1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
############################################################################
#
# File: mandel1.icn
#
# Subject: Program to display the Mandelbrot set
#
# Author: Ralph E. Griswold
#
# Date: June 17, 1994
#
############################################################################
#
# This file is in the public domain.
#
############################################################################
#
# This is a barebones version of a display of the Mandelbrot set. It
# has deliberately been left simple and free of options so that the
# basic idea is clear and so that it can be used as the basis of
# more capable versions.
#
# This program is based on material given in "Chaos, Fractals,
# and Dynamics", Robert L. Devaney, Addison-Wesley, 1990.
#
############################################################################
#
# Requires: Version 9 graphics
#
############################################################################
#
# Links: wopen
#
############################################################################
link wopen
procedure main()
local size, real_size, i, j, c1, c2, x, y, n, x1, y1, limit, extent
size := 300
extent := 4.0 / size
limit := 30
WOpen("label=mandel", "height=" || size, "width=" || size) |
stop("*** cannot open window")
every i := 1 to size do {
every j := 1 to size / 2 do {
c1 := -2 + i * extent
c2 := 2 - j * extent
x := c1
y := c2
every 1 to limit do { # see what the orbit is
x1 := x ^ 2 - y ^ 2 + c1
y1 := 2 * x * y + c2
if (x1 ^ 2 + y1 ^ 2) > 4 then break next
x := x1
y := y1
}
DrawPoint(i, j, i, size - j)
}
}
Event()
end
|