summaryrefslogtreecommitdiff
path: root/ipl/procs/periodic.icn
blob: d9a180aa107b6a8c0a7878de962489974cec16a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
############################################################################
#
#	File:     periodic.icn
#
#	Subject:  Procedures related to periodic sequences
#
#	Author:   Ralph E. Griswold
#
#	Date:     June 10, 2001
#
############################################################################
#
#  This file is in the public domain.
#
############################################################################
#
#  Sqrt(i, j) produces a rational approximation to the square root of i
#  with j iterations of the half-way method.  j defaults to 5.
#
############################################################################
#
#  Requires:  Large-integer arithmetic  
#
############################################################################
#
#  Links:  lists, numbers, rational, strings
#
############################################################################

link lists
link numbers
link rational
link strings

record perseq(pre, rep)

procedure Sqrt(i, j)		#: rational approximate to square root
   local rat, half

   /j := 5

   half := rational(1, 2, 1)

   rat := rational(integer(sqrt(i)), 1, 1)	# initial approximation

   i := rational(i, 1, 1)

   every 1 to j do
      rat := mpyrat(half, addrat(rat, divrat(i, rat, 1), 1))

   return rat

end

procedure rat2cf(rat)		#: continued fraction sequence for rational
   local r, result, i, j

   i := rat.numer
   j := rat.denom

   result := []

   repeat {
     put(result, rational(integer(i / j), 1, 1).numer)
     r := i % j
     i := j
     j := r
     if j = 0 then break
     }

   return perseq(result, [])

end

procedure cfapprox(lst)		#: continued-fraction approximation
   local prev_n, prev_m, n, m, t

   lst := copy(lst)

   prev_n := [1]
   prev_m := [0, 1]

   put(prev_n, get(lst).denom) | fail

   while t := get(lst) do {
      n := t.denom * get(prev_n) + t.numer * prev_n[1]
      m := t.denom * get(prev_m) + t.numer * prev_m[1]
      suspend rational(n, m, 1)
      put(prev_n, n)
      put(prev_m, m)
      if t.denom ~= 0 then {		# renormalize
         every !prev_n /:= t.denom
         every !prev_m /:= t.denom
         }
      }

end

procedure dec2rat(pre, rep)	#: convert repeating decimal to rational
   local s

   s := ""

   every s ||:= (!pre | |!rep) \ (*pre + *rep)

   return ratred(rational(s - left(s, *pre),
      10 ^ (*pre + *rep) - 10 ^ *pre, 1))

end

procedure rat2dec(rat)		#: decimal expansion of rational
   local  result, remainders, count, seq

   rat := copy(rat)

   result := ""

   remainders := table()

   rat.numer %:= rat.denom
   rat.numer *:= 10

   count := 0

   while rat.numer > 0 do {
      count +:= 1
      if member(remainders, rat.numer) then {	# been here; done that
         seq := perseq()
         result ? {
            seq.pre := move(remainders[rat.numer] - 1)
            seq.rep := tab(0)
            }
         return seq
         }
      else insert(remainders, rat.numer, count)
      result ||:= rat.numer / rat.denom
      rat.numer %:= rat.denom
      rat.numer *:= 10
      }

   return perseq([rat.denom], [])		# WRONG!!!

end

procedure repeater(seq, ratio, limit)		#: find repeat in sequence
   local init, i, prefix, results, segment, span

   /ratio := 2
   /limit := 0.75

   results := copy(seq)

   prefix := []

   repeat {
      span := *results / ratio
      every i := 1 to span do {
         segment := results[1+:i] | next
         if lequiv(lextend(segment, *results), results) then
            return perseq(prefix, segment)
         }
      put(prefix, get(results)) |		# first term to prefix
         return perseq(prefix, results)
      if *prefix > limit * *seq then return perseq(seq, [])
      }

end

procedure seqimage(seq)		#: sequence image
   local result

   result := ""

   every result ||:= !seq.pre || ","

   result ||:= "["

   if *seq.rep > 0 then {
      every result ||:= !seq.rep || ","
      result[-1] := "]"
      }
   else result ||:= "]"

   return result

end