
TCLL1:
An LL(1) Parser Generator and Parser

Thomas W. Christopher

Department of Computer Science
and Applied Mathematics

Illinois Institute of Technology

Copyright © 1996 by Thomas W. Christopher

This document revised 1/23/97.

You may reproduce this document in its entirety for personal use with the TCLL1 parser gen-
erator. For educational use at a nonprofit institution, you may reproduce this document for the
students provided you inform the author of the course name and number, the institution name
and address, and provide electronic links (instructor’s e-mail and course home page URL) to
be posted on the web. Send the listing to the author at the address or URL given below.

Any other uses of this document, such as incorporation in a derived work or a compilation, re-
quire written permission.

The TCLL1 parser generator itself is public domain. Since it is in the public domain, it may be
copied and used without restriction. The author makes no warranties of any kind as to the cor-
rectness of TCLL1 or its suitability for any application. The responsibility for the use of the
program lies entirely with the user.

To contact the author

Thomas Christopher
Department of Computer Science and Applied Mathematics
Illinois Institute of Technology
IIT Center
Chicago IL 60616 USA

tc@charlie.cns.iit.edu
http://www.iit.edu/~tc

To obtain a up-to-date copy of this document and the TCLL1 parser generator

http://www.iit.edu/~tc/toolsfor.htm

Acknowledgment

I wish to thank Patricia Guilbeault for her technical editing of this document.

i

CONTENTS

. List of Figures . iv

Chapter 1. Introduction . 5

Chapter 2. Building the parser generator 6

Chapter 3. Context-Free Grammars 8

3.1 Context-free grammars . 8

3.2 Derivations . 9

3.3 Phrases . 10

3.4 Bugs in grammars . 11

3.5 Ambiguous grammars. 12

3.6 Leftmost derivation algorithm 14

3.7 Extended syntax . 15

Chapter 4. LL(1) Parsing . 17

4.1 Principles of LL(1) Parsing. 17

4.2 Putting grammars into LL(1) form 18

4.3 How a grammar fails to be LL(1) 18

4.4 Left-recursion removal . 20

4.5 Factoring . 21

ii

4.6 Replacing nonterminals by right hand sides 21

4.7 Replacing right hand side by left hand side 23

4.8 Tables of operators . 25

4.9 The dangling-else problem . 26

Chapter 5. Parsing with action symbols 29

5.1 Reductions . 29

5.2 Semantic values . 32

5.3 Inserting markers into sentences. 33

5.4 Parsing . 34
5.4.1 Action symbols . 35
5.4.2 The LL(1) parsing algorithm. 35
5.4.3 Building parsers . 36
5.4.4 Example of evaluating arithmetic expressions 37

5.5 Accounting for semantics stack depth 39

Chapter 6. Panic mode error recovery 43

Chapter 7. Incorporating the parsers
into compilers . 45

7.1 Interface to readll1.icn . 46

7.2 Interface to parsell1.icn. 47

7.3 Interface to semstk.icn . 47

7.4 Interface to action routines . 50

7.5 Interface to rptperr.icn . 50

7.6 Main procedure . 50

7.7 Structure of scanner . 52

iii

Appendix A. The TCLL1 input grammar 56

Appendix B. Contents of the LL1 record 58

iv

List of Figures

Figure 1 Expression grammar. 9
Figure 2 The derivation of a sentence. 10
Figure 3 Grammar bugs.grm. 11
Figure 4 Error messages from bugs.grm (Figure 3).. 12
Figure 5 LL(1) Recognition algorithm. . 17
Figure 6 Grammar e-notll1.grm . 19
Figure 7 The warning generated for the labeled statement. 24
Figure 8 Warnings for a dangling-else. . 27
Figure 9 Algorithm for Reduction using markers. 31
Figure 10 LL(1) Algorithm to insert markers . 34
Figure 11 LL(1) parsing algorithm. . 35
Figure 12 Example main program for a compiler. 50
Figure 13 Example scanner. 52

Introduction

Copyright © 1996. Thomas W. Christopher 5

Chapter 1 Introduction

Parsing, finding the phrases of a program, is the first job of a compiler. The
LL(1) parsing algorithm is probably the easiest parsing algorithm to under-
stand and the easiest program for error recovery, but it does require skill to
use.

This document describes the use of TCLL1, an LL(1) parser generator and
parser, written in the Icon programming language. Topics include (a) how to
build the parser generator, (b) how to write the grammar, and (c) how to in-
terface to the parser.

The goal of this document is to give compiler writers the training they need to
use the TCLL1 parser generator to build parsers for their compilers. In an at-
tempt to be self contained, it includes a brief introduction to context free gram-
mars, so many readers will wish to skim or skip parts of this document.

TCLL1 is an LL(1) parser generator. It reads a context free grammar and, if pos-
sible, generates tables for a parser. The parser will call a scanner to read tokens
(terminal symbols) and will call action routines to find the meanings of the
phrases of the sentence.

TCLL1 Parser Generator

6 Copyright © 1996. Thomas W. Christopher

Chapter 2 Building the parser generator

Before reading the rest of this description of TCLL1, you should compile it on
your own system. That will allow you to try out the test grammars as they are
discussed.

If you do not have a copy of Icon, you can get it over the Internet: ftp it from
ftp.cs.arizona.edu. Versions of Icon for several machines are in subdirectories
of directory icon. Or get it through the World Wide Web, http://cs.arizona.edu/
icon/www/.You may also want to pick up the Icon Programming Library.

If you have the Icon Programming Library (IPL) installed on a DOS/WIN-
DOWS machine, you can execute the batch file mktcll1.bat to build the parser
generator. The five files from the IPL that the parser generator uses are included
with this distribution and can be compiled separately. To build the parser gen-
erator by hand, you may execute

rem These are from the Icon Program Library:

icont -c xcode escape ebcdic

rem These form the parser generator proper

icont -c grananal ll1 semstk readll1 parsell1
icont -c scangram semgram
icont -fs tcll1

The first icont line compiles the files from the IPL. You may omit the line if you
have the IPL installed. The second icont line compiles modules used by the
parser generator. The third line compiles the parser generator’s main program.
The flag -fs tells the translator that the parser generator calls some procedures
by giving their names as strings. In Icon version 8, this flag is not needed; in
version 9 it is.

To use TCLL1 to build a parsing table, execute

Under Icon version 8:

iconx tcll1 grammar.grm

Under Icon version 9:

tcll1 grammar.grm

Building the parser generator

Copyright © 1996. Thomas W. Christopher 7

where grammar.grm is the grammar file. The output of the parser generator will
be encoded parse tables in file grammar.ll1 . If you would also like a listing of
the grammar and diagnostic information, execute

Under Icon version 8:

iconx tcll1 -p grammar.grm

Under Icon version 9:

tcll1 -p grammar.grm

Tcll1 reads its own parsing table from file tcll1.ll1 which must be in the current
directory tcll1.

TCLL1 Parser Generator

8 Copyright © 1996. Thomas W. Christopher

Chapter 3 Context-Free Grammars

3.1 Context-free grammars

To use LL(1) parsers, you need to be skilled at manipulating context-free gram-
mars.

In the jargon of formal language theory, a context-free grammar (CFG) is a "4-
tuple" (N,T,s,P). That is to say, it has four parts:.

• T—a set of terminal symbols, the words in the language;

• N—a set of nonterminal symbols which do not themselves appear in sen-
tences, but are used to generate sentences.

• s—one of the nonterminals, the start symbol.

• P—a set of productions, the rules for generating sentences.

(In a later section, we will add another part: a set of action symbols.)

A production of a CFG is typically written

LHS → RHS

Where LHS, the "left hand side" of the production, is a single nonterminal sym-
bol and RHS, the "right hand side" of the production is a string of zero or more
symbols, terminal and nonterminal.

The arrow is a metalinguistic symbol: it is used to write the productions; it is not
part of the language they describe.

Since we are using a particular parser generator, TCLL1, we will follow its in-
put syntax and write the productions as

LHS = RHS .

with the equal sign and period as metalinguistic symbols.

We will speak of a left hand side as "possessing" the productions or the right
hand sides of the productions it appears in. We will also speak of the right hand
side being a right hand side "for" the left hand side symbol.

The productions are rewriting rules. A sentence is generated by starting with a
string composed solely of the start symbol and repeatedly replacing a nontermi-

Context-Free Grammars

Copyright © 1996. Thomas W. Christopher 9

nal in the string with one of its right hand sides. When there are only terminal
symbols left in the string, the string is called a sentence in the language.

Each single rewriting is called a derivation step. A sequence of derivation steps,
especially the sequence leading from the start symbol to a sentence is a deriva-
tion. A derivation step is written

uAw ⇒ uvw

where A = v . is a production and u and v are any strings of zero or more sym-
bols. A derivation composed of zero or more derivation steps is written:

u ⇒* w

In TCLL1, a nonterminal symbol is written as an identifier. A terminal symbol
is written as an identifier or as any string of printable symbols surrounded by
quotes.

We will use the expression grammar Figure 1 in many of our examples.

TCLL1 assumes the start symbol is named start. Since we really wanted e to be
the start symbol, we put in a production

start = e .

The terminal symbols are "(", ")", "*", "+", "-", "/", and i.

The nonterminal symbols are start, e, t, and f.

3.2 Derivations

All strings derived from the start symbol are called sentential forms. A sentence
is a sentential form composed entirely of terminals.

Figure 2 an example of the derivation of a sentence.

Not only was this a derivation, it was a leftmost derivation; we always replaced
the leftmost nonterminal in the string with a right hand side. We could have

start = e .
e = e "+" t .
e = e "-" t .
e = t .
t = f "*" t .
t = f "/" t .
t = f .
f = i .
f = "(" e ")" .

Figure 1 Expression grammar

TCLL1 Parser Generator

10 Copyright © 1996. Thomas W. Christopher

done a rightmost derivation, always replacing the rightmost nonterminal. Or we
could have replaced arbitrary nonterminals. Since the nonterminals are replaced
without regard to the symbols that surround them, the sentences we can derive
don’t depend on the order of replacement. That is the meaning of "context-
free". However, the set of sentential forms we can derive do depend on the order
of replacement.

A leftmost derivation step is written

uAw ⇒L uvw

where u must be composed entirely of terminals and A = v . is a production.
Similarly, ⇒L* represents a leftmost derivation; ⇒R , a rightmost derivation
step; and ⇒R* , a rightmost derivation.

An LL(1) parser finds a leftmost derivation of the input sentence.

3.3 Phrases

A phrase is a substring of a sentential form that was derived from a single non-
terminal during the derivation of the sentential form. When we compile a pro-
gram, we will deduce the meanings of phrases from the meanings of the words
and phrases within them. In the sentence (i-i*i)*i derived above, the substring
i-i*i is a phrase; it was derived from an e. Within the i-i*i, i*i is a phrase, but i-
i is not. Although the string i-i could be derived from an e, in this derivation it
was not.

Notice that phrases can contain other phrases. Indeed, for two phrases in a sen-
tential form, one of the following is true:

start
e
t
f*t
(e)*t
(e-t)*t
(t-t)*t
(f-t)*t
(i-t)*t
(i-f*t)*t
(i-i*t)*t
(i-i*f)*t
(i-i*i)*t
(i-i*i)*f
(i-i*i)*i

Figure 2 The derivation of a sentence

Context-Free Grammars

Copyright © 1996. Thomas W. Christopher 11

• one is a substring of the other, or

• they have no symbols in common, or

• they are the same string.

3.4 Bugs in grammars

Context-free grammars can have bugs in them. The grammar in Figure 3 exhib-
its three common bugs.

If we pass this grammar through TCLL1, we get the error messages shown in
Figure 4 (and a few others).

We got the first two errors by removing the production "e = t.". Once we have
the symbol e in a string, we can’t get rid of it: e can only be replaced with strings
containing an e. Since start only goes to e, start too cannot derive a string com-
posed entirely of terminals.

The reason TCLL1 says the symbols do not appear to derive a terminal string
has to do with its algorithm. It tries to calculate the minimum length of a string
of terminals the nonterminal can derive. If it can’t satisfy itself that the nonter-
minal can generate a string of less than a certain large length, it reports the error.
You can fool it by writing a grammar that will only generate sentences of greater
than that length.

The errors stating that p, ")", "(", and i cannot appear in a sentential form simply
means that there is no sequence of derivation steps starting from the start sym-
bol that can derive a string containing those symbols. The bug may be that we
should have used f rather than p in the last two productions, or we should have
had some more productions for f including "f = p."

start = e.
e = e "+" t .
e = e "-" t .
t = t "*" t .
t = t "/" t .
t = f .
p = i .
p = "(" e ")" .

Figure 3 Grammar bugs.grm

TCLL1 Parser Generator

12 Copyright © 1996. Thomas W. Christopher

3.5 Ambiguous grammars

The final error

Error: t is both left and right recursive, the grammar
is ambiguous

reports on one of the most common bugs in grammars used for programming
languages. To understand it, we need a few concepts first.

A sentence derived using a particular grammar is ambiguous if there is more
than one way to divide it up into phrases. It can be proven that the sentence is
ambiguous if and only if it has more than one leftmost derivation. A grammar
is ambiguous if it can generate any ambiguous sentences.

Since the phrases of a sentence are used to determine its meaning, an ambiguous
sentence can have more than one meaning. An ambiguous programming lan-
guage grammar would militate against reliable software.

An additional problem for compiler writers is that there are no fast parsing al-
gorithms that work for ambiguous grammars. (Some parser generators will ac-
cept ambiguous grammars, but they resolve the ambiguity internally before
generating the parsers.)

Error: start does not appear to derive a terminal string
Error: e does not appear to derive a terminal string
Error: p cannot appear in a sentential form
Error:) cannot appear in a sentential form
Error: (cannot appear in a sentential form
Error: i cannot appear in a sentential form
Error: t is both left and right recursive, the grammar is ambiguous
Error: t is left recursive, the grammar is not LL(1)
Error: e is left recursive, the grammar is not LL(1)
Error: overlapping selection sets for
1. t = t "*" t.
2. t = t "/" t.
 overlap: {f}
Error: overlapping selection sets for
1. t = t "*" t.
2. t = f.
 overlap: {f}
Error: overlapping selection sets for
1. t = t "/" t.
2. t = f.
 overlap: {f}
12 errors and 0 warnings

Figure 4 Error messages from bugs.grm (Figure 3).

Context-Free Grammars

Copyright © 1996. Thomas W. Christopher 13

It would be nice if we could find out if a given grammar is ambiguous. Unfor-
tunately, it is impossible to do that in general. It is incomputable whether an ar-
bitrary context free grammar is ambiguous. There is no algorithm that can take
an arbitrary context free grammar and report whether it is ambiguous or not. It
is not, mind you, that we don’t know the algorithm yet. We can prove that there
is no such algorithm possible.

For particular grammars we may be able to prove they are ambiguous or unam-
biguous, but there will always be some that we cannot be sure about. Here are
two classes of grammars we can know about:

• If the grammar is accepted by TCLL1 without any warnings or errors, it is
unambiguous.

• If the grammar is left and right recursive in the same nonterminal, it is am-
biguous.

A nonterminal is left recursive if it can derive a string in which it appears as the
leftmost symbol. It is right recursive if it can derive a string in which it appears
as the rightmost symbol. Don’t consider only leftmost derivations for this defi-
nition of right recursive: the symbol might be followed by some nonterminals
that derive the empty string that we have to get rid of. Consider the grammar

A = i A B | i.
B = .

A is right recursive which can be seen from the derivation

A
i A B
i A

but not from the rightmost derivation

A
i A B
i i B

If a grammar is both left and right recursive in the same nonterminal then the
grammar is ambiguous. As a proof, suppose A is both left and right recursive in
a reduced grammar (i.e., a grammar without bugs in it), then

A ⇒L* A v

A ⇒L* x A w

A ⇒L* y

w ⇒L*

v ⇒L* z

TCLL1 Parser Generator

14 Copyright © 1996. Thomas W. Christopher

where

v ∈ (N ∪ T)*

x ∈ T*

w ∈N*

y ∈ T*

z ∈ T*

(that is to say, x, y, and z are strings of terminals, w is a string of nonterminals,
and v is a string of any symbols).

This allows two different leftmost derivations of xyz from A shown by these sen-
tential forms along the derivation:

Since a nonterminal being both left- and right-recursive is a common bug in pro-
gramming language grammars, TCLL1 checks for it. But remember, there are
many other ways for grammars to be ambiguous as well.

3.6 Leftmost derivation algorithm

Sentences can be generated with a leftmost derivation using a prediction stack.
The algorithm is as follows:

THE LEFTMOST-DERIVATION ALGORITHM

Initially, place the start symbol on the prediction stack.

Repeat

pop the top symbol off the prediction stack

if it is a terminal, write it out

if it is a nonterminal, then choose one of its right hand sides and push it
on the prediction stack, leftmost symbol on top

 A A

⇒L* A v ⇒L* x A w

⇒L* x A w v ⇒L* x A v w

⇒L* x y w v ⇒L* x y v w

⇒L* x y v ⇒L* x y z w

⇒L* x y z ⇒L* x y z

Context-Free Grammars

Copyright © 1996. Thomas W. Christopher 15

until the prediction stack is empty.

We call the stack the prediction stack since it predicts what symbols and phrases
will be generated later.

3.7 Extended syntax

To make it more convenient to write grammars, TCLL1 provides an extended
syntax for expressing alternatives, groupings, optional parts, and repetitions.
We show how they may be used with the expression grammar given above:

| the vertical bar is used to separate alternatives. It is customarily used to
combine all the productions for a single nonterminal into a single rule.
It can also separate alternatives within groupings. We can, for example,
shorten our expression grammar from nine lines to four:

start = e .
e = e "+" t | e "-" t | t .
t = f "*" t | f "/" t | f .
f = i | "(" e ")" .

() parentheses are used to group symbols and alternatives. We can group
the operators in our expression grammar as follows:

start = e .
e = e ("+" | "-") t | t .
t = f ("*" | "/") t | f .
f = i | "(" e ")" .

[] brackets group optional items. Basically, [x] is equivalent to (x |); that
is, a bracketed item is equivalent to the enclosed item or the empty
string. In our expression grammar, the alternatives for t provide an op-
tional part:

start = e .
e = e ("+" | "-") t | t .
t = f [("*" | "/") t].
f = i | "(" e ")" .

{ } braces group items that may occur any number of times. The alternatives
for e provide an example of this repetition:

start = e .
e = t { ("+" | "-") t } .
t = f [("*" | "/") t].
f = i | "(" e ")" .

TCLL1 Parser Generator

16 Copyright © 1996. Thomas W. Christopher

When given a grammar using the syntax extensions, TCLL1 translates it into a
pure, unextended CFG. It does this by introducing new nonterminals for all the
groupings. It constructs the names of the new nonterminals from the left hand
side symbol, line number, and position on the line where the grouping begins:

LHS_lineNumber_column

You should be able to figure out how grammars are transformed from the ex-
tended notation to the basic notation by comparing our final expression gram-
mar

start = e .
e = t { ("+" | "-") t } .
t = f [("*" | "/") t].
f = i | "(" e ")" .

to its transformed version:

e = t e_2_7.
e_2_7 = e_2_9 t e_2_7.
e_2_7 =.
e_2_9 = "+".
e_2_9 = "-".
f = i.
f = "(" e ")".
start = e.
t = f t_3_8.
t_3_10 = "*".
t_3_10 = "/".
t_3_8 = t_3_10 t.
t_3_8 =.

TCLL1 provides one further enhancement to CFGs: action symbols. Action
symbols provide the interface between the parser and the "semantics" in the
compiler. An action symbol is written as an identifier followed by an exclama-
tion point:

ID !

As far as the language generated from the grammar is concerned, action sym-
bols don’t appear. They behave as if they were nonterminals that only have one
production and that production has an empty right hand side. During the parse,
however, whenever the parser finds an action symbol on the top of the predic-
tion stack, it performs some action as it pops the symbol off. In a later section,
we will discuss the use of action symbols.

LL(1) Parsing

Copyright © 1996. Thomas W. Christopher 17

Chapter 4 LL(1) Parsing

4.1 Principles of LL(1) Parsing

"LL(1)" means the parser works Left-to-right, finding a Leftmost derivation of
the sentence, and looking at most one (1) symbol ahead in the input to decide
what action to take next.

The trick is this: the LL(1) parser generates a sentence on top of the input sen-
tence, matching the two. When it has successfully matched all of the input sen-
tence, it has also parsed it, since the phrases of the input are the same as those
of the generated sentence.

If we are only interested in whether the input is a sentence—and not interested
in the phrases—we call the parser a recognizer. We present an LL(1) recognizer
now, and wait to present the parser until we have discussed action symbols. The
sentence generation algorithm of the last section now becomes the recognition
algorithm shown in Figure 5.

THE LL(1) RECOGNITION ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol on the
prediction stack with the start symbol on top. Append EOI to the right
end of the input. Read the leftmost symbol from the input into the cur-
rent symbol.

Repeat

pop the top symbol off the prediction stack

if it is a terminal, compare it to the current symbol. If they match, read
the next input symbol into the current symbol. If they don’t, an er-
ror has been discovered in the input.

if it is a nonterminal, then choose one of its right hand sides and push
it on the prediction stack, leftmost symbol on top. Choose the right
hand side by looking at the current symbol and deciding which
RHS will allow parsing to continue.

until the EOI symbol is matched.

Figure 5 LL(1) Recognition algorithm.

TCLL1 Parser Generator

18 Copyright © 1996. Thomas W. Christopher

The EOI ("end of input") symbol is inserted into the set of terminals by the
TCLL1 parser generator. It is used to permit the parser to recognize when the
last terminal has been read in. In a real compiler, the parser calls the scanner to
return one symbol of the sentence at a time, left to right. The scanner will return
EOI when there are no more symbols in the input.

The big problem in LL(1) parsing is rewriting the grammar into LL(1) form, a
form in which the next input symbol can always tell the parser which right hand
side to choose. In a later section we will discuss ways to rewrite grammars to
put them in LL(1) form.

4.2 Putting grammars into LL(1) form

It is hard to put grammars into LL(1) form. Here we consider the requirements
LL(1) places on grammars, how grammars fail to meet those requirements, and
techniques for rewriting grammars to make them suitable.

First a caution. To save yourself much grief, obey this simple rule when trans-
forming grammars: You may introduce new nonterminals. You may revise the
definitions of existing nonterminals. You may delete nonterminals if they are no
longer needed. But never change the meaning of a nonterminal. Never change
the set of strings a nonterminal generates.

4.3 How a grammar fails to be LL(1)

The only place in the LL(1) recognition algorithm where problems can arise is
when a nonterminal comes to the top of the prediction stack. The parser must
pick one of the nonterminal’s right hand sides to replace it with, a right hand
side that will allow parsing to continue. To do this, it can look only at the next
symbol in the input. As an example of where this fails, consider our expression
grammar productions for t and f:

t = f "*" t .
t = f "/" t .
t = f .
f = i .
f = "(" e ")" .

Suppose t is on top of the prediction stack. Each of its right hand sides begins
with f. An f itself can begin with either an "(" or an i. So if we see either an "("
or an i next in the input, we can’t possibly tell which production for t we should
use.

We need two concepts:

• The first set of a string of symbols, u, is the set of terminal symbols, First(u),
that can occur leftmost in a string derived from u. In formal notation

• First(u) = { a | u⇒* av , a is a terminal symbol, u and v are strings}

• The follow set of a nonterminal, A, is the set of symbols, Follow(A), that can
follow A in a sentential form. Formally

LL(1) Parsing

Copyright © 1996. Thomas W. Christopher 19

• Follow(A) = { b | s⇒* v A b w , s is the start symbol, b is a terminal
symbol, v and w are strings}

Now lets consider which right hand side to choose for a nonterminal. Given a
production

A = u .

what terminal symbol, t, would tell us to replace A with u?

• If symbol t is in First(u), we should choose u. After all, we want to choose
the right hand side that will allow us to continue parsing, and right hand side
u will at least be able to get past the next input symbol.

• If u is the empty string, or if it derives the empty string, and if t is in Fol-
low(A) we should choose u. After all, if the right hand side vanishes, the next
input symbol we are looking at could be one that follows the phrase, not one
that begins it.

If any terminal symbol tells us to choose more than one right hand side for a
nonterminal, the grammar is not LL(1). If no terminal symbol ever tells us to
choose more than one right hand side for any nonterminal, the grammar is
LL(1).

When we give a grammar that is not LL(1) to TCLL1, it will give error messag-
es specifying the terminals and productions that are in conflict. Figure 6 shows
the grammar "e-notll1.grm".

Here’s what we get when we pass it through TCLL1:

Error: e is left recursive, the grammar is not LL(1)
Error: overlapping selection sets for
1. t = f "*" t.
2. t = f "/" t.
 overlap: {"(", i}
Error: overlapping selection sets for
1. t = f "*" t.
2. t = f.

errors--not LL(1)
start = e .
e = e "+" t .
e = e "-" t .
e = t .
t = f "*" t .
t = f "/" t .
t = f .
f = i .f = "(" e ")" .

Figure 6 Grammar e-notll1.grm

TCLL1 Parser Generator

20 Copyright © 1996. Thomas W. Christopher

 overlap: {"(", i}
Error: overlapping selection sets for
1. t = f "/" t.
2. t = f.
 overlap: {"(", i}
Error: overlapping selection sets for
1. e = e "+" t.
2. e = e "-" t.
 overlap: {"(", i}
Error: overlapping selection sets for
1. e = e "+" t.
2. e = t.
 overlap: {"(", i}
Error: overlapping selection sets for
1. e = e "-" t.
2. e = t.
 overlap: {"(", i}
7 errors and 0 warnings

We will consider the causes and cures of these and other problems in the sub-
sections to follow.

4.4 Left-recursion removal

The error messages state that the grammar is left recursive and hence not LL(1).
Why? Consider the productions:

e = e "+" t .
e = e "-" t .
e = t .

Consider the leftmost-derivation algorithm given above. When a e appears on
top of the prediction stack, we can keep on replacing it with e+t or e-t, pushing
+t’s and -t’s onto the stack and still leaving e on top. Eventually we will replace
e with t and stop the process, but no symbol in First(t) will tell how many +t’s
or -t’s were pushed on the stack. Similarly, while parsing, the next input symbol
cannot tell us how many +’s or -’s we are going to need.

The parser generator checks for left recursion explicitly. The problems also ap-
pear in the reports of overlapping selection sets.

A nonterminal is directly left recursive if it occurs as the first symbol on the
right hand side of one or more of its productions. If it takes more than one der-
ivation step to derive itself first, for example, A ⇒* Bu ⇒* Cvu ⇒* Awvu, then
it is indirectly left recursive, or as we more colorfully say, there is daisy-chain
recursion.

Direct left recursion can be removed as follows:

• Divide up the productions for the nonterminal into the left-recursive and
non-left-recursive.

LL(1) Parsing

Copyright © 1996. Thomas W. Christopher 21

A = A u1 | A u2 | ... | A um | v1 | v2 | ... | vn .
• Call the u1 u2 ... um the tail ends of the left recursive rules.

• Group the non-recursive right hand sides and follow them by an arbitrary
repetition of the tail ends of the recursive rules, thus:

A = (v1 | v2 | ... | vn) { u1 | u2 | ... | um }.

When we apply this to our expression grammar, we get

e = t { "+" t | "-" t } .

For daisy-chained left recursion, you have to first convert into direct left recur-
sion by replacing nonterminals by their right hand sides, a technique shown be-
low.

4.5 Factoring

An obvious problem for an LL(1) parser is a nonterminal having several right
hand sides beginning with the same symbol. In our expression grammar, t has
that problem:

t = f "*" t .
t = f "/" t .
t = f .

The solution is to factor the common initial part out:

t = f ("*" t | "/" t |).

Which is to say, a t is an f followed by one of several tails.

Since one of the alternatives is empty, we can use brackets:

t = f ["*" t | "/" t].

4.6 Replacing nonterminals by right hand sides

When faced with daisy-chained left recursion or right hand sides with conflicts
but no common initial symbols to factor, we can resort to replacing nontermi-
nals by their right hand sides to try to make the left recursion direct or the initial
parts of right hands sides equal. Consider the following grammar, "c-nll1.grm":

c-nll1
not LL(1)
start = s .
s = e .
s = i "=" e .
e = e "+" t .
e = e "-" t .
e = t .
t = f "*" t .
t = f "/" t .

TCLL1 Parser Generator

22 Copyright © 1996. Thomas W. Christopher

t = f .
f = i .
f = n .
f = "(" e ")" .

In addition to the conflicts we have seen already in the definitions of e and t,
there is a conflict between the two definitions of s: a string derived from e can
also begin with an i.

First, let’s fix e and t:

e = t etail.
etail = { "+" t | "-" t } .
t = f ttail .
ttail = ["*" t | f "/" t].

Now let’s start working on the production

s = e .

The e can derive a string beginning with an i. We need to rewrite until we have
a production for s whose right hand side begins with i so we can factor. We re-
place the e with its one definition, giving

s = t etail.

Now we replace the t by its one definition

s = f ttail etail.

Now we need to replace the f, but it has three definitions. We must replace it
with each, copying the production for each of them

s = i ttail etail.
s = n ttail etail.
s = "(" e ")" ttail etail.

Now we can factor, yielding

s = i ("=" e | ttail etail) .
s = n ttail etail .
s = "(" e ")" ttail etail .

So the resulting grammar is:

c-ll1
LL(1)
start = s .
s = i ("=" e | ttail etail) .
s = n ttail etail .
s = "(" e ")" ttail etail .
e = t etail.
etail = { "+" t | "-" t } .

LL(1) Parsing

Copyright © 1996. Thomas W. Christopher 23

t = f ttail .
ttail = ["*" t | f "/" t].
f = i .
f = n .
f = "(" e ")" .

Now you see why we created new nonterminals etail and ttail. We knew from
experience that we were going to copy them in several productions, and if we
left the braced or bracketed constructs in line, the parser generator would intro-
duce multiple nonterminals with identical definitions.

4.7 Replacing right hand side by left hand side

If we can replace a nonterminal by all of its right hand sides, what about going
the other way? Well yes, that can work, as long as we don’t try to replace the
definitions of the nonterminal itself. (We wouldn’t want to replace A = u | v .
with A = A.).

In fact, we have been replacing multiple right hand sides using newly created
nonterminals. For example, we replaced

t = f "*" t .
t = f "/" t .
t = f .

with

t = f ["*" t | "/" t].

knowing that the brackets create a new nonterminal. The translation done by the
parser generator makes this explicit:

t = f t_3_8.
t_3_8 = "*" t.
t_3_8 = "/" t.
t_3_8 =.

Notice that just as replacing a nonterminal in a production required substituting
each of its right hand sides, duplicating the production as necessary, the substi-
tution the other way requires each right hand side be found at the same place in
otherwise identical productions and that all those productions be replaced with
a single production.

Here’s a more tricky use of this technique. Suppose we have a language where
statements can have any number of statement labels preceding them. The state-
ment labels are identifiers, and assignment statements begin with an identifier:

ls-nll1
not LL(1)
start = labeled_statement .
labeled_statement = label statement .
label = { i ":" }.

TCLL1 Parser Generator

24 Copyright © 1996. Thomas W. Christopher

statement = i "=" e.

The parser generator will find a conflict in label = {id ":"}. which it reports as
shown in Figure 7.

The problem is that the empty right hand side can be followed by the identifier
at the beginning of the assignment statement. (The reason it’s a warning rather
than an error will be discussed later when talking about the "dangling else prob-
lem".

Let’s try rewriting label in labeled_statement to allow us to factor. First, we re-
write the definition of label to make the right recursion explicit:

label = i ":" label | .

And then replace it in labeled_statement:

labeled_statement = i ":" label statement .
labeled_statement = statement .

Now rewriting statement in labeled_statement = statement . gives

labeled_statement = i "=" e.

allowing us to factor

labeled_statement = i labeled_statement_tail .
labeled_statement_tail = "=" e .
labeled_statement_tail = ":" label statement .

If we run this through the parser generator, alas, we find the same warning. We
still have label followed by statement which is the same problem as before.

But now we can apply the trick of rewriting a right hand side as its left hand side.
We know we have not changed the set of strings that labeled_statement gener-
ates so that the strings are still described by the single right hand side label state-
ment. We replace label statement with labeled_statement in the last production
giving

labeled_statement = i labeled_statement_tail .
labeled_statement_tail = "=" e .
labeled_statement_tail = ":" labeled_statement .

Warning: overlapping selection sets for
label_5_9 = i ":" label_5_9.

and empty-deriving production
label_5_9 =.

 overlap: {i}
0 errors and 1 warning

Figure 7 The warning generated for the labeled statement

LL(1) Parsing

Copyright © 1996. Thomas W. Christopher 25

This definition works.

4.8 Tables of operators

You may be given tables of operators with their precedences and associativities.
You may have to translate these into context free syntax.

Binary operators associate to the left if the left hand side nonterminal is left re-
cursive, and associate to the right if the nonterminal is right recursive. The high-
er precedence operator must occur in a subphrase of the lower precedence one.
Here is a method for generating productions from a precedence table of binary
operators. Suppose the grammar specifies

E = E P E .

E = F

with tables giving the precedence and associativity of the operators, P.

Number the precedence levels consecutively, 1, 2, ..., n from lowest to highest.

Create a nonterminal, Ei, for 1 ≤ i ≤ n+1 .

Create a renaming production

Ei = Ei+1 .

for all i ≤ n.

For each binary operator Pj at precedence level i, if Pj is left associative, put in
a production

 Ei = Ei Pj Ei+1 .

If Pj is right associative, put in a production

Ei = Ei+1 Pj Ei .

Or if Pj is non-associative (for example, the relational operators in Pascal), put
in a production

Ei = Ei+1 Pj Ei+1 .

If you end up with two productions

Ei = Ei

and

Ei = ... Ei .

you have generated an ambiguous grammar; left and right associative operators
must not be at the same precedence.

TCLL1 Parser Generator

26 Copyright © 1996. Thomas W. Christopher

For each unary operator P at precedence level i, if several occurrences of P may
occur in a row, put in a production

 Ei = P Ei .

Or, if at most one occurrence of P can occur in front of an operand, put in the
production

Ei = P Ei+1 .

Add productions

E = E1 .
En+1 = F .

For example, given the following table of operators:

the algorithm gives the following grammar:

E1 = ^ E2 .
E1 = E2 .
E2 = E3 # E3 .
E2 = E3 .
E3 = E4 & E3 .
E3 = E4 .
E4 = E4 $ E5 .
E4 = E4 ! E5 .
E4 = E5 .
E5 = % E5 .
E5 = E6 .
E6 = F .

4.9 The dangling-else problem

The dangling-else problem occurs in languages that have optional else clauses
in if statements and no if statement terminator (such as end if or fi). In nested ifs,

Operators Unary or
binary

Associativity Precedence

% unary many highest

$! binary left

& binary right

binary non-associative

^ unary one-at-most lowest

LL(1) Parsing

Copyright © 1996. Thomas W. Christopher 27

it is not clear which preceding if an else goes with. This ambiguity shows up
when we try to construct an LL(1) parser. Consider the syntax:

statement = if_statement
| i "=" e.

if_statement = if e then statement
| if e then statement else statement .

this obviously will have a conflict. So we try factoring

if_statement = if e then statement else_option.
else_option = [else statement].

When we pass this through the parser generator, we get the warnings shown in
Figure 8.

Why? First consider this example:

if e then if e then if e then i=e else i=e else
i=e

We have three if’s and two else’s. Which else goes with which if? When the
LL(1) recognizer has just finished processing the first i=e, there will be three
else_option’s on the prediction shack. Two of them must be replaced with else
statement; one, with the empty string. Which?

Observe that a statement can be followed by an else_option and an if_statement
can end in an else_option. The else_option at the end of an if_statement can
therefore be followed by an else, which means that it is unclear how to choose
between a right hand side beginning with an else and the empty right hand side.

Unfortunately, there’s no way to get rid of this problem. (Well, if you are the
language designer, you could redesign the language, but if you are only the
compiler writer, you have to take the language as given.) So here’s what we do:
we cheat. We want the parser to associate the else with the innermost if. This
will be the if statement that placed the else_option on top of the prediction stack.
So we let the else_option on top of the prediction stack handle the else. That
means we will choose the right hand side that has the else in its first set rather
than the right hand side that is empty and only has the else in its follow set.

Warning: overlapping selection sets for
else_option_6_15 = else statement.

and empty-deriving production
else_option_6_15 =.

 overlap: {else}
0 errors and 1 warning

Figure 8 Warnings for a dangling-else.

TCLL1 Parser Generator

28 Copyright © 1996. Thomas W. Christopher

We’ve written the parser generator to use this rule: only use a symbol from the
follow set to choose an empty-deriving right hand side if it does not appear in
the first set of any right hand side.

The parser generator fills a table, sel, that maps nonterminals and terminals into
right hand sides. For nonterminal A and terminal t, sel[A,t] is the right hand side
to replace A with if t is next in the input.

The parser generator works in two passes over a nonterminal’s productions:

1 For each production A = u. and every terminal t in First(u), sel[A,t] is
assigned right hand side u. If TCLL1 finds that sel[A,t] already has been
assigned a different right hand side, it reports an error.

2 Then TCLL1 checks to see if there is a production for A with an empty-
deriving right hand side, i.e., A = w. where w is either empty or is com-
posed of nonterminals each of which derives the empty string. If there is
no such right hand side, TCLL1 is done with this nonterminal. If there
are two or more such productions, the grammar is ambiguous—there is
more than one way to derive the empty string from A. If there is precise-
ly one such production, A = w., then for all symbols t in Follow(A),

• if sel[A,t] already has a right hand side assigned, issue a warning,

• otherwise assign sel[A,t] the right hand side w.

We have the parser generator give a warning when first sets and follow sets give
conflicting choices for a nonterminal since it may not be a dangling else prob-
lem. Indeed, in the labeled statement example, it wasn’t. If we’d used the parser
that was generated with this warning, it would never have been able to parse an
assignment statement: it would assume an identifier at the beginning of a state-
ment had to be a label and it would report an error when it saw an "=" rather than
a ":".

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 29

Chapter 5 Parsing with action symbols

We have talked about grammars being used to derive sentences from the start
symbol by replacing nonterminal symbols by their right hand sides, but this is
just the reverse of what we need for parsing; we need to reduce the sentence to
the start symbol by repeatedly replacing right hand sides by their left hand sides.
As each reduction is made, a semantic value is computed for the left hand side
symbol from the semantic values of the right hand sides. The procedures that
compute these values are called semantics routines or action routines. In addi-
tion to computing semantic values, the semantics routines can also access
shared data structures and write to files. In theory, "the meaning of the program"
is the semantic value assigned to the start symbol. In practice it can be the con-
tents of a data structure or the contents of a file.

5.1 Reductions

If we start with a sentence and just look through the right hand side for sub-
strings we can reduce, we may go down blind alleys and never reduce it to the
start symbol. Using our expression grammar, we could try the following reduc-
tion sequence on i*i:

i * i
f * i
t * i
e * i
e * f
e * t
e * e

whereupon we cannot make any further reductions.

There are some parsing algorithms, called bottom-up parsing algorithms, that
find the correct substring to reduce each step. These parsing algorithms can be
used directly. Unfortunately, LL(1) parsing is top-down, so we must do some-
thing to make it give us the reduction sequence.

Here’s what we do: We invent an extension of the language in which each pro-
duction ends with a distinct terminal symbol, a marker, translate the sentence
into the equivalent marked sentence in this extended language, and use the
marked sentence to compute the semantic associations for the nonterminals. We
will show that

• we can use the markers to perform reductions in the correct order.

TCLL1 Parser Generator

30 Copyright © 1996. Thomas W. Christopher

• we can translate a sentence without markers into a sentence with markers
using a version of the LL(1) recognition algorithm.

• we can combine these two operations so that no intermediate sentence is
ever generated.

First, let’s consider how we would use markers for reductions. We add markers
to our expression grammar to give an marker-augmented grammar as shown in
the following table:

Notice that each production in the original grammar has a corresponding pro-
duction in the marked grammar. The only difference between these productions
is that the marked production has a marker at the end of its right hand side. All
the markers are distinct.

Assuming i represents integer, here’s a sentence in the expression language and
its translation:

30 / 5 * 2 + 6
30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

The corresponding sentences can be derived by leftmost derivations using the
corresponding productions in each derivation step, as follows:

Original grammar Marked grammar
start = e. start = e P1.

e = e "+" t. e = e "+" t P2.

e = e "-" t. e = e "-" t P3.

e = t . e = t P4 .

t = f "*" t. t = f "*" t P5.

t = f "/" t. t = f "/" t P6.

t = f . t = f P7 .

f = i. f = i P8.

f = "(" e ")". f = "(" e ")" P9.

start start

e e P1

e + t e + t P2 P1

t + t t P4 + t P2 P1

f / t + t f / t P6 P4 + t P2 P1

30 / t + t 30 P8 / t P6 P4 + t P2 P1

30 / f * t + t 30 P8 / f * t P5 P6 P4 + t P2 P1

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 31

When reducing the translated sentence, we use the markers as suffix Polish op-
erators. Each marker has a number of symbols preceding it in its right hand side.
The numbers for the markers are shown below:

Now we will show how to reduce a marked sentence to the start symbol. The
input consists of a string of tokens and markers. The algorithm uses a stack.

The markers coming at the ends of right hand sides tell us when to make a re-
duction and which production to use. Here is a reduction sequence using the al-
gorithm:

30 / 5 * t + t 30 P8 / 5 P8 * t P5 P6 P4 + t P2 P1

30 / 5 * f + t 30 P8 / 5 P8 * f P7 P5 P6 P4 + t P2 P1

30 / 5 * 2 + t 30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + t P2 P1

30 / 5 * 2 + f 30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + f P7 P2 P1

30 / 5 * 2 + 6 30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

marker P1 P2 P3 P4 P5 P6 P7 P8 P9

number of
operands

1 3 3 1 3 3 1 1 3

ALGORITHM FOR REDUCTION USING MARKERS

Initially set the stack empty.

Read through the marked sentence one symbol at a time

if the symbol is a token, push it on the stack

otherwise the symbol is an marker,

look up the production it occurs in

remove the marker’s "arity" number of symbols from the stack
(these correspond to the symbols ahead of the marker on the
right hand side)

push the left hand side symbol on the stack

At the end, the start symbol will be on the stack.

Figure 9 Algorithm for Reduction using markers.

TCLL1 Parser Generator

32 Copyright © 1996. Thomas W. Christopher

5.2 Semantic values

Every symbol in the sentential form has a meaning associated with it, a semantic
value. The semantic values of symbols are also called collections of attributes.
Terminal symbols will have semantic values assigned to them by the scanner.
Terminal symbols with their associated values are called tokens. In the TCLL1
system, a token is a record containing

• the syntactic type (the terminal symbol)— used by the parser to recognize
the input.

• the body (the string of characters that comprise the token)—used by the se-
mantics routines.

• the line number on which the token occurred.

• the column number (actually the character position) of the leftmost charac-

stack input

30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4
+ 6 P8 P7 P2 P1

30 P8 / 5 P8 * 2 P8 P7 P5 P6 P4 + 6
P8 P7 P2 P1

f / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8
P7 P2 P1

f / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7
P2 P1

f / 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7
P2 P1

f / f * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * 2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * f P7 P5 P6 P4 + 6 P8 P7 P2 P1

f / f * t P5 P6 P4 + 6 P8 P7 P2 P1

f / t P6 P4 + 6 P8 P7 P2 P1

t P4 + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + f P7 P2 P1

e + t P2 P1

e P1

start

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 33

ter of the token; the line and column are used to report the position of an er-
ror.

It is fairly clear how to use the reduction algorithm to compute semantic values
of symbols. Each production, and hence each marker, has a procedure, a seman-
tics routine, associated with it. What is kept on the stack are semantic values.
When a marker is encountered, the semantic values of the right hand side sym-
bols are removed from the stack and passed to the semantics routine. The rou-
tine computes the semantic value of the left hand side symbol and that value is
pushed back on the stack.

A semantic value of a nonterminal expresses the meaning of the phrase it de-
rived. A semantic value may be:

• The numeric value of the subexpression the nonterminal represents.

• An operator tree or an abstract syntax tree representing the phrase.

• A translation of the phrase and a description of its result’s data type.

5.3 Inserting markers into sentences

So how do we insert markers into a sentence? We use a version of our LL(1)
recognition algorithm. The differences from the original recognition algorithm
are as follows:

• The algorithm uses a grammar containing markers.

• As it matches tokens, it writes them out.

• When it finds a marker on the top of the prediction stack, it writes it out.

The LL(1) translation algorithm with action symbols is shown in Figure 10.

Of course a grammar has to be put in LL(1) form before the parser can use it.
Do markers cause any problems? Not really. All they require is:

• Markers are moved around like any other symbol.

• When calculating First and Follow sets, markers are invisible; they are treat-
ed like nonterminals that derive only the empty string.

If we transform the marked expression grammar, we can get the following
LL(1) form:

start = e P1.

e = t P4 etail.

etail = "+" t P2
etail.

etail = "-" t P3
etail.

etail =.

TCLL1 Parser Generator

34 Copyright © 1996. Thomas W. Christopher

5.4 Parsing

In practical parsers, we do not first insert markers into a sentence and then pass
it through a reduction algorithm. We combine both parts in one algorithm.

In the following LL(1) parsing algorithm, we use the name action symbols for
markers. When the parser sees an action symbol, it calls an action routine,
sometimes called a semantics routine. Is there a difference between a marker
and an action symbol? Well, yes. All markers are action symbols, but we can
put in action symbols for other purposes than marking the end of a right hand
side, e.g. putting the scanner into a different mode.

t = f ttail .

ttail = "*" t P5.

ttail = "/" t P6.

ttail = P7 .

f = i P8.

f = "(" e ")" P9.

LL(1) ALGORITHM TO TRANSLATE
INTO A MARKED SENTENCE

Initially, place the start symbol and the EOI (end of input) symbol on
the prediction stack with the start symbol on top. Put the EOI sym-
bol at the end of the input. Read the first input symbol into the cur-
rent token.

Repeat

pop the top symbol off the prediction stack.

if the top symbol is a marker, write it out.

otherwise if the top symbol is a terminal, compare it to the current
token.

If they match, write the current token out and read the next to-
ken from the input into the current token.

If they don’t match, an error has been discovered in the input.
Execute error recovery code.

otherwise if the top symbol is a nonterminal, choose one of its
right hand sides and push it on the prediction stack, leftmost
symbol on top. Choose the right hand side by looking at the
next input symbol and deciding which RHS will allow parsing
to continue.

until the EOI symbol is matched.

Figure 10 LL(1) Algorithm to insert markers

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 35

5.4.1 Action symbols

In TCLL1, action symbols are required to be identifiers; they are used as names
of the Icon procedures used for action routines. Action symbols may be declared
by following them with an exclamation point, e.g.

f = "(" e ")" P9! .

If the action symbol has been declared in one place with an exclamation point,
it need not be followed by an exclamation point anywhere else.

If you don’t care to use the exclamation point, you can declare action symbols
with the following declaration:

actions : a1 a2 … an .

where each ai is an action symbol.

5.4.2 The LL(1) parsing algorithm

The LL(1) parsing algorithm with action symbols is shown in Figure 11.

Figure 11 LL(1) parsing algorithm.

LL(1) PARSING ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol on the prediction stack
with the start symbol on top. Put EOI at the end of the input. Make the current token
empty. Make the semantics stack empty.

Repeat

pop the top symbol off the prediction stack.

while it is an action symbol, call its action routine and pop the next top symbol off the
prediction stack. The action routine may pop zero or more values off the semantics
stack and may push one or zero values back on it.

if the current token is empty, call the scanner to read the next input token into the cur-
rent token.

if the top symbol from the prediction stack is a terminal, compare it to the current token.

If they match, push the current token onto the semantics stack. Make the current to-
ken empty.

If they don’t match, an error has been discovered in the input. Execute some error
recovery code.

otherwise if the top symbol from the prediction stack is a nonterminal, then choose one
of its right hand sides and push it on the prediction stack, rightmost symbol on bot-
tom. Choose the right hand side by looking at the next input symbol and deciding
which right hand side will allow parsing to continue.

until the EOI symbol is matched.

TCLL1 Parser Generator

36 Copyright © 1996. Thomas W. Christopher

A bit of explanation is necessary about marking the current token present or ab-
sent. In earlier algorithms we read the first token at the beginning and then read
in a new token as soon as we had recognized the previous. This is quite all right
for some compilers, but it is particularly a problem for interactive programs.
The system won’t respond to one command until it has seen the first token of
the next. Here we don’t try reading another token until we are going to look at
it. We can perform any number of actions after recognizing a token before re-
questing the next, allowing the program to respond immediately after the last
token of the command has been read.

5.4.3 Building parsers

Here is an approach for building parsers:

First, design a grammar for the language which has meaningful phrases. It must
be clear to you what action you wish to take at the end of each phrase and what
the semantic value of each symbol in the grammar is. Each token is a semantic
value (the value of the terminal symbol). Each nonterminal has an associated
data type to contain its semantic value or attributes.

Put an action symbol at the end of the right hand side of each production. Each
production has some rule for constructing its left hand side’s semantic value
from the semantic values of the right hand side symbols (in addition to writing
out translated code and changing some global variables). The action symbol is
the name of the procedure to call when that right hand side has been recognized.
It will pull off the semantics stack one value for each symbol on the right hand
side and will push back the value of the left hand side.

Several productions may have the same action symbol if the number of ele-
ments on the right hand side are the same and the actions are similar. For exam-
ple, each binary operator could have its own action routine, or all binary
operators could share the same routine that looks at the operator token to decide
what to do.

You may omit an action symbol for a renaming production, a production that
has exactly one symbol on the right hand side and no action except to push back
the value it pops. You may introduce action symbols at other places than the
ends of right hand sides if you feel the need; not all action symbols represent
markers.

Transform the grammar to LL(1) form. Move around action symbols the same
as any other symbol. When checking whether the grammar is LL(1), treat action
symbols as if they are nonterminals that derive only the empty string.

Write the action routines. An action routine for a marker action symbol will pull
values off the semantic stack for the right hand side symbols of a production,
compute the semantic value of the left hand side, and push it back. However, an
action routine that does not correspond to a marker is not required to pop any
value off the semantics stack or push a value back. You may also decide that
some nonterminals have no semantic value and hence do not need to have a val-
ue on the semantics stack. Feel free not to push a value for such a symbol, but

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 37

be aware that it will complicate keeping track of the semantics stack’s depth, as
will be discussed later.

5.4.4 Example of evaluating arithmetic expressions

Let’s design action routines to evaluate arithmetic expressions using our expres-
sion grammar. Here’s a sentence in the language:

30/5*2+6

Suppose we parse it using the LL(1) grammar with markers we constructed be-
fore:

In this case the terminal symbol i represents an integer token. Here’s what the
action routines are expected to do:

P1 pop the numeric value on top of the semantics stack, write it out, and ter-
minate execution.

P2 pop three values from the semantics stack, add the first and third, and
push the sum.

P3 pop three values from the semantics stack in order z, y, x; push the value
x-z back on the stack.

P4 no operation.

P5 pop three values from the semantics stack in order z, y, x; push the value
x*z back on the stack.

P6 pop three values from the semantics stack in order z, y, x; push the value
x/z back on the stack.

P7 no operation.

P8 pop the token off the semantics stack, convert its body from a string to
an integer, and push the value back.

P9 pop three values off the semantics stack and push the middle value back.

Here’s a trace of the input and the semantics stack while parsing the sentence
30/5*2+6. Tokens are indicated as type:value.

start = e P1. ttail = "*" t P5.

e = t P4 etail. ttail = "/" t P6.

etail = "+" t P2 etail. ttail = P7 .

etail = "-" t P3 etail. f = i P8.

etail =. f = "(" e ")" P9.

t = f ttail .

TCLL1 Parser Generator

38 Copyright © 1996. Thomas W. Christopher

Action from
previous

Semantics stack Prediction stack Input

start EOI 30/5*2+6 EOI

e P1 EOI 30/5*2+6 EOI

t P4 etail P1 EOI 30/5*2+6 EOI

f ttail P4 etail P1 EOI 30/5*2+6 EOI

i P8 ttail P4 etail P1 EOI 30/5*2+6 EOI

match i:30 P8 ttail P4 etail P1 EOI /5*2+6 EOI

P8 30 ttail P4 etail P1 EOI /5*2+6 EOI

30 "/" t P6.P4 etail P1 EOI /5*2+6 EOI

match 30 /:/ t P6 P4 etail P1 EOI 5*2+6 EOI

30 /:/ f ttail P6 P4 etail P1 EOI 5*2+6 EOI

30 /:/ i P8 ttail P6 P4 etail P1 EOI 5*2+6 EOI

match 30 /:/ i:5 P8 ttail P6 P4 etail P1 EOI *2+6 EOI

P8 30 /:/ 5 ttail P6 P4 etail P1 EOI *2+6 EOI

30 /:/ 5 "*" t P5 P6 P4 etail P1 EOI *2+6 EOI

match 30 /:/ 5 *:* t P5 P6 P4 etail P1 EOI 2+6 EOI

30 /:/ 5 *:* f ttail P5 P6 P4 etail P1 EOI 2+6 EOI

30 /:/ 5 *:* i P8 ttail P5 P6 P4 etail P1 EOI 2+6 EOI

match 30 /:/ 5 *:* i:2 P8 ttail P5 P6 P4 etail P1 EOI +6 EOI

P8 30 /:/ 5 *:* 2 ttail P5 P6 P4 etail P1 EOI +6 EOI

30 /:/ 5 *:* 2 P7 P5 P6 P4 etail P1 EOI +6 EOI

P7 30 /:/ 5 *:* 2 P5 P6 P4 etail P1 EOI +6 EOI

P5 30 /:/ 10 P6 P4 etail P1 EOI +6 EOI

P6 3 P4 etail P1 EOI +6 EOI

P4 3 etail P1 EOI +6 EOI

3 "+" t P2 etail P1 EOI +6 EOI

match 3 +:+ t P2 etail P1 EOI 6 EOI

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 39

5.5 Accounting for semantics stack depth

As mentioned, an action routine can push either one or zero values on the se-
mantics stack. As a rule, they would leave one value to represent the left hand
side symbol. Some nonterminals, however, have no semantic information asso-
ciated with them, so there is no reason to keep a value on the stack for them. It
is a strong temptation not to needlessly push and pop null values, and we are
sure to give in to this temptation , but it makes it harder to get our parser right.
We will probably find one of our biggest problems with this parsing method is
that we mangle the semantics stack by popping or pushing the wrong number of
items.

 Recall that the paradigmatic way to use action symbols involves four things:

1. Write an original grammar in a clear, meaningful form without using
any grouping, optional, or repetitive constructs and with action symbols
only at the ends of right hand sides.

2. Design the action routines to remove one thing from the semantics stack
for each symbol ahead of them on the right hand side and will push one
value back.

3. Then, create a transformed grammar in LL(1) form, moving the action
symbols around like any other symbol.

4. Represent every terminal and nonterminal symbol in the original gram-
mar by exactly one value on the semantics stack.

If we decide not to push values for some nonterminals, you will have to keep
track of which nonterminals have values and which do not. It will no longer be

3 +:+ f ttail P2 etail P1 EOI 6 EOI

3 +:+ i P8 ttail P2 etail P1 EOI 6 EOI

match 3 +:+ i:6 P8 ttail P2 etail P1 EOI EOI

P8 3 +:+ 6 ttail P2 etail P1 EOI EOI

3 +:+ 6 P7 P2 etail P1 EOI EOI

P7 3 +:+ 6 P2 etail P1 EOI EOI

P2 9 etail P1 EOI EOI

9 P1 EOI EOI

P1 EOI EOI

match

TCLL1 Parser Generator

40 Copyright © 1996. Thomas W. Christopher

immediately obvious by looking at a right hand side just how many values an
action symbol’s procedure is to pop or push.

The problem is made all the worse once the grammar is transformed into LL(1)
form. When we need to make a change in the grammar (and we will) we will
make the change directly to the LL(1) form and it will not be at all clear what
effect it will have on the semantics stack. In the LL(1) form, newly introduced
nonterminals will not necessarily leave either zero or one values on the stack.
And the braces, brackets, parentheses, and vertical bars cause their own confu-
sion.

What we will need is a way to account for stack depth. Associate a number with
each symbol, right hand side, alternative, and parenthesized, optional, or repet-
itive phrase. These numbers represent the effect of the construct on the seman-
tics stack depth. Here are the rules:

1 Every symbol will change the depth of the semantics stack by a fixed
amount.

• All terminals count as +1. The parser will push each token matched
on the stack.

• Each nonterminal will have a fixed number of symbols it will leave
on or remove from the stack. Nonterminals in the original grammar
will change the stack depth by +1 or +0. Nonterminals introduced
during the translation to LL(1) form may even have a negative net
depth, as we will see below.

• An action symbol has an effect equal to the number of symbols
pushed minus the number popped. Since the number pushed is zero
or one and the number popped is greater than or equal to zero, an ac-
tion symbol can have any number less than or equal to one.

2 A string of symbols has a number computed by adding up all its compo-
nents.

3 The number associated with a nonterminal must be the same as the num-
ber computed for each of its right hand sides.

4 Each alternative (separated by vertical bars, |) must add up to the same
value.

5 The contents of brackets, [...], must add up to zero.

6 The contents of braces, {...}, must add up to zero.

To use a version of our expression grammar:

start = e P1!.
e = t { "+" t P2! | "-" t P3!} .
t = f ["*" t P5! | "/" t P6!].
f = i P8! | "(" e ")" P9!.

Parsing with action symbols

Copyright © 1996. Thomas W. Christopher 41

We can determine the numbers associated with the symbols as follows:

We can now compute the lengths of the right hand sides to make sure the rules
aren’t violated and the lengths of the left hand sides match. Here is a rough trace
of the calculations we may need to go through:

"+", "-", "*", "/",
i, "(", ")"

1 they all are terminals

start 0

 e, t, f 1 they are nonterminals from the original
grammar

P2, P3, P5, P6 -2 they handle binary expressions, popping
three and pushing one

P1 -1 it pops an expression’s value and pushes
nothing

P8 0 it pops the integer token and pushes its
numeric value

P9 -2 it pops three values and pushes back the
middle one

syntax calculation number of
the rule be-
ing used or
checked

start = e P1!. 0 = 1 + -1 3

"+" t P2! 1 + 1 + -2 = 0 2

"-" t P3! 1 + 1 + -2 = 0 2

"+" t P2! | "-" t P3! 0 = 0 4

{ "+" t P2! | "-" t P3!} 0 6

e = t { "+" t P2! | "-" t P3!} 1 = 1 + 0 3

"*" t P5! 1 + 1 + -2 = 0 2

"/" t P6! 1 + 1 + -2 = 0 2

"*" t P5! | "/" t P6! 0 = 0 4

["*" t P5! | "/" t P6!] 0 5

t = f ["*" t P5! | "/" t P6!]. 1 = 1 + 0 3

i P8! 1 + 0 = 1 2

"(" e ")" P9!. 1 + 1 + 1 + -2 = 1 2

TCLL1 Parser Generator

42 Copyright © 1996. Thomas W. Christopher

i P8! | "(" e ")" P9! 1 = 1 4

f = i P8! | "(" e ")" P9! 1 = 1 3

Panic mode error recovery

Copyright © 1996. Thomas W. Christopher 43

Chapter 6 Panic mode error recovery

The parser discovers an error in its input when the next input symbol either does
not match the terminal symbol on top of the prediction stack or it does not select
a right hand side for the nonterminal on top of the stack. There are no rules to
tell the parser what to do next. What should it do?

First, of course, the parser should give an error message. The easiest error mes-
sage is simply:

unexpected token XXXX at line YYYY, column ZZZZ

Then what? Just stopping isn’t nice. Users appreciate the compiler trying to find
several errors with each attempted compile. The compiler should attempt to re-
cover from the error and continue processing the program.

There are two problems in attempting to continue:

• The parser must get past the token that caused the syntactic error.

• The semantics routines must not become so confused that they either crash
or flood the user with error messages. This requires that the semantics stack
be set to an appropriate depth and that the contents of the stack not cause
errors to the action routines.

Fortunately, both are easy to accomplish with LL(1) parsing.

A simple error recovery technique for LL(1) parsers is called panic mode. When
the parser has detected and reported an error, it goes into panic mode and throws
away part of the input and part of the prediction stack until it has found a token
in the input and a symbol in the prediction stack that allow parsing to continue,
then it returns to normal mode and continues parsing.

How does it choose an input symbol to restart at, and how does it decide how
much of the stack to throw away? The answers to the two questions are related.

The parser will read ahead to one of a set of symbols that delimit major sections
of the program. These symbols are called fiducial symbols, symbols the parser
can trust. For many programming languages, the fiducial symbols include ";",
"then", "else", and "end", symbols that end or separate statements. If an error is
detected within a statement, the parser will throw away the rest of the statement
and try to resume parsing with the next.

TCLL1 Parser Generator

44 Copyright © 1996. Thomas W. Christopher

The parser will not, however, accept just any fiducial. The fiducial must be pre-
dicted. The parser will throw away input symbols up to a fiducial and then look
down the prediction stack. If it finds the fiducial symbol on the stack, or if it
finds a nonterminal symbol that derives that fiducial symbol first in a string,
then the parser will remove the symbols on the prediction stack down to the fi-
ducial or nonterminal and will then resume parsing.

If the fiducial is not predicted, of course, the parser throws it away and continues
looking. EOI is a fiducial, and it is at the bottom of the stack, so the parser can
at least resynchronize by throwing away all the rest of the program.

EOI is the only fiducial chosen by the parser generator. You must specify the
others yourself with the fiducials declaration:

fiducial: f1 f2 ... fn .

Notice that the declaration uses a colon rather than an equal sign, the fiducials
are listed without commas and the declaration concludes with a period.

"But," you may ask, "if the parser just throws away part of the prediction stack,
won’t the semantics stack will be mangled when the parsing resumes. What
does the parser do about that?"

The TCLL1 parser tries to repair errors. After throwing away part of the input,
it does not just throw away the top part of the stack, but instead generates a re-
placement string of tokens for the input thrown away. Recall that the parser
works by generating a program atop the input program, matching them. It is
trivial to generate the replacement tokens. Instead of throwing away symbols
from the prediction stack, it does the following with each top symbol of the pre-
diction stack down to the symbol that predicted the fiducial:

• If the top symbol is a terminal, the parser generates an error token and push-
es it onto the semantics stack. An error token can be recognized by the ac-
tion routines. It warns the action routines that the token did not come from
the user. The routines should not try to use the token nor give any further
error messages.

• If the top symbol is an action symbol, the parser calls its action routine. The
action routine will adjust the semantics stack properly. Most action routines
will start by removing the correct number of values from the semantics stack
and checking if there were any error tokens among them. If the action rou-
tine finds an error token, it will push the correct number of error tokens back
on the stack (zero or one) and return immediately.

• If the top symbol is a nonterminal, the parser replaces it with one of its right
hand sides. The parser chooses the right hand side that will generate a short-
est possible string of terminals. If there are several such right hand sides, the
parser generator chooses arbitrarily which one will be used.

Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher 45

Chapter 7 Incorporating the parsers
into compilers

Here is what we need to do to build a compiler using this system:

• create a grammar for the language you wish to compile, put in action sym-
bols, put it into LL(1) form, and run it through TCLL1 to get tables for our
parser. If our grammar is called ourlang.grm, the tables will be given the
name ourlang.ll1.

• Write a main program to initialize the compiler and call the parser. Actually,
we will just edit an old main program to adapt it. We’ll see one later that we
can start with.

• Write a scanner for the language. Again, we will just adapt an already writ-
ten scanner. We usually start with one written for Oberon-2. We’ll see it lat-
er and see how it works.

• Write action routines. Most of these need to be written specially for each
compiler, but there is some standard boilerplate that they share.

• Compile our files together and link with readll1, parsell1, semstk, and rpt-
perr from the TCLL1 run time library and with files xcode, escape, and eb-
cdic from the Icon programming library.

The call-structure of the compiler is as follows:

Our main program calls

• readLL1 in file readll1.icn to read in the parse tables from a file and produce an inter-
nal form of the tables for the parser to use.

• initSemanticsStack in file semstk.icn to initialize the semantics stack for the action
routines.

• initScanner, which we provide to initialize the scanner. It is used mainly to open the
user’s input file. We can leave this routine out if we don’t need it.

• parseLL1 in file parsell1.icn to read and parse the input program. Procedure
parseLL1 calls

• scan, which we provide, to return it the next token of the input each
time it is called. When the input is finished, scan will return an EOI
token for each call.

• outToken in file semstk.icn to put a token it has matched onto the

TCLL1 Parser Generator

46 Copyright © 1996. Thomas W. Christopher

semantics stack.

• outError in file semstk.icn to push an error token on the semantics
stack during panic mode error recovery.

• reportParseError in file rptperr.icn to report the parser has en-
countered an unexpected token in the input.

• outAction in file semstk.icn to call an action routine, which you
supply.

• Our action routine may call

• popSem in file semstk.icn to pop a number of values off the se-
mantics stack and return them in a list. The leftmost value in the
list corresponds to the leftmost symbol in the right hand side that
contains the action symbol, and is the value that was furthest
down the semantics stack.

• pushSem in file semstk.icn to push the semantics value of the
left hand side symbol onto the semantics stack.

• anyError in file semstk.icn to look through a list of values and
succeed returning any of those values that is an error token, or
fail if there are no error tokens present.

• isError in file semstk.icn to check whether a particular semantic
value is an error token.

7.1 Interface to readll1.icn

The TCLL1 parser generator creates a file of parse tables from a grammar. This
parse table must be read in before the parser can use it. Module readll1.icn pro-
vides the routine, readLL1, to read in a parse table. Routine readLL1 returns the
parse table contained in a record of type LL1.

record LL1(...)

We don’t need to know the fields of this record to use the parser. Procedure
readLL1 returns a record of this type; procedure parseLL1 takes it as a param-
eter.

procedure readLL1(fileName)

parameter: fileName—a string, the name of the file containing the output of the
TCLL1 parser generator.

returns a record of type LL1 containing parse tables

fails if it can’t open file fileName

Procedure readLL1 takes the name of the parse table file as a string. (TCLL1
creates the file with the extension ".ll1" so unless you’ve renamed it, you will

Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher 47

pass a file name with that extension.) If it successfully reads the tables, readLL1
will return a record of type LL1 containing an internal form of the tables. If it
can’t open the file, readLL1 will fail. Unfortunately, if the file is malformed, the
Icon library routine decode will crash.

7.2 Interface to parsell1.icn

Module parsell1.icn contains the parser and the record declaration for tokens,
the record Token. The scanner returns a token to the parser for each input sym-
bol. Tokens are pushed on the semantics stack as they are recognized.

record Token(type,body,line,column)

fields:

1 type—a character string, the identifier or string used in the grammar
to represent the terminal symbol.

2 body—the character string that the scanner found in the input. For
keywords and most punctuation, the bodies will usually be the same
as the type. For identifiers, the body will be the name of the identi-
fier. For constants, the type will indicate the type of the constant and
the body will have the character string the user wrote.

3 line—an integer, the line number where the token was found.

4 column—an integer, the character position of the token in the line
(tabs are treated as single characters).

If we are allowing "includes" you may want to add another field to tell which
file the token was found in.

procedure parseLL1(ll1)

parameter: ll1—a record of type LL1

returns nothing

Procedure parseLL1 performs an entire parse up to the end of input. It must be
given an LL1 record containing the parse tables. (See module readll1.icn for a
further discussion of record LL1 and procedure readLL1 to read in the tables.)

7.3 Interface to semstk.icn

Module semstk.icn provides procedures to maintain the semantics stack. The
parser uses three of the routines; we use the rest. This module provides the def-
inition of record ErrorToken, which has exactly the same fields as Token, but is
used to represent erroneous phrases.

record ErrorToken(type,body,line,column)

The parser inserts error tokens during panic mode error recovery. Our action
routines should check for error tokens before taking any action. Once either the
parser or an action routine has reported an error, error tokens should be pushed

TCLL1 Parser Generator

48 Copyright © 1996. Thomas W. Christopher

on the semantics stack to warn other action routines not to give another error
message and not to try to make sense of the input.

procedure initSemanticsStack()

called by our main program

parameters: none

returns nothing

This procedure should be called by the main program before starting parsing.
As its name says, it initializes the semantics stack.

procedure outToken(tok)

called by the parser

parameter: tok—a token

returns nothing

The parser calls procedure outToken to push a token on the semantics stack.

procedure outAction(a)

called by the parser

parameter: a—a string, an action symbol, the name of an action routine.

returns nothing

The parser calls procedure outAction to call an action routine. The parser passes
outAction the string name of the routine to call.

procedure outError(t,l,c)

called by the parser

parameters:

t—a string, the name of a terminal symbol

l—an integer, a line number

c—an integer, a position on the line

returns nothing

The parser calls procedure outError to push an error token on the stack. The er-
ror token will have the type and body t, line l and column c.

procedure popSem(n)

Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher 49

called by an action routine

parameter: n—an integer, the number of values to pop from the semantics stack

returns a list containing the values popped, topmost at the right

We call procedure popSem to remove the top n values from the semantics stack
and return them to us in a list. The top element will be the rightmost value in the
list. Say we call this from an action routine A and the grammar has a production:

L = R1 R2 ... Rk A!.

where each symbol Ri has a value Vi on the semantics stack, then

popSem(k)

will yield a list

[V1, V2, ..., Vk]

procedure pushSem(s)

called by an action routine

parameter: s—a value to push on the semantics stack

returns nothing

We call procedure pushSem to push a value on the semantics stack.

procedure isError(v)

called by an action routine

parameter: v—a value, presumably from the semantics stack

returns: an undefined value if v is an ErrorToken record

fails if v is not an error token

Procedure isError will succeed if v is an ErrorToken record and will fail other-
wise.

procedure anyError(V)

called by an action routine

parameter: V—a list of values, presumably from the semantics stack

returns: an ErrorToken record, v, found in the list V if there is any

fails if V does not contain any error tokens

TCLL1 Parser Generator

50 Copyright © 1996. Thomas W. Christopher

Procedure anyError looks through list V to see if it contains any error tokens. If
V does, then anyError will succeed returning one of the error tokens in V. If
there are no error tokens, then anyError fails.

7.4 Interface to action routines

We will need to provide an action routine for each action symbol. The routine
has the same name as the action symbol and takes no parameters.

The boilerplate for an action routine for action symbol A is:

procedure A()
local V,e,...
V:=popSem(...)
if e:=anyError(V) then {pushSem(e); return}
...
pushSem(...)
return
end

The action routine is a parameterless procedure with the same name as the ac-
tion symbol. It pops the appropriate number of values off the semantics stack.
If there is an error token among them, then there was an error in a subphrase, so
the action routine pushes an error token back on the stack and returns. Otherwise
it performs whatever action it should and pushes a value back on the stack.

Of course, the pushSem’s should be omitted if the action routine isn’t supposed
to leave any value on the stack.

7.5 Interface to rptperr.icn

procedure reportParseError(t)

called by the parser

parameter: t—a token encountered by the parser that it wasn’t expecting

returns nothing

Actually, this is such a small procedure, we usually just include a copy of it with
our main program rather than compiling it separately.

7.6 Main procedure

We will need to provide a main program to initialize our compiler and call the
parser. Do what we do: adapt one that already exists. Here is the main program
from the TCLL1 parser generator:

Figure 12 Example main program for a compiler.

 1 # TCLL1 -- an LL(1) parser generator
 2 # Main program.
 3 # (written by Dr. Thomas W. Christopher)
 4 #
 5

Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher 51

 6 link readll1,parsell1,scangram,semgram,semstk,gramanal,ll1
 7
 8 procedure main(L)
 9 local filename,baseFilename,flags,filenameParts
 10
 11 flags := ""
 12 if L[1][1]=="-" then {
 13 flags := L[1]
 14 filename := L[2]
 15 } else {
 16 filename:=L[1]
 17 }
 18 if /filename then
 19 stop("usage: iconx tcll1 [flags] filename.grm")
 20
 21 filenameParts:=fileSuffix(filename)
 22 baseFilename:=filenameParts[1]
 23 if filename==(baseFilename||".ll1") then
 24 stop("would write output over input")
 25 initScanner(filename |
 26 (/filenameParts[2] & baseFilename||".grm")) |
 27 stop("unable to open input: ",filename)
 28
 29 initGrammar()
 30 initSemanticsStack()
 31
 32 parseLL1(readLL1("tcll1.ll1"))
 33
 34 finishDeclarations()
 35 ll1(baseFilename||".ll1")
 36 if find("p",flags) then printGrammar()
 37 write(errorCount," error",(errorCount~=1&"s")|"",
 38 " and ",warningCount," warning",(warningCount~=1&"s")|"")
 39
 40 end
 41
 42 # From: filename.icn in Icon Program Library
 43 # Author: Robert J. Alexander, 5 Dec. 89
 44 # Modified: Thomas Christopher, 12 Oct. 94
 45
 46 procedure fileSuffix(s,separator)
 47 local i
 48 /separator := "."
 49 i := *s + 1
 50 every i := find(separator,s)
 51 return [s[1:i],s[(*s >= i) + 1:0] | &null]
 52 end

Note:

7 Lines 11-19 read and check the input file name and optional flags.

8 Lines 21-24 decompose and check the input file name.

9 Lines 25-27 try to open the input file. Procedure initScanner will fail if
the file can’t be opened.

10 Line 29 initializes the semantics module, which contains the action rou-
tines.

11 Line 30 initializes the semantics stack in module semstk.icn.

TCLL1 Parser Generator

52 Copyright © 1996. Thomas W. Christopher

12 Line 32 reads the TCLL1 parse tables and calls the parser.

13 Lines 34-38 finish processing the user grammar.

14 Lines 42-52 are adapted from the Icon programming library to separate
an extension from a base file name.

7.7 Structure of scanner

We must provide a parameterless procedure, scan, which will return the next to-
ken from the input each time it is called. We will probably wish to provide with
it a procedure initScanner which will open the input file and initialize the scan-
ner. We ourselves call that routine from the main program, so we can choose
whatever interface we want for it.

As with main programs, we probably will not write an entirely new scanner
when we need one; we will adapt one that already exists. Here is the scanner we
usually start with, written for the language Oberon-2:

Figure 13 Example scanner.

 1 #
 2 # Scanner for Oberon 2
 3 #
 4
 5 global inputFile
 6 global inputLine,inputLineNumber,inputColumn,eoiToken
 7 global keywordSet
 8
 9 procedure initScanner(filename)
 10 inputFile := open(filename,"r") |
 11 stop("unable to open input: ",filename)
 12 return
 13 end
 14
 15 procedure fractionPart()
 16 return ="." || (tab(many(&digits)) | "")
 17 end
 18
 19 procedure scaleFactor()
 20 return tab(any(’ED’)) || (tab(any(’+-’)) | "") || tab(many(&digits))
 21 end
 22
 23 procedure scan()
 24 local t,c,b
 25 static whiteSpace,initIdChars,idChars,hexdigits,commentDepth,commentLineNo
 26 initial {
 27 /inputFile := &input
 28 inputLineNumber := 1
 29 inputColumn := 1
 30 inputLine := read(inputFile)
 31 eoiToken := &null
 32 whiteSpace := &ascii[1:34]#control ++ blank
 33 initIdChars := &letters
 34 hexdigits := &digits ++ ’ABCDEF’
 35 idChars := &letters ++ &digits ++ ’$_’
 36 keywordSet := set([
 37 "ARRAY","BEGIN","BY","CASE","CONST","DIV","DO",
 38 "ELSE","ELSIF","END","EXIT","FOR","IF","IMPORT",
 39 "IN","IS","LOOP","MOD","MODULE","NIL","OF","OR",
 40 "POINTER","PROCEDURE","RECORD","REPEAT","RETURN",
 41 "THEN","TO","TYPE","UNTIL","VAR","WHILE","WITH"

Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher 53

 42])
 43 }
 44 if \eoiToken then return eoiToken
 45 repeat inputLine ? {
 46 tab(inputColumn)
 47 tab(many(whiteSpace))
 48 c := &pos
 49 if b := tab(many(&digits)) then {
 50 if b ||:= tab(many(hexdigits)) || ="X" then {
 51 t := Token("character",b,
 52 inputLineNumber,c)
 53 } else if b ||:= tab(many(hexdigits)) || ="H" then {
 54 t := Token("hexinteger",b,
 55 inputLineNumber,c)
 56 } else if b := b || fractionPart() ||
 57 scaleFactor() then {
 58 t := Token("real",b,
 59 inputLineNumber,c)
 60 } else if b ||:= fractionPart() then {
 61 t := Token("real",b,
 62 inputLineNumber,c)
 63 } else if b ||:= ="." || scaleFactor() then {
 64 t := Token("real",b,
 65 inputLineNumber,c)
 66 } else {
 67 t := Token("integer",b,
 68 inputLineNumber,c)
 69 }
 70 inputColumn := &pos
 71 return t
 72 } else
 73 if any(initIdChars) then {
 74 t := Token("ident",tab(many(idChars)),
 75 inputLineNumber,c)
 76 inputColumn := &pos
 77 if member(keywordSet,t.body) then
 78 t.type := t.body
 79 return t
 80 } else
 81 if b := =(":=" | ">=" | "<=" | "..") then {
 82 inputColumn := &pos
 83 return Token(b,b,inputLineNumber,c)
 84 } else
 85 if ="(*" then {
 86 inputColumn := &pos
 87 commentDepth := 1
 88 commentLineNo := inputLineNumber
 89 while commentDepth > 0 do {
 90 tab(upto(’*(’)|0)
 91 if pos(0) then {
 92 &pos := 1
 93 inputLineNumber +:= 1
 94 if not (&subject :=
 95 inputLine := read(inputFile))
 96 then {
 97 eoiToken := Token("EOI","EOI",
 98 inputLineNumber,1)
 99 write("end of input in comment beginning at ",
 100 commentLineNo)
 101 return eoiToken
 102 }
 103 } else if ="*)" then {
 104 commentDepth -:= 1
 105 } else if ="(*" then {

TCLL1 Parser Generator

54 Copyright © 1996. Thomas W. Christopher

 106 commentDepth +:= 1
 107 } else {
 108 move(1)
 109 }
 110 }
 111 inputColumn := &pos
 112 } else
 113 if b := tab(any(’,=#()[]{}~+-*/|&^;:><.’)) then {
 114 inputColumn := &pos
 115 return Token(b,b,inputLineNumber,c)
 116 } else
 117 if pos(0) then {
 118 inputColumn := 1
 119 inputLineNumber +:= 1
 120 if not (inputLine := read(inputFile)) then {
 121 eoiToken := Token("EOI","EOI",
 122 inputLineNumber,1)
 123
 124 return eoiToken
 125 }
 126 } else
 127 if ="\"" then {
 128 b := tab(find("\""))
 129 if not(= "\"") then {
 130 write("unterminated string at ",
 131 inputLineNumber," ",c)
 132 }
 133 t := Token("string",b,inputLineNumber,c)
 134 inputColumn := &pos
 135 return t
 136 } else
 137 if ="’" then {
 138 b := tab(find("’"))
 139 if not(= "’") then {
 140 write("unterminated string at ",
 141 inputLineNumber," ",c)
 142 }
 143 t := Token("string",b,inputLineNumber,c)
 144 inputColumn := &pos
 145 return t
 146 } else
 147 {
 148 write("unexpected character: ",move(1),
 149 " at line ",inputLineNumber," column ",c)
 150 inputColumn := &pos
 151 }
 152 }
 153 end

Notes:

15 Lines 9-13 are the initialization routine, initScanner, that tries to open
the input file.

16 Lines 15-21 help in recognizing real numbers.

17 Lines 23-153 are the scanner proper.

18 Lines 26-43 initialize the scanner the first time it is called. They could
have been included in initScanner if the static’s on line 25 had been
made global.

19 Line 44 checks to see if an end-of-input token has been returned yet. If

Incorporating the parsers into compilers

Copyright © 1996. Thomas W. Christopher 55

so, it returns it again. We don’t keep trying to read past the end of file.

20 Line 45 is a repeat because when we fall off the end of an input line, we
will have to read in a new line and restart our scan at its beginning. We
make inputLine the subject string and enter the compound expression to
look for tokens.

21 Line 46 moves the cursor &pos over to the next column to look in.

22 Line 47 moves the cursor past any white space.

23 Line 48 remembers where the first legible character was so that we can
report it as the column in a Token record.

24 Lines 49 -151 are a nested if statement to find tokens. The token types
are grouped by the class of character they begin with.

25 Lines 49-72 handle all tokens that begin with a digit.

26 Lines 50-53 handle characters written in hexadecimal format.

27 Lines 53-56 handle integers written in hexadecimal format.

28 Lines 56-60 handle real numbers with both a fraction part and an expo-
nent.

29 Lines 60-63 handle real numbers with a fraction part but no exponent.

30 Lines 63-66 handle real numbers with an exponent but no fraction.

31 Lines 66-69 handle integers.

32 Line 70 remembers where to restart the scan on the next call.

33 Lines 73 through 80 handle identifiers and keywords. A keyword is sim-
ply an identifier that is found in the set keywordSet.

34 Lines 81-84 handle two character operators.

35 Lines 85-112 handle comments, which in Oberon-2 are delimited by (*
and *) and can extend over multiple lines and be nested. Following the
comment, this code falls out of the if expression to repeat the search for
a token from the beginning.

36 Lines 113-116 handle single character operators and punctuation.

37 Lines 117-126 handle the scanner falling off the end of the line. (See
also lines 91-103 which handle the same thing within a comment.)

38 Lines 127-146 handle quoted strings.

39 Lines 146-151 handle the default case of an unexpected character in the
input.

TCLL1 Parser Generator

56 Copyright © 1996. Thomas W. Christopher

Appendix A The TCLL1 input grammar

Here is a grammar for TCLL1’s input:

start = grammar.
grammar = { declaration }.
declaration = ID (":" rhs "." | "=" alts ".").
rhs = {elem}.
alts = rhs {"|" rhs}.
elem = ID ["!"] | "(" alts ")" | "{" alts "}"
| "[" alts "]" .

In the grammar, ID represents an identifier or a quoted string of special charac-
ters (recognition of IDs is handled by the scanner). The only syntax that hasn’t
been described yet is

declaration = ID ":" rhs "." .

This is a form of declaration that gives the symbols on the right hand side of the
":" special meanings. There are four such declarations:

• start : ID .

This declares the identifier ID to be the start symbol. It is equivalent to "start
= ID ."

• EOI : ID .

This declares symbol ID to represent end-of-input. If this is not provided,
the parser generator declares EOI itself to be the end-of-input symbol.

• actions : ID1 ID2 ... IDn .

This declares the identifiers to be action symbols so they can be used with-
out following them with exclamation points.

• fiducials: ID1 ID2 ... IDn .

This declares the identifiers to be fiducial symbols for use in panic mode er-
ror recovery. Error recovery was discussed in Chapter 6 on page 43 .

Identifiers can have two forms:

• A letter or underscore ("_"), followed by zero or more letters, digits, or un-
derscores.

Copyright © 1996. Thomas W. Christopher 57

• A string of any characters except a quote enclosed in (double) quotes, e.g.
"=".

An identifier must be entirely on one line.

A comment is the same as in Icon: a # and all the characters following it up to
the end of the line.

TCLL1 Parser Generator

58 Copyright © 1996. Thomas W. Christopher

Appendix B Contents of the LL1 record

The best way to use TCLL1 to generate a parser in some language other than
Icon is to simply run the parser generator and write a program in Icon to read in
the tables and translate them into the other language. To do that, you need to
know the contents of the LL1 record returned by procedure readLL1.

The record definition is:

record LL1(sel,deflt,
terminals,actions,
fiducials,firstFiducials,
minLengRHS,
start,eoi)

All symbols are represented by character strings, their names. The fields are as
follows

• start is the start symbol.

• eoi is the end-of-input symbol.

• terminals is a set containing all the terminal symbols.

• actions is a set containing all the action symbols.

• sel is a table used to select which right hand side to use for a nonterminal on
the stack and a terminal in the input. Let L be the LL1 record, N be the non-
terminal, and T be the terminal, then if L.sel[N] is not &null and if
L.sel[N][T] is not &null, then L.sel[N][T] is a list of symbols to replace N
with—the right hand side. However, if either L.sel[N] is &null or
L.sel[N][T] is &null, there may still be a replacement right hand side given
by field deflt.

• deflt is a table to specify default right hand sides for nonterminals. Let L be
the LL1 record, N be the nonterminal, and T be the terminal. The parser will
first try to look up a right hand side in L.sel[N][T]. If there is no right hand
side there, the parser tries to find one in L.deflt[N]. If L.deflt[N] is not
&null, the parser will replace N with the list of symbols in L.deflt[N]. The
whole purpose of this table is to save space in the sel table. It is used under
two circumstances: (1) for nonterminals that have only one production and
(2) for the right hand side chosen by the largest number of terminal symbols.

• fiducials is a set containing all the fiducial symbols, i.e., the subset of termi-

Contents of the LL1 record

Copyright © 1996. Thomas W. Christopher 59

nal symbols at which the parser will try to resume parsing following an er-
ror.

• firstFiducials is a table mapping nonterminals into the sets of fiducial sym-
bols they derive first. The error recovery uses this when it scans ahead to a
fiducial and then sees if the fiducial is predicted. A fiducial is predicted if it
is on the prediction stack or if a nonterminal is on the stack which can derive
the fiducial first.

• minLengRHS is a table mapping each nonterminal to one of its right hand
sides which will derive a minimum length terminal string. It is used by the
error recovery to replacement tokens for the tokens thrown away during
panic mode error recovery.

Care has been taken to minimize the storage required by the parsing tables. All
occurrences of the same right hand side are represented by the same list (not
merely lists with the same contents). All symbols are represented by the same
bytes in Icon’s string area, not merely by equal strings.

