TCLL1:
An LL(1) Parser Generator and Parser

Thomas W. Christopher

Department of Computer Science
and Applied Mathematics

[llinois Institute of Technology

Copyright © 1996 by Thomas W. Christopher

This document revised 1/23/97.

You may reproduce this document in its entirety for personal use with the TCLL1 parser gen-
erator. For educational use at a nonprofit institution, you may reproduce this document for the
students provided you inform the author of the course name and number, the institution name
and address, and provide electronic links (instructor’s e-mail and course home page URL) to

be posted on the web. Send the listing to the author at the address or URL given below.

Any other uses of this document, such as incorporation in a derived work or a compilation, re-
quire written permission.

The TCLL1 parser generator itself is public domain. Since it is in the public domain, it may be
copied and used without restriction. The author makes no warranties of any kind as to the cor-
rectness of TCLL1 or its suitability for any application. The responsibility for the use of the
program lies entirely with the user.

To contact the author
Thomas Christopher
Department of Computer Science and Applied Mathematics
Illinois Institute of Technology

IIT Center
Chicago IL 60616 USA

tc@charlie.cns.iit.edu
http://www.iit.edu/~tc

To obtain a up-to-date copy of this document and the TCLL1 parser generator

http://www.iit.edu/~tc/tool sfor.htm

Acknowledgment

| wish to thank Patricia Guilbeault for her technical editing of this document.

CONTENTS

.Listof Figures. 1\
Chapter 1. Introduction 5
Chapter 2. Building the parser generator 6
Chapter 3. Context-FreeGrammars 8
3.1 Context-freegrammars., 8
32DEIVatioNSo 9
33Phrases 10
34BUgSINGrammMars.vvieien 11
3.5 Ambiguousgrammars. 12
3.6 Leftmost derivation algorithm 14
37Extendedsyntax i 15
Chapter 4. LL(1)Parsingc.cooiivuiin... 17
4.1 Principlesof LL(1) Parsing. 17
4.2 Putting grammarsintoLL(1) form............... 18
4.3 How agrammar failstobeLL(1)................ 18
4.4 Left-recursionremoval 20

A5FaCtoring. . . oot 21

4.6 Replacing nonterminals by right hand sides. 21

4.7 Replacing right hand side by lefthand side 23
48 Tablesof operators., 25
49 Thedangling-elseproblem..................... 26
Chapter 5. Parsingwith action symbols 29
51Reductionsc.ciiiiiiiii i 29
52Semanticvalues i 32
5.3 Inserting markersinto sentences. 33
SAPAISING ..ot 34
541 Actionsymbols. 35
542 ThelLL(1) parsingagorithm. 35
BA3BUIAING PArSErS . .ot 36
5.4.4 Example of evaluating arithmetic expressions 37
5.5 Accounting for semanticsstack depth 39
Chapter 6. Panic modeerror recovery 43

Chapter 7. Incorporating theparsers

INntocompilers 45
7.1 Interfacetoreadlllicn L 46
7.2 Interfacetoparselllicn. i 47
7.3 Interfacetosemstkicn 47
7.4 Interfaceto actionroutines. 50
7.5 Interfacetorptperricn 50
76Manprocedure. 50
7.7 Structureof scanner 52

Appendix A. The TCLL1 input grammar

Appendix B. Contents of the LL 1 record

List of Figures

Figure 1 EXpPression gramimar.o en et e 9
Figure 2 Thederivationof asentence. 10
Figure3Grammar bugs.grm. 11
Figure 4 Error messages from bugs.grm (Figure 3).. 12
Figure 5LL(1) Recognitionagorithm. 17
Figure 6 Grammar e-notlll.grm 19
Figure 7 The warning generated for the labeled statement. 24
Figure 8 Warningsfor adangling-else. 27
Figure 9 Algorithm for Reductionusingmarkers. 31
Figure 10 LL(1) Algorithmtoinsert markers. 34
Figure 11 LL(1) parsing algorithm. 35
Figure 12 Example main program for acompiler. 50
Figure 13 Examplescanner. 52

Introduction

Chapter 1 Introduction

Parsing, finding the phrases of a program, is the first job of a compiler. The
LL(2) parsing algorithmis probably the easiest parsing algorithm to under-
stand and the easiest program for error recovery, but it does require skill to
use.

This document describes the use of TCLL1, an LL(1) parser generator and
parser, written in the | con programming language. Topicsinclude (a) how to
build the parser generator, (b) how to write the grammar, and (c) how to in-
terface to the parser.

The goal of this document is to give compiler writers the training they need to
use the TCLL1 parser generator to build parsers for their compilers. In an at-
tempt to be self contained, it includes a brief introduction to context free gram-
mars, so many readers will wish to skim or skip parts of this document.

TCLL1isanLL(1) parser generator. It reads acontext free grammar and, if pos-
sible, generatestablesfor a parser. The parser will call ascanner to read tokens
(terminal symbols) and will call action routines to find the meanings of the
phrases of the sentence.

Copyright © 1996. Thomas W. Christophe5

TCLL1 Parser Generator

Chapter 2 Building the parser generator

Before reading the rest of this description of TCLL 1, you should compileit on
your own system. That will allow you to try out the test grammars as they are
discussed.

If you do not have acopy of lIcon, you can get it over the Internet: ftp it from
ftp.cs.arizona.edu. Versions of Icon for several machines are in subdirectories
of directory icon. Or get it through the World Wide Web, http://cs.arizona.edu/
icon/www/.Y ou may also want to pick up the Icon Programming Library.

If you have the Icon Programming Library (IPL) installed on a DOS/WIN-
DOWS machine, you can execute the batch file mktcll1.bat to build the parser
generator. Thefivefilesfromthe IPL that the parser generator uses areincluded
with this distribution and can be compiled separately. To build the parser gen-
erator by hand, you may execute

rem These are fromthe Icon Program Library:
I cont -c xcode escape ebcdic
rem These formthe parser generator proper

icont -c grananal |11 senstk readl |1 parselll
i cont -c scangram sengram
icont -fs tcll1l

Thefirsticont line compilesthefilesfromthe IPL. Y ou may omit thelineif you

have the IPL installed. The second icont line compiles modules used by the

parser generator. The third line compiles the parser generator’'s main program.
The flag-fs tells the translator that the parser generator calls some procedures
by giving their names as strings. In Icon version 8, this flag is not needed; in
version 9 it is.

To use TCLL1 to build a parsing table, execute
Under Icon version 8:
iconx tcll1 grammar.grm
Under Icon version 9:

tcll1 granmar. grm

6 Copyright © 1996. Thomas W. Christopher

Building the parser generator

wheregrammar.grmisthegrammar file. The output of the parser generator will
be encoded parsetablesin file grammar.ll1 . If you would also like alisting of
the grammar and diagnostic information, execute

Under Icon version 8:

iconx tcll1l -p granmar. grm
Under Icon version 9:

tcll1l -p granmar. grm

Tcll1 readsits own parsing tablefrom file tcll 1.111 which must be in the current
directory tcll1.

Copyright © 1996. Thomas W. Christopher7

TCLL1 Parser Generator

Chapter 3 Context-Free Grammars

3.1

Context-free grammars

TouseLL(1) parsers, you need to be skilled at manipulating context-free gram-
mars.

In the jargon of formal language theory, a context-free grammar (CFG) isa"4-
tuple” (N, T,s,P). That isto say, it hasfour parts..

* T—a set of terminal symbols, the words in the language;

* N—a set of nonterminal symbols which do not themselves appear in sen-
tences, but are used to generate sentences.

* s—one of the nonterminals, the start symbol.
* P—a set of productions, the rules for generating sentences.
(In a later section, we will add another part: a set of action symbols.)
A production of a CFG is typically written
LHS - RHS

Where LHS, the "left hand side" of the production, is a single nonterminal sym-
bol and RHS, the "right hand side" of the production is a string of zero or more
symbols, terminal and nonterminal.

The arrow is a metalinguistic symbol: it is used to write the productions; it is not
part of the language they describe.

Since we are using a particular parser generator, TCLL1, we will follow its in-
put syntax and write the productions as

LHS=RHS.
with the equal sign and period as metalinguistic symbols.

We will speak of a left hand side as "possessing” the productions or the right
hand sides of the productions it appears in. We will also speak of the right hand
side being a right hand side "for" the left hand side symbol.

The productions are rewriting rules. A sentence is generated by starting with a
string composed solely of the start symbol and repeatedly replacing a nontermi-

8 Copyright © 1996. Thomas W. Christopher

Context-Free Grammars

nal in the string with one of its right hand sides. When there are only terminal
symbols left in the string, the string is called a sentence in the language.

Each singlerewriting iscalled aderivation step. A sequence of derivation steps,
especially the sequence leading from the start symbol to a sentence is a deriva-
tion. A derivation step iswritten

uAw 0 uvw

where A= v . isaproduction and u and v are any strings of zero or more sym-
bols. A derivation composed of zero or more derivation stepsis written:

ull " w

In TCLL1, anonterminal symbol iswritten asan identifier. A terminal symbol
Iswritten as an identifier or as any string of printable symbols surrounded by
quotes.

We will use the expression grammar Figure 1 in many of our examples.

Figurel

Expression grammar

start = e .
e e II+II t

—h —h —h ~+
*
—

—
®

"y

3.2

TCLL1 assumesthe start symbol is named start. Since we really wanted eto be
the start symbol, we put in a production

Start=e.
The terminal symbolsare (",)", "*", "+", "-","/[", and i.
The nonterminal symbols are start, e, t, and f.
Derivations

All strings derived from the start symbol are called sentential forms. A sentence
Is asentential form composed entirely of terminals.

Figure 2 an example of the derivation of a sentence.

Not only wasthisaderivation, it was aleftmost derivation; we always replaced
the leftmost nonterminal in the string with aright hand side. We could have

Copyright © 1996. Thomas W. Christopherg

TCLL1 Parser Generator

Figure2 Thederivation of a sentence
start
e
t
frt
(e)*t
(e-t)*t
(t-t)*t
(f-t)*t
(i-t)*t
(i-f*t)*t
(T-1*t)*t
(i-1*f)*t
(T-1*i)*t
(T-1*i)*f
(T-1*i)*i
donearightmost derivation, always replacing the rightmost nonterminal. Or we
could havereplaced arbitrary nonterminals. Since the nonterminalsarereplaced
without regard to the symbols that surround them, the sentences we can derive
don’t depend on the order of replacement. That is the meaning of "context-
free". However, the set of sentential forms we can derive do depend on the order
of replacement.
A leftmost derivation step is written
UAw 00 | uvw
whereu must be composed entirely of terminals &wl v . is a production.
Similarly, [0 | * represents a leftmost derivatidf;g , a rightmost derivation
step; and] g* , a rightmost derivation.
An LL(1) parser finds a leftmost derivation of the input sentence.
3.3 Phrases

A phraseis a substring of a sentential form that was derived from a single non-
terminal during the derivation of the sentential form. When we compile a pro-
gram, we will deduce the meanings of phrases from the meanings of the words
and phrases within them. In the sentefig&i)*i derived above, the substring

I-i*i is a phrase; it was derived from@arWithin thei-i*i, i*i is a phrase, bui

I is not. Although the stringi could be derived from ag in this derivation it

was not.

Notice that phrases can contain other phrases. Indeed, for two phrases in a sen-
tential form, one of the following is true:

10 Copyright © 1996. Thomas W. Christopher

3.4

Context-Free Grammars

* oOneis a substring of the other, or

» they have no symbols in common, or
» they are the same string.

Bugs in grammars

Context-free grammars can have bugs in them. The grammar in Figure 3 exhib-
its three common bugs

Figure3

Grammar bugs.grm

start = e.
e e n +II

~ ~ o~ ~—

e
t ngn
t
f

—
®

"y

If we pass this grammar through TCLL1, we get the error messages shown in
Figure 4 (and a few others).

We got the first two errors by removing the producties 't.". Once we have
the symbokin a string, we can’t get rid of g:can only be replaced with strings
containing are. Sincestart only goes te, start too cannot derive a string com-
posed entirely of terminals.

The reason TCLL1 says the symbols doappear to derive a terminal string

has to do with its algorithm. It tries to calculate the minimum length of a string
of terminals the nonterminal can derive. If it can’t satisfy itself that the nonter-
minal can generate a string of less than a certain large length, it reports the error.
You can fool it by writing a grammar that will only generate sentences of greater
than that length.

The errors stating that")", " (", andi cannot appear in a sentential form simply
means that there is no sequence of derivation steps starting from the start sym-
bol that can derive a string containing those symbols. The bug may be that we
should have usefdrather thamp in the last two productions, or we should have
had some more productions fancluding 'f = p."

Copyright © 1996. Thomas W. Christopherll

TCLL1 Parser Generator

Figure4 Error messages from bugs.grm (Figure 3).

Error: start does not appear to derive a termnal string
Error: e does not appear to derive a termnal string
Error: p cannot appear in a sentential form
Error:) cannot appear in a sentential form
Error: (cannot appear in a sentential form
Error: i cannot appear in a sentential form
Error: t is both left and right recursive, the grammar i s anbi guous
Error: t is left recursive, the granmar is not LL(1)
Error: e is left recursive, the granmar is not LL(1)
Error: overl apping sel ection sets for
1. t =t "*" ot
2. t =t "/" t.
overlap: {f}
Error: overl apping sel ection sets for
1. t =t "*" ot
2. t =f.
overlap: {f}
Error: overl apping sel ection sets for
1. t =t "/" t.
2. t =f.
overlap: {f}
12 errors and O warnings

3.5 Ambiguous grammars
Thefinal error

Error: t is bothleft and right recursive, the grammar
I s anbi guous

reports on one of the most common bugs in grammars used for programming
languages. To understand it, we need afew conceptsfirst.

A sentence derived using a particular grammar is ambiguousiif there is more
than one way to divide it up into phrases. It can be proven that the sentence is
ambiguous if and only if it has more than one leftmost derivation. A grammar
iIsambiguousiif it can generate any ambiguous sentences.

Sincethe phrases of asentence are used to determine itsmeaning, an ambiguous
sentence can have more than one meaning. An ambiguous programming lan-
guage grammar would militate against reliable software.

An additional problem for compiler writers is that there are no fast parsing al-
gorithms that work for ambiguous grammars. (Some parser generators will ac-
cept ambiguous grammars, but they resolve the ambiguity internally before
generating the parsers.)

12 Copyright © 1996. Thomas W. Christopher

Context-Free Grammars

It would be nice if we could find out if agiven grammar is ambiguous. Unfor-
tunately, it isimpossible to do that in general. It isincomputable whether an ar-
bitrary context free grammar isambiguous. Thereis no algorithm that can take

an arbitrary context free grammar and report whether it is ambiguous or not. It

is not, mind you, that we don’t know the algorithm yet. We can prove that there
Is no such algorithm possible.

For particular grammars we may be able to prove they are ambiguous or unam-
biguous, but there will always be some that we cannot be sure about. Here are
two classes of grammars wan know about:

» If the grammar is accepted by TCLL1 without any warnings or errors, it is
unambiguous.

» If the grammar is left and right recursive in the same nonterminal, it is am-
biguous.

A nonterminal is left recursive if it can derive a string in which it appears as the
leftmost symbol. It is right recursive if it can derive a string in which it appears
as the rightmost symbol. Don’t consider only leftmost derivations for this defi-
nition of right recursive: the symbol might be followed by some nonterminals

that derive the empty string that we have to get rid of. Consider the grammar

A
B

i AB| i.

A'is right recursive which can be seen from the derivation
A
I AB
i A
but not from the rightmost derivation
A
I AB
i i B

If a grammar is both left and right recursive in the same nonterminal then the
grammar is ambiguous. As a proof, suppose A is both left and right recursive in
a reduced grammar (i.e., a grammar without bugs in it), then

AO *Av
Al *XAw
AlL*y
wl *

vl *z

Copyright © 1996. Thomas W. Christopherl3

TCLL1 Parser Generator

3.6

where
vONOT)
xOT
w ON’
yoT
zOT

(that isto say, X, y, and z are strings of terminals, w isastring of nonterminals,
and v isastring of any symbols).

Thisalowstwo different leftmost derivations of xyzfrom A shown by these sen-
tential forms along the derivation:

A A
U *Av L* XA W
L* XAwvV L* XAvVw
L* Xywyv L* Xyvw
L* XYV L*Xyzw
L*Xyz L*Xyz

Sinceanonterminal being both | eft- and right-recursiveisacommon bugin pro-
gramming language grammars, TCLL1 checksfor it. But remember, there are
many other ways for grammars to be ambiguous as well.

Leftmost derivation algorithm

Sentences can be generated with aleftmost derivation using a prediction stack.
The algorithm is as follows:

THE LEFTMOST-DERIVATION ALGORITHM

Initially, place the start symbol on the prediction stack.
Repeat

pop the top symbol off the prediction stack

if itisaterminal, write it out

if it isanonterminal, then choose one of its right hand sides and push it
on the prediction stack, leftmost symbol on top

14 Copyright © 1996. Thomas W. Christopher

3.7

Context-Free Grammars

until the prediction stack is empty.

Wecall the stack the prediction stack sinceit predictswhat symbolsand phrases
will be generated later.

Extended syntax

To make it more convenient to write grammars, TCLL1 provides an extended
syntax for expressing alternatives, groupings, optional parts, and repetitions.
We show how they may be used with the expression grammar given above:

0)

[]

the vertical bar is used to separate aternatives. It is customarily used to
combine all the productions for a single nonterminal into asingle rule.
It can also separate alternatives within groupings. We can, for example,
shorten our expression grammar from nine linesto four:

start = e .

e=e"+ t | e"-"t|t
to=f st | f ot | f
fo=i] "(me")"

parentheses are used to group symbols and alternatives. We can group
the operatorsin our expression grammar as follows:

start = e .

e=e ("+ | "-") t |t .
t=f ("] Ity ot f
f=i | (e

brackets group optional items. Basically, [X] isequivalent to (x |); that
IS, a bracketed item is equivalent to the enclosed item or the empty
string. In our expression grammar, the alternatives for t provide an op-
tional part:

start = e
e=e ("+ | "-") t |t
t=f [(])t
f "t e)" .

{ } bracesgroupitemsthat may occur any number of times. The alternatives

for e provide an example of this repetition:

start = e .

e=t { ("¥] ")t}
t=f [(])
fo=i | "("me™)".

Copyright © 1996. Thomas W. Christopherl5

TCLL1 Parser Generator

When given agrammar using the syntax extensions, TCLL 1 translatesit into a
pure, unextended CFG. It doesthis by introducing new nonterminalsfor all the
groupings. It constructs the names of the new nonterminals from the left hand
side symbol, line number, and position on the line where the grouping begins:

LHS |i neNunber _col umm

Y ou should be able to figure out how grammars are transformed from the ex-
tended notation to the basic notation by comparing our final expression gram-
mar

e .
("] et}
G
e

toits transformed version:

2 7.
e29t e 2.

DO W0
~—
[T <)
-

—_——h o~ —~+
I

+II .

©oOo~N~N

i o

I
—~
f—FII =
L wo o
-

—+
oooooooong 1NN NDN

I

[
[eoNe)
In il

CAJ\- * 00
| =

—+
(IR
o
—+

(ocle ol i -

TCLL1 provides one further enhancement to CFGs: action symbols. Action
symbols provide the interface between the parser and the "semantics" in the
compiler. An action symbol iswritten as an identifier followed by an exclama-
tion point:

D!

Asfar asthe language generated from the grammar is concerned, action sym-

bols don't appear. They behave as if they were nonterminals that only have one
production and that production has an empty right hand side. During the parse,
however, whenever the parser finds an action symbol on the top of the predic-
tion stack, it performs some action as it pops the symbol off. In a later section,

we will discuss the use of action symbols.

16 Copyright © 1996. Thomas W. Christopher

LL(1) Parsing

Chapter 4 LL(1) Parsing

4.1

Principles of LL(1) Parsing

"LL(1)" meansthe parser works L eft-to-right, finding a L eftmost derivation of
the sentence, and looking at most one (1) symbol ahead in the input to decide
what action to take next.

Thetrick isthis: the LL(1) parser generates a sentence on top of the input sen-
tence, matching the two. When it has successfully matched al of the input sen-
tence, it has also parsed it, since the phrases of the input are the same as those

of the generated sentence.

If we are only interested in whether the input is a sentence—and not interested
in the phrases—we call the parseeeognizer. We present an LL(1) recognizer
now, and wait to present the parser until we have discussed action symbols. The
sentence generation algorithm of the last section now becomes the recognition
algorithm shown in Figure 5.

Figure5

LL(1) Recognition algorithm.
THE LL(1) RECOGNITION ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol onjthe
prediction stack with the start symbol on top. Append EOI to the right
end of the input. Read the leftmost symbol from the input intouihe
rent symbol.

Repeat
pop the top symbol off the prediction stack

if it is a terminal, compare it to the current symbol. If they match, read
the next input symbol into the current symbol. If they don’t, an er-
ror has been discovered in the input.

if it is a nonterminal, then choose one of its right hand sides and push
it on the prediction stack, leftmost symbol on top. Choose the right
hand side by looking at the current symbol and deciding which
RHS will allow parsing to continue.

until the EOI symbol is matched.

Copyright © 1996. Thomas W. Christopherl?

TCLL1 Parser Generator

4.2

4.3

The EOI ("end of input") symbol isinserted into the set of terminals by the
TCLL1 parser generator. It isused to permit the parser to recognize when the
last terminal hasbeenread in. In area compiler, the parser calls the scanner to
return one symbol of the sentence at atime, |eft to right. The scanner will return
EQOI when there are no more symbols in the input.

The big problem in LL(1) parsing is rewriting the grammar into LL(1) form, a
form inwhich the next input symbol can alwaystell the parser which right hand
side to choose. In a later section we will discuss ways to rewrite grammarsto
put them in LL(1) form.

Putting grammars into LL(1) form

It ishard to put grammarsinto LL (1) form. Here we consider the requirements
LL (1) placeson grammars, how grammarsfail to meet those requirements, and
techniques for rewriting grammars to make them suitable.

First a caution. To save yourself much grief, obey this simple rule when trans-
forming grammars: Y ou may introduce new nonterminals. Y ou may revise the
definitions of existing nonterminals. Y ou may delete nonterminalsif they areno
longer needed. But never change the meaning of a nonterminal. Never change
the set of strings a nonterminal generates.

How a grammar fails to be LL(1)

The only place in the LL (1) recognition algorithm where problems can ariseis

when a nonterminal comes to the top of the prediction stack. The parser must

pick one of the nonterminal’s right hand sides to replace it with, a right hand
side that will allow parsing to continue. To do this, it can look only at the next
symbol in the input. As an example of where this fails, consider our expression
grammar productions farandf:

—_—n =—h o~ o~ ~—
I I T

Supposé is on top of the prediction stack. Each of its right hand sides begins
with f. An f itself can begin with either ait" or ani. So if we see either aq"

or ani next in the input, we can’t possibly tell which productiontfee should
use.

We need two concepts:

* Thefirst set of a string of symbolsy, is the set of terminal symbolsy st(u),
that can occur leftmost in a string derived fronin formal notation

« First(u)={a|w " av, aisaterminal symbol, uand v are strings}

* The follow set of a nontermina, is the set of symbolEollow(A), that can
follow Ain a sentential form. Formally

18 Copyright © 1996. Thomas W. Christopher

LL(1) Parsing

« Follow(A) ={b|<1" vAbw, sisthe start symbol, bis a terminal
symbol, v and w are strings}

Now lets consider which right hand side to choose for a nonterminal. Given a
production

A=u.
what terminal symbol, would tell us to replacé with u?

* If symbolt is inFirst(u), we should choose After all, we want to choose
the right hand side that will allow us to continue parsing, and right hand side
u will at least be able to get past the next input symbol.

* If uis the empty string, or if it derives the empty string, andsifin Fol-
low(A) we should choose After all, if the right hand side vanishes, the next
input symbol we are looking at could be one that follows the phrase, not one
that begins it.

If any terminal symbol tells us to choose more than one right hand side for a
nonterminal, the grammar mt LL(1). If no terminal symbol ever tells us to
choose more than one right hand side for any nonterminal, the grasnmar
LL(2).

When we give a grammar thatis not LL(1) to TCLL1, it will give error messag-
es specifying the terminals and productions that are in conflict. Figure 6 shows
the grammar "e-notll1.grm".

Figure 6

Grammar e-notll1.grm
errors--not LL(1)
start = e .
e =e"+" t
e=e"-"1t
e =t .
t =f "*" t
t = f "/" t
t =1 .
f =i .f="("e")"

Here’s what we get when we pass it through TCLL1:

Error: eis left recursive, the grammar is not LL(1)
Error: overl appi ng sel ection sets for

1. t =f "*" t.

2. t =f "/" t

overlap: {"(", i}
Error: overl apping sel ection sets for
1. t =f "*" t.
2. t =f.

Copyright © 1996. Thomas W. Christopherlg

TCLL1 Parser Generator

4.4

overlap: {"(", i}
Error: overl appi ng sel ection sets for
1. t =f "/" t.

2. t =f.
overlap: {"(", i}
Error: overl apping sel ection sets for
1. e =e "+" t.
2. e=e"-"t.
overlap: {"(", i}
Error: overl apping sel ection sets for
1. e =—e "+" t.
2. e =t.
overlap: {"(", i}
Error: overl appi ng sel ection sets for
1. e=e"-"t.
2. e =t.
overlap: {"(", i}

7 errors and O warni ngs

We will consider the causes and cures of these and other problemsin the sub-
sectionsto follow.

Left-recursion removal

The error messages state that the grammar isleft recursive and hencenot LL (1).
Why? Consider the productions:

e — e n +II t
e — e n_mn t
e =1

Consider the leftmost-derivation algorithm given above. When a e appears on

top of the prediction stack, we can keep on replacing it with e+t or e-t, pushing

+t's and-t’s onto the stack and still leaviegn top. Eventually we will replace

e with t and stop the process, but no symbdtiirst(t) will tell how many+t's

or-t's were pushed on the stack. Similarly, while parsing, the next input symbol
cannot tell us how many’s or -’'s we are going to need.

The parser generator checks for left recursion explicitly. The problems also ap-
pear in the reports of overlapping selection sets.

A nonterminal is directly left recursive if it occurs as the first symbol on the
right hand side of one or more of its productions. If it takes more than one der-
ivation step to derive itself first, for example[JA Bu 0" Cvu * Awvu, then

it is indirectly left recursive, or as we more colorfully say, thedaiisy-chain
recursion.

Direct left recursion can be removed as follows:

» Divide up the productions for the nonterminal into the left-recursive and
non-left-recursive.

20 Copyright © 1996. Thomas W. Christopher

4.5

4.6

LL(1) Parsing

A=Auy | Auy | ... | Augyl vl vol .o | v, .
* Call the 4 u, ... y, thetail ends of the left recursive rules.

* Group the non-recursive right hand sides and follow them by an arbitrary
repetition of the tail ends of the recursive rules, thus:

A= (val val ..o [vp) {ug |l upgf oo | upt.
When we apply this to our expression grammar, we get
e :t { II+II t | II_II t }

For daisy-chained left recursion, you have to first convert into direct left recur-
sion by replacing nonterminals by their right hand sides, a technique shown be-
low.

Factoring

An obvious problem for an LL(1) parser is a nonterminal having several right
hand sides beginning with the same symbol. In our expression grantmastr,
that problem:

forxnot
forrmot
f

t
t
t

The solution is to factor the common initial part out:
t =f ("*" t | "/"t]).
Which is to say, ais anf followed by one of several tails.
Since one of the alternatives is empty, we can use brackets:
t =f ["* t | "/"t].
Replacing nonterminals by right hand sides

When faced with daisy-chained left recursion or right hand sides with conflicts
but no common initial symbols to factor, we can resort to replacing nontermi-

nals by their right hand sides to try to make the left recursion direct or the initial
parts of right hands sides equal. Consider the following grammar, "c-nll1.grm":

c-nll1

not LL(1)
start = s .
s =e.

s =i "="&e
e =e"+" t
e=e"-"1t
e =t .

t = f "*" ot
t =f "/" t

Copyright © 1996. Thomas W. Christophte

TCLL1 Parser Generator

t
f
f
f

In addition to the conflicts we have seen aready in the definitions of eand t,
there is a conflict between the two definitions of s: a string derived from e can
also beginwith ani.

First, let’s fixe andt:

e =t etail.
etall :{ II+II t | II_II t }
t =f ttail
ttail =["*™ t | f "/" t]

Thee can derive a string beginning with aiwe need to rewrite until we have
a production fos whose right hand side begins witho we can factor. We re-
place thee with its one definition, giving

s =1t etail.
Now we replace theby its one definition
s =f ttail etail.

Now we need to replace thebut it has three definitions. We must replace it
with each, copying the production for each of them

s =i ttail etail.
S =nttail etail.
s ="("e™"™)" ttail etail.

Now we can factor, yielding

s =1 ("=" e | ttail etail)
s =nttail etail
s ="(" e")" ttail etail

So the resulting grammar is:

c-111

LL(1)

start = s .

S I ("=" e | ttail etail)
S nttail etail

S "(" e ")" ttail etail
e t etail.

etail ={ "+ t | "-" t }

22 Copyright © 1996. Thomas W. Christopher

4.7

LL(1) Parsing

11 —
—
—/Q

o t | f "/t].

—_——

n .
(e ")

Now you see why we created new nonterminals etail and ttail. We knew from
experience that we were going to copy themin several productions, and if we
left the braced or bracketed constructsin line, the parser generator would intro-
duce multiple nonterminals with identical definitions.

—n —h —h — —~
~—
I Il

Replacing right hand side by left hand side

If we can replace anonterminal by all of itsright hand sides, what about going

the other way? Well yes, that can work, as long as we don't try to replace the
definitions of the nonterminal itself. (We wouldn’t want to replaceu | v .

with A= A).

In fact, we have been replacing multiple right hand sides using newly created
nonterminals. For example, we replaced

f ngn t
f ||/ n t
f

t
t
t

with
t =f ["* t | "/"t].

knowing that the brackets create a new nonterminal. The translation done by the
parser generator makes this explicit:

Notice that just as replacing a nonterminal in a production required substituting
each of its right hand sides, duplicating the production as necessary, the substi-
tution the other way requires each right hand side be found at the same place in
otherwise identical productions and that all those productions be replaced with
a single production.

Here’s a more tricky use of this technique. Suppose we have a language where
statements can have any number of statement labels preceding them. The state-
ment labels are identifiers, and assignment statements begin with an identifier:

ls-nll1l

not LL(1)

start = | abel ed_statenent .

| abel ed_statenent = | abel statenent
| abel = { i ":" }.

Copyright © 1996. Thomas W. Christophe23

TCLL1 Parser Generator

statenent =i "=" e.

The parser generator will find aconflict inlabel = {id ":"}. which it reports as
shown in Figure 7.

The problem is that the empty right hand side can be followed by the identifier

at the beginning of the assignment statement. (The reason it's a warning rather
than an error will be discussed later when talking about the "dangling else prob-
lem".

Figure7
Vr ni ng:

|l abel _ 5 9 =i ":" label 5 9.
and enpty-deriving production
| abel 5 9 =
overlap: {i}
O errors and 1 warning

The warning generated for the labeled statement

over |l appi ng sel ection sets for

Let’s try rewritinglabel in labeled_statement to allow us to factor. First, we re-
write the definition of label to make the right recursion explicit:

| abel =i ":" |abel |
And then replace it itebeled_statement:

i ":" |abel statenent
st at enent

| abel ed_st at enent
| abel ed_st at enent

Now rewritingstatement in labeled_statement = statement . gives

1
|
®

| abel ed_st at enent

allowing us to factor

| abel ed_statenent =i |abel ed statenent tail
| abel ed_statenent _tail = "=" e .
| abel ed_statenent _tail = ":" |abel statenent

If we run this through the parser generator, alas, we find the same warning. We
still havelabel followed bystatement which is the same problem as before.

But now we can apply the trick of rewriting a right hand side as its left hand side.
We know we have not changed the set of stringdabelted statement gener-

ates so that the strings are still described by the single right hahasidate-

ment. We replacéabel statement with labeled_statement in the last production

giving

| abel ed_statenent = i |abel ed statenent tail
| abel ed_statenent _tail = "=" e .
| abel ed_statenent tail =":" | abel ed_st at enent

24 Copyright © 1996. Thomas W. Christopher

4.8

LL(1) Parsing

This definition works.
Tables of operators

Y ou may be given tables of operatorswith their precedencesand associativities.
Y ou may have to trand ate these into context free syntax.

Binary operators associate to the left if the left hand side nonterminal isleft re-
cursive, and associate to the right if the nonterminal isright recursive. The high-
er precedence operator must occur in a subphrase of the lower precedence one.
Hereisamethod for generating productions from a precedence table of binary
operators. Suppose the grammar specifies

E =EPE.

E=F
with tables giving the precedence and associativity of the operators, P.
Number the precedence levels consecutively, 1, 2, ..., n from lowest to highest.
Create anonterminal, g, for1<i<n+1.
Create arenaming production

E = Ea .
forali<n.

For each binary operator P; at precedence level i, if P, isleft associative, putin
aproduction

E = ER Ea.
If P; isright associative, put in aproduction
E = BaP E.

Or if P; is non-associative (for example, the relational operatorsin Pascal), put
in a production

E = Ea P Ea .

If you end up with two productions
E = E ...

and
E = ... E.

you have generated an ambiguous grammar; left and right associative operators
must not be at the same precedence.

Copyright © 1996. Thomas W. Christophe25

TCLL1 Parser Generator

For each unary operator P at precedence level i, if several occurrences of P may
occur in arow, put in aproduction

E= PE.

Or, if at most one occurrence of P can occur in front of an operand, put in the
production

E = PE,.
Add productions

E=FE.
E. = F.

For example, given the following table of operators:

Operators | Unaryor | Associativity Precedence
binary

% unary many highest

$! binary | eft

& binary right

binary non-associative

A unary one-at-most lowest

the algorithm gives the following grammar:

El = E2 .
El = E2 .

E2 = ES # E3 .
E2 = E3 .

E3 = E4 & E3 .
E3 = E4 .

E4 = E4 $ E5 .
E4 = E4 ! E5 .
E4 = E5 .

ES = % ES .
ES = E6 .
E6 = F .

4.9 The dangling-else problem

The dangling-else problem occurs in languages that have optional else clauses
inif statementsand no if statement terminator (such asend if or fi). In nested ifs,

26 Copyright © 1996. Thomas W. Christopher

LL(1) Parsing

it is not clear which preceding if an else goes with. This ambiguity shows up
when we try to construct an LL (1) parser. Consider the syntax:

statenent = if_statenent
| I n :II e.
If_statement = if e then statenent
| if e then statenent el se statenent

this obviously will have a conflict. So we try factoring

If_statement = if e then statenent el se_option.
el se_option = [else statenent].

When we pass this through the parser generator, we get the warnings shown in
Figure 8.

Figure8 Warnings for a dangling-else.

War ni ng: overl appi ng sel ection sets for
el se_option_6_15 = el se statenent.
and enpty-deriving production
el se_option_6_15 =.
overlap: {el se}
O errors and 1 warning

Why? First consider this example:

if ethenif e then if e then i=e else i=e else
i =e

We havethreeif’'s and twoelse's. Whichelse goes with whichf? When the
LL(1) recognizer has just finished processing the f#st there will be three
else_option’s on the prediction shack. Two of them must be replacedehath
statement; one, with the empty string. Which?

Observe that statement can be followed by aglse_option and anf_statement
can end in aelse_option. Theelse_option at the end of arf_statement can
therefore be followed by asise, which means that it is unclear how to choose
between a right hand side beginning withekse and the empty right hand side.

Unfortunately, there’s no way to get rid of this problem. (Well, if you are the
language designer, you could redesign the language, but if you are only the
compiler writer, you have to take the language as given.) So here’s what we do:
we cheat. We want the parser to associateleavith the innermosif. This

will be theif statement that placed tllse_option on top of the prediction stack.

So we let theelse_option on top of the prediction stack handle dh&e. That

means we will choose the right hand side that hael$aén its first set rather

than the right hand side that is empty and only hael$kén its follow set.

Copyright © 1996. Thomas W. ChristopheQ?

TCLL1 Parser Generator

We’ve written the parser generator to use this rule: only use a symbol from the
follow set to choose an empty-deriving right hand side if it does not appear in
the first set of any right hand side.

The parser generator fills a taldd, that maps nonterminals and terminals into
right hand sides. For nontermifaénd terminat, sel[A t] is the right hand side
to replaceA with if t is next in the input.

The parser generator works in two passes over a nonterminal’s productions:

1 For each productioA = u. and every termindlin First(u), sel[At] is
assigned right hand sidelf TCLL1 finds that sel[A,t] already has been
assigned a different right hand side, it reports an error.

2 Then TCLL1 checks to see if there is a productiofaith an empty-
deriving right hand side,e., A= w. wherew is either empty or is com-
posed of nonterminals each of which derives the empty string. If there is
no such right hand side, TCLL1 is done with this nonterminal. If there
are two or more such productions, the grammar is ambiguous—there is
more than one way to derive the empty string fhori there is precise-
ly one such productio§ = w., then for all symbolsin Follow(A),

« if sel[Af] already has a right hand side assigned, issue a warning,
» otherwise assigeel[A t] the right hand side.

We have the parser generator give a warning when first sets and follow sets give
conflicting choices for a nonterminal since it may not be a dangling else prob-
lem. Indeed, in the labeled statement example, it wasn't. If we'd used the parser
that was generated with this warning, it would never have been able to parse an
assignment statement: it would assume an identifier at the beginning of a state-
ment had to be a label and it would report an error when it saw an "="rather than
a""

28 Copyright © 1996. Thomas W. Christopher

Parsing with action symbols

Chapter 5 Parsing with action symbols

We have talked about grammars being used to derive sentences from the start
symbol by replacing nonterminal symbols by their right hand sides, but thisis
just the reverse of what we need for parsing; we need to reduce the sentence to
the start symbol by repeatedly replacing right hand sides by their left hand sides.
As each reduction is made, a semantic value is computed for the left hand side
symbol from the semantic values of the right hand sides. The procedures that
compute these values are called semantics routines or action routines. In addi-
tion to computing semantic values, the semantics routines can also access
shared data structures and writetofiles. Intheory, "the meaning of the program”
Is the semantic value assigned to the start symbol. In practice it can be the con-
tents of adata structure or the contents of afile.

5.1 Reductions

If we start with a sentence and just look through the right hand side for sub-
strings we can reduce, we may go down blind alleys and never reduce it to the
start symbol. Using our expression grammar, we could try the following reduc-
tion sequence on i*i:

* % X F X ¥ X

[
[
[
[
f
t
e

®©o®omO—+ ™~

whereupon we cannot make any further reductions.

There are some parsing algorithms, called bottom-up parsing algorithms, that

find the correct substring to reduce each step. These parsing algorithms can be
used directly. Unfortunately, LL (1) parsing is top-down, so we must do some-
thing to make it give us the reduction sequence.

Here’s what we do: We invent an extension of the language in which each pro-
duction ends with a distinct terminal symbomhmarker, translate the sentence

into the equivalentnarked sentence in this extended language, and use the
marked sentence to compute the semantic associations for the nonterminals. We
will show that

* we can use the markers to perform reductions in the correct order.

Copyright © 1996. Thomas W. Christophe29

TCLL1 Parser Generator

* we can translate a sentence without markers into a sentence with markers
using a version of the LL(1) recognition algorithm.

* we can combine these two operations so that no intermediate sentence is
ever generated.

First, let's consider how we would use markers for reductions. We add markers
to our expression grammar to give an marker-augmented grammar as shown in
the following table:

Original grammar Marked grammar
start = e. start = e P1.
=e "+ t P2.
=e"-" t P3
t P4 .
=f "*" t P5.
f"/" t P6.
f P7 .
=i P8.
="(" e ")" PO.

TN

[N t
||/|| t

e
e
=1 .
f
f
f

—h| =h| ~+ | ~| = o) o)
1

—h| =h| ~+ | ~| = o) o)
|

Notice that each production in the original grammar has a corresponding pro-
duction in the marked grammar. The only difference between these productions
Is that the marked production has a marker at the end of its right hand side. All
the markers are distinct.

Assuming representiteger, here’s a sentence in the expression language and
its translation:

30/ 5* 2+ 6
30 P8/ 5 P8 * 2 P8 P7 P5S P6 P4 + 6 P8 P7 P2 P1

The corresponding sentences can be derived by leftmost derivations using the
corresponding productions in each derivation step, as follows:

start start

e eP1

e+t e+tP2P1

t+t tP4+tP2P1

flt+t f/ltP6 P4+tP2P1

30/t+t 30P8/tP6P4+tP2P1
30/f*t+t 30P8/f*tP5P6 P4 +tP2P1

30 Copyright © 1996. Thomas W. Christopher

Parsing with action symbols

30/5*t+t 30P8/5P8* tPSP6 P4+tP2P1
30/5*f+t |30P8/5P8*fP7P5P6P4+tP2P1
30/5*2+t | 30P8/5P8* 2P8P7P5P6P4+tP2P1
30/5*2+f | 30P8/5P8* 2P8P7P5P6P4+fP7P2P1
30/5*2+6 | 30P8/5P8* 2P8 P7P5P6 P4+ 6 P8P7P2P1

When reducing the translated sentence, we use the markers as suffix Polish op-
erators. Each marker hasanumber of symbols precedingitinitsright hand side.
The numbers for the markers are shown below:

marker P1 P2 | P3| P4 |P5|P6|P7| P8 | P9
number of 1 3 3 1 3 3 1 1 3
operands

Now we will show how to reduce a marked sentence to the start symbol. The
input consists of a string of tokens and markers. The algorithm uses a stack.

Figure9 Algorithmfor Reduction using markers.

ALGORITHM FOR REDUCTION USING MARKERS

Initially set the stack empty.

Read through the marked sentence one symbol at atime
iIf the symbol is atoken, push it on the stack
otherwise the symbol is an marker,

look up the production it occursin

remove the marker'stity" number of symbols from the stack
(these correspond to the symbols ahead of the marker on
right hand side)

push the left hand side symbol on the stack
At the end, the start symbol will be on the stack.

The markers coming at the ends of right hand sides tell us when to make are-
duction and which production to use. Here is a reduction sequence using the al-
gorithm:

Copyright © 1996. Thomas W. Christophe81

the

TCLL1 Parser Generator

st ack I nput
30 P8/ 5 P8 * 2 P8 P7 P5 P6 P4
+ 6 P8 P7 P2 P1

30 P8/ 5 P8 * 2 P8 P7 P5 P6 P4 + 6
P8 P7 P2 P1

f /| 5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8
P7 P2 P1

f/ 5P8* 2 P8 P7 P5 P6 P4+ 6 P8 P7
P2 P1

f /5 P8 * 2 P8 P7 P5 P6 P4 + 6 P8 P7
P2 P1

f /I f * 2 P8 P7T P5 P6 P4 + 6 P8 P7 P2 P1

f /7 f* 2 P8 P7T P5 P6 P4 + 6 P8 P7 P2 P1

f /7 f*2 P8 P7 P5 P6 P4 + 6 P8 P7 P2 P1

f/ f*f P7 P5 P6 P4 + 6 P8 P7 P2 P1

frf*t P5 P6 P4 + 6 P8 P7 P2 P1

f/lt P6 P4 + 6 P8 P7 P2 P1

t P4 + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + 6 P8 P7 P2 P1

e + f P7 P2 P1

e +t P2 P1

e P1

start

5.2 Semantic values

Every symbol in the sentential form hasameaning associated with it, asemantic
value. The semantic values of symbolsare also called collections of attributes.
Terminal symbolswill have semantic values assigned to them by the scanner.
Termina symbolswith their associated values are called tokens. Inthe TCLL1
system, atoken isarecord containing

» the syntactic type (the terminal symbol)— used by the parser to recognize
the input.

» the body (the string of characters that comprise the token)—used by the se-
mantics routines.

* the line number on which the token occurred.
» the column number (actually the character position) of the leftmost charac-

32 Copyright © 1996. Thomas W. Christopher

5.3

Parsing with action symbols

ter of the token; the line and column are used to report the position of an er-
ror.

Itisfairly clear how to use the reduction algorithm to compute semantic values
of symbols. Each production, and hence each marker, has aprocedure, aseman-
tics routine, associated with it. What is kept on the stack are semantic values.
When a marker is encountered, the semantic values of the right hand side sym-
bols are removed from the stack and passed to the semantics routine. The rou-
tine computes the semantic value of the left hand side symbol and that value is
pushed back on the stack.

A semantic value of anonterminal expresses the meaning of the phrase it de-
rived. A semantic value may be:

* The numeric value of the subexpression the nonterminal represents.
* An operator tree or an abstract syntax tree representing the phrase.
* Atranslation of the phrase and a description of its result’s data type.
Inserting markers into sentences

So how do we insert markers into a sentence? We use a version of our LL(1)
recognition algorithm. The differences from the original recognition algorithm
are as follows:

* The algorithm uses a grammar containing markers.

* As it matches tokens, it writes them out.

* When it finds a marker on the top of the prediction stack, it writes it out.
The LL(1) translation algorithm with action symbols is shown in Figure 10.

Of course a grammar has to be put in LL(1) form before the parser can use it.
Do markers cause any problems? Not really. All they require is:

* Markers are moved around like any other symbol.

* When calculating First and Follow sets, markers are invisible; they are treat-
ed like nonterminals that derive only the empty string.

If we transform the marked expression grammar, we can get the following
LL(1) form:

start = e P1.
e =1t P4 etail.

etail ="+" t P2
etail.

etail ="-"t P3
etail.

etail =

Copyright © 1996. Thomas W. Christophe83

TCLL1 Parser Generator

t =f ttail
ttail ="*" t P5.
ttail ="/" t P6.
ttail = P7 .
f =1 P8.
f="("e")" PO
Figure10 LL(1) Algorithmto insert markers
LL(1) ALGORITHM TO TRANSLATE
INTO A MARKED SENTENCE
Initially, place the start symbol and the EQI (end of input) symbol on
the prediction stack with the start symbol on top. Put the EOI sym-
bol at the end of theinput. Read thefirst input symbol into the cur-
rent token.
Repeat
pop the top symbol off the prediction stack.
if the top symbol is amarker, writeit out.
otherwiseif the top symbol isaterminal, compare it to the current
token.
If they match, write the current token out and read the next to-
ken from the input into the current token.
If they don’t match, an error has been discovered in the input.
Execute error recovery code.
otherwise if the top symbol is a nonterminal, choose one of its
right hand sides and push it on the prediction stack, leftmost
symbol on top. Choose the right hand side by looking at the
next input symbol and deciding which RHS will allow parsing
to continue.
until the EOI symbol is matched.
5.4 Parsing

In practical parsers, we do not first insert markers into a sentence and then pass
it through a reduction agorithm. We combine both parts in one algorithm.

In the following LL(1) parsing agorithm, we use the name action symbols for
markers. When the parser sees an action symboal, it calls an action routine,
sometimes called a semantics routine. |s there a difference between a marker
and an action symbol? Well, yes. All markers are action symbols, but we can
put in action symbols for other purposes than marking the end of aright hand
Side, e.g. putting the scanner into a different mode.

34 Copyright © 1996. Thomas W. Christopher

Parsing with action symbols

5.4.1 Action symbols

In TCLL1, action symbolsarerequired to beidentifiers; they are used as names
of thelcon procedures used for action routines. Action symbolsmay be declared
by following them with an exclamation point, e.g.

f="("e")" P9l .

If the action symbol has been declared in one place with an exclamation point,
it need not be followed by an exclamation point anywhere else.

If you don’t care to use the exclamation point, you can declare action symbols
with the following declaration:

actions: & & ... &, .
where eachjas an action symbol.

54.2 ThellL(1)parsing algorithm

The LL(1) parsing algorithm with action symbols is shown in Figure 11.

Figure 11 LL(1) parsing algorithm.
LL(1) PARSING ALGORITHM

Initially, place the start symbol and the EOI (end of input) symbol opréuction stack
with the start symbol on top. Put EOI at the end of the input. Makmuthent token
empty. Make theemantics stack empty.

Repeat
pop the top symbol off the prediction stack.

while it is an action symbol, call its action routine and pop the next top symbol off the
prediction stack. The action routine may pop zero or more values off the semantics
stack and may push one or zero values back on it.

if the current token is empty, call the scanner to read the next input token into the cur-
rent token.

if the top symbol from the prediction stack is a terminal, compare it to the current token.

If they match, push the current token onto the semantics stack. Make the current to-
ken empty.

If they don’t match, an error has been discovered in the input. Execute some error
recovery code.

otherwise if the top symbol from the prediction stack is a nonterminal, then choose one
of its right hand sides and push it on the prediction stack, rightmost symbol on bot-
tom. Choose the right hand side by looking at the next input symbol and deciding
which right hand side will allow parsing to continue.

until the EOI symbol is matched.

Copyright © 1996. Thomas W. Christophe85

TCLL1 Parser Generator

54.3

A bit of explanation is necessary about marking the current token present or ab-

sent. In earlier algorithms we read the first token at the beginning and then read
inanew token as soon aswe had recognized the previous. Thisisquiteall right

for some compilers, but it is particularly a problem for interactive programs.

The system won’t respond to one command until it has seen the first token of
the next. Here we don't try reading another token until we are going to look at
it. We can perform any number of actions after recognizing a token before re-
guesting the next, allowing the program to respond immediately after the last
token of the command has been read.

Building parsers
Here is an approach for building parsers:

First, design a grammar for the language which has meaningful phrases. It must
be clear to you what action you wish to take at the end of each phrase and what
the semantic value of each symbol in the grammar is. Eachi®&e®mantic

value (the value of the terminal symbol). Each nonterminal has an associated
data type to contain its semantic value or attributes.

Put an action symbol at the end of the right hand side of each production. Each
production has some rule for constructing its left hand side’s semantic value
from the semantic values of the right hand side symbols (in addition to writing
out translated code and changing some global variables). The action symbol is
the name of the procedure to call when that right hand side has been recognized.
It will pull off the semantics stack one value for each symbol on the right hand
side and will push back the value of the left hand side.

Several productions may have the same action symbol if the number of ele-
ments on the right hand side are the same and the actions are similar. For exam-
ple, each binary operator could have its own action routine, or all binary
operators could share the same routine that looks at the operator token to decide
what to do.

You may omit an action symbol for a renaming production, a production that
has exactly one symbol on the right hand side and no action except to push back
the value it pops. You may introduce action symbols at other places than the
ends of right hand sides if you feel the need; not all action symbols represent
markers.

Transform the grammar to LL(1) form. Move around action symbols the same
as any other symbol. When checking whether the grammar is LL(1), treat action
symbols as if they are nonterminals that derive only the empty string.

Write the action routines. An action routine fonar ker action symbol will pull

values off the semantic stack for the right hand side symbols of a production,
compute the semantic value of the left hand side, and push it back. However, an
action routine that does not correspond to a marker is not required to pop any
value off the semantics stack or push a value back. You may also decide that
some nonterminals have no semantic value and hence do not need to have a val-
ue on the semantics stack. Feel free not to push a value for such a symbol, but

36 Copyright © 1996. Thomas W. Christopher

5.4.4

Parsing with action symbols

be aware that it will complicate keeping track of the semantics stack’s depth, as
will be discussed later.

Example of evaluating arithmetic expressions

Let’s design action routines to evaluate arithmetic expressions using our expres-
sion grammar. Here’s a sentence in the language:

30/5*2+6

Suppose we parse it using the LL(1) grammar with markers we constructed be-
fore:

start = e Pl. ttail ="*" t P5.
e =t P4 etail. ttail ="/" t P6.
etail ="+" t P2 etail. ttail = P7 .
etail ="-"t P3 etail. f =i P8.

etail =. f ="("e")" PI.
t =f ttail

In this case the terminal symhlakepresents an integer token. Here’s what the
action routines are expected to do:

P1 pop the numeric value on top of the semantics stack, write it out, and ter-
minate execution.

P2 pop three values from the semantics stack, add the first and third, and
push the sum.

P3 pop three values from the semantics stack in order z, y, x; push the value
x-z back on the stack.

P4 no operation.

P5 pop three values from the semantics stack in order z, y, x; push the value
x*z back on the stack.

P6 pop three values from the semantics stack in order z, y, x; push the value
x/z back on the stack.

P7 no operation.

P8 pop the token off the semantics stack, convert its body from a string to
an integer, and push the value back.

P9 pop three values off the semantics stack and push the middle value back.

Here’s a trace of the input and the semantics stack while parsing the sentence
30/5*2+6. Tokens are indicated age:value.

Copyright © 1996. Thomas W. Christophe87

TCLL1 Parser Generator

Actionfrom | Semantics stack Prediction stack | Input
previous
start EOI | 30/5*2+6 EOI
e P1EOI | 30/5*2+6 EQI
t P4 etail P1 EOI | 30/5*2+6 EOI
f ttail P4 etail P1 EOI | 30/5*2+6 EOI
I P8 ttail P4 etail P1 EOI | 30/5*2+6 EOI
match 1:30 P8 ttail P4 etail P1 EOI | /5*2+6 EQI
P8 30 ttail P4 etaill P1 EQI | /5*2+6 EQI
30 "I"t P6.P4 etail P1 EOI | /5*2+6 EQI
match 307/ t P6 P4 etail P1 EQI | 5*2+6 EOI
307/ f ttail P6 P4 etail P1 EQOI | 5%2+6 EOI
307/ | P8 ttail P6 P4 etail P1 EQOI | 5*2+6 EOI
match 30/:/i:5 P8 ttail P6 P4 etail P1 EOI | *2+6 EOI
P8 30/:/5 ttaill P6 P4 etail P1 EOI | *2+6 EOI
30/:/5 "*" t P5 P6 P4 etail PL EQI | *2+6 EQI
match 30/:/5*:* t P5 P6 P4 etail P1 EQOI | 2+6 EOI
30/:/5*:* f ttail PS5 P6 P4 etail P1 EOI | 2+6 EQI
30/:/5*:* | P8 ttail P5 P6 P4 etail P1 EOI | 2+6 EOI
match 30/:/5**i:2 P8 ttail P5 P6 P4 etail P1 EOI | +6 EOI
P8 30/:/5** 2 ttail P5 P6 P4 etail P1 EOI | +6 EOI
30/:/5** 2 P7 P5 P6 P4 etail P1L EOI | +6 EQI
P7 30/:/5** 2 P5 P6 P4 etail P1 EQI | +6 EQI
P5 30/:/ 10 P6 P4 etail P1 EOI | +6 EOI
P6 3 P4 etail P1 EOI | +6 EOI
P4 3 etail P1 EOI | +6 EOI
3 "+" t P2 etall PLEOQI | +6 EOI
match 3++ t P2 etail P1 EOI | 6 EOI

38 Copyright © 1996. Thomas W. Christopher

Parsing with action symbols

3++ f ttail P2 etail P1 EOI | 6 EQI
3++ i P8 ttail P2 etail PLEQI | 6 EOI
match 3++1:6 P8 ttail P2 etail P1 EOI | EOI
P8 3++6 ttail P2 etail P1 EQI | EOI
3++6 P7 P2 etail P1LEOI | EQOI
P7 3++6 P2 etail P1L EOI | EQOI
P2 9 etail P1LEOI | EQOI
9 P1EQI | EOI
P1 EOI | EQI
match
5.5 Accounting for semantics stack depth

As mentioned, an action routine can push either one or zero values on the se-
mantics stack. Asarule, they would leave one value to represent the left hand
side symbol. Some nonterminals, however, have no semantic information asso-
ciated with them, so thereis no reason to keep avalue on the stack for them. It
Is astrong temptation not to needlessy push and pop null values, and we are
sureto givein to thistemptation , but it makes it harder to get our parser right.
Wewill probably find one of our biggest problems with this parsing method is
that we mangle the semantics stack by popping or pushing the wrong number of
items.

Recall that the paradigmatic way to use action symbols involves four things:

1. Writean original grammar in a clear, meaningful form without using
any grouping, optional, or repetitive constructs and with action symbols
only at the ends of right hand sides.

2. Design the action routines to remove one thing from the semantics stack
for each symbol ahead of them on the right hand side and will push one
value back.

3. Then, create atransformed grammar in LL(1) form, moving the action
symbols around like any other symbol.

4. Represent every terminal and nonterminal symbol in the original gram-
mar by exactly one value on the semantics stack.

If we decide not to push values for some nonterminals, you will have to keep
track of which nonterminals have values and which do not. It will no longer be

Copyright © 1996. Thomas W. Christophe89

TCLL1 Parser Generator

immediately obvious by looking at a right hand side just how many values an
action symbol’s procedure is to pop or push.

The problem is made all the worse once the grammar is transformed into LL(1)
form. When we need to make a change in the grammar (and we will) we will
make the change directly to the LL(1) form and it will not be at all clear what
effect it will have on the semantics stack. In the LL(1) form, newly introduced
nonterminals will not necessarily leave either zero or one values on the stack.
And the braces, brackets, parentheses, and vertical bars cause their own confu-
sion.

What we will need is a way to account for stack depth. Associate a number with
each symbol, right hand side, alternative, and parenthesized, optional, or repet-
itive phrase. These numbers represent the effect of the construct on the seman-
tics stack depth. Here are the rules:

1 Every symbol will change the depth of the semantics stack by a fixed
amount.

» Allterminals count as +1. The parser will push each token matched
on the stack.

» Each nonterminal will have a fixed number of symbols it will leave
on or remove from the stack. Nonterminals in the original grammar
will change the stack depth by +1 or +0. Nonterminals introduced
during the translation to LL(1) form may even have a negative net
depth, as we will see below.

* An action symbol has an effect equal to the number of symbols
pushed minus the number popped. Since the number pushed is zero
or one and the number popped is greater than or equal to zero, an ac-
tion symbol can have any number less than or equal to one.

2 A string of symbols has a number computed by adding up all its compo-
nents.

3 The number associated with a nonterminal must be the same as the num-
ber computed for each of its right hand sides.

4 Each alternative (separated by vertical bars, |) must add up to the same
value.

5 The contents of brackets, [...], must add up to zero.
6 The contents of braces, {...}, must add up to zero.

To use a version of our expression grammar:

t = e P1!.
{ "+ t P20 | "-" t P3!} .
"'t PSL | /" t P6!].

P[8! | "(" e ")" PIl.

i n o
=

—_——h o~ —~+

40 Copyright © 1996. Thomas W. Christopher

Parsing with action symbols

We can determine the numbers associated with the symbols as follows:

II+II, II_II’ ll*ll’ II/II, l they aII are terminals

I’ ll(ll, II)II

start 0

etf 1 | they are nonterminals from the original
grammar

P2, P3, P5, P6 | -2 | they handle binary expressions, popping
three and pushing one

P1 -1 | it pops an expression’s value and pushes
nothing

P8 0 | it pops the integer token and pushes its
numeric value

P9 -2 | it pops three values and pushes back the
middle one

We can now compute the lengths of the right hand sides to make sure the rules
aren’t violated and the lengths of the left hand sides match. Here is a rough trace
of the calculations we may need to go through:

syntax calculation number of
the rule be-
ing used or
checked

start = e P1!. 0=1+-1 3

"+t P2! 1+1+-2=0 2

-t P3I 1+1+-2=0 2

"+t P21 | "-" t P3! 0=0 4

{ "+" t P2l | "-" t P3!} 0 6

e=t { "+ t P21 | "-" t P3!} 1=1+0 3

"x" ot P5I 1+1+-2=0 2

"/t P6! 1+1+-2=0 2

"*tot PS5 "/t P6! 0=0 4

["*" t P5! | "/" t P6!] 0 5

t =f ["* t P5!I | "/" t P6!]. [1=1+0 3

i P8! 1+0=1 2

"(" e ")" PO, 1+1+1+-2=1 2

Copyright © 1996. Thomas W. Christophe|41

TCLL1 Parser Generator

P8!

| "(" e ™)" P9I

[
f =i

P8!

e)"

P9l

42 Copyright © 1996. Thomas W. Christopher

Panic mode error recovery

Chapter 6 Panic mode error recovery

The parser discoversan error in itsinput when the next input symbol either does
not match the terminal symbol on top of the prediction stack or it does not select
aright hand side for the nonterminal on top of the stack. There are no rulesto
tell the parser what to do next. What should it do?

First, of course, the parser should give an error message. The easiest error mes-
sageissmply:

unexpected token XX XX at lineYYYY, column ZZZZ

Then what? Just stopping isn’t nice. Users appreciate the compiler trying to find
several errors with each attempted compile. The compiler should attempt to re-
cover from the error and continue processing the program.

There are two problems in attempting to continue:
* The parser must get past the token that caused the syntactic error.

* The semantics routines must not become so confused that they either crash
or flood the user with error messages. This requires that the semantics stack
be set to an appropriate depth and that the contents of the stack not cause
errors to the action routines.

Fortunately, both are easy to accomplish with LL(1) parsing.

A simple error recovery technique for LL(1) parsers is cgéetc mode. When

the parser has detected and reported an error, it goes into panic mode and throws
away part of the input and part of the prediction stack until it has found a token

in the input and a symbol in the prediction stack that allow parsing to continue,
then it returns to normal mode and continues parsing.

How does it choose an input symbol to restart at, and how does it decide how
much of the stack to throw away? The answers to the two questions are related.

The parser will read ahead to one of a set of symbols that delimit major sections
of the program. These symbols are caflddcial symbols, symbols the parser

can trust. For many programming languages, the fiducial symbols include ";",
"then", "else", and "end", symbols that end or separate statements. If an error is
detected within a statement, the parser will throw away the rest of the statement
and try to resume parsing with the next.

Copyright © 1996. Thomas W. Christophe|43

TCLL1 Parser Generator

The parser will not, however, accept just any fiducial. Thefiducial must be pre-
dicted. The parser will throw away input symbols up to afiducia and then ook
down the prediction stack. If it finds the fiducial symbol on the stack, or if it
finds a nonterminal symbol that derives that fiducial symbol first in a string,
then the parser will remove the symbols on the prediction stack down to the fi-
ducial or nonterminal and will then resume parsing.

If thefiducial isnot predicted, of course, the parser throwsit away and continues
looking. EOI isafiducial, and it is at the bottom of the stack, so the parser can
at least resynchronize by throwing away all the rest of the program.

EQI isthe only fiducial chosen by the parser generator. Y ou must specify the
others yourself with the fiducials declaration:

fiducial: f1 fo ... f,,.

Notice that the declaration uses a colon rather than an equal sign, the fiducials
are listed without commas and the declaration concludes with a period.

"But," you may ask, "if the parser just throws away part of the prediction stack,
won't the semantics stack will be mangled when the parsing resumes. What
does the parser do about that?"

The TCLL1 parser tries to repair errors. After throwing away part of the input,
it doesnot just throw away the top part of the stack, but instead generates a re-
placement string of tokens for the input thrown away. Recall that the parser
works by generating a program atop the input program, matching them. It is
trivial to generate the replacement tokens. Instead of throwing away symbols
from the prediction stack, it does the following with each top symbol of the pre-
diction stack down to the symbol that predicted the fiducial:

» If the top symbol is a terminal, the parser generates an error token and push-
es it onto the semantics stack. An error token can be recognized by the ac-
tion routines. It warns the action routines that the token did not come from
the user. The routines should not try to use the token nor give any further
error messages.

» Ifthe top symbol is an action symbol, the parser calls its action routine. The
action routine will adjust the semantics stack properly. Most action routines
will start by removing the correct number of values from the semantics stack
and checking if there were any error tokens among them. If the action rou-
tine finds an error token, it will push the correct number of error tokens back
on the stack (zero or one) and return immediately.

* Ifthe top symbol is a nonterminal, the parser replaces it with one of its right
hand sides. The parser chooses the right hand side that will generate a short-
est possible string of terminals. If there are several such right hand sides, the
parser generator chooses arbitrarily which one will be used.

44 Copyright © 1996. Thomas W. Christopher

Chapter 7

Incorporating the parsers into compilers

Incorporating the parsers
into compilers

Here iswhat we need to do to build a compiler using this system:

create a grammar for the language you wish to compile, put in action sym-
bols, put it into LL(1) form, and run it through TCLL1 to get tables for our
parser. If our grammar is calledrlang.grm, the tables will be given the
nameourlang.ll 1.

Write a main program to initialize the compiler and call the parser. Actually,
we will just edit an old main program to adapt it. We’'ll see one later that we
can start with.

Write a scanner for the language. Again, we will just adapt an already writ-
ten scanner. We usually start with one written for Oberon-2. We'll see it lat-
er and see how it works.

Write action routines. Most of these need to be written specially for each
compiler, but there is some standard boilerplate that they share.

Compile our files together and link witleadll1, parsell1, semstk, andrpt-
perr from the TCLL1 run time library and with file€ode, escape, andeb-
cdic from the Icon programming library.

The call-structure of the compiler is as follows:

Ourmain program calls

* readLLlinfile readlll.icnto read in the parse tables from a file and produce an inter-
nal form of the tables for the parser to use.

* initSemanticsStack in file semstk.icn to initialize the semantics stack for the action
routines.

e initScanner, which we provide to initialize the scanner. It is used mainly to open the
user’s input file. We can leave this routine out if we don'’t need it.

e parseLL1in file parselll.icn to read and parse the input program. Procedure
parselL1 calls

» scan, which we provide, to return it the next token of the input each
time it is called. When the input is finished, scan will return an EOI
token for each call.

* outToken in file semstk.icn to put a token it has matched onto the

Copyright © 1996. Thomas W. Christophe|45

TCLL1 Parser Generator

7.1

semantics stack.

* outError in file semstk.icn to push an error token on the semantics
stack during panic mode error recovery.

» reportParseError in file rptperr.icn to report the parser has en-
countered an unexpected token in the input.

* outAction in file semstk.icn to call anaction routine, which you
supply.
» Ouraction routine may call
* popSem in file semstk.icn to pop a number of values off the se-
mantics stack and return them in a list. The leftmost value in the
list corresponds to the leftmost symbol in the right hand side that

contains the action symbol, and is the value that was furthest
down the semantics stack.

* pushSem in file semstk.icn to push the semantics value of the
left hand side symbol onto the semantics stack.

» anyError in file semstk.icn to look through a list of values and
succeed returning any of those values that is an error token, or
fail if there are no error tokens present.

* isError infile semstk.icn to check whether a particular semantic
value is an error token.

Interface to readlll.icn

The TCLL1 parser generator creates a file of parse tables from a grammar. This
parse table must be read in before the parser can use it. Meatill&.icn pro-

vides the routingeadLL1, toread in a parse table. RoutieadLL1 returns the

parse table contained in a record of tyjhé.

record LL1(...)

We don’t need to know the fields of this record to use the parser. Procedure
readLL1 returns a record of this type; procedpaesel L1 takes it as a param-
eter.

procedurereadL L 1(fileName)

parameter: fleName—a string, the name of the file containing the output of the
TCLL1 parser generator.

returns a record of type LL1 containing parse tables
fails if it can’t open file fileName

ProceduregeadLL1 takes the name of the parse table file as a string. (TCLL1
creates the file with the extension ".II1" so unless you've renamed it, you will

46 Copyright © 1996. Thomas W. Christopher

7.2

7.3

Incorporating the parsers into compilers

passafilenamewith that extension.) If it successfully readsthetables, readLL1

will return arecord of type LL1 containing an internal form of the tables. If it
can’t open the file, readLL1 will fail. Unfortunately, if the file is malformed, the
Icon library routine decode will crash.

Interface to parselll.icn

Module parselll.icn contains the parser and the record declaration for tokens,
the recordloken. The scanner returns a token to the parser for each input sym-
bol. Tokens are pushed on the semantics stack as they are recognized.

record Token(type,body,line,column)
fields:
1 type—a character string, the identifier or string used in the grammar

to represent the terminal symbol.

2 body—the character string that the scanner found in the input. For
keywords and most punctuation, the bodies will usually be the same
as the type. For identifiers, the body will be the name of the identi-
fier. For constants, the type will indicate the type of the constant and
the body will have the character string the user wrote.

3 line—an integer, the line number where the token was found.

4 column—an integer, the character position of the token in the line
(tabs are treated as single characters).

If we are allowing "includes” you may want to add another field to tell which
file the token was found in.

procedure parsel L 1(111)
parameter: ll1—a record of typheé 1
returns nothing

Procedure parseLL1 performs an entire parse up to the end of input. It must be
given anLL1 record containing the parse tables. (See madat#l1.icn for a
further discussion of recotd_1 and procedureeadLL1 to read in the tables.)

Interface to semstk.icn

Module semstk.icn provides procedures to maintain the semantics stack. The
parser uses three of the routines; we use the rest. This module provides the def-
inition of recordError Token, which has exactly the same fieldsTaken, but is

used to represent erroneous phrases.

record Error Token(type,body,line,column)

The parser inserts error tokens during panic mode error recovery. Our action
routines should check for error tokens before taking any action. Once either the
parser or an action routine has reported an error, error tokens should be pushed

Copyright © 1996. Thomas W. Christophe|47

TCLL1 Parser Generator

on the semantics stack to warn other action routines not to give another error
message and not to try to make sense of the inpuit.

procedur e initSemanticsStack ()
called by our main program
parameters. none
returns nothing

This procedure should be called by the main program before starting parsing.
Asitsname says, it initializes the semantics stack.

procedure outToken(tok)

called by the parser

parameter: tok—a token

returns nothing

The parser calls procedusatToken to push a token on the semantics stack.
procedure outAction(a)

called by the parser

parameter: a—a string, an action symbol, the name of an action routine.

returns nothing

The parser calls proceduretAction to call an action routine. The parser passes
outAction the string name of the routine to call.

procedure outError(t,l,c)
called by the parser
parameters:
t—a string, the name of a terminal symbol
|—an integer, a line number
c—an integer, a position on the line

returns nothing

The parser calls proceduretError to push an error token on the stack. The er-
ror token will have the type and botjyine | and columrc.

procedure popSem(n)

48 Copyright © 1996. Thomas W. Christopher

Incorporating the parsers into compilers

called by an action routine
parameter: n—an integer, the number of values to pop from the semantics stack
returns a list containing the values popped, topmost at the right

We call procedurpopSemto remove the top values from the semantics stack
and return them to us in a list. The top element will be the rightmost value in the
list. Say we call this from an action routidAe@nd the grammar has a production:

L=R;R,... R Al

where each symb@® has a valu&/; on the semantics stack, then
popSem(k)

will yield a list

V1, Vo, ooy Vi

procedur e pushSem(s)

called by an action routine

parameter: s—a value to push on the semantics stack

returns nothing

We call procedurpushSem to push a value on the semantics stack.
procedureisError(v)

called by an action routine

parameter: v—a value, presumably from the semantics stack

returns: an undefined value if v is an ErrorToken record

fails if v is not an error token

ProceduresError will succeed ifv is an ErrorToken record and will fail other-
wise.

procedure anyError (V)
called by an action routine
parameter: V—a list of values, presumably from the semantics stack
returns: an ErrorToken record, v, found in the list V if there is any

fails if V does not contain any error tokens

Copyright © 1996. Thomas W. Christophe|49

TCLL1 Parser Generator

7.4

7.5

7.6

Figure 12

1 # TCLL1 --

Procedure anyError looksthrough list V to seeif it contains any error tokens. If
V does, then anyError will succeed returning one of the error tokensin V. If
there are no error tokens, then anyError fails.

Interface to action routines

We will need to provide an action routine for each action symbol. The routine
has the same name as the action symbol and takes no parameters.

The boilerplate for an action routine for action symbol Ais:

procedure A()
| ocal V, e, ...

V: =popSent...)
I f e:=anyError(V) then {pushSen(e); return}

pushSen(. . .)
return
end

The action routine is a parameterless procedure with the same name as the ac-
tion symbol. It pops the appropriate number of values off the semantics stack.
If thereisan error token among them, then there was an error in a subphrase, so
the action routine pushes an error token back on the stack and returns. Otherwise
it performs whatever action it should and pushes a value back on the stack.

Of course, the pushSem'’s should be omitted if the action routine isn’t supposed
to leave any value on the stack.

Interface to rptperr.icn
procedure reportParseError (t)
called by the parser
parameter: t—a token encountered by the parser that it wasn't expecting
returns nothing

Actually, this is such a small procedure, we usually justinclude a copy of it with
our main program rather than compiling it separately.

Main procedure

We will need to provide a main program to initialize our compiler and call the
parser. Do what we do: adapt one that already exists. Here is the main program
from the TCLL1 parser generator:

Example main program for a compiler.

an LL(1) parser generator

2 # Main program
3 #(witten by Dr. Thomas W Chri st opher)

4 #
5

50 Copyright © 1996. Thomas W. Christopher

Incorporating the parsers into compilers

link readl |1, parsell1, scangram sengram senstk, gramanal , 111

procedure nmain(L)
| ocal filenamne, baseFilenane, flags,filenameParts

flags := ""

if L[1][1]=="-" then {
flags := L[1]
filename := L[2]

} else {

filenanme: =L[1]

if /filename then
stop("usage: iconx tclll [flags] filenane.grn)

filenameParts: =fileSuffix(filenane)
baseFi | enane: =fi | enamePart s[1]
if filename==(baseFilenanme||".111") then

stop("would wite output over input")
i nitScanner(fil enanme |
(/filenameParts[2] & baseFilenane||".grm')) |
stop("unable to open input: ", filenane)

i ni tGammar ()
i nitSemanticsStack()

parseLLl(readLL1("tcll1.111"))

fini shDecl arations()

Il 1(baseFil ename||".111")

if find("p",flags) then printG ammar ()
write(errorCount," error", (errorCount~=1&"s")|"",

" and ", warni ngCount," warni ng", (war ni ngCount ~=1&"s")|"")
end
From filename.icn in lcon Program Library
Aut hor : Robert J. Alexander, 5 Dec. 89

Modi fi ed: Thonmas Chri stopher, 12 Oct. 94

procedure fileSuffix(s, separator)
| ocal i
/ separator :=
i 1=*s + 1
every i := find(separator,s)
return [s[1:i],s[(*s >= i) + 1:0] | &null]
end

non

Note:

7 Lines11-19 read and check the input file name and optional flags.
8 Lines 21-24 decompose and check the input file name.

9 Lines 25-27 try to open the input file. Procedure initScanner will fail if
the file can’t be opened.

10 Line 29 initializes the semantics module, which contains the action rou-

tines.
11 Line 30 initializes the semantics stack in module semstk.icn.

Copyright © 1996. Thomas W. Christophe51

TCLL1 Parser Generator

12 Line 32 readsthe TCLL1 parse tables and calls the parser.
13 Lines 34-38 finish processing the user grammar.

14 Lines 42-52 are adapted from the Icon programming library to separate
an extension from a base file name.

7.7 Structure of scanner

We must provide a parameterless procedure, scan, which will return the next to-
ken from the input each timeitiscalled. Wewill probably wish to provide with
it aprocedure initScanner which will open the input file and initialize the scan-
ner. We ourselves call that routine from the main program, so we can choose
whatever interface we want for it.

Aswith main programs, we probably will not write an entirely new scanner
when we need one; wewill adapt one that already exists. Hereisthe scanner we
usually start with, written for the language Oberon-2:

Figure 13 Example scanner.

1 #

2 # Scanner for Oberon 2

3 #

4

5 global inputFile

6 gl obal inputLine,inputLineNunber, inputColum, eoi Token
7 gl obal keywordSet

8

9 procedure initScanner(filenane)

10 inputFile := open(fil enanme,"r")

11 stop("unable to open input: ",filenane)
12 return

13 end

14

15 procedure fractionPart()

16 return ="." || (tab(many(&digits)) | "")
17 end

18

19 procedure scal eFactor ()
20 return tab(any("ED)) || (tab(any('+-")) | "") || tab(many(&digits))
21 end
22

23 procedure scan()
24 local t,c,b
25 static whiteSpace,initldChars,idChars, hexdigits, conment Dept h, commrent Li neNo

26 initial {
27 JinputFile := & nput
28 inputLineNunmber :=1

29 inputColum :=1

30 inputLine := read(inputFile)

31 eoi Token : = &nul

32 whiteSpace := &ascii[1:34] #control ++ bl ank
33 initldChars := & etters

34 hexdigits := &Jigits ++ ' ABCDEF

35 idChars := & etters ++ &Jigits ++ '$_’

36 keywordSet := set(]

37 " ARRAY", "BEG N', " BY", "CASE", "CONST", "DI V', " DO",
38 "ELSE", "ELSIF" "END' "EXIT", "FOR", "IF" "INPCRT"
39 "IN, "IS" "LCIP" "NDD' "NDDULE" "NIL" "CF" "OR',
40 "PA NTER"'PRCCEDURE' "RECCRD' "REPEAT" "RETUHWH
41 ”THEN'"TO'"TYPE'"UNTIU "VAR'"VHILE'"VVTH

52 Copyright © 1996. Thomas W. Christopher

Incorporating the parsers into compilers

421)

43 }

44 if \eoi Token then return eoi Token

45 repeat inputlLine ? {

46 tab(i nput Col umm)

47 tab(many(whiteSpace))

48 ¢ := &pos

49 if b := tab(many(&digits)) then {

50 if b||:= tab(many(hexdigits)) || ="X" then {
51 t := Token("character", b,

52 i nput Li neNunber, c)

53 } elseif b |]|:=tab(many(hexdigits)) || ="H' then {
54 t := Token("hexinteger", b,

55 i nput Li neNunber, c)

56 } elseif b:=b || fractionPart() ||
57 scal eFactor () then {

58 t := Token("real", b,

59 i nput Li neNunber, c)

60 } elseif b |]|]:=fractionPart() then {
61 t := Token("real", b,

62 i nput Li neNunber, c)

63 } elseif b |]:=="." || scaleFactor() then {
64 t := Token("real", b,

65 i nput Li neNunber, c)

66 } else {

67 t := Token("integer", b,

68 i nput Li neNunber, c)

69

70 i nput Col utm : = &pos

71 return t

72 } else

73 if any(initldChars) then {

74 t := Token("ident", tab(many(idChars)),
75 i nput Li neNunber, c)

76 i nput Col utm : = &pos

77 i f nmenmber (keywordSet, t. body) then

78 t.type := t.body

79 return t

80 } else

81 if b= =(":=" 1] ">=" | "<=" | "..") then {
82 i nput Col utm : = &pos

83 return Token(b, b, i nputLi neNunber, c)

84 } else

85 if ="(*" then {

86 i nput Col um : = 0s

87 coment Depth := 1

88 comment Li neNo : = i nput Li neNunber

89 whil e coment Depth > 0 do {

90 tab(upto(’*(')]|0)

91 if pos(0) then {

92 &pos =1

93 i nput Li neNunber +:= 1

94 if not (&subject :=

95 inputLine := read(inputFile))
96 then {

97 eoi Token := Token("EQ","EA ",
98 i nput Li neNunber, 1)
99 wite("end of input in comment beginning at ",
100 conment Li neNo)
101 return eoi Token
102
103 } elseif ="*)" then {
104 comentDepth -:=1
105 } elseif ="(*" then {

Copyright © 1996. Thomas W. Christoph953

TCLL1 Parser Generator

106 comrentDepth +: =1
107 } else {
108 nove(1)
109 }
110 }
111 i nput Col um : = &pos
112 '} else
113 if b:=tab(any(’,=#()[]1{}~+*/|&";:><.")) then {
114 i nput Col utm : = &pos
115 return Token(b, b, i nputLi neNunber, c)
116 } el se
117 i f pos(0) then {
118 inputColum :=1
119 i nput Li neNunber +:= 1
120 if not (inputLine := read(inputFile)) then {
121 eoi Token := Token("EOQ","EA ",
122 i nput Li neNunber, 1)
123
124 return eoi Token
125 }
126 } else
127 if ="\"" then {
128 b :=tab(find("\""))
129 if not(="\"") then {
130 wite("unterm nated string at ",
131 i nput Li neNunber," ", c)
132
133 t := Token("string", b, inputLineNunber, c)
134 i nput Col utm : = &pos
135 return t
136 } else
137 if =""" then {
138 b :=tab(find("" "))
139 if not(=""") then {
140 wite("unterm nated string at ",
141 i nput Li neNunber," ", c)
142
143 t := Token("string", b, inputLi neNunber, c)
144 i nput Col utm : = &pos
145 return t
146 } el se
147
148 wite("unexpected character: ", nmove(1l),
149 " at line ",inputLineNunber," colum ", c)
150 i nput Col utm : = &pos
151
152 }
153 end
Notes:

15 Lines 9-13 are theinitialization routine, initScanner, that tries to open
the input file.

16 Lines 15-21 help in recognizing real numbers.
17 Lines 23-153 are the scanner proper.

18 Lines 26-43 initialize the scanner the first timeit is called. They could
have been included in initScanner if the static’s on line 25 had been
made global.

19 Line 44 checks to see if an end-of-input token has been returned yet. If

54 Copyright © 1996. Thomas W. Christopher

Incorporating the parsers into compilers

S0, it returns it again. We don’t keep trying to read past the end of file.

20 Line 45 is a repeat because when we fall off the end of an input line, we

will have to read in a new line and restart our scan at its beginning. We
make inputLine the subject string and enter the compound expression to
look for tokens.

21 Line 46 moves the cursor &pos over to the next column to look in.

22
23

24

25
26
27
28

29
30
31
32
33

34
35

36
37

38
39

Line 47 moves the cursor past any white space.

Line 48 remembers where the first legible character was so that we can
report it as theolumn in a Token record.

Lines 49 -151 are a nested if statement to find tokens. The token types
are grouped by the class of character they begin with.

Lines 49-72 handle all tokens that begin with a digit.
Lines 50-53 handle characters written in hexadecimal format.
Lines 53-56 handle integers written in hexadecimal format.

Lines 56-60 handle real numbers with both a fraction part and an expo-
nent.

Lines 60-63 handle real numbers with a fraction part but no exponent.
Lines 63-66 handle real numbers with an exponent but no fraction.
Lines 66-69 handle integers.

Line 70 remembers where to restart the scan on the next call.

Lines 73 through 80 handle identifiers and keywords. A keyword is sim-
ply an identifier that is found in the set keywordSet.

Lines 81-84 handle two character operators.

Lines 85-112 handle comments, which in Oberon-2 are delimited by (*

and *) and can extend over multiple lines and be nested. Following the
comment, this code falls out of the if expression to repeat the search for
a token from the beginning.

Lines 113-116 handle single character operators and punctuation.

Lines 117-126 handle the scanner falling off the end of the line. (See
also lines 91-103 which handle the same thing within a comment.)

Lines 127-146 handle quoted strings.

Lines 146-151 handle the default case of an unexpected character in the
input.

Copyright © 1996. Thomas W. Christophe55

TCLL1 Parser Generator

Appendix A The TCLL1 input grammar

Here is a grammar for TCLL1's input:

start = grammar.

granmar = { declaration }.

declaration = ID (":" rhs "." | "=" alts ".").
rhs = {elent.

alts = rhs {"|" rhs}.

elem= ID["!"]| "(" alts")" | "{" alts "}"
| "[" alts "]"

In the grammainD represents an identifier or a quoted string of special charac-
ters (recognition ofDs is handled by the scanner). The only syntax that hasn’t
been described yet is

declaration = 1D ":" rhs "."

This is a form of declaration that gives the symbols on the right hand side of the
":" special meanings. There are four such declarations:

o start:ID.
This declares the identifiéD to be the start symbol. Itis equivalentstar't

=ID."

« EOI:ID.

This declares symbdD to represent end-of-input. If this is not provided,
the parser generator declaE@l itself to be the end-of-input symbol.

e actions:ID1ID2 ...IDn.

This declares the identifiers to be action symbols so they can be used with-
out following them with exclamation points.

¢ fiducials: ID1ID2 ... IDn .

This declares the identifiers to fiducial symbolsfor use in panic mode er-
ror recovery. Error recovery was discussed in Chapter 6 on page 43 .

Identifiers can have two forms:

* Aletter or underscore ("_"), followed by zero or more letters, digits, or un-
derscores.

56 Copyright © 1996. Thomas W. Christopher

» A string of any characters except a quote enclosed in (double) quotes, e.g.

An identifier must be entirely on one line.

A comment is the same as in Icon: a # and all the characters following it up to
the end of the line.

Copyright © 1996. Thomas W. Christophe57

TCLL1 Parser Generator

Appendix B Contents of the LL1 record

The best way to use TCLL1 to generate a parser in some language other than
Iconisto smply run the parser generator and write aprogram inlcontoreadin
the tables and trand ate them into the other language. To do that, you need to
know the contents of the LL1 record returned by procedure readLL1.

The record definition is:

record LL1(sel,deflt,
term nal s, acti ons,
fiducials,firstFiducials,
m nLengRHS,
start, eoi)

All symbols are represented by character strings, their names. Thefieldsare as
follows

* dartis the start symbol.

* eoi is the end-of-input symbol.

» terminalsis a set containing all the terminal symbols.
» actionsis a set containing all the action symbols.

* sdis atable used to select which right hand side to use for a nonterminal on
the stack and a terminal in the input. Let L be the LL1 record, N be the non-
terminal, and T be the terminal, then if L.sel[N] is not &null and if
L.sel[N][T] is not &null, then L.sel[N][T] is a list of symbols to replace N
with—the right hand side. However, if either L.sel[N] is &null or
L.sel[N][T] is &null, there may still be a replacement right hand side given
by field deflt.

» defltis a table to specify default right hand sides for nonterminals. Let L be
the LL1 record, N be the nonterminal, and T be the terminal. The parser will
first try to look up a right hand side in L.sel[N][T]. If there is no right hand
side there, the parser tries to find one in L.deflt[N]. If L.deflt[N] is not
&null, the parser will replace N with the list of symbols in L.deflt[N]. The
whole purpose of this table is to save space isdhtable. It is used under
two circumstances: (1) for nonterminals that have only one production and
(2) for the right hand side chosen by the largest number of terminal symbols.

» fiducialsis a set containing all the fiducial symbols, i.e., the subset of termi-
58 Copyright © 1996. Thomas W. Christopher

Contents of the LL1 record

nal symbols at which the parser will try to resume parsing following an er-
ror.

» firstFiducialsis atable mapping nonterminals into the sets of fiducial sym-
bols they derive first. The error recovery usesthis when it scans ahead to a
fiducial and then seesif thefiducial is predicted. A fiducial is predicted if it
iIson the prediction stack or if anonterminal ison the stack which can derive
thefiducial first.

* minLengRHSs atable mapping each nonterminal to one of its right hand
sides which will derive a minimum length terminal string. It is used by the
error recovery to replacement tokens for the tokens thrown away during
panic mode error recovery.

Care has been taken to minimize the storage required by the parsing tables. All
occurrences of the same right hand side are represented by the same list (not
merely lists with the same contents). All symbols are represented by the same
bytes in Icon’s string area, not merely by equal strings.

Copyright © 1996. Thomas W. Christophe59

