
The algorithm is as follows:

THE LEFTMOST-DERIVATION ALGORITHM

Initially, place the start symbol on the prediction stack.

Repeat

pop the top symbol off the prediction stack

if it is a terminal, write it out

if it is a nonterminal, then choose one of its right hand sides and push it 
on the prediction stack, leftmost symbol on top

        A         A

⇒L* A v ⇒L* x A w

⇒L* x A w v ⇒L* x A v w

⇒L* x y w v ⇒L* x y v w

⇒L* x y v ⇒L* x y z w

⇒L* x y z ⇒L* x y z
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until the prediction stack is empty.

We call the stack the prediction stack since it predicts what symbols and phrases 
will be generated later.

3.7 Extended syntax

To make it more convenient to write grammars, TCLL1 provides an extended 
syntax for expressing alternatives, groupings, optional parts, and repetitions. 
We show how they may be used with the expression grammar given above:

| the vertical bar is used to separate alternatives. It is customarily used to 
combine all the productions for a single nonterminal into a single rule. 
It can also separate alternatives within groupings. We can, for example, 
shorten our expression grammar from nine lines to four:

start = e .
e = e "+" t  | e "-" t | t .
t = f "*" t | f "/" t | f .
f = i | "(" e ")" .

( ) parentheses are used to group symbols and alternatives. We can group 
the operators in our expression grammar as follows:

start = e .
e = e ("+" | "-") t | t .
t = f  ("*" | "/") t | f .
f = i | "(" e ")" .

[ ] brackets group optional items. Basically, [x] is equivalent to (x | ); that 
is, a bracketed item is equivalent to the enclosed item or the empty 
string. In our expression grammar, the alternatives for t provide an op-
tional part:

start = e .
e = e ("+" | "-") t | t .
t = f  [ ("*" | "/") t ].
f = i | "(" e ")" .

{ } braces group items that may occur any number of times. The alternatives 
for e provide an example of this repetition:

start = e .
e = t { ("+" | "-") t } .
t = f  [ ("*" | "/") t ].
f = i | "(" e ")" .
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When given a grammar using the syntax extensions, TCLL1 translates it into a 
pure, unextended CFG. It does this by introducing new nonterminals for all the 
groupings. It constructs the names of the new nonterminals from the left hand 
side symbol, line number, and position on the line where the grouping begins:

LHS_lineNumber_column

You should be able to figure out how grammars are transformed from the ex-
tended notation to the basic notation by comparing our final expression gram-
mar

start = e .
e = t { ("+" | "-") t } .
t = f  [ ("*" | "/") t ].
f = i | "(" e ")" .

to its transformed version:

e = t e_2_7.
e_2_7 = e_2_9 t e_2_7.
e_2_7 =.
e_2_9 = "+".
e_2_9 = "-".
f = i.
f = "(" e ")".
start = e.
t = f t_3_8.
t_3_10 = "*".
t_3_10 = "/".
t_3_8 = t_3_10 t.
t_3_8 =.

TCLL1 provides one further enhancement to CFGs: action symbols. Action 
symbols provide the interface between the parser and the "semantics" in the 
compiler. An action symbol is written as an identifier followed by an exclama-
tion point:

ID !

As far as the language generated from the grammar is concerned, action sym-
bols don’t appear. They behave as if they were nonterminals that only have one 
production and that production has an empty right hand side. During the parse, 
however, whenever the parser finds an action symbol on the top of the predic-
tion stack, it performs some action as it pops the symbol off. In a later section, 
we will discuss the use of action symbols.
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Chapter 4 LL(1) Parsing

4.1 Principles of LL(1) Parsing

"LL(1)" means the parser works Left-to-right, finding a Leftmost derivation of 
the sentence, and looking at most one (1) symbol ahead in the input to decide 
what action to take next.

The trick is this: the LL(1) parser generates a sentence on top of the input sen-
tence, matching the two. When it has successfully matched all of the input sen-
tence, it has also parsed it, since the phrases of the input are the same as those 
of the generated sentence.

If we are only interested in whether the input is a sentence—and not interested 
in the phrases—we call the parser a recognizer. We present an LL(1) recognizer 
now, and wait to present the parser until we have discussed action symbols. The 
sentence generation algorithm of the last section now becomes the recognition 
algorithm shown in Figure 5. 

THE LL(1) RECOGNITION ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol on the 
prediction stack with the start symbol on top. Append EOI to the right 
end of the input. Read the leftmost symbol from the input into the cur-
rent symbol.

Repeat

pop the top symbol off the prediction stack

if it is a terminal, compare it to the current symbol. If they match, read 
the next input symbol into the current symbol. If they don’t, an er-
ror has been discovered in the input.

if it is a nonterminal, then choose one of its right hand sides and push 
it on the prediction stack, leftmost symbol on top. Choose the right 
hand side by looking at the current symbol and deciding which 
RHS will allow parsing to continue.

until the EOI symbol is matched.

Figure 5 LL(1) Recognition algorithm.
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The EOI ("end of input") symbol is inserted into the set of terminals by the 
TCLL1 parser generator. It is used to permit the parser to recognize when the 
last terminal has been read in. In a real compiler, the parser calls the scanner to 
return one symbol of the sentence at a time, left to right. The scanner will return 
EOI when there are no more symbols in the input.

The big problem in LL(1) parsing is rewriting the grammar into LL(1) form, a 
form in which the next input symbol can always tell the parser which right hand 
side to choose. In a later section we will discuss ways to rewrite grammars to 
put them in LL(1) form.

4.2 Putting grammars into LL(1) form

It is hard to put grammars into LL(1) form. Here we consider the requirements 
LL(1) places on grammars, how grammars fail to meet those requirements, and 
techniques for rewriting grammars to make them suitable.

First a caution. To save yourself much grief, obey this simple rule when trans-
forming grammars: You may introduce new nonterminals. You may revise the 
definitions of existing nonterminals. You may delete nonterminals if they are no 
longer needed. But never change the meaning of a nonterminal. Never change 
the set of strings a nonterminal generates.

4.3 How a grammar fails to be LL(1)

The only place in the LL(1) recognition algorithm where problems can arise is 
when a nonterminal comes to the top of the prediction stack. The parser must 
pick one of the nonterminal’s right hand sides to replace it with, a right hand 
side that will allow parsing to continue. To do this, it can look only at the next 
symbol in the input. As an example of where this fails, consider our expression 
grammar productions for t and f:

t = f "*" t .
t = f "/" t .
t = f .
f = i .
f = "(" e ")" .

Suppose t is on top of the prediction stack. Each of its right hand sides begins 
with f. An f itself can begin with either an "(" or an i. So if we see either an "(" 
or an i next in the input, we can’t possibly tell which production for t we should 
use.

We need two concepts:

• The first set of a string of symbols, u, is the set of terminal symbols, First(u), 
that can occur leftmost in a string derived from u. In formal notation

• First(u) = { a | u⇒* av , a is a terminal symbol, u and v are strings}

• The follow set of a nonterminal, A, is the set of symbols, Follow(A), that can 
follow A in a sentential form. Formally
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• Follow(A) = { b | s⇒* v A b w , s is the start symbol, b is a terminal 
symbol, v and w are strings}

Now lets consider which right hand side to choose for a nonterminal. Given a 
production 

A = u .

what terminal symbol, t, would tell us to replace A with u?

• If symbol t is in First(u), we should choose u. After all, we want to choose 
the right hand side that will allow us to continue parsing, and right hand side 
u will at least be able to get past the next input symbol.

• If u is the empty string, or if it derives the empty string, and if t is in Fol-
low(A) we should choose u. After all, if the right hand side vanishes, the next 
input symbol we are looking at could be one that follows the phrase, not one 
that begins it.

If any terminal symbol tells us to choose more than one right hand side for a 
nonterminal, the grammar is not LL(1). If no terminal symbol ever tells us to 
choose more than one right hand side for any nonterminal, the grammar is 
LL(1).

When we give a grammar that is not LL(1) to TCLL1, it will give error messag-
es specifying the terminals and productions that are in conflict. Figure 6 shows 
the grammar "e-notll1.grm".  

Here’s what we get when we pass it through TCLL1:

Error: e is left recursive, the grammar is not LL(1)
Error: overlapping selection sets for
1. t = f "*" t.
2. t = f "/" t.
  overlap: {"(", i}
Error: overlapping selection sets for
1. t = f "*" t.
2. t = f.

# errors--not LL(1)
start = e .
e = e "+" t .
e = e "-" t .
e = t .
t = f "*" t .
t = f "/" t .
t = f .
f = i .f = "(" e ")" .

Figure 6 Grammar e-notll1.grm
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  overlap: {"(", i}
Error: overlapping selection sets for
1. t = f "/" t.
2. t = f.
  overlap: {"(", i}
Error: overlapping selection sets for
1. e = e "+" t.
2. e = e "-" t.
  overlap: {"(", i}
Error: overlapping selection sets for
1. e = e "+" t.
2. e = t.
  overlap: {"(", i}
Error: overlapping selection sets for
1. e = e "-" t.
2. e = t.
  overlap: {"(", i}
7 errors and 0 warnings

We will consider the causes and cures of these and other problems in the sub-
sections to follow.

4.4 Left-recursion removal

The error messages state that the grammar is left recursive and hence not LL(1). 
Why? Consider the productions:

e = e "+" t .
e = e "-" t .
e = t .

Consider the leftmost-derivation algorithm given above. When a e appears on 
top of the prediction stack, we can keep on replacing it with e+t or e-t, pushing 
+t’s and -t’s onto the stack and still leaving e on top. Eventually we will replace 
e with t and stop the process, but no symbol in First(t) will tell how many +t’s 
or -t’s were pushed on the stack. Similarly, while parsing, the next input symbol 
cannot tell us how many +’s or -’s we are going to need.

The parser generator checks for left recursion explicitly. The problems also ap-
pear in the reports of overlapping selection sets.

A nonterminal is directly left recursive if it occurs as the first symbol on the 
right hand side of one or more of its productions. If it takes more than one der-
ivation step to derive itself first, for example, A ⇒* Bu ⇒* Cvu ⇒* Awvu, then 
it is indirectly left recursive, or as we more colorfully say, there is daisy-chain 
recursion. 

Direct left recursion can be removed as follows:

• Divide up the productions for the nonterminal into the left-recursive and 
non-left-recursive.
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A = A u1 | A u2 | ... | A um | v1 | v2 | ... | vn .
• Call the u1 u2 ... um the tail ends of the left recursive rules.

• Group the non-recursive right hand sides and follow them by an arbitrary 
repetition of the tail ends of the recursive rules, thus:

A =  (v1 | v2 | ... | vn ) { u1 | u2 | ... | um }.

When we apply this to our expression grammar, we get

e = t { "+" t | "-" t } .

For daisy-chained left recursion, you have to first convert into direct left recur-
sion by replacing nonterminals by their right hand sides, a technique shown be-
low.

4.5 Factoring

An obvious problem for an LL(1) parser is a nonterminal having several right 
hand sides beginning with the same symbol. In our expression grammar, t has 
that problem:

t = f "*" t .
t = f "/" t .
t = f .

The solution is to factor the common initial part out:

t = f ("*" t | "/" t | ).

Which is to say, a t is an f followed by one of several tails.

Since one of the alternatives is empty, we can use brackets:

t = f  [ "*" t | "/" t ].

4.6 Replacing nonterminals by right hand sides

When faced with daisy-chained left recursion or right hand sides with conflicts 
but no common initial symbols to factor, we can resort to replacing nontermi-
nals by their right hand sides to try to make the left recursion direct or the initial 
parts of right hands sides equal. Consider the following grammar, "c-nll1.grm":

# c-nll1
# not LL(1)
start = s .
s = e .
s = i "=" e .
e = e "+" t .
e = e "-" t .
e = t .
t = f "*" t .
t = f "/" t .
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t = f .
f = i .
f = n .
f = "(" e ")" .

In addition to the conflicts we have seen already in the definitions of e and t, 
there is a conflict between the two definitions of s: a string derived from e can 
also begin with an i. 

First, let’s fix e and t:

e = t etail.
etail = { "+" t | "-" t } .
t = f ttail .
ttail = [ "*" t | f "/" t ].

Now let’s start working on the production 

s = e .

The e can derive a string beginning with an i. We need to rewrite until we have 
a production for s whose right hand side begins with i so we can factor. We re-
place the e with its one definition, giving

s = t etail.

Now we replace the t by its one definition

s = f ttail etail.

Now we need to replace the f, but it has three definitions. We must replace it 
with each, copying the production for each of them

s = i ttail etail.
s = n ttail etail.
s = "(" e ")" ttail etail.

Now we can factor, yielding

s = i ("=" e | ttail etail) .
s = n ttail etail .
s = "(" e ")" ttail etail .

So the resulting grammar is:

# c-ll1
# LL(1)
start = s .
s = i ("=" e | ttail etail) .
s = n ttail etail .
s = "(" e ")" ttail etail .
e = t etail.
etail = { "+" t | "-" t } .
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t = f ttail .
ttail = [ "*" t | f "/" t ].
f = i .
f = n .
f = "(" e ")" .

Now you see why we created new nonterminals etail and ttail. We knew from 
experience that we were going to copy them in several productions, and if we 
left the braced or bracketed constructs in line, the parser generator would intro-
duce multiple nonterminals with identical definitions. 

4.7 Replacing right hand side by left hand side

If we can replace a nonterminal by all of its right hand sides, what about going 
the other way? Well yes, that can work, as long as we don’t try to replace the 
definitions of the nonterminal itself. (We wouldn’t want to replace A = u | v . 
with A = A.).

In fact, we have been replacing multiple right hand sides using newly created 
nonterminals. For example, we replaced

t = f "*" t .
t = f "/" t .
t = f .

with

t = f  [ "*" t | "/" t ].

knowing that the brackets create a new nonterminal. The translation done by the 
parser generator makes this explicit:

t = f t_3_8.
t_3_8 = "*" t.
t_3_8 = "/" t.
t_3_8 =.

Notice that just as replacing a nonterminal in a production required substituting 
each of its right hand sides, duplicating the production as necessary, the substi-
tution the other way requires each right hand side be found at the same place in 
otherwise identical productions and that all those productions be replaced with 
a single production.

Here’s a more tricky use of this technique. Suppose we have a language where 
statements can have any number of statement labels preceding them. The state-
ment labels are identifiers, and assignment statements begin with an identifier:

# ls-nll1
# not LL(1)
start = labeled_statement .
labeled_statement = label statement .
label = { i ":" }.
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statement = i "=" e.

The parser generator will find a conflict in label = {id ":"}. which it reports as 
shown in Figure 7.

The problem is that the empty right hand side can be followed by the identifier 
at the beginning of the assignment statement. (The reason it’s a warning rather 
than an error will be discussed later when talking about the "dangling else prob-
lem".

Let’s try rewriting label in labeled_statement to allow us to factor. First, we re-
write the definition of label to make the right recursion explicit:

label = i ":" label | .

And then replace it in labeled_statement:

labeled_statement = i ":" label statement .
labeled_statement = statement .

Now rewriting statement in labeled_statement = statement . gives

labeled_statement = i "=" e.

allowing us to factor

labeled_statement = i labeled_statement_tail .
labeled_statement_tail = "=" e .
labeled_statement_tail = ":" label statement .

If we run this through the parser generator, alas, we find the same warning. We 
still have label followed by statement which is the same problem as before.

But now we can apply the trick of rewriting a right hand side as its left hand side. 
We know we have not changed the set of strings that labeled_statement gener-
ates so that the strings are still described by the single right hand side label state-
ment. We replace label statement with labeled_statement in the last production 
giving

labeled_statement = i labeled_statement_tail .
labeled_statement_tail = "=" e .
labeled_statement_tail = ":" labeled_statement .

Warning: overlapping selection sets for
label_5_9 = i ":" label_5_9.

and empty-deriving production
label_5_9 =.

  overlap: {i}
0 errors and 1 warning

Figure 7 The warning generated for the labeled statement
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This definition works.

4.8 Tables of operators

You may be given tables of operators with their precedences and associativities. 
You may have to translate these into context free syntax.

Binary operators associate to the left if the left hand side nonterminal is left re-
cursive, and associate to the right if the nonterminal is right recursive. The high-
er precedence operator must occur in a subphrase of the lower precedence one. 
Here is a method for generating productions from a precedence table of binary 
operators. Suppose the grammar specifies

E  = E P E .

E =  F

with tables giving the precedence and associativity of the operators, P.

Number the precedence levels consecutively, 1, 2, ..., n from lowest to highest.

Create a nonterminal, Ei, for 1 ≤ i ≤ n+1 .

Create a renaming production 

Ei  =  Ei+1 . 

for all i ≤ n.

For each binary operator Pj at precedence level i, if Pj is left associative,  put in 
a production

 Ei  =  Ei Pj Ei+1 .

If Pj is right associative, put in a production 

Ei =  Ei+1 Pj Ei .

Or if Pj is non-associative (for example, the relational operators in Pascal), put 
in a production 

Ei =  Ei+1 Pj Ei+1 . 

If you end up with two productions 

Ei =  Ei ... . 

and 

Ei =  ... Ei . 

you have generated an ambiguous grammar; left and right associative operators 
must not be at the same precedence.
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For each unary operator P at precedence level i, if several occurrences of P may 
occur in a row, put in a production

 Ei =  P Ei . 

Or, if at most one occurrence of P can occur in front of an operand, put in the 
production

Ei =  P Ei+1 . 

Add productions 

E = E1 .
En+1 = F .

For example, given the following table of operators:

the algorithm gives the following grammar:

E1 = ^ E2 .
E1 = E2 .
E2 = E3 # E3 .
E2 = E3 .
E3 = E4 & E3 .
E3 = E4 .
E4 = E4 $ E5 .
E4 = E4 ! E5 .
E4 = E5 .
E5 = % E5 .
E5 = E6 .
E6 = F .

4.9 The dangling-else problem

The dangling-else problem occurs in languages that have optional else clauses 
in if statements and no if statement terminator (such as end if or fi). In nested ifs, 

Operators Unary or 
binary

Associativity Precedence

% unary many highest

$   ! binary left

& binary right

# binary non-associative

^ unary one-at-most lowest
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it is not clear which preceding if an else goes with. This ambiguity shows up 
when we try to construct an LL(1) parser. Consider the syntax:

statement = if_statement 
| i "=" e.

if_statement = if e then statement
| if e then statement else statement .

this obviously will have a conflict. So we try factoring

if_statement = if e then statement else_option.
else_option = [ else statement ].

When we pass this through the parser generator, we get the warnings shown in 
Figure 8.  

Why? First consider this example:

if e then if e then if e then i=e else i=e else 
i=e

We have three if’s and two else’s. Which else goes with which if? When the 
LL(1) recognizer has just finished processing the first i=e, there will be three 
else_option’s on the prediction shack. Two of them must be replaced with else 
statement; one, with the empty string. Which?

Observe that a statement can be followed by an else_option and an if_statement 
can end in an else_option. The else_option at the end of an if_statement can 
therefore be followed by an else, which means that it is unclear how to choose 
between a right hand side beginning with an else and the empty right hand side.

Unfortunately, there’s no way to get rid of this problem. (Well, if you are the 
language designer, you could redesign the language, but if you are only the 
compiler writer, you have to take the language as given.) So here’s what we do: 
we cheat. We want the parser to associate the else with the innermost if. This 
will be the if statement that placed the else_option on top of the prediction stack. 
So we let the else_option on top of the prediction stack handle the else. That 
means we will choose the right hand side that has the else in its first set rather 
than the right hand side that is empty and only has the else in its follow set. 

Warning: overlapping selection sets for
else_option_6_15 = else statement.

and empty-deriving production
else_option_6_15 =.

  overlap: {else}
0 errors and 1 warning

Figure 8 Warnings for a dangling-else.
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We’ve written the parser generator to use this rule: only use a symbol from the 
follow set to choose an empty-deriving right hand side if it does not appear in 
the first set of any right hand side.

The parser generator fills a table, sel, that maps nonterminals and terminals into 
right hand sides. For nonterminal A and terminal t, sel[A,t] is the right hand side 
to replace A with if t is next in the input.

The parser generator works in two passes over a nonterminal’s productions:

1 For each production A = u. and every terminal t in First(u), sel[A,t] is 
assigned right hand side u. If TCLL1 finds that sel[A,t] already has been 
assigned a different right hand side, it reports an error.

2 Then TCLL1 checks to see if there is a production for A with an empty-
deriving right hand side, i.e., A = w. where w is either empty or is com-
posed of nonterminals each of which derives the empty string. If there is 
no such right hand side, TCLL1 is done with this nonterminal. If there 
are two or more such productions, the grammar is ambiguous—there is 
more than one way to derive the empty string from A. If there is precise-
ly one such production, A = w., then for all symbols t in Follow(A),

• if sel[A,t] already has a right hand side assigned, issue a warning,

• otherwise assign sel[A,t] the right hand side w.

We have the parser generator give a warning when first sets and follow sets give 
conflicting choices for a nonterminal since it may not be a dangling else prob-
lem. Indeed, in the labeled statement example, it wasn’t. If we’d used the parser 
that was generated with this warning, it would never have been able to parse an 
assignment statement: it would assume an identifier at the beginning of a state-
ment had to be a label and it would report an error when it saw an "=" rather than 
a ":". 
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Chapter 5 Parsing with action symbols

We have talked about grammars being used to derive sentences from the start 
symbol by replacing nonterminal symbols by their right hand sides, but this is 
just the reverse of what we need for parsing; we need to reduce the sentence to 
the start symbol by repeatedly replacing right hand sides by their left hand sides. 
As each reduction is made, a semantic value is computed for the left hand side 
symbol from the semantic values of the right hand sides. The procedures that 
compute these values are called semantics routines or action routines. In addi-
tion to computing semantic values, the semantics routines can also access 
shared data structures and write to files. In theory, "the meaning of the program" 
is the semantic value assigned to the start symbol. In practice it can be the con-
tents of a data structure or the contents of a file.

5.1 Reductions

If we start with a sentence and just look through the right hand side for sub-
strings we can reduce, we may go down blind alleys and never reduce it to the 
start symbol. Using our expression grammar, we could try the following reduc-
tion sequence on i*i:

i * i
f * i
t * i
e * i
e * f
e * t
e * e

whereupon we cannot make any further reductions.

There are some parsing algorithms, called bottom-up parsing algorithms, that 
find the correct substring to reduce each step. These parsing algorithms can be 
used directly. Unfortunately, LL(1) parsing is top-down, so we must do some-
thing to make it give us the reduction sequence.

Here’s what we do: We invent an extension of the language in which each pro-
duction ends with a distinct terminal symbol, a marker, translate the sentence 
into the equivalent marked sentence in this extended language, and use the 
marked sentence to compute the semantic associations for the nonterminals. We 
will show that 

• we can use the markers to perform reductions in the correct order. 
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• we can translate a sentence without markers into a sentence with markers 
using a version of the LL(1) recognition algorithm.

• we can combine these two operations so that no intermediate sentence is 
ever generated.

First, let’s consider how we would use markers for reductions. We add markers 
to our expression grammar to give an marker-augmented grammar as shown in 
the following table:

Notice that each production in the original grammar has a corresponding pro-
duction in the marked grammar. The only difference between these productions 
is that the marked production has a marker at the end of its right hand side. All 
the markers are distinct.

Assuming i represents integer, here’s a sentence in the expression language and 
its translation:

30 / 5 * 2 + 6
30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

The corresponding sentences can be derived by leftmost derivations using the 
corresponding productions in each derivation step, as follows:

Original grammar Marked grammar
start = e. start = e P1.

e = e "+" t. e = e "+" t P2.

e = e "-" t. e = e "-" t P3.

e = t . e = t P4 .

t = f "*" t. t = f "*" t P5.

t = f "/" t. t = f "/" t P6.

t = f . t = f P7 .

f = i. f = i P8.

f = "(" e ")". f = "(" e ")" P9.

start start

e e P1

e + t e + t P2 P1

t + t t P4 + t P2 P1

f / t + t f / t P6 P4 + t P2 P1

30 / t + t 30 P8 / t P6 P4 + t P2 P1

30 / f * t + t 30 P8 / f * t P5 P6 P4 + t P2 P1



Parsing with action symbols

Copyright © 1996. Thomas W. Christopher    31

When reducing the translated sentence, we use the markers as suffix Polish op-
erators. Each marker has a number of symbols preceding it in its right hand side. 
The numbers for the markers are shown below:

Now we will show how to reduce a marked sentence to the start symbol. The 
input consists of a string of tokens and markers. The algorithm uses a stack.

The markers coming at the ends of right hand sides tell us when to make a re-
duction and which production to use. Here is a reduction sequence using the al-
gorithm:

30 / 5 * t + t 30 P8 / 5 P8 * t P5 P6 P4 + t P2 P1

30 / 5 * f + t 30 P8 / 5 P8 * f P7 P5 P6 P4 + t P2 P1

30 / 5 * 2 + t 30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + t P2 P1

30 / 5 * 2 + f 30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + f P7 P2 P1

30 / 5 * 2 + 6 30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

marker P1 P2 P3 P4 P5 P6 P7 P8 P9

number of 
operands

1 3 3 1 3 3 1 1 3

ALGORITHM FOR REDUCTION USING MARKERS

Initially set the stack empty.

Read through the marked sentence one symbol at a time

if the symbol is a token, push it on the stack

otherwise the symbol is an marker, 

look up the production it occurs in

remove the marker’s "arity" number of symbols from the stack 
(these correspond to the symbols ahead of the marker on the 
right hand side)

push the left hand side symbol on the stack

At the end, the start symbol will be on the stack.

Figure 9 Algorithm for Reduction using markers.
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5.2 Semantic values

Every symbol in the sentential form has a meaning associated with it, a semantic 
value. The semantic values of symbols are also called collections of attributes. 
Terminal symbols will have semantic values assigned to them by the scanner. 
Terminal symbols with their associated values are called tokens. In the TCLL1 
system, a token is a record containing

• the syntactic type (the terminal symbol)— used by the parser to recognize 
the input.

• the body (the string of characters that comprise the token)—used by the se-
mantics routines.

• the line number on which the token occurred.

• the column number (actually the character position) of the leftmost charac-

stack input

30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 
+ 6 P8 P7 P2 P1

30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 
P8 P7 P2 P1

f / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 
P7 P2 P1

f / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7 
P2 P1

f / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7 
P2 P1

f / f * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * f P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * t P5 P6 P4 + 6 P8 P7 P2 P1

f / t P6 P4 + 6 P8 P7 P2 P1

t P4 + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + f P7 P2 P1

e + t P2 P1

e P1

start
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ter of the token; the line and column are used to report the position of an er-
ror.

It is fairly clear how to use the reduction algorithm to compute semantic values 
of symbols. Each production, and hence each marker, has a procedure, a seman-
tics routine, associated with it. What is kept on the stack are semantic values. 
When a marker is encountered, the semantic values of the right hand side sym-
bols are removed from the stack and passed to the semantics routine. The rou-
tine computes the semantic value of the left hand side symbol and that value is 
pushed back on the stack.

A semantic value of a nonterminal expresses the meaning of the phrase it de-
rived. A semantic value may be:

• The numeric value of the subexpression the nonterminal represents.

• An operator tree or an abstract syntax tree representing the phrase.

• A translation of the phrase and a description of its result’s data type.

5.3 Inserting markers into sentences

So how do we insert markers into a sentence? We use a version of our LL(1) 
recognition algorithm. The differences from the original recognition algorithm 
are as follows:

• The algorithm uses a grammar containing markers.

• As it matches tokens, it writes them out.

• When it finds a marker on the top of the prediction stack, it writes it out.

The LL(1) translation algorithm with action symbols is shown in Figure 10.

Of course a grammar has to be put in LL(1) form before the parser can use it. 
Do markers cause any problems? Not really. All they require is:

• Markers are moved around like any other symbol.

• When calculating First and Follow sets, markers are invisible; they are treat-
ed like nonterminals that derive only the empty string.

If we transform the marked expression grammar, we can get the following 
LL(1) form: 

start = e P1.

e = t P4 etail.

etail = "+" t P2 
etail.

etail = "-" t P3 
etail.

etail =.
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5.4 Parsing

In practical parsers, we do not first insert markers into a sentence and then pass 
it through a reduction algorithm. We combine both parts in one algorithm. 

In the following LL(1) parsing algorithm, we use the name action symbols for 
markers. When the parser sees an action symbol, it calls an action routine, 
sometimes called a semantics routine. Is there a difference between a marker 
and an action symbol? Well, yes. All markers are action symbols, but we can 
put in action symbols for other purposes than marking the end of a right hand 
side, e.g. putting the scanner into a different mode.

t = f ttail .

ttail = "*" t P5.

ttail = "/" t P6.

ttail = P7 .

f = i P8.

f = "(" e ")" P9.

LL(1) ALGORITHM TO TRANSLATE 
INTO A MARKED SENTENCE

Initially, place the start symbol and the EOI (end of input) symbol on 
the prediction stack with the start symbol on top. Put the EOI sym-
bol at the end of the input. Read the first input symbol into the cur-
rent token.

Repeat

pop the top symbol off the prediction stack.

if the top symbol is a marker, write it out.

otherwise if the top symbol is a terminal, compare it to the current 
token. 

If they match, write the current token out and read the next to-
ken from the input into the current token.

If they don’t match, an error has been discovered in the input. 
Execute error recovery code.

otherwise if the top symbol is a nonterminal, choose one of its 
right hand sides and push it on the prediction stack, leftmost 
symbol on top. Choose the right hand side by looking at the 
next input symbol and deciding which RHS will allow parsing 
to continue.

until the EOI symbol is matched.

Figure 10 LL(1) Algorithm to insert markers
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5.4.1 Action symbols

In TCLL1, action symbols are required to be identifiers; they are used as names 
of the Icon procedures used for action routines. Action symbols may be declared 
by following them with an exclamation point, e.g.

f = "(" e ")" P9! .

If the action symbol has been declared in one place with an exclamation point, 
it need not be followed by an exclamation point anywhere else.

If you don’t care to use the exclamation point, you can declare action symbols 
with the following declaration:

actions : a1 a2 … an .

where each ai is an action symbol.

5.4.2 The LL(1) parsing algorithm 

The LL(1) parsing algorithm with action symbols is shown in Figure 11.

Figure 11 LL(1) parsing algorithm.

LL(1) PARSING ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol on the prediction stack 
with the start symbol on top. Put EOI at the end of the input. Make the current token 
empty. Make the semantics stack empty.

Repeat

pop the top symbol off the prediction stack.

while it is an action symbol, call its action routine and pop the next top symbol off the 
prediction stack. The action routine may pop zero or more values off the semantics 
stack and may push one or zero values back on it. 

if the current token is empty, call the scanner to read the next input token into the cur-
rent token.

if the top symbol from the prediction stack is a terminal, compare it to the current token. 

If they match, push the current token onto the semantics stack. Make the current to-
ken empty.

If they don’t match, an error has been discovered in the input. Execute some error 
recovery code.

otherwise if the top symbol from the prediction stack is a nonterminal, then choose one 
of its right hand sides and push it on the prediction stack, rightmost symbol on bot-
tom. Choose the right hand side by looking at the next input symbol and deciding 
which right hand side will allow parsing to continue.

until the EOI symbol is matched.
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A bit of explanation is necessary about marking the current token present or ab-
sent. In earlier algorithms we read the first token at the beginning and then read 
in a new token as soon as we had recognized the previous. This is quite all right 
for some compilers, but it is particularly a problem for interactive programs. 
The system won’t respond to one command until it has seen the first token of 
the next. Here we don’t try reading another token until we are going to look at 
it. We can perform any number of actions after recognizing a token before re-
questing the next, allowing the program to respond immediately after the last 
token of the command has been read.

5.4.3 Building parsers

Here is an approach for building parsers:

First, design a grammar for the language which has meaningful phrases. It must 
be clear to you what action you wish to take at the end of each phrase and what 
the semantic value of each symbol in the grammar is. Each token is a semantic 
value (the value of the terminal symbol). Each nonterminal has an associated 
data type to contain its semantic value or attributes.

Put an action symbol at the end of the right hand side of each production. Each 
production has some rule for constructing its left hand side’s semantic value 
from the semantic values of the right hand side symbols (in addition to writing 
out translated code and changing some global variables). The action symbol is 
the name of the procedure to call when that right hand side has been recognized. 
It will pull off the semantics stack one value for each symbol on the right hand 
side and will push back the value of the left hand side.

Several productions may have the same action symbol if the number of ele-
ments on the right hand side are the same and the actions are similar. For exam-
ple, each binary operator could have its own action routine, or all binary 
operators could share the same routine that looks at the operator token to decide 
what to do. 

You may omit an action symbol for a renaming production, a production that 
has exactly one symbol on the right hand side and no action except to push back 
the value it pops. You may introduce action symbols at other places than the 
ends of right hand sides if you feel the need; not all action symbols represent 
markers.

Transform the grammar to LL(1) form. Move around action symbols the same 
as any other symbol. When checking whether the grammar is LL(1), treat action 
symbols as if they are nonterminals that derive only the empty string.

Write the action routines. An action routine for a marker action symbol will pull 
values off the semantic stack for the right hand side symbols of a production, 
compute the semantic value of the left hand side, and push it back. However, an 
action routine that does not correspond to a marker is not required to pop any 
value off the semantics stack or push a value back. You may also decide that 
some nonterminals have no semantic value and hence do not need to have a val-
ue on the semantics stack. Feel free not to push a value for such a symbol, but 
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be aware that it will complicate keeping track of the semantics stack’s depth, as 
will be discussed later.

5.4.4 Example of evaluating arithmetic expressions

Let’s design action routines to evaluate arithmetic expressions using our expres-
sion grammar. Here’s a sentence in the language:

30/5*2+6

Suppose we parse it using the LL(1) grammar with markers we constructed be-
fore:

In this case the terminal symbol i represents an integer token. Here’s what the 
action routines are expected to do:

P1 pop the numeric value on top of the semantics stack, write it out, and ter-
minate execution.

P2 pop three values from the semantics stack, add the first and third, and 
push the sum.

P3 pop three values from the semantics stack in order z, y, x; push the value 
x-z back on the stack.

P4 no operation.

P5 pop three values from the semantics stack in order z, y, x; push the value 
x*z back on the stack.

P6 pop three values from the semantics stack in order z, y, x; push the value 
x/z back on the stack.

P7 no operation.

P8 pop the token off the semantics stack, convert its body from a string to 
an integer, and push the value back.

P9 pop three values off the semantics stack and push the middle value back.

Here’s a trace of the input and the semantics stack while parsing the sentence 
30/5*2+6. Tokens are indicated as type:value.

start = e P1. ttail = "*" t P5.

e = t P4 etail. ttail = "/" t P6.

etail = "+" t P2 etail. ttail = P7 .

etail = "-" t P3 etail. f = i P8.

etail =. f = "(" e ")" P9.

t = f ttail .
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Action from 
previous

Semantics stack Prediction stack Input

start EOI 30/5*2+6 EOI

e P1 EOI 30/5*2+6 EOI

t P4 etail P1 EOI 30/5*2+6 EOI

f ttail P4 etail P1 EOI 30/5*2+6 EOI

i P8 ttail P4 etail P1 EOI 30/5*2+6 EOI

match i:30 P8 ttail P4 etail P1 EOI /5*2+6 EOI

P8 30 ttail P4 etail P1 EOI /5*2+6 EOI

30 "/" t P6.P4 etail P1 EOI /5*2+6 EOI

match 30 /:/ t P6 P4 etail P1 EOI 5*2+6 EOI

30 /:/ f ttail P6 P4 etail P1 EOI 5*2+6 EOI

30 /:/ i P8 ttail P6 P4 etail P1 EOI 5*2+6 EOI

match 30 /:/ i:5 P8 ttail P6 P4 etail P1 EOI *2+6 EOI

P8 30 /:/ 5 ttail P6 P4 etail P1 EOI *2+6 EOI

30 /:/ 5 "*" t P5 P6 P4 etail P1 EOI *2+6 EOI

match 30 /:/ 5 *:* t P5 P6 P4 etail P1 EOI 2+6 EOI

30 /:/ 5 *:* f ttail P5 P6 P4 etail P1 EOI 2+6 EOI

30 /:/ 5 *:* i P8 ttail P5 P6 P4 etail P1 EOI 2+6 EOI

match 30 /:/ 5 *:* i:2 P8 ttail P5 P6 P4 etail P1 EOI +6 EOI

P8 30 /:/ 5 *:* 2 ttail P5 P6 P4 etail P1 EOI +6 EOI

30 /:/ 5 *:* 2 P7 P5 P6 P4 etail P1 EOI +6 EOI

P7 30 /:/ 5 *:* 2 P5 P6 P4 etail P1 EOI +6 EOI

P5 30 /:/ 10 P6 P4 etail P1 EOI +6 EOI

P6 3 P4 etail P1 EOI +6 EOI

P4 3 etail P1 EOI +6 EOI

3 "+" t P2 etail P1 EOI +6 EOI

match 3 +:+ t P2 etail P1 EOI 6 EOI
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5.5 Accounting for semantics stack depth

As mentioned, an action routine can push either one or zero values on the se-
mantics stack. As a rule, they would leave one value to represent the left hand 
side symbol. Some nonterminals, however, have no semantic information asso-
ciated with them, so there is no reason to keep a value on the stack for them. It 
is a strong temptation not to needlessly push and pop null values, and we are 
sure to give in to this temptation , but it makes it harder to get our parser right. 
We will probably find one of our biggest problems with this parsing method is 
that we mangle the semantics stack by popping or pushing the wrong number of 
items.

 Recall that the paradigmatic way to use action symbols involves four things:

1. Write an original grammar in a clear, meaningful form without using 
any grouping, optional, or repetitive constructs and with action symbols 
only at the ends of right hand sides.

2. Design the action routines to remove one thing from the semantics stack 
for each symbol ahead of them on the right hand side and will push one 
value back.

3. Then, create a transformed grammar in LL(1) form, moving the action 
symbols around like any other symbol. 

4. Represent every terminal and nonterminal symbol in the original gram-
mar by exactly one value on the semantics stack.

If we decide not to push values for some nonterminals, you will have to keep 
track of which nonterminals have values and which do not. It will no longer be 

3 +:+ f ttail P2 etail P1 EOI 6 EOI

3 +:+ i P8 ttail P2 etail P1 EOI 6 EOI

match 3 +:+ i:6 P8 ttail P2 etail P1 EOI EOI

P8 3 +:+ 6 ttail P2 etail P1 EOI EOI

3 +:+ 6 P7 P2 etail P1 EOI EOI

P7 3 +:+ 6 P2 etail P1 EOI EOI

P2 9 etail P1 EOI EOI

9 P1 EOI EOI

P1 EOI EOI

match
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immediately obvious by looking at a right hand side just how many values an 
action symbol’s procedure is to pop or push.

The problem is made all the worse once the grammar is transformed into LL(1) 
form. When we need to make a change in the grammar (and we will) we will 
make the change directly to the LL(1) form and it will not be at all clear what 
effect it will have on the semantics stack. In the LL(1) form, newly introduced 
nonterminals will not necessarily leave either zero or one values on the stack. 
And the braces, brackets, parentheses, and vertical bars cause their own confu-
sion.

What we will need is a way to account for stack depth. Associate a number with 
each symbol, right hand side, alternative, and parenthesized, optional, or  repet-
itive phrase.  These numbers represent the effect of the construct on the seman-
tics stack depth. Here are the rules:

1 Every symbol will change the depth of the semantics stack by a fixed 
amount.

• All terminals count as +1. The parser will push each token matched 
on the stack.

• Each nonterminal will have a fixed number of symbols it will leave 
on or remove from the stack. Nonterminals in the original grammar 
will change the stack depth by +1 or +0. Nonterminals introduced 
during the translation to LL(1) form may even have a negative net 
depth, as we will see below.

• An action symbol has an effect equal to the number of symbols 
pushed minus the number popped. Since the number pushed is zero 
or one and the number popped is greater than or equal to zero, an ac-
tion symbol can have any number less than or equal to one.

2 A string of symbols has a number computed by adding up all its compo-
nents.

3 The number associated with a nonterminal must be the same as the num-
ber computed for each of its right hand sides.

4 Each alternative (separated by vertical bars, |) must add up to the same 
value.

5 The contents of brackets, [...], must add up to zero.

6 The contents of braces, {...}, must add up to zero.

To use a version of our expression grammar:

start = e P1!.
e = t { "+" t P2! | "-" t P3!} .
t = f  [ "*" t P5! | "/" t P6!].
f = i P8! | "(" e ")" P9!.
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We can determine the numbers associated with the symbols as follows:  

We can now compute the lengths of the right hand sides to make sure the rules 
aren’t violated and the lengths of the left hand sides match. Here is a rough trace 
of the calculations we may need to go through:

"+", "-", "*", "/", 
i, "(", ")"

1 they all are terminals

start 0

 e, t, f 1 they are nonterminals from the original 
grammar

P2, P3, P5, P6 -2 they handle binary expressions, popping 
three and pushing one

P1 -1 it pops an expression’s value and pushes 
nothing

P8 0 it pops the integer token and pushes its 
numeric value

P9 -2 it pops three values and pushes back the 
middle one

syntax calculation number of 
the rule be-
ing used or 
checked

start = e P1!. 0 = 1 + -1 3

"+" t P2! 1 + 1 + -2 = 0 2

"-" t P3! 1 + 1 + -2 = 0 2

"+" t P2! | "-" t P3! 0 = 0 4

{ "+" t P2! | "-" t P3!} 0 6

e = t { "+" t P2! | "-" t P3!} 1 = 1 + 0 3

"*" t P5!  1 + 1 + -2 = 0 2

"/" t P6!  1 + 1 + -2 = 0 2

"*" t P5! | "/" t P6!  0 = 0 4

[ "*" t P5! | "/" t P6!]  0 5

t = f  [ "*" t P5! | "/" t P6!].  1 = 1 + 0 3

i P8! 1 + 0 = 1 2

"(" e ")" P9!. 1 + 1 + 1 + -2 = 1 2
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i P8! | "(" e ")" P9! 1 = 1 4

f = i P8! | "(" e ")" P9! 1 = 1 3
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Chapter 6 Panic mode error recovery

The parser discovers an error in its input when the next input symbol either does 
not match the terminal symbol on top of the prediction stack or it does not select 
a right hand side for the nonterminal on top of the stack. There are no rules to 
tell the parser what to do next. What should it do?

First, of course, the parser should give an error message. The easiest error mes-
sage is simply:

unexpected token XXXX at line YYYY, column ZZZZ

Then what? Just stopping isn’t nice. Users appreciate the compiler trying to find 
several errors with each attempted compile. The compiler should attempt to re-
cover from the error and continue processing the program.

There are two problems in attempting to continue:

• The parser must get past the token that caused the syntactic error. 

• The semantics routines must not become so confused that they either crash 
or flood the user with error messages. This requires that the semantics stack 
be set to an appropriate depth and that the contents of the stack not cause 
errors to the action routines.

Fortunately, both are easy to accomplish with LL(1) parsing.

A simple error recovery technique for LL(1) parsers is called panic mode. When 
the parser has detected and reported an error, it goes into panic mode and throws 
away part of the input and part of the prediction stack until it has found a token 
in the input and a symbol in the prediction stack that allow parsing to continue, 
then it returns to normal mode and continues parsing.

How does it choose an input symbol to restart at, and how does it decide how 
much of the stack to throw away? The answers to the two questions are related.

The parser will read ahead to one of a set of symbols that delimit major sections 
of the program. These symbols are called fiducial symbols, symbols the parser 
can trust. For many programming languages, the fiducial symbols include ";", 
"then", "else", and "end", symbols that end or separate statements. If an error is 
detected within a statement, the parser will throw away the rest of the statement 
and try to resume parsing with the next.
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The parser will not, however, accept just any fiducial. The fiducial must be pre-
dicted. The parser will throw away input symbols up to a fiducial and then look 
down the prediction stack. If it finds the fiducial symbol on the stack, or if it 
finds a nonterminal symbol that derives that fiducial symbol first in a string, 
then the parser will remove the symbols on the prediction stack down to the fi-
ducial or nonterminal and will then resume parsing. 

If the fiducial is not predicted, of course, the parser throws it away and continues 
looking. EOI is a fiducial, and it is at the bottom of the stack, so the parser can 
at least resynchronize by throwing away all the rest of the program.

EOI is the only fiducial chosen by the parser generator. You must specify the 
others yourself with the fiducials declaration:

fiducial: f1 f2 ... fn .

Notice that the declaration uses a colon rather than an equal sign, the fiducials 
are listed without commas and the declaration concludes with a period.

"But," you may ask, "if the parser just throws away part of the prediction stack, 
won’t the semantics stack will be mangled when the parsing resumes. What 
does the parser do about that?"

The TCLL1 parser tries to repair errors. After throwing away part of the input, 
it does not just throw away the top part of the stack, but instead generates a re-
placement string of tokens for the input thrown away. Recall that the parser 
works by generating a program atop the input program, matching them. It is 
trivial to generate the replacement tokens. Instead of throwing away symbols 
from the prediction stack, it does the following with each top symbol of the pre-
diction stack down to the symbol that predicted the fiducial:

• If the top symbol is a terminal, the parser generates an error token and push-
es it onto the semantics stack. An error token can be recognized by the ac-
tion routines. It warns the action routines that the token did not come from 
the user. The routines should not try to use the token nor give any further 
error messages.

• If the top symbol is an action symbol, the parser calls its action routine. The 
action routine will adjust the semantics stack properly. Most action routines 
will start by removing the correct number of values from the semantics stack 
and checking if there were any error tokens among them. If the action rou-
tine finds an error token, it will push the correct number of error tokens back 
on the stack (zero or one) and return immediately.

• If the top symbol is a nonterminal, the parser replaces it with one of its right 
hand sides. The parser chooses the right hand side that will generate a short-
est possible string of terminals. If there are several such right hand sides, the 
parser generator chooses arbitrarily which one will be used.
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Chapter 7 Incorporating the parsers
into compilers

Here is what we need to do to build a compiler using this system:

• create a grammar for the language you wish to compile, put in action sym-
bols, put it into LL(1) form, and run it through TCLL1 to get tables for our 
parser. If our grammar is called ourlang.grm, the tables will be given the 
name ourlang.ll1.

• Write a main program to initialize the compiler and call the parser. Actually, 
we will just edit an old main program to adapt it. We’ll see one later that we 
can start with.

• Write a scanner for the language. Again, we will just adapt an already writ-
ten scanner. We usually start with one written for Oberon-2. We’ll see it lat-
er and see how it works.

• Write action routines. Most of these need to be written specially for each 
compiler, but there is some standard boilerplate that they share.

• Compile our files together and link with readll1, parsell1, semstk, and rpt-
perr from the TCLL1 run time library and with files xcode, escape, and eb-
cdic from the Icon programming library.

The call-structure of the compiler is as follows:

Our main program calls

• readLL1 in file readll1.icn to read in the parse tables from a file and produce an inter-
nal form of the tables for the parser to use.

• initSemanticsStack in file semstk.icn to initialize the semantics stack for the action 
routines.

• initScanner, which we provide to initialize the scanner. It is used mainly to open the 
user’s input file. We can leave this routine out if we don’t need it.

• parseLL1 in file parsell1.icn to read and parse the input program. Procedure 
parseLL1 calls

• scan, which we provide, to return it the next token of the input each 
time it is called. When the input is finished, scan will return an EOI 
token for each call.

• outToken in file semstk.icn to put a token it has matched onto the 
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semantics stack.

• outError in file semstk.icn to push an error token on the semantics 
stack during panic mode error recovery.

• reportParseError in file rptperr.icn to report the parser has en-
countered an unexpected token in the input.

• outAction in file semstk.icn to call an action routine, which you 
supply. 

• Our action routine may call

• popSem in file semstk.icn to pop a number of values off the se-
mantics stack and return them in a list. The leftmost value in the 
list corresponds to the leftmost symbol in the right hand side that 
contains the action symbol, and is the value that was furthest 
down the semantics stack.

• pushSem in file semstk.icn to push the semantics value of the 
left hand side symbol onto the semantics stack.

• anyError in file semstk.icn to look through a list of values and 
succeed returning any of those values that is an error token, or 
fail if there are no error tokens present. 

• isError in file semstk.icn to check whether a particular semantic 
value is an error token.

7.1 Interface to readll1.icn

The TCLL1 parser generator creates a file of parse tables from a grammar. This 
parse table must be read in before the parser can use it. Module readll1.icn pro-
vides the routine, readLL1,  to read in a parse table. Routine readLL1 returns the 
parse table contained in a record of type LL1.

record  LL1(...)

We don’t need to know the fields of this record to use the parser. Procedure 
readLL1 returns a record of this type; procedure parseLL1 takes it as a param-
eter.

procedure readLL1(fileName)

parameter: fileName—a string, the name of the file containing the output of the 
TCLL1 parser generator.

returns a record of type LL1 containing parse tables

fails if it can’t open file fileName

Procedure readLL1 takes the name of the parse table file as a string. (TCLL1 
creates the file with the extension ".ll1" so unless you’ve renamed it, you will 
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pass a file name with that extension.) If it successfully reads the tables, readLL1 
will return a record of type LL1 containing an internal form of the tables. If it 
can’t open the file, readLL1 will fail. Unfortunately, if the file is malformed, the 
Icon library routine decode will crash.

7.2 Interface to parsell1.icn

Module parsell1.icn contains the parser and the record declaration for tokens, 
the record Token. The scanner returns a token to the parser for each input sym-
bol. Tokens are pushed on the semantics stack as they are recognized.

record Token(type,body,line,column)

fields:

1 type—a character string, the identifier or string used in the grammar 
to represent the terminal symbol.

2 body—the character string that the scanner found in the input. For 
keywords and most punctuation, the bodies will usually be the same 
as the type. For identifiers, the body will be the name of the identi-
fier. For constants, the type will indicate the type of the constant and 
the body will have the character string the user wrote.

3 line—an integer, the line number where the token was found.

4 column—an integer, the character position of the token in the line 
(tabs are treated as single characters).

If we are allowing "includes" you may want to add another field to tell which 
file the token was found in.

procedure parseLL1(ll1)

parameter: ll1—a record of type LL1

returns nothing

Procedure parseLL1 performs an entire parse up to the end of input. It must be 
given an LL1 record containing the parse tables. (See module readll1.icn for a 
further discussion of record LL1 and procedure readLL1 to read in the tables.)

7.3 Interface to semstk.icn

Module semstk.icn provides procedures to maintain the semantics stack. The 
parser uses three of the routines; we use the rest. This module provides the def-
inition of record ErrorToken, which has exactly the same fields as Token, but is 
used to represent erroneous phrases.

record ErrorToken(type,body,line,column)

The parser inserts error tokens during panic mode error recovery. Our action 
routines should check for error tokens before taking any action. Once either the 
parser or an action routine has reported an error, error tokens should be pushed 
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on the semantics stack to warn other action routines not to give another error 
message and not to try to make sense of the input.

procedure initSemanticsStack()

called by our main program

parameters: none

returns nothing

This procedure should be called by the main program before starting parsing. 
As its name says, it initializes the semantics stack.

procedure outToken(tok)

called by the parser

parameter: tok—a token

returns nothing

The parser calls procedure outToken to push a token on the semantics stack.

procedure outAction(a)

called by the parser

parameter: a—a string, an action symbol, the name of an action routine.

returns nothing

The parser calls procedure outAction to call an action routine. The parser passes 
outAction the string name of the routine to call.

procedure outError(t,l,c)

called by the parser

parameters: 

t—a string, the name of a terminal symbol

l—an integer, a line number

c—an integer, a position on the line

returns nothing

The parser calls procedure outError to push an error token on the stack. The er-
ror token will have the type and body t, line l and column c.

procedure popSem(n)



Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher    49

called by an action routine

parameter: n—an integer, the number of values to pop from the semantics stack

returns a list containing the values popped, topmost at the right

We call procedure popSem to remove the top n values from the semantics stack 
and return them to us in a list. The top element will be the rightmost value in the 
list. Say we call this from an action routine A and the grammar has a production:

L = R1 R2 ... Rk A!.

where each symbol Ri has a value Vi on the semantics stack, then 

popSem(k) 

will yield a list 

[V1, V2, ..., Vk]

procedure pushSem(s) 

called by an action routine

parameter: s—a value to push on the semantics stack

returns nothing

We call procedure pushSem to push a value on the semantics stack. 

procedure isError(v)

called by an action routine

parameter: v—a value, presumably from the semantics stack

returns: an undefined value if v is an ErrorToken record

fails if v is not an error token

Procedure isError will succeed if v is an ErrorToken record and will fail other-
wise.

procedure anyError(V)

called by an action routine

parameter: V—a list of values, presumably from the semantics stack

returns: an ErrorToken record, v, found in the list V if there is any

fails if V does not contain any error tokens
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Procedure anyError looks through list V to see if it contains any error tokens. If 
V does, then anyError will succeed returning one of the error tokens in V. If 
there are no error tokens, then anyError fails.

7.4 Interface to action routines

We will need to provide an action routine for each action symbol. The routine 
has the same name as the action symbol and takes no parameters. 

The boilerplate for an action routine for action symbol A is:

procedure A( )
local V,e,...
V:=popSem(...)
if e:=anyError(V) then {pushSem(e); return}
...
pushSem(...)
return
end

The action routine is a parameterless procedure with the same name as the ac-
tion symbol. It pops the appropriate number of values off the semantics stack. 
If there is an error token among them, then there was an error in a subphrase, so 
the action routine pushes an error token back on the stack and returns. Otherwise 
it performs whatever action it should and pushes a value back on the stack.

Of course, the pushSem’s should be omitted if the action routine isn’t supposed 
to leave any value on the stack.

7.5 Interface to rptperr.icn

procedure reportParseError(t)

called by the parser

parameter: t—a token encountered by the parser that it wasn’t expecting

returns nothing

Actually, this is such a small procedure, we usually just include a copy of it with 
our main program rather than compiling it separately. 

7.6 Main procedure

We will need to provide a main program to initialize our compiler and call the 
parser. Do what we do: adapt one that already exists. Here is the main program 
from the TCLL1 parser generator:

Figure 12 Example main program for a compiler.

   1 # TCLL1 -- an LL(1) parser generator
   2 # Main program.
   3 # (written by Dr. Thomas W. Christopher)
   4 #
   5
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   6 link readll1,parsell1,scangram,semgram,semstk,gramanal,ll1
   7
   8 procedure main(L)
   9 local filename,baseFilename,flags,filenameParts
  10
  11 flags := ""
  12 if L[1][1]=="-" then {
  13 flags := L[1]
  14 filename := L[2]
  15 } else {
  16 filename:=L[1]
  17 }
  18 if /filename then
  19 stop("usage: iconx tcll1 [flags] filename.grm")
  20
  21 filenameParts:=fileSuffix(filename)
  22 baseFilename:=filenameParts[1]
  23 if filename==(baseFilename||".ll1") then
  24 stop("would write output over input")
  25 initScanner( filename |
  26 (/filenameParts[2] & baseFilename||".grm")) |
  27     stop("unable to open input: ",filename)
  28
  29 initGrammar()
  30 initSemanticsStack()
  31
  32 parseLL1(readLL1("tcll1.ll1"))
  33
  34 finishDeclarations()
  35 ll1(baseFilename||".ll1")
  36 if find("p",flags) then printGrammar()
  37 write(errorCount," error",(errorCount~=1&"s")|"",
  38  " and ",warningCount," warning",(warningCount~=1&"s")|"")
  39
  40 end
  41
  42 # From:     filename.icn in Icon Program Library
  43 # Author:   Robert J. Alexander, 5 Dec. 89
  44 # Modified: Thomas Christopher, 12 Oct. 94
  45
  46 procedure fileSuffix(s,separator)
  47    local i
  48    /separator := "."
  49    i := *s + 1
  50    every i := find(separator,s)
  51    return [s[1:i],s[(*s >= i) + 1:0] | &null]
  52 end

Note:

7 Lines 11-19 read and check the input file name and optional flags.

8 Lines 21-24 decompose and check the input file name.

9 Lines 25-27 try to open the input file. Procedure initScanner will fail if 
the file can’t be opened.

10 Line 29 initializes the semantics module, which contains the action rou-
tines.

11 Line 30 initializes the semantics stack in module semstk.icn.
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12 Line 32 reads the TCLL1 parse tables and calls the parser.

13 Lines 34-38 finish processing the user grammar.

14 Lines 42-52 are adapted from the Icon programming library to separate 
an extension from a base file name.

7.7 Structure of scanner

We must provide a parameterless procedure, scan, which will return the next to-
ken from the input each time it is called. We will probably wish to provide with 
it a procedure initScanner which will open the input file and initialize the scan-
ner. We ourselves call that routine from the main program, so we can choose 
whatever interface we want for it.

As with main programs, we probably will not write an entirely new scanner 
when we need one; we will adapt one that already exists. Here is the scanner we 
usually start with, written for the language Oberon-2:

Figure 13 Example scanner.

   1 #
   2 # Scanner for Oberon 2
   3 #
   4
   5 global inputFile
   6 global inputLine,inputLineNumber,inputColumn,eoiToken
   7 global keywordSet
   8
   9 procedure initScanner(filename)
  10 inputFile := open(filename,"r") |
  11 stop("unable to open input: ",filename)
  12 return
  13 end
  14
  15 procedure fractionPart()
  16 return ="." || (tab(many(&digits)) | "")
  17 end
  18
  19 procedure scaleFactor()
  20 return tab(any(’ED’)) || (tab(any(’+-’)) | "") || tab(many(&digits))
  21 end
  22
  23 procedure scan()
  24 local t,c,b
  25 static whiteSpace,initIdChars,idChars,hexdigits,commentDepth,commentLineNo
  26 initial {
  27 /inputFile := &input
  28 inputLineNumber := 1
  29 inputColumn := 1
  30 inputLine := read(inputFile)
  31 eoiToken := &null
  32 whiteSpace := &ascii[1:34]#control ++ blank
  33 initIdChars := &letters
  34 hexdigits := &digits ++ ’ABCDEF’
  35 idChars := &letters ++ &digits ++ ’$_’
  36 keywordSet := set([
  37 "ARRAY","BEGIN","BY","CASE","CONST","DIV","DO",
  38 "ELSE","ELSIF","END","EXIT","FOR","IF","IMPORT",
  39 "IN","IS","LOOP","MOD","MODULE","NIL","OF","OR",
  40 "POINTER","PROCEDURE","RECORD","REPEAT","RETURN",
  41 "THEN","TO","TYPE","UNTIL","VAR","WHILE","WITH"
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  42 ])
  43 }
  44 if \eoiToken then return eoiToken
  45 repeat inputLine ? {
  46 tab(inputColumn)
  47 tab(many(whiteSpace))
  48 c := &pos
  49 if b := tab(many(&digits)) then {
  50 if b ||:= tab(many(hexdigits)) || ="X" then {
  51 t := Token("character",b,
  52 inputLineNumber,c)
  53 } else if b ||:= tab(many(hexdigits)) || ="H" then {
  54 t := Token("hexinteger",b,
  55 inputLineNumber,c)
  56 } else if b := b || fractionPart() ||
  57     scaleFactor() then {
  58 t := Token("real",b,
  59 inputLineNumber,c)
  60 } else if b ||:= fractionPart() then {
  61 t := Token("real",b,
  62 inputLineNumber,c)
  63 } else if b ||:= ="." || scaleFactor() then {
  64 t := Token("real",b,
  65 inputLineNumber,c)
  66 } else {
  67 t := Token("integer",b,
  68 inputLineNumber,c)
  69 }
  70 inputColumn := &pos
  71 return t
  72 } else
  73  if any(initIdChars) then {
  74 t := Token("ident",tab(many(idChars)),
  75 inputLineNumber,c)
  76 inputColumn := &pos
  77 if member(keywordSet,t.body) then
  78 t.type := t.body
  79 return t
  80 } else
  81  if b := =(":=" | ">=" | "<=" | "..") then {
  82 inputColumn := &pos
  83 return Token(b,b,inputLineNumber,c)
  84 } else
  85  if ="(*" then {
  86 inputColumn := &pos
  87 commentDepth := 1
  88 commentLineNo := inputLineNumber
  89 while commentDepth > 0 do {
  90 tab(upto(’*(’)|0)
  91 if pos(0) then {
  92     &pos := 1
  93     inputLineNumber +:= 1
  94     if not (&subject :=
  95 inputLine := read(inputFile))
  96    then {
  97 eoiToken := Token("EOI","EOI",
  98 inputLineNumber,1)
  99 write("end of input in comment beginning at ",
 100 commentLineNo)
 101 return eoiToken
 102     }
 103  } else if ="*)" then {
 104  commentDepth -:= 1
 105  } else if ="(*" then {
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 106  commentDepth +:= 1
 107  } else {
 108  move(1)
 109  }
 110 }
 111 inputColumn := &pos
 112 } else
 113  if b := tab(any(’,=#()[]{}~+-*/|&^;:><.’)) then {
 114 inputColumn := &pos
 115 return Token(b,b,inputLineNumber,c)
 116 } else
 117  if pos(0) then {
 118 inputColumn := 1
 119 inputLineNumber +:= 1
 120 if not (inputLine := read(inputFile)) then {
 121 eoiToken := Token("EOI","EOI",
 122 inputLineNumber,1)
 123
 124 return eoiToken
 125 }
 126 } else
 127  if ="\"" then {
 128 b := tab(find("\""))
 129 if not( = "\"" ) then {
 130 write("unterminated string at ",
 131 inputLineNumber," ",c)
 132 }
 133 t := Token("string",b,inputLineNumber,c)
 134 inputColumn := &pos
 135 return t
 136 } else
 137  if ="’" then {
 138 b := tab(find("’"))
 139 if not( = "’" ) then {
 140 write("unterminated string at ",
 141 inputLineNumber," ",c)
 142 }
 143 t := Token("string",b,inputLineNumber,c)
 144 inputColumn := &pos
 145 return t
 146 } else
 147 {
 148 write("unexpected character: ",move(1),
 149 " at line ",inputLineNumber," column ",c)
 150 inputColumn := &pos
 151 }
 152 }
 153 end

Notes:

15 Lines 9-13 are the initialization routine, initScanner, that tries to open 
the input file.

16 Lines 15-21 help in recognizing real numbers.

17 Lines 23-153 are the scanner proper.

18 Lines 26-43 initialize the scanner the first time it is called. They could 
have been included in initScanner if the static’s on line 25 had been 
made global.

19 Line 44 checks to see if an end-of-input token has been returned yet. If 
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so, it returns it again. We don’t keep trying to read past the end of file.

20 Line 45 is a repeat because when we fall off the end of an input line, we 
will have to read in a new line and restart our scan at its beginning. We 
make inputLine the subject string and enter the compound expression to 
look for tokens.

21 Line 46 moves the cursor &pos over to the next column to look in.

22 Line 47 moves the cursor past any white space.

23 Line 48 remembers where the first legible character was so that we can 
report it as the column in a Token record.

24 Lines 49 -151 are a nested if statement to find tokens. The token types 
are grouped by the class of character they begin with.

25 Lines 49-72 handle all tokens that begin with a digit.

26 Lines 50-53 handle characters written in hexadecimal format.

27 Lines 53-56 handle integers written in hexadecimal format.

28 Lines 56-60 handle real numbers with both a fraction part and an expo-
nent.

29 Lines 60-63 handle real numbers with a fraction part but no exponent.

30 Lines 63-66 handle real numbers with an exponent but no fraction.

31 Lines 66-69 handle integers.

32 Line 70 remembers where to restart the scan on the next call.

33 Lines 73 through 80 handle identifiers and keywords. A keyword is sim-
ply an identifier that is found in the set keywordSet.

34 Lines 81-84 handle two character operators. 

35 Lines 85-112 handle comments, which in Oberon-2 are delimited by (* 
and *) and can extend over multiple lines and be nested. Following the 
comment, this code falls out of the if expression to repeat the search for 
a token from the beginning.

36 Lines 113-116 handle single character operators and punctuation.

37 Lines 117-126 handle the scanner falling off the end of the line. (See 
also lines 91-103 which handle the same thing within a comment.)

38 Lines 127-146 handle quoted strings.

39 Lines 146-151 handle the default case of an unexpected character in the 
input.
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Appendix A The TCLL1 input grammar

Here is a grammar for TCLL1’s input:

start = grammar.
grammar =  { declaration }.
declaration = ID ( ":" rhs "." | "=" alts ".").
rhs = {elem}.
alts = rhs {"|" rhs}.
elem =  ID [ "!" ] | "(" alts ")" | "{" alts "}"  
| "[" alts "]" .

In the grammar, ID represents an identifier or a quoted string of special charac-
ters (recognition of IDs is handled by the scanner). The only syntax that hasn’t 
been described yet is

declaration = ID ":" rhs "." .

This is a form of declaration that gives the symbols on the right hand side of the 
":" special meanings. There are four such declarations:

• start : ID .

This declares the identifier ID to be the start symbol. It is equivalent to "start 
= ID ."

• EOI : ID .

This declares symbol ID to represent end-of-input. If this is not provided, 
the parser generator declares EOI itself to be the end-of-input symbol.

• actions : ID1 ID2 ... IDn .

This declares the identifiers to be action symbols so they can be used with-
out following them with exclamation points. 

• fiducials: ID1 ID2 ... IDn .

This declares the identifiers to be fiducial symbols for use in panic mode er-
ror recovery. Error recovery was discussed in Chapter 6 on page 43 .

Identifiers can have two forms:

• A letter or underscore ("_"), followed by zero or more letters, digits, or un-
derscores.
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• A string of any characters except a quote enclosed in (double) quotes, e.g. 
"=".

An identifier must be entirely on one line.

A comment is the same as in Icon: a # and all the characters following it up to 
the end of the line.
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Appendix B Contents of the LL1 record

The best way to use TCLL1 to generate a parser in some language other than 
Icon is to simply run the parser generator and write a program in Icon to read in 
the tables and translate them into the other language. To do that, you need to 
know the contents of the LL1 record returned by procedure readLL1.

The record definition is:

record  LL1(sel,deflt,
terminals,actions,
fiducials,firstFiducials,
minLengRHS,
start,eoi)

All symbols are represented by character strings, their names. The fields are as 
follows 

• start is the start symbol.

• eoi is the end-of-input symbol.

• terminals is a set containing all the terminal symbols.

• actions is a set containing all the action symbols.

• sel is a table used to select which right hand side to use for a nonterminal on 
the stack and a terminal in the input. Let L be the LL1 record, N be the non-
terminal, and T be the terminal, then if L.sel[N] is not &null and if 
L.sel[N][T] is not &null, then L.sel[N][T] is a list of symbols to replace N 
with—the right hand side. However, if either L.sel[N] is &null or 
L.sel[N][T] is &null, there may still be a replacement right hand side given 
by field deflt.

• deflt is a table to specify default right hand sides for nonterminals. Let L be 
the LL1 record, N be the nonterminal, and T be the terminal. The parser will 
first try to look up a right hand side in L.sel[N][T]. If there is no right hand 
side there, the parser tries to find one in L.deflt[N]. If L.deflt[N] is not 
&null, the parser will replace N with the list of symbols in L.deflt[N]. The 
whole purpose of this table is to save space in the sel table. It is used under 
two circumstances: (1) for nonterminals that have only one production and 
(2) for the right hand side chosen by the largest number of terminal symbols.

• fiducials is a set containing all the fiducial symbols, i.e., the subset of termi-
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nal symbols at which the parser will try to resume parsing following an er-
ror.

• firstFiducials is a table mapping nonterminals into the sets of fiducial sym-
bols they derive first. The error recovery uses this when it scans ahead to a 
fiducial and then sees if the fiducial is predicted. A fiducial is predicted if it 
is on the prediction stack or if a nonterminal is on the stack which can derive 
the fiducial first.

• minLengRHS is a table mapping each nonterminal to one of its right hand 
sides which will derive a minimum length terminal string. It is used by the 
error recovery to replacement tokens for the tokens thrown away during 
panic mode error recovery.

Care has been taken to minimize the storage required by the parsing tables. All 
occurrences of the same right hand side are represented by the same list (not 
merely lists with the same contents). All symbols are represented by the same 
bytes in Icon’s string area, not merely by equal strings.


