/* * qemu/kvm integration, x86 specific code * * Copyright (C) 2006-2008 Qumranet Technologies * Portions Copyright 2011 Joyent, Inc. * * Licensed under the terms of the GNU GPL version 2 or higher. */ #include "config.h" #include "config-host.h" #include #include "hw/hw.h" #include "gdbstub.h" #ifdef __linux__ #include #endif #include "qemu-kvm.h" #include "libkvm.h" #include #include #ifdef CONFIG_KVM_PARA #include #endif #include #include "kvm.h" #include "hw/apic.h" #define MSR_IA32_TSC 0x10 static struct kvm_msr_list *kvm_msr_list; extern unsigned int kvm_shadow_memory; int kvm_set_tss_addr(kvm_context_t kvm, unsigned long addr) { int r; r = kvm_vm_ioctl(kvm_state, KVM_SET_TSS_ADDR, addr); if (r < 0) { fprintf(stderr, "kvm_set_tss_addr: %m\n"); return r; } return 0; } static int kvm_init_tss(kvm_context_t kvm) { int r; r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); if (r > 0) { /* * this address is 3 pages before the bios, and the bios should present * as unavaible memory */ r = kvm_set_tss_addr(kvm, 0xfeffd000); if (r < 0) { fprintf(stderr, "kvm_init_tss: unable to set tss addr\n"); return r; } } else { fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); } return 0; } static int kvm_set_identity_map_addr(kvm_context_t kvm, uint64_t addr) { #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR int r; r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR); if (r > 0) { r = kvm_vm_ioctl(kvm_state, KVM_SET_IDENTITY_MAP_ADDR, &addr); if (r == -1) { fprintf(stderr, "kvm_set_identity_map_addr: %m\n"); return -errno; } return 0; } #endif return -ENOSYS; } static int kvm_init_identity_map_page(kvm_context_t kvm) { #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR int r; r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_SET_IDENTITY_MAP_ADDR); if (r > 0) { /* * this address is 4 pages before the bios, and the bios should present * as unavaible memory */ r = kvm_set_identity_map_addr(kvm, 0xfeffc000); if (r < 0) { fprintf(stderr, "kvm_init_identity_map_page: " "unable to set identity mapping addr\n"); return r; } } #endif return 0; } static int kvm_create_pit(kvm_context_t kvm) { #ifdef KVM_CAP_PIT int r; kvm_state->pit_in_kernel = 0; if (!kvm->no_pit_creation) { r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_PIT); if (r > 0) { r = kvm_vm_ioctl(kvm_state, KVM_CREATE_PIT); if (r >= 0) { kvm_state->pit_in_kernel = 1; } else { fprintf(stderr, "Create kernel PIC irqchip failed\n"); return r; } } } #endif return 0; } int kvm_arch_create(kvm_context_t kvm, unsigned long phys_mem_bytes, void **vm_mem) { int r = 0; r = kvm_init_tss(kvm); if (r < 0) { return r; } r = kvm_init_identity_map_page(kvm); if (r < 0) { return r; } /* * Tell fw_cfg to notify the BIOS to reserve the range. */ if (e820_add_entry(0xfeffc000, 0x4000, E820_RESERVED) < 0) { perror("e820_add_entry() table is full"); exit(1); } r = kvm_create_pit(kvm); if (r < 0) { return r; } r = kvm_init_coalesced_mmio(kvm); if (r < 0) { return r; } return 0; } #ifdef KVM_EXIT_TPR_ACCESS static int kvm_handle_tpr_access(CPUState *env) { struct kvm_run *run = env->kvm_run; kvm_tpr_access_report(env, run->tpr_access.rip, run->tpr_access.is_write); return 0; } int kvm_enable_vapic(CPUState *env, uint64_t vapic) { struct kvm_vapic_addr va = { .vapic_addr = vapic, }; return kvm_vcpu_ioctl(env, KVM_SET_VAPIC_ADDR, &va); } #endif int kvm_arch_run(CPUState *env) { int r = 0; struct kvm_run *run = env->kvm_run; switch (run->exit_reason) { #ifdef KVM_EXIT_SET_TPR case KVM_EXIT_SET_TPR: break; #endif #ifdef KVM_EXIT_TPR_ACCESS case KVM_EXIT_TPR_ACCESS: r = kvm_handle_tpr_access(env); break; #endif default: r = 1; break; } return r; } #ifdef KVM_CAP_IRQCHIP int kvm_get_lapic(CPUState *env, struct kvm_lapic_state *s) { int r = 0; if (!kvm_irqchip_in_kernel()) { return r; } r = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, s); if (r < 0) { fprintf(stderr, "KVM_GET_LAPIC failed\n"); } return r; } int kvm_set_lapic(CPUState *env, struct kvm_lapic_state *s) { int r = 0; if (!kvm_irqchip_in_kernel()) { return 0; } r = kvm_vcpu_ioctl(env, KVM_SET_LAPIC, s); if (r < 0) { fprintf(stderr, "KVM_SET_LAPIC failed\n"); } return r; } #endif #ifdef KVM_CAP_PIT int kvm_get_pit(kvm_context_t kvm, struct kvm_pit_state *s) { if (!kvm_pit_in_kernel()) { return 0; } return kvm_vm_ioctl(kvm_state, KVM_GET_PIT, s); } int kvm_set_pit(kvm_context_t kvm, struct kvm_pit_state *s) { if (!kvm_pit_in_kernel()) { return 0; } return kvm_vm_ioctl(kvm_state, KVM_SET_PIT, s); } #ifdef KVM_CAP_PIT_STATE2 int kvm_get_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2) { if (!kvm_pit_in_kernel()) { return 0; } return kvm_vm_ioctl(kvm_state, KVM_GET_PIT2, ps2); } int kvm_set_pit2(kvm_context_t kvm, struct kvm_pit_state2 *ps2) { if (!kvm_pit_in_kernel()) { return 0; } return kvm_vm_ioctl(kvm_state, KVM_SET_PIT2, ps2); } #endif #endif int kvm_has_pit_state2(kvm_context_t kvm) { int r = 0; #ifdef KVM_CAP_PIT_STATE2 r = kvm_check_extension(kvm_state, KVM_CAP_PIT_STATE2); #endif return r; } void kvm_show_code(CPUState *env) { #define SHOW_CODE_LEN 50 struct kvm_regs regs; struct kvm_sregs sregs; int r, n; int back_offset; unsigned char code; char code_str[SHOW_CODE_LEN * 3 + 1]; unsigned long rip; r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); if (r < 0 ) { perror("KVM_GET_SREGS"); return; } r = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (r < 0) { perror("KVM_GET_REGS"); return; } rip = sregs.cs.base + regs.rip; back_offset = regs.rip; if (back_offset > 20) { back_offset = 20; } *code_str = 0; for (n = -back_offset; n < SHOW_CODE_LEN-back_offset; ++n) { if (n == 0) { strcat(code_str, " -->"); } cpu_physical_memory_rw(rip + n, &code, 1, 1); sprintf(code_str + strlen(code_str), " %02x", code); } fprintf(stderr, "code:%s\n", code_str); } /* * Returns available msr list. User must free. */ static struct kvm_msr_list *kvm_get_msr_list(void) { struct kvm_msr_list sizer, *msrs; int r; sizer.nmsrs = 0; r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, &sizer); if (r < 0 && r != -E2BIG) { return NULL; } /* Old kernel modules had a bug and could write beyond the provided memory. Allocate at least a safe amount of 1K. */ msrs = qemu_malloc(MAX(1024, sizeof(*msrs) + sizer.nmsrs * sizeof(*msrs->indices))); msrs->nmsrs = sizer.nmsrs; r = kvm_ioctl(kvm_state, KVM_GET_MSR_INDEX_LIST, msrs); if (r < 0) { free(msrs); errno = r; return NULL; } return msrs; } static void print_seg(FILE *file, const char *name, struct kvm_segment *seg) { fprintf(stderr, "%s %04x (%08llx/%08x p %d dpl %d db %d s %d type %x l %d" " g %d avl %d)\n", name, seg->selector, seg->base, seg->limit, seg->present, seg->dpl, seg->db, seg->s, seg->type, seg->l, seg->g, seg->avl); } static void print_dt(FILE *file, const char *name, struct kvm_dtable *dt) { fprintf(stderr, "%s %llx/%x\n", name, dt->base, dt->limit); } void kvm_show_regs(CPUState *env) { struct kvm_regs regs; struct kvm_sregs sregs; int r; r = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (r < 0) { perror("KVM_GET_REGS"); return; } fprintf(stderr, "rax %016llx rbx %016llx rcx %016llx rdx %016llx\n" "rsi %016llx rdi %016llx rsp %016llx rbp %016llx\n" "r8 %016llx r9 %016llx r10 %016llx r11 %016llx\n" "r12 %016llx r13 %016llx r14 %016llx r15 %016llx\n" "rip %016llx rflags %08llx\n", regs.rax, regs.rbx, regs.rcx, regs.rdx, regs.rsi, regs.rdi, regs.rsp, regs.rbp, regs.r8, regs.r9, regs.r10, regs.r11, regs.r12, regs.r13, regs.r14, regs.r15, regs.rip, regs.rflags); r = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); if (r < 0) { perror("KVM_GET_SREGS"); return; } print_seg(stderr, "cs", &sregs.cs); print_seg(stderr, "ds", &sregs.ds); print_seg(stderr, "es", &sregs.es); print_seg(stderr, "ss", &sregs.ss); print_seg(stderr, "fs", &sregs.fs); print_seg(stderr, "gs", &sregs.gs); print_seg(stderr, "tr", &sregs.tr); print_seg(stderr, "ldt", &sregs.ldt); print_dt(stderr, "gdt", &sregs.gdt); print_dt(stderr, "idt", &sregs.idt); fprintf(stderr, "cr0 %llx cr2 %llx cr3 %llx cr4 %llx cr8 %llx" " efer %llx\n", sregs.cr0, sregs.cr2, sregs.cr3, sregs.cr4, sregs.cr8, sregs.efer); } static void kvm_set_cr8(CPUState *env, uint64_t cr8) { env->kvm_run->cr8 = cr8; } int kvm_set_shadow_pages(kvm_context_t kvm, unsigned int nrshadow_pages) { #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL int r; r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MMU_SHADOW_CACHE_CONTROL); if (r > 0) { r = kvm_vm_ioctl(kvm_state, KVM_SET_NR_MMU_PAGES, nrshadow_pages); if (r < 0) { fprintf(stderr, "kvm_set_shadow_pages: %m\n"); return r; } return 0; } #endif return -1; } int kvm_get_shadow_pages(kvm_context_t kvm, unsigned int *nrshadow_pages) { #ifdef KVM_CAP_MMU_SHADOW_CACHE_CONTROL int r; r = kvm_ioctl(kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_MMU_SHADOW_CACHE_CONTROL); if (r > 0) { *nrshadow_pages = kvm_vm_ioctl(kvm_state, KVM_GET_NR_MMU_PAGES); return 0; } #endif return -1; } #ifdef KVM_CAP_VAPIC static int kvm_enable_tpr_access_reporting(CPUState *env) { int r; struct kvm_tpr_access_ctl tac = { .enabled = 1 }; r = kvm_ioctl(env->kvm_state, KVM_CHECK_EXTENSION, KVM_CAP_VAPIC); if (r <= 0) { return -ENOSYS; } return kvm_vcpu_ioctl(env, KVM_TPR_ACCESS_REPORTING, &tac); } #endif #ifdef KVM_CAP_ADJUST_CLOCK static struct kvm_clock_data kvmclock_data; static void kvmclock_pre_save(void *opaque) { struct kvm_clock_data *cl = opaque; kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, cl); } static int kvmclock_post_load(void *opaque, int version_id) { struct kvm_clock_data *cl = opaque; return kvm_vm_ioctl(kvm_state, KVM_SET_CLOCK, cl); } static const VMStateDescription vmstate_kvmclock= { .name = "kvmclock", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .pre_save = kvmclock_pre_save, .post_load = kvmclock_post_load, .fields = (VMStateField []) { VMSTATE_U64(clock, struct kvm_clock_data), VMSTATE_END_OF_LIST() } }; #endif int kvm_arch_qemu_create_context(void) { int r; struct utsname utsname; uname(&utsname); lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; if (kvm_shadow_memory) { kvm_set_shadow_pages(kvm_context, kvm_shadow_memory); } /* initialize has_msr_star/has_msr_hsave_pa */ r = kvm_get_supported_msrs(kvm_state); if (r < 0) { return r; } kvm_msr_list = kvm_get_msr_list(); if (!kvm_msr_list) { return -1; } #ifdef KVM_CAP_ADJUST_CLOCK if (kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK)) { vmstate_register(NULL, 0, &vmstate_kvmclock, &kvmclock_data); } #endif r = kvm_set_boot_cpu_id(0); if (r < 0 && r != -ENOSYS) { return r; } return 0; } static void kvm_arch_save_mpstate(CPUState *env) { #ifdef KVM_CAP_MP_STATE int r; struct kvm_mp_state mp_state; r = kvm_get_mpstate(env, &mp_state); if (r < 0) { env->mp_state = -1; } else { env->mp_state = mp_state.mp_state; if (kvm_irqchip_in_kernel()) { env->halted = (env->mp_state == KVM_MP_STATE_HALTED); } } #else env->mp_state = -1; #endif } static void kvm_arch_load_mpstate(CPUState *env) { #ifdef KVM_CAP_MP_STATE struct kvm_mp_state mp_state; /* * -1 indicates that the host did not support GET_MP_STATE ioctl, * so don't touch it. */ if (env->mp_state != -1) { mp_state.mp_state = env->mp_state; kvm_set_mpstate(env, &mp_state); } #endif } #define XSAVE_CWD_RIP 2 #define XSAVE_CWD_RDP 4 #define XSAVE_MXCSR 6 #define XSAVE_ST_SPACE 8 #define XSAVE_XMM_SPACE 40 #define XSAVE_XSTATE_BV 128 #define XSAVE_YMMH_SPACE 144 void kvm_arch_load_regs(CPUState *env, int level) { int rc; assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id()); kvm_getput_regs(env, 1); kvm_put_xsave(env); kvm_put_xcrs(env); kvm_put_sregs(env); rc = kvm_put_msrs(env, level); if (rc < 0) { perror("kvm__msrs FAILED"); } if (level >= KVM_PUT_RESET_STATE) { kvm_arch_load_mpstate(env); kvm_load_lapic(env); } if (level == KVM_PUT_FULL_STATE) { if (env->kvm_vcpu_update_vapic) { kvm_tpr_enable_vapic(env); } } kvm_put_vcpu_events(env, level); kvm_put_debugregs(env); /* must be last */ kvm_guest_debug_workarounds(env); } void kvm_arch_save_regs(CPUState *env) { int rc; assert(kvm_cpu_is_stopped(env) || env->thread_id == kvm_get_thread_id()); kvm_getput_regs(env, 0); kvm_get_xsave(env); kvm_get_xcrs(env); kvm_get_sregs(env); rc = kvm_get_msrs(env); if (rc < 0) { perror("kvm_get_msrs FAILED"); } kvm_arch_save_mpstate(env); kvm_save_lapic(env); kvm_get_vcpu_events(env); kvm_get_debugregs(env); } static int _kvm_arch_init_vcpu(CPUState *env) { kvm_arch_reset_vcpu(env); #ifdef KVM_EXIT_TPR_ACCESS kvm_enable_tpr_access_reporting(env); #endif return 0; } int kvm_arch_halt(CPUState *env) { if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) && !(env->interrupt_request & CPU_INTERRUPT_NMI)) { env->halted = 1; } return 1; } int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) { if (!kvm_irqchip_in_kernel()) { kvm_set_cr8(env, cpu_get_apic_tpr(env->apic_state)); } return 0; } int kvm_arch_has_work(CPUState *env) { if (((env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (env->interrupt_request & CPU_INTERRUPT_NMI)) { return 1; } return 0; } int kvm_arch_try_push_interrupts(void *opaque) { CPUState *env = cpu_single_env; int r, irq; if (kvm_is_ready_for_interrupt_injection(env) && (env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) { env->interrupt_request &= ~CPU_INTERRUPT_HARD; irq = cpu_get_pic_interrupt(env); if (irq >= 0) { r = kvm_inject_irq(env, irq); if (r < 0) { printf("cpu %d fail inject %x\n", env->cpu_index, irq); } } } return (env->interrupt_request & CPU_INTERRUPT_HARD) != 0; } #ifdef KVM_CAP_USER_NMI void kvm_arch_push_nmi(void *opaque) { CPUState *env = cpu_single_env; int r; if (likely(!(env->interrupt_request & CPU_INTERRUPT_NMI))) { return; } env->interrupt_request &= ~CPU_INTERRUPT_NMI; r = kvm_inject_nmi(env); if (r < 0) { printf("cpu %d fail inject NMI\n", env->cpu_index); } } #endif /* KVM_CAP_USER_NMI */ static int kvm_reset_msrs(CPUState *env) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[100]; } msr_data; int n; struct kvm_msr_entry *msrs = msr_data.entries; uint32_t index; uint64_t data; if (!kvm_msr_list) { return -1; } for (n = 0; n < kvm_msr_list->nmsrs; n++) { index = kvm_msr_list->indices[n]; switch (index) { case MSR_PAT: data = 0x0007040600070406ULL; break; default: data = 0; } kvm_msr_entry_set(&msrs[n], kvm_msr_list->indices[n], data); } msr_data.info.nmsrs = n; return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); } void kvm_arch_cpu_reset(CPUState *env) { kvm_reset_msrs(env); kvm_arch_reset_vcpu(env); } #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT void kvm_arch_do_ioperm(void *_data) { struct ioperm_data *data = _data; ioperm(data->start_port, data->num, data->turn_on); } #endif /* * Setup x86 specific IRQ routing */ int kvm_arch_init_irq_routing(void) { int i, r; if (kvm_irqchip && kvm_has_gsi_routing()) { kvm_clear_gsi_routes(); for (i = 0; i < 8; ++i) { if (i == 2) { continue; } r = kvm_add_irq_route(i, KVM_IRQCHIP_PIC_MASTER, i); if (r < 0) { return r; } } for (i = 8; i < 16; ++i) { r = kvm_add_irq_route(i, KVM_IRQCHIP_PIC_SLAVE, i - 8); if (r < 0) { return r; } } for (i = 0; i < 24; ++i) { if (i == 0 && irq0override) { r = kvm_add_irq_route(i, KVM_IRQCHIP_IOAPIC, 2); } else if (i != 2 || !irq0override) { r = kvm_add_irq_route(i, KVM_IRQCHIP_IOAPIC, i); } if (r < 0) { return r; } } kvm_commit_irq_routes(); } return 0; } void kvm_arch_process_irqchip_events(CPUState *env) { if (env->interrupt_request & CPU_INTERRUPT_INIT) { kvm_cpu_synchronize_state(env); do_cpu_init(env); } if (env->interrupt_request & CPU_INTERRUPT_SIPI) { kvm_cpu_synchronize_state(env); do_cpu_sipi(env); } }