/* * emulate.c * * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. * * Copyright (c) 2005 Keir Fraser * * Linux coding style, mod r/m decoder, segment base fixes, real-mode * privileged instructions: * * Copyright (C) 2006 Qumranet * * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef _KERNEL #include #include #include #define DPRINTF(_f, _a ...) printf(_f, ## _a) #else #include "kvm_host.h" #include "kvm_x86host.h" #define DPRINTF(x...) do {} while (0) #endif #include "kvm_mmu.h" #include "msr-index.h" #include "msr.h" #include "processor-flags.h" #include "kvm_iodev.h" #include "kvm.h" /* * XXX These extern declarations shouldn't be necessary. We need proper header * file management */ extern int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, uint16_t selector, int seg); extern void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); extern unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); extern ulong kvm_read_cr0(struct kvm_vcpu *vcpu); extern unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); extern void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); extern void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); extern void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); extern void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); extern void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); extern gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, uint32_t *error); extern int kvm_get_msr(struct kvm_vcpu *vcpu, uint32_t msr_index, uint64_t *pdata); extern int kvm_set_msr(struct kvm_vcpu *vcpu, uint32_t msr_index, uint64_t data); extern int complete_pio(struct kvm_vcpu *vcpu); extern void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); extern void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, uint32_t); extern ulong kvm_read_cr0_bits(struct kvm_vcpu *, ulong); /* * Indirect stringification. Doing two levels allows the parameter to be a * macro itself. For example, compile with -DFOO=bar, __stringify(FOO) * converts to "bar". */ #define __stringify_1(x...) #x #define __stringify(x...) __stringify_1(x) /* * Opcode effective-address decode tables. * Note that we only emulate instructions that have at least one memory * operand (excluding implicit stack references). We assume that stack * references and instruction fetches will never occur in special memory * areas that require emulation. So, for example, 'mov ,' need * not be handled. */ /* Operand sizes: 8-bit operands or specified/overridden size. */ #define ByteOp (1<<0) /* 8-bit operands. */ /* Destination operand type. */ #define ImplicitOps (1<<1) /* Implicit in opcode. No generic decode. */ #define DstReg (2<<1) /* Register operand. */ #define DstMem (3<<1) /* Memory operand. */ #define DstAcc (4<<1) /* Destination Accumulator */ #define DstMask (7<<1) /* Source operand type. */ #define SrcNone (0<<4) /* No source operand. */ #define SrcImplicit (0<<4) /* Source operand is implicit in the opcode. */ #define SrcReg (1<<4) /* Register operand. */ #define SrcMem (2<<4) /* Memory operand. */ #define SrcMem16 (3<<4) /* Memory operand (16-bit). */ #define SrcMem32 (4<<4) /* Memory operand (32-bit). */ #define SrcImm (5<<4) /* Immediate operand. */ #define SrcImmByte (6<<4) /* 8-bit sign-extended immediate operand. */ #define SrcOne (7<<4) /* Implied '1' */ #define SrcImmUByte (8<<4) /* 8-bit unsigned immediate operand. */ #define SrcImmU (9<<4) /* Immediate operand, unsigned */ #define SrcMask (0xf<<4) /* Generic ModRM decode. */ #define ModRM (1<<8) /* Destination is only written; never read. */ #define Mov (1<<9) #define BitOp (1<<10) #define MemAbs (1<<11) /* Memory operand is absolute displacement */ #define String (1<<12) /* String instruction (rep capable) */ #define Stack (1<<13) /* Stack instruction (push/pop) */ #define Group (1<<14) /* Bits 3:5 of modrm byte extend opcode */ #define GroupDual (1<<15) /* Alternate decoding of mod == 3 */ #define GroupMask 0xff /* Group number stored in bits 0:7 */ /* Misc flags */ #define Lock (1<<26) /* lock prefix is allowed for the instruction */ #define Priv (1<<27) /* instr. generates #GP if current CPL != 0 */ #define No64 (1<<28) /* Source 2 operand type */ #define Src2None (0<<29) #define Src2CL (1<<29) #define Src2ImmByte (2<<29) #define Src2One (3<<29) #define Src2Imm16 (4<<29) #define Src2Mask (7<<29) enum { Group1_80, Group1_81, Group1_82, Group1_83, Group1A, Group3_Byte, Group3, Group4, Group5, Group7, Group8, Group9, }; static uint32_t opcode_table[256] = { /* 0x00 - 0x07 */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, /* 0x08 - 0x0F */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, ImplicitOps | Stack | No64, 0, /* 0x10 - 0x17 */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, /* 0x18 - 0x1F */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, /* 0x20 - 0x27 */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, DstAcc | SrcImmByte, DstAcc | SrcImm, 0, 0, /* 0x28 - 0x2F */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, 0, 0, 0, 0, /* 0x30 - 0x37 */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, 0, 0, 0, 0, /* 0x38 - 0x3F */ ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM, ByteOp | DstReg | SrcMem | ModRM, DstReg | SrcMem | ModRM, ByteOp | DstAcc | SrcImm, DstAcc | SrcImm, 0, 0, /* 0x40 - 0x47 */ DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, /* 0x48 - 0x4F */ DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, /* 0x50 - 0x57 */ SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, SrcReg | Stack, /* 0x58 - 0x5F */ DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, DstReg | Stack, /* 0x60 - 0x67 */ ImplicitOps | Stack | No64, ImplicitOps | Stack | No64, 0, DstReg | SrcMem32 | ModRM | Mov, /* movsxd (x86/64) */ 0, 0, 0, 0, /* 0x68 - 0x6F */ SrcImm | Mov | Stack, 0, SrcImmByte | Mov | Stack, 0, SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* ins[bwd] */ SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* outs[bwd] */ /* 0x70 - 0x77 */ SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, /* 0x78 - 0x7F */ SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, SrcImmByte, /* 0x80 - 0x87 */ Group | Group1_80, Group | Group1_81, Group | Group1_82, Group | Group1_83, ByteOp | DstMem | SrcReg | ModRM, DstMem | SrcReg | ModRM, ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, /* 0x88 - 0x8F */ ByteOp | DstMem | SrcReg | ModRM | Mov, DstMem | SrcReg | ModRM | Mov, ByteOp | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstMem | SrcReg | ModRM | Mov, ModRM | DstReg, DstReg | SrcMem | ModRM | Mov, Group | Group1A, /* 0x90 - 0x97 */ DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, DstReg, /* 0x98 - 0x9F */ 0, 0, SrcImm | Src2Imm16 | No64, 0, ImplicitOps | Stack, ImplicitOps | Stack, 0, 0, /* 0xA0 - 0xA7 */ ByteOp | DstReg | SrcMem | Mov | MemAbs, DstReg | SrcMem | Mov | MemAbs, ByteOp | DstMem | SrcReg | Mov | MemAbs, DstMem | SrcReg | Mov | MemAbs, ByteOp | ImplicitOps | Mov | String, ImplicitOps | Mov | String, ByteOp | ImplicitOps | String, ImplicitOps | String, /* 0xA8 - 0xAF */ 0, 0, ByteOp | ImplicitOps | Mov | String, ImplicitOps | Mov | String, ByteOp | ImplicitOps | Mov | String, ImplicitOps | Mov | String, ByteOp | ImplicitOps | String, ImplicitOps | String, /* 0xB0 - 0xB7 */ ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, ByteOp | DstReg | SrcImm | Mov, /* 0xB8 - 0xBF */ DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, DstReg | SrcImm | Mov, /* 0xC0 - 0xC7 */ ByteOp | DstMem | SrcImm | ModRM, DstMem | SrcImmByte | ModRM, 0, ImplicitOps | Stack, 0, 0, ByteOp | DstMem | SrcImm | ModRM | Mov, DstMem | SrcImm | ModRM | Mov, /* 0xC8 - 0xCF */ 0, 0, 0, ImplicitOps | Stack, ImplicitOps, SrcImmByte, ImplicitOps | No64, ImplicitOps, /* 0xD0 - 0xD7 */ ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM, ByteOp | DstMem | SrcImplicit | ModRM, DstMem | SrcImplicit | ModRM, 0, 0, 0, 0, /* 0xD8 - 0xDF */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0xE0 - 0xE7 */ 0, 0, 0, 0, ByteOp | SrcImmUByte, SrcImmUByte, ByteOp | SrcImmUByte, SrcImmUByte, /* 0xE8 - 0xEF */ SrcImm | Stack, SrcImm | ImplicitOps, SrcImmU | Src2Imm16 | No64, SrcImmByte | ImplicitOps, SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, SrcNone | ByteOp | ImplicitOps, SrcNone | ImplicitOps, /* 0xF0 - 0xF7 */ 0, 0, 0, 0, ImplicitOps | Priv, ImplicitOps, Group | Group3_Byte, Group | Group3, /* 0xF8 - 0xFF */ ImplicitOps, 0, ImplicitOps, ImplicitOps, ImplicitOps, ImplicitOps, Group | Group4, Group | Group5, }; static uint32_t twobyte_table[256] = { /* 0x00 - 0x0F */ 0, Group | GroupDual | Group7, 0, 0, 0, ImplicitOps, ImplicitOps | Priv, 0, ImplicitOps | Priv, ImplicitOps | Priv, 0, 0, 0, ImplicitOps | ModRM, 0, 0, /* 0x10 - 0x1F */ 0, 0, 0, 0, 0, 0, 0, 0, ImplicitOps | ModRM, 0, 0, 0, 0, 0, 0, 0, /* 0x20 - 0x2F */ ModRM | ImplicitOps | Priv, ModRM | Priv, ModRM | ImplicitOps | Priv, ModRM | Priv, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x30 - 0x3F */ ImplicitOps | Priv, 0, ImplicitOps | Priv, 0, ImplicitOps, ImplicitOps | Priv, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x40 - 0x47 */ DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, /* 0x48 - 0x4F */ DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem | ModRM | Mov, /* 0x50 - 0x5F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60 - 0x6F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70 - 0x7F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x80 - 0x8F */ SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, SrcImm, /* 0x90 - 0x9F */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xA0 - 0xA7 */ ImplicitOps | Stack, ImplicitOps | Stack, 0, DstMem | SrcReg | ModRM | BitOp, DstMem | SrcReg | Src2ImmByte | ModRM, DstMem | SrcReg | Src2CL | ModRM, 0, 0, /* 0xA8 - 0xAF */ ImplicitOps | Stack, ImplicitOps | Stack, 0, DstMem | SrcReg | ModRM | BitOp | Lock, DstMem | SrcReg | Src2ImmByte | ModRM, DstMem | SrcReg | Src2CL | ModRM, ModRM, 0, /* 0xB0 - 0xB7 */ ByteOp | DstMem | SrcReg | ModRM | Lock, DstMem | SrcReg | ModRM | Lock, 0, DstMem | SrcReg | ModRM | BitOp | Lock, 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem16 | ModRM | Mov, /* 0xB8 - 0xBF */ 0, 0, Group | Group8, DstMem | SrcReg | ModRM | BitOp | Lock, 0, 0, ByteOp | DstReg | SrcMem | ModRM | Mov, DstReg | SrcMem16 | ModRM | Mov, /* 0xC0 - 0xCF */ 0, 0, 0, DstMem | SrcReg | ModRM | Mov, 0, 0, 0, Group | GroupDual | Group9, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xD0 - 0xDF */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xE0 - 0xEF */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xF0 - 0xFF */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static uint32_t group_table[] = { [Group1_80*8] = ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM | Lock, ByteOp | DstMem | SrcImm | ModRM, [Group1_81*8] = DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM | Lock, DstMem | SrcImm | ModRM, [Group1_82*8] = ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64 | Lock, ByteOp | DstMem | SrcImm | ModRM | No64, [Group1_83*8] = DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM, [Group1A*8] = DstMem | SrcNone | ModRM | Mov | Stack, 0, 0, 0, 0, 0, 0, 0, [Group3_Byte*8] = ByteOp | SrcImm | DstMem | ModRM, 0, ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM, 0, 0, 0, 0, [Group3*8] = DstMem | SrcImm | ModRM, 0, DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM, 0, 0, 0, 0, [Group4*8] = ByteOp | DstMem | SrcNone | ModRM, ByteOp | DstMem | SrcNone | ModRM, 0, 0, 0, 0, 0, 0, [Group5*8] = DstMem | SrcNone | ModRM, DstMem | SrcNone | ModRM, SrcMem | ModRM | Stack, 0, SrcMem | ModRM | Stack, 0, SrcMem | ModRM | Stack, 0, [Group7*8] = 0, 0, ModRM | SrcMem | Priv, ModRM | SrcMem | Priv, SrcNone | ModRM | DstMem | Mov, 0, SrcMem16 | ModRM | Mov | Priv, SrcMem | ModRM | ByteOp | Priv, [Group8*8] = 0, 0, 0, 0, DstMem | SrcImmByte | ModRM, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, DstMem | SrcImmByte | ModRM | Lock, [Group9*8] = 0, ImplicitOps | ModRM | Lock, 0, 0, 0, 0, 0, 0, }; static uint32_t group2_table[] = { [Group7*8] = SrcNone | ModRM | Priv, 0, 0, SrcNone | ModRM, SrcNone | ModRM | DstMem | Mov, 0, SrcMem16 | ModRM | Mov, 0, [Group9*8] = 0, 0, 0, 0, 0, 0, 0, 0, }; /* EFLAGS bit definitions. */ #define EFLG_ID (1<<21) #define EFLG_VIP (1<<20) #define EFLG_VIF (1<<19) #define EFLG_AC (1<<18) #define EFLG_VM (1<<17) #define EFLG_RF (1<<16) #define EFLG_IOPL (3<<12) #define EFLG_NT (1<<14) #define EFLG_OF (1<<11) #define EFLG_DF (1<<10) #define EFLG_IF (1<<9) #define EFLG_TF (1<<8) #define EFLG_SF (1<<7) #define EFLG_ZF (1<<6) #define EFLG_AF (1<<4) #define EFLG_PF (1<<2) #define EFLG_CF (1<<0) /* * Instruction emulation: * Most instructions are emulated directly via a fragment of inline assembly * code. This allows us to save/restore EFLAGS and thus very easily pick up * any modified flags. */ #if defined(CONFIG_X86_64) #define _LO32 "k" /* force 32-bit operand */ #define _STK "%%rsp" /* stack pointer */ #elif defined(__i386__) #define _LO32 "" /* force 32-bit operand */ #define _STK "%%esp" /* stack pointer */ #error 32-bit variant of _PRE_EFLAGS not supported #endif /* * These EFLAGS bits are restored from saved value during emulation, and * any changes are written back to the saved value after emulation. */ #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF) /* Before executing instruction: restore necessary bits in EFLAGS. */ #define _PRE_EFLAGS(_sav, _msk, _tmp) \ /* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \ "movl %"_sav",%"_LO32 _tmp"; " \ "push %"_tmp"; " \ "push %"_tmp"; " \ "movl %"_msk",%"_LO32 _tmp"; " \ "andl %"_LO32 _tmp",("_STK"); " \ "pushf; " \ "notl %"_LO32 _tmp"; " \ "andl %"_LO32 _tmp",("_STK"); " \ "andl %"_LO32 _tmp",16("_STK"); " \ "pop %"_tmp"; " \ "orl %"_LO32 _tmp",("_STK"); " \ "popf; " \ "pop %"_sav"; " /* After executing instruction: write-back necessary bits in EFLAGS. */ #define _POST_EFLAGS(_sav, _msk, _tmp) \ /* _sav |= EFLAGS & _msk; */ \ "pushf; " \ "pop %"_tmp"; " \ "andl %"_msk",%"_LO32 _tmp"; " \ "orl %"_LO32 _tmp",%"_sav"; " #ifdef CONFIG_X86_64 #define ON64(x) x #else #define ON64(x) #endif /* BEGIN CSTYLED */ #define ____emulate_2op(_op, _src, _dst, _eflags, _x, _y, _suffix) \ do { \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "4", "2") \ _op _suffix " %"_x"3,%1; " \ _POST_EFLAGS("0", "4", "2") \ : "=m" (_eflags), "=m" ((_dst).val), \ "=&r" (_tmp) \ : _y ((_src).val), "i" (EFLAGS_MASK)); \ } while (0) /* Raw emulation: instruction has two explicit operands. */ #define __emulate_2op_nobyte(_op,_src,_dst,_eflags,_wx,_wy,_lx,_ly,_qx,_qy) \ do { \ unsigned long _tmp; \ \ switch ((_dst).bytes) { \ case 2: \ ____emulate_2op(_op,_src,_dst,_eflags,_wx,_wy,"w"); \ break; \ case 4: \ ____emulate_2op(_op,_src,_dst,_eflags,_lx,_ly,"l"); \ break; \ case 8: \ ON64(____emulate_2op(_op,_src,_dst,_eflags,_qx,_qy,"q")); \ break; \ } \ } while (0) #define __emulate_2op(_op,_src,_dst,_eflags,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \ do { \ unsigned long _tmp; \ switch ((_dst).bytes) { \ case 1: \ ____emulate_2op(_op,_src,_dst,_eflags,_bx,_by,"b"); \ break; \ default: \ __emulate_2op_nobyte(_op, _src, _dst, _eflags, \ _wx, _wy, _lx, _ly, _qx, _qy); \ break; \ } \ } while (0) /* END CSTYLED */ /* Source operand is byte-sized and may be restricted to just %cl. */ #define emulate_2op_SrcB(_op, _src, _dst, _eflags) \ __emulate_2op(_op, _src, _dst, _eflags, \ "b", "c", "b", "c", "b", "c", "b", "c") /* Source operand is byte, word, long or quad sized. */ #define emulate_2op_SrcV(_op, _src, _dst, _eflags) \ __emulate_2op(_op, _src, _dst, _eflags, \ "b", "q", "w", "r", _LO32, "r", "", "r") /* Source operand is word, long or quad sized. */ #define emulate_2op_SrcV_nobyte(_op, _src, _dst, _eflags) \ __emulate_2op_nobyte(_op, _src, _dst, _eflags, \ "w", "r", _LO32, "r", "", "r") /* Instruction has three operands and one operand is stored in ECX register */ #define __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, _suffix, _type) \ do { \ unsigned long _tmp; \ _type _clv = (_cl).val; \ _type _srcv = (_src).val; \ _type _dstv = (_dst).val; \ \ /* BEGIN CSTYLED */ \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "5", "2") \ _op _suffix " %4,%1 \n" \ _POST_EFLAGS("0", "5", "2") \ : "=m" (_eflags), "+r" (_dstv), "=&r" (_tmp) \ : "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \ ); \ /* END CSTYLED */ \ \ (_cl).val = (unsigned long) _clv; \ (_src).val = (unsigned long) _srcv; \ (_dst).val = (unsigned long) _dstv; \ } while (0) #define emulate_2op_cl(_op, _cl, _src, _dst, _eflags) \ do { \ switch ((_dst).bytes) { \ case 2: \ __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \ "w", unsigned short); \ break; \ case 4: \ __emulate_2op_cl(_op, _cl, _src, _dst, _eflags, \ "l", unsigned int); \ break; \ case 8: \ ON64(__emulate_2op_cl(_op, _cl, _src, _dst, \ _eflags, "q", unsigned long)); \ break; \ } \ } while (0) #define __emulate_1op(_op, _dst, _eflags, _suffix) \ do { \ unsigned long _tmp; \ \ /* BEGIN CSTYLED */ \ __asm__ __volatile__ ( \ _PRE_EFLAGS("0", "3", "2") \ _op _suffix " %1; " \ _POST_EFLAGS("0", "3", "2") \ : "=m" (_eflags), "+m" ((_dst).val), \ "=&r" (_tmp) \ : "i" (EFLAGS_MASK)); \ /* END CSTYLED */ \ } while (0) /* Instruction has only one explicit operand (no source operand). */ #define emulate_1op(_op, _dst, _eflags) \ do { \ switch ((_dst).bytes) { \ case 1: __emulate_1op(_op, _dst, _eflags, "b"); break; \ case 2: __emulate_1op(_op, _dst, _eflags, "w"); break; \ case 4: __emulate_1op(_op, _dst, _eflags, "l"); break; \ case 8: ON64(__emulate_1op(_op, _dst, _eflags, "q")); break; \ } \ } while (0) /* Fetch next part of the instruction being emulated. */ #define insn_fetch(_type, _size, _eip) \ /*CSTYLED*/ \ ({ unsigned long _x; \ rc = do_insn_fetch(ctxt, ops, (_eip), &_x, (_size)); \ if (rc != 0) \ goto done; \ (_eip) += (_size); \ (_type)_x; \ }) static unsigned long ad_mask(struct decode_cache *c) { return ((1UL << (c->ad_bytes << 3)) - 1); } /* Access/update address held in a register, based on addressing mode. */ static unsigned long address_mask(struct decode_cache *c, unsigned long reg) { if (c->ad_bytes == sizeof (unsigned long)) return (reg); else return (reg & ad_mask(c)); } static unsigned long register_address(struct decode_cache *c, unsigned long base, unsigned long reg) { return (base + address_mask(c, reg)); } static void register_address_increment(struct decode_cache *c, unsigned long *reg, int inc) { if (c->ad_bytes == sizeof (unsigned long)) *reg += inc; else *reg = (*reg & ~ad_mask(c)) | ((*reg + inc) & ad_mask(c)); } static void jmp_rel(struct decode_cache *c, int rel) { register_address_increment(c, &c->eip, rel); } static void set_seg_override(struct decode_cache *c, int seg) { c->has_seg_override = 1; c->seg_override = seg; } static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) { if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) return (0); return (kvm_x86_ops->get_segment_base(ctxt->vcpu, seg)); } static unsigned long seg_override_base(struct x86_emulate_ctxt *ctxt, struct decode_cache *c) { if (!c->has_seg_override) return (0); return (seg_base(ctxt, c->seg_override)); } static unsigned long es_base(struct x86_emulate_ctxt *ctxt) { return (seg_base(ctxt, VCPU_SREG_ES)); } static unsigned long ss_base(struct x86_emulate_ctxt *ctxt) { return (seg_base(ctxt, VCPU_SREG_SS)); } static int do_fetch_insn_byte(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned long linear, uint8_t *dest) { struct fetch_cache *fc = &ctxt->decode.fetch; int rc; int size; if (linear < fc->start || linear >= fc->end) { size = min(15UL, PAGESIZE - offset_in_page(linear)); rc = ops->fetch(linear, fc->data, size, ctxt->vcpu, NULL); if (rc) return (rc); fc->start = linear; fc->end = linear + size; } *dest = fc->data[linear - fc->start]; return (0); } static int do_insn_fetch(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned long eip, void *dest, unsigned size) { int rc = 0; uintptr_t dp = (uintptr_t)dest; /* x86 instructions are limited to 15 bytes. */ if (eip + size - ctxt->decode.eip_orig > 15) return (X86EMUL_UNHANDLEABLE); eip += ctxt->cs_base; while (size--) { /* Remember, ++ has higher precedence than cast */ rc = do_fetch_insn_byte(ctxt, ops, eip++, (void *)dp++); if (rc) return (rc); } return (0); } /* * Given the 'reg' portion of a ModRM byte, and a register block, return a * pointer into the block that addresses the relevant register. * @highbyte_regs specifies whether to decode AH,CH,DH,BH. */ static void * decode_register(uint8_t modrm_reg, unsigned long *regs, int highbyte_regs) { void *p; p = ®s[modrm_reg]; if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) p = (unsigned char *)®s[modrm_reg & 3] + 1; return (p); } static int read_descriptor(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, void *ptr, uint16_t *size, unsigned long *address, int op_bytes) { int rc; if (op_bytes == 2) op_bytes = 3; *address = 0; rc = ops->read_std((unsigned long)ptr, (unsigned long *)size, 2, ctxt->vcpu, NULL); if (rc) return (rc); rc = ops->read_std((unsigned long)ptr + 2, address, op_bytes, ctxt->vcpu, NULL); return (rc); } static int test_cc(unsigned int condition, unsigned int flags) { int rc = 0; switch ((condition & 15) >> 1) { case 0: /* o */ rc |= (flags & EFLG_OF); break; case 1: /* b/c/nae */ rc |= (flags & EFLG_CF); break; case 2: /* z/e */ rc |= (flags & EFLG_ZF); break; case 3: /* be/na */ rc |= (flags & (EFLG_CF|EFLG_ZF)); break; case 4: /* s */ rc |= (flags & EFLG_SF); break; case 5: /* p/pe */ rc |= (flags & EFLG_PF); break; case 7: /* le/ng */ rc |= (flags & EFLG_ZF); /* fall through */ case 6: /* l/nge */ rc |= (!(flags & EFLG_SF) != !(flags & EFLG_OF)); break; } /* Odd condition identifiers (lsb == 1) have inverted sense. */ return (!!rc ^ (condition & 1)); } static void decode_register_operand(struct operand *op, struct decode_cache *c, int inhibit_bytereg) { unsigned reg = c->modrm_reg; int highbyte_regs = c->rex_prefix == 0; if (!(c->d & ModRM)) reg = (c->b & 7) | ((c->rex_prefix & 1) << 3); op->type = OP_REG; if ((c->d & ByteOp) && !inhibit_bytereg) { op->ptr = decode_register(reg, c->regs, highbyte_regs); op->val = *(uint8_t *)op->ptr; op->bytes = 1; } else { op->ptr = decode_register(reg, c->regs, 0); op->bytes = c->op_bytes; switch (op->bytes) { case 2: op->val = *(uint16_t *)op->ptr; break; case 4: op->val = *(uint32_t *)op->ptr; break; case 8: op->val = *(uint64_t *) op->ptr; break; } } op->orig_val = op->val; } static int decode_modrm(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; uint8_t sib; int index_reg = 0, base_reg = 0, scale; int rc = 0; if (c->rex_prefix) { c->modrm_reg = (c->rex_prefix & 4) << 1; /* REX.R */ index_reg = (c->rex_prefix & 2) << 2; /* REX.X */ c->modrm_rm = base_reg = (c->rex_prefix & 1) << 3; /* REG.B */ } c->modrm = insn_fetch(uint8_t, 1, c->eip); c->modrm_mod |= (c->modrm & 0xc0) >> 6; c->modrm_reg |= (c->modrm & 0x38) >> 3; c->modrm_rm |= (c->modrm & 0x07); c->modrm_ea = 0; c->use_modrm_ea = 1; if (c->modrm_mod == 3) { c->modrm_ptr = decode_register(c->modrm_rm, c->regs, c->d & ByteOp); c->modrm_val = *(unsigned long *)c->modrm_ptr; return (rc); } if (c->ad_bytes == 2) { unsigned bx = c->regs[VCPU_REGS_RBX]; unsigned bp = c->regs[VCPU_REGS_RBP]; unsigned si = c->regs[VCPU_REGS_RSI]; unsigned di = c->regs[VCPU_REGS_RDI]; /* 16-bit ModR/M decode. */ switch (c->modrm_mod) { case 0: if (c->modrm_rm == 6) c->modrm_ea += insn_fetch(uint16_t, 2, c->eip); break; case 1: c->modrm_ea += insn_fetch(int8_t, 1, c->eip); break; case 2: c->modrm_ea += insn_fetch(uint16_t, 2, c->eip); break; } switch (c->modrm_rm) { case 0: c->modrm_ea += bx + si; break; case 1: c->modrm_ea += bx + di; break; case 2: c->modrm_ea += bp + si; break; case 3: c->modrm_ea += bp + di; break; case 4: c->modrm_ea += si; break; case 5: c->modrm_ea += di; break; case 6: if (c->modrm_mod != 0) c->modrm_ea += bp; break; case 7: c->modrm_ea += bx; break; } if (c->modrm_rm == 2 || c->modrm_rm == 3 || (c->modrm_rm == 6 && c->modrm_mod != 0)) if (!c->has_seg_override) set_seg_override(c, VCPU_SREG_SS); c->modrm_ea = (uint16_t)c->modrm_ea; } else { /* 32/64-bit ModR/M decode. */ if ((c->modrm_rm & 7) == 4) { sib = insn_fetch(uint8_t, 1, c->eip); index_reg |= (sib >> 3) & 7; base_reg |= sib & 7; scale = sib >> 6; if ((base_reg & 7) == 5 && c->modrm_mod == 0) c->modrm_ea += insn_fetch(int32_t, 4, c->eip); else c->modrm_ea += c->regs[base_reg]; if (index_reg != 4) c->modrm_ea += c->regs[index_reg] << scale; } else if ((c->modrm_rm & 7) == 5 && c->modrm_mod == 0) { if (ctxt->mode == X86EMUL_MODE_PROT64) c->rip_relative = 1; } else c->modrm_ea += c->regs[c->modrm_rm]; switch (c->modrm_mod) { case 0: if (c->modrm_rm == 5) c->modrm_ea += insn_fetch(int32_t, 4, c->eip); break; case 1: c->modrm_ea += insn_fetch(int8_t, 1, c->eip); break; case 2: c->modrm_ea += insn_fetch(int32_t, 4, c->eip); break; } } done: return (rc); } static int decode_abs(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc = 0; switch (c->ad_bytes) { case 2: c->modrm_ea = insn_fetch(uint16_t, 2, c->eip); break; case 4: c->modrm_ea = insn_fetch(uint32_t, 4, c->eip); break; case 8: c->modrm_ea = insn_fetch(uint64_t, 8, c->eip); break; } done: return (rc); } unsigned long kvm_rip_read(struct kvm_vcpu *vcpu); void kvm_rip_write(struct kvm_vcpu *vcpu, unsigned long val); int x86_decode_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc = 0; int mode = ctxt->mode; int def_op_bytes, def_ad_bytes, group; /* Shadow copy of register state. Committed on successful emulation. */ memset(c, 0, sizeof (struct decode_cache)); c->eip = c->eip_orig = kvm_rip_read(ctxt->vcpu); ctxt->cs_base = seg_base(ctxt, VCPU_SREG_CS); memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof (c->regs)); switch (mode) { case X86EMUL_MODE_REAL: case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: def_op_bytes = def_ad_bytes = 2; break; case X86EMUL_MODE_PROT32: def_op_bytes = def_ad_bytes = 4; break; #ifdef CONFIG_X86_64 case X86EMUL_MODE_PROT64: def_op_bytes = 4; def_ad_bytes = 8; break; #endif default: return (-1); } c->op_bytes = def_op_bytes; c->ad_bytes = def_ad_bytes; /* Legacy prefixes. */ for (;;) { switch (c->b = insn_fetch(uint8_t, 1, c->eip)) { case 0x66: /* operand-size override */ /* switch between 2/4 bytes */ c->op_bytes = def_op_bytes ^ 6; break; case 0x67: /* address-size override */ if (mode == X86EMUL_MODE_PROT64) /* switch between 4/8 bytes */ c->ad_bytes = def_ad_bytes ^ 12; else /* switch between 2/4 bytes */ c->ad_bytes = def_ad_bytes ^ 6; break; case 0x26: /* ES override */ case 0x2e: /* CS override */ case 0x36: /* SS override */ case 0x3e: /* DS override */ set_seg_override(c, (c->b >> 3) & 3); break; case 0x64: /* FS override */ case 0x65: /* GS override */ set_seg_override(c, c->b & 7); break; case 0x40 ... 0x4f: /* REX */ if (mode != X86EMUL_MODE_PROT64) goto done_prefixes; c->rex_prefix = c->b; continue; case 0xf0: /* LOCK */ c->lock_prefix = 1; break; case 0xf2: /* REPNE/REPNZ */ c->rep_prefix = REPNE_PREFIX; break; case 0xf3: /* REP/REPE/REPZ */ c->rep_prefix = REPE_PREFIX; break; default: goto done_prefixes; } /* Any legacy prefix after a REX prefix nullifies its effect. */ c->rex_prefix = 0; } done_prefixes: /* REX prefix. */ if (c->rex_prefix) if (c->rex_prefix & 8) c->op_bytes = 8; /* REX.W */ /* Opcode byte(s). */ c->d = opcode_table[c->b]; if (c->d == 0) { /* Two-byte opcode? */ if (c->b == 0x0f) { c->twobyte = 1; c->b = insn_fetch(uint8_t, 1, c->eip); c->d = twobyte_table[c->b]; } } if (mode == X86EMUL_MODE_PROT64 && (c->d & No64)) { cmn_err(CE_WARN, "invalid x86/64 instruction"); return (-1); } if (c->d & Group) { group = c->d & GroupMask; c->modrm = insn_fetch(uint8_t, 1, c->eip); --c->eip; group = (group << 3) + ((c->modrm >> 3) & 7); if ((c->d & GroupDual) && (c->modrm >> 6) == 3) c->d = group2_table[group]; else c->d = group_table[group]; } /* Unrecognised? */ if (c->d == 0) { DPRINTF("Cannot emulate %02x\n", c->b); return (-1); } if (mode == X86EMUL_MODE_PROT64 && (c->d & Stack)) c->op_bytes = 8; /* ModRM and SIB bytes. */ if (c->d & ModRM) rc = decode_modrm(ctxt, ops); else if (c->d & MemAbs) rc = decode_abs(ctxt, ops); if (rc) goto done; if (!c->has_seg_override) set_seg_override(c, VCPU_SREG_DS); if (!(!c->twobyte && c->b == 0x8d)) c->modrm_ea += seg_override_base(ctxt, c); if (c->ad_bytes != 8) c->modrm_ea = (uint32_t)c->modrm_ea; /* * Decode and fetch the source operand: register, memory * or immediate. */ switch (c->d & SrcMask) { case SrcNone: break; case SrcReg: decode_register_operand(&c->src, c, 0); break; case SrcMem16: c->src.bytes = 2; goto srcmem_common; case SrcMem32: c->src.bytes = 4; goto srcmem_common; case SrcMem: c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; /* Don't fetch the address for invlpg: it could be unmapped. */ if (c->twobyte && c->b == 0x01 && c->modrm_reg == 7) break; srcmem_common: /* * For instructions with a ModR/M byte, switch to register * access if Mod = 3. */ if ((c->d & ModRM) && c->modrm_mod == 3) { c->src.type = OP_REG; c->src.val = c->modrm_val; c->src.ptr = c->modrm_ptr; break; } c->src.type = OP_MEM; break; case SrcImm: case SrcImmU: c->src.type = OP_IMM; c->src.ptr = (unsigned long *)c->eip; c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; if (c->src.bytes == 8) c->src.bytes = 4; /* NB. Immediates are sign-extended as necessary. */ switch (c->src.bytes) { case 1: c->src.val = insn_fetch(int8_t, 1, c->eip); break; case 2: c->src.val = insn_fetch(int16_t, 2, c->eip); break; case 4: c->src.val = insn_fetch(int32_t, 4, c->eip); break; } if ((c->d & SrcMask) == SrcImmU) { switch (c->src.bytes) { case 1: c->src.val &= 0xff; break; case 2: c->src.val &= 0xffff; break; case 4: c->src.val &= 0xffffffff; break; } } break; case SrcImmByte: case SrcImmUByte: c->src.type = OP_IMM; c->src.ptr = (unsigned long *)c->eip; c->src.bytes = 1; if ((c->d & SrcMask) == SrcImmByte) c->src.val = insn_fetch(int8_t, 1, c->eip); else c->src.val = insn_fetch(uint8_t, 1, c->eip); break; case SrcOne: c->src.bytes = 1; c->src.val = 1; break; } /* * Decode and fetch the second source operand: register, memory * or immediate. */ switch (c->d & Src2Mask) { case Src2None: break; case Src2CL: c->src2.bytes = 1; c->src2.val = c->regs[VCPU_REGS_RCX] & 0x8; break; case Src2ImmByte: c->src2.type = OP_IMM; c->src2.ptr = (unsigned long *)c->eip; c->src2.bytes = 1; c->src2.val = insn_fetch(uint8_t, 1, c->eip); break; case Src2Imm16: c->src2.type = OP_IMM; c->src2.ptr = (unsigned long *)c->eip; c->src2.bytes = 2; c->src2.val = insn_fetch(uint16_t, 2, c->eip); break; case Src2One: c->src2.bytes = 1; c->src2.val = 1; break; } /* Decode and fetch the destination operand: register or memory. */ switch (c->d & DstMask) { case ImplicitOps: /* Special instructions do their own operand decoding. */ return (0); case DstReg: decode_register_operand(&c->dst, c, c->twobyte && (c->b == 0xb6 || c->b == 0xb7)); break; case DstMem: if ((c->d & ModRM) && c->modrm_mod == 3) { c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.type = OP_REG; c->dst.val = c->dst.orig_val = c->modrm_val; c->dst.ptr = c->modrm_ptr; break; } c->dst.type = OP_MEM; break; case DstAcc: c->dst.type = OP_REG; c->dst.bytes = c->op_bytes; c->dst.ptr = &c->regs[VCPU_REGS_RAX]; switch (c->op_bytes) { case 1: c->dst.val = *(uint8_t *)c->dst.ptr; break; case 2: c->dst.val = *(uint16_t *)c->dst.ptr; break; case 4: c->dst.val = *(uint32_t *)c->dst.ptr; break; } c->dst.orig_val = c->dst.val; break; } if (c->rip_relative) c->modrm_ea += c->eip; done: return ((rc == X86EMUL_UNHANDLEABLE) ? -1 : 0); } static void emulate_push(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; c->dst.type = OP_MEM; c->dst.bytes = c->op_bytes; c->dst.val = c->src.val; register_address_increment(c, &c->regs[VCPU_REGS_RSP], -c->op_bytes); c->dst.ptr = (void *)register_address(c, ss_base(ctxt), c->regs[VCPU_REGS_RSP]); } static int emulate_pop(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, void *dest, int len) { struct decode_cache *c = &ctxt->decode; int rc; rc = ops->read_emulated(register_address(c, ss_base(ctxt), c->regs[VCPU_REGS_RSP]), dest, len, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) return (rc); register_address_increment(c, &c->regs[VCPU_REGS_RSP], len); return (rc); } static int emulate_popf(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, void *dest, int len) { int rc; unsigned long val, change_mask; int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; int cpl = kvm_x86_ops->get_cpl(ctxt->vcpu); rc = emulate_pop(ctxt, ops, &val, len); if (rc != X86EMUL_CONTINUE) return (rc); change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID; switch (ctxt->mode) { case X86EMUL_MODE_PROT64: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT16: if (cpl == 0) change_mask |= EFLG_IOPL; if (cpl <= iopl) change_mask |= EFLG_IF; break; case X86EMUL_MODE_VM86: if (iopl < 3) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_PROPAGATE_FAULT); } change_mask |= EFLG_IF; break; default: /* real mode */ change_mask |= (EFLG_IOPL | EFLG_IF); break; } *(unsigned long *)dest = (ctxt->eflags & ~change_mask) | (val & change_mask); return (rc); } static void emulate_push_sreg(struct x86_emulate_ctxt *ctxt, int seg) { struct decode_cache *c = &ctxt->decode; struct kvm_segment segment; kvm_x86_ops->get_segment(ctxt->vcpu, &segment, seg); c->src.val = segment.selector; emulate_push(ctxt); } static int emulate_pop_sreg(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, int seg) { struct decode_cache *c = &ctxt->decode; unsigned long selector; int rc; rc = emulate_pop(ctxt, ops, &selector, c->op_bytes); if (rc != 0) return (rc); rc = kvm_load_segment_descriptor(ctxt->vcpu, (uint16_t)selector, seg); return (rc); } static void emulate_pusha(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; unsigned long old_esp = c->regs[VCPU_REGS_RSP]; int reg = VCPU_REGS_RAX; while (reg <= VCPU_REGS_RDI) { (reg == VCPU_REGS_RSP) ? (c->src.val = old_esp) : (c->src.val = c->regs[reg]); emulate_push(ctxt); ++reg; } } static int emulate_popa(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc = 0; int reg = VCPU_REGS_RDI; while (reg >= VCPU_REGS_RAX) { if (reg == VCPU_REGS_RSP) { register_address_increment(c, &c->regs[VCPU_REGS_RSP], c->op_bytes); --reg; } rc = emulate_pop(ctxt, ops, &c->regs[reg], c->op_bytes); if (rc != 0) break; --reg; } return (rc); } static int emulate_grp1a(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc; rc = emulate_pop(ctxt, ops, &c->dst.val, c->dst.bytes); if (rc != 0) return (rc); return (0); } static void emulate_grp2(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; switch (c->modrm_reg) { case 0: /* rol */ emulate_2op_SrcB("rol", c->src, c->dst, ctxt->eflags); break; case 1: /* ror */ emulate_2op_SrcB("ror", c->src, c->dst, ctxt->eflags); break; case 2: /* rcl */ emulate_2op_SrcB("rcl", c->src, c->dst, ctxt->eflags); break; case 3: /* rcr */ emulate_2op_SrcB("rcr", c->src, c->dst, ctxt->eflags); break; case 4: /* sal/shl */ case 6: /* sal/shl */ emulate_2op_SrcB("sal", c->src, c->dst, ctxt->eflags); break; case 5: /* shr */ emulate_2op_SrcB("shr", c->src, c->dst, ctxt->eflags); break; case 7: /* sar */ emulate_2op_SrcB("sar", c->src, c->dst, ctxt->eflags); break; } } static int emulate_grp3(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc = 0; switch (c->modrm_reg) { case 0 ... 1: /* test */ emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags); break; case 2: /* not */ c->dst.val = ~c->dst.val; break; case 3: /* neg */ emulate_1op("neg", c->dst, ctxt->eflags); break; default: DPRINTF("Cannot emulate %02x\n", c->b); rc = X86EMUL_UNHANDLEABLE; break; } return (rc); } static int emulate_grp45(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; switch (c->modrm_reg) { case 0: /* inc */ emulate_1op("inc", c->dst, ctxt->eflags); break; case 1: /* dec */ emulate_1op("dec", c->dst, ctxt->eflags); break; case 2: /* call near abs */ { long int old_eip; old_eip = c->eip; c->eip = c->src.val; c->src.val = old_eip; emulate_push(ctxt); break; } case 4: /* jmp abs */ c->eip = c->src.val; break; case 6: /* push */ emulate_push(ctxt); break; } return (0); } static int emulate_grp9(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, unsigned long memop) { struct decode_cache *c = &ctxt->decode; uint64_t old, new; int rc; rc = ops->read_emulated(memop, &old, 8, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) return (rc); if (((uint32_t) (old >> 0) != (uint32_t) c->regs[VCPU_REGS_RAX]) || ((uint32_t) (old >> 32) != (uint32_t) c->regs[VCPU_REGS_RDX])) { c->regs[VCPU_REGS_RAX] = (uint32_t) (old >> 0); c->regs[VCPU_REGS_RDX] = (uint32_t) (old >> 32); ctxt->eflags &= ~EFLG_ZF; } else { new = ((uint64_t)c->regs[VCPU_REGS_RCX] << 32) | (uint32_t) c->regs[VCPU_REGS_RBX]; rc = ops->cmpxchg_emulated(memop, &old, &new, 8, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) return (rc); ctxt->eflags |= EFLG_ZF; } return (0); } static int emulate_ret_far(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { struct decode_cache *c = &ctxt->decode; int rc; unsigned long cs; rc = emulate_pop(ctxt, ops, &c->eip, c->op_bytes); if (rc) return (rc); if (c->op_bytes == 4) c->eip = (uint32_t)c->eip; rc = emulate_pop(ctxt, ops, &cs, c->op_bytes); if (rc) return (rc); rc = kvm_load_segment_descriptor(ctxt->vcpu, (uint16_t)cs, VCPU_SREG_CS); return (rc); } static int writeback(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { int rc; struct decode_cache *c = &ctxt->decode; switch (c->dst.type) { case OP_REG: /* * The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ switch (c->dst.bytes) { case 1: *(uint8_t *)c->dst.ptr = (uint8_t)c->dst.val; break; case 2: *(uint16_t *)c->dst.ptr = (uint16_t)c->dst.val; break; case 4: *c->dst.ptr = (uint32_t)c->dst.val; break; /* 64b: zero-ext */ case 8: *c->dst.ptr = c->dst.val; break; } break; case OP_MEM: if (c->lock_prefix) rc = ops->cmpxchg_emulated( (unsigned long)c->dst.ptr, &c->dst.orig_val, &c->dst.val, c->dst.bytes, ctxt->vcpu); else rc = ops->write_emulated( (unsigned long)c->dst.ptr, &c->dst.val, c->dst.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) return (rc); break; case OP_NONE: /* no writeback */ break; default: break; } return (0); } static void toggle_interruptibility(struct x86_emulate_ctxt *ctxt, uint32_t mask) { uint32_t int_shadow = kvm_x86_ops->get_interrupt_shadow(ctxt->vcpu, mask); /* * an sti; sti; sequence only disable interrupts for the first * instruction. So, if the last instruction, be it emulated or * not, left the system with the INT_STI flag enabled, it * means that the last instruction is an sti. We should not * leave the flag on in this case. The same goes for mov ss */ if (!(int_shadow & mask)) ctxt->interruptibility = mask; } static void setup_syscalls_segments(struct x86_emulate_ctxt *ctxt, struct kvm_segment *cs, struct kvm_segment *ss) { memset(cs, 0, sizeof (struct kvm_segment)); kvm_x86_ops->get_segment(ctxt->vcpu, cs, VCPU_SREG_CS); memset(ss, 0, sizeof (struct kvm_segment)); cs->l = 0; /* will be adjusted later */ cs->base = 0; /* flat segment */ cs->g = 1; /* 4kb granularity */ cs->limit = 0xffffffff; /* 4GB limit */ cs->type = 0x0b; /* Read, Execute, Accessed */ cs->s = 1; cs->dpl = 0; /* will be adjusted later */ cs->present = 1; cs->db = 1; ss->unusable = 0; ss->base = 0; /* flat segment */ ss->limit = 0xffffffff; /* 4GB limit */ ss->g = 1; /* 4kb granularity */ ss->s = 1; ss->type = 0x03; /* Read/Write, Accessed */ ss->db = 1; /* 32bit stack segment */ ss->dpl = 0; ss->present = 1; } extern int is_long_mode(struct kvm_vcpu *vcpu); static int emulate_syscall(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; struct kvm_segment cs, ss; uint64_t msr_data; /* syscall is not available in real mode */ if (ctxt->mode == X86EMUL_MODE_REAL || ctxt->mode == X86EMUL_MODE_VM86) return (X86EMUL_UNHANDLEABLE); setup_syscalls_segments(ctxt, &cs, &ss); kvm_x86_ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data); msr_data >>= 32; cs.selector = (uint16_t)(msr_data & 0xfffc); ss.selector = (uint16_t)(msr_data + 8); if (is_long_mode(ctxt->vcpu)) { cs.db = 0; cs.l = 1; } kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS); kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS); c->regs[VCPU_REGS_RCX] = c->eip; if (is_long_mode(ctxt->vcpu)) { #ifdef CONFIG_X86_64 c->regs[VCPU_REGS_R11] = ctxt->eflags & ~EFLG_RF; kvm_x86_ops->get_msr(ctxt->vcpu, ctxt->mode == X86EMUL_MODE_PROT64 ? MSR_LSTAR : MSR_CSTAR, &msr_data); c->eip = msr_data; kvm_x86_ops->get_msr(ctxt->vcpu, MSR_SYSCALL_MASK, &msr_data); ctxt->eflags &= ~(msr_data | EFLG_RF); #endif } else { /* legacy mode */ kvm_x86_ops->get_msr(ctxt->vcpu, MSR_STAR, &msr_data); c->eip = (uint32_t)msr_data; ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF); } return (X86EMUL_CONTINUE); } static int emulate_sysenter(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; struct kvm_segment cs, ss; uint64_t msr_data; /* inject #GP if in real mode */ if (ctxt->mode == X86EMUL_MODE_REAL) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_UNHANDLEABLE); } /* * XXX sysenter/sysexit have not been tested in 64bit mode. * Therefore, we inject an #UD. */ if (ctxt->mode == X86EMUL_MODE_PROT64) return (X86EMUL_UNHANDLEABLE); setup_syscalls_segments(ctxt, &cs, &ss); kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data); switch (ctxt->mode) { case X86EMUL_MODE_PROT32: if ((msr_data & 0xfffc) == 0x0) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_PROPAGATE_FAULT); } break; case X86EMUL_MODE_PROT64: if (msr_data == 0x0) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_PROPAGATE_FAULT); } break; } ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF); cs.selector = (uint16_t)msr_data; cs.selector &= ~SELECTOR_RPL_MASK; ss.selector = cs.selector + 8; ss.selector &= ~SELECTOR_RPL_MASK; if (ctxt->mode == X86EMUL_MODE_PROT64 || is_long_mode(ctxt->vcpu)) { cs.db = 0; cs.l = 1; } kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS); kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS); kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_EIP, &msr_data); c->eip = msr_data; kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_ESP, &msr_data); c->regs[VCPU_REGS_RSP] = msr_data; return (X86EMUL_CONTINUE); } static int emulate_sysexit(struct x86_emulate_ctxt *ctxt) { struct decode_cache *c = &ctxt->decode; struct kvm_segment cs, ss; uint64_t msr_data; int usermode; /* inject #GP if in real mode or Virtual 8086 mode */ if (ctxt->mode == X86EMUL_MODE_REAL || ctxt->mode == X86EMUL_MODE_VM86) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_UNHANDLEABLE); } setup_syscalls_segments(ctxt, &cs, &ss); if ((c->rex_prefix & 0x8) != 0x0) usermode = X86EMUL_MODE_PROT64; else usermode = X86EMUL_MODE_PROT32; cs.dpl = 3; ss.dpl = 3; kvm_x86_ops->get_msr(ctxt->vcpu, MSR_IA32_SYSENTER_CS, &msr_data); switch (usermode) { case X86EMUL_MODE_PROT32: cs.selector = (uint16_t)(msr_data + 16); if ((msr_data & 0xfffc) == 0x0) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_PROPAGATE_FAULT); } ss.selector = (uint16_t)(msr_data + 24); break; case X86EMUL_MODE_PROT64: cs.selector = (uint16_t)(msr_data + 32); if (msr_data == 0x0) { kvm_inject_gp(ctxt->vcpu, 0); return (X86EMUL_PROPAGATE_FAULT); } ss.selector = cs.selector + 8; cs.db = 0; cs.l = 1; break; } cs.selector |= SELECTOR_RPL_MASK; ss.selector |= SELECTOR_RPL_MASK; kvm_x86_ops->set_segment(ctxt->vcpu, &cs, VCPU_SREG_CS); kvm_x86_ops->set_segment(ctxt->vcpu, &ss, VCPU_SREG_SS); c->eip = ctxt->vcpu->arch.regs[VCPU_REGS_RDX]; c->regs[VCPU_REGS_RSP] = ctxt->vcpu->arch.regs[VCPU_REGS_RCX]; return (X86EMUL_CONTINUE); } static int emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) { int iopl; if (ctxt->mode == X86EMUL_MODE_REAL) return (0); if (ctxt->mode == X86EMUL_MODE_VM86) return (1); iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; return (kvm_x86_ops->get_cpl(ctxt->vcpu) > iopl); } static int emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, uint16_t port, uint16_t len) { struct kvm_segment tr_seg; int r; uint16_t io_bitmap_ptr; uint8_t perm, bit_idx = port & 0x7; unsigned mask = (1 << len) - 1; kvm_get_segment(ctxt->vcpu, &tr_seg, VCPU_SREG_TR); if (tr_seg.unusable) return (0); if (tr_seg.limit < 103) return (0); r = ops->read_std(tr_seg.base + 102, &io_bitmap_ptr, 2, ctxt->vcpu, NULL); if (r != X86EMUL_CONTINUE) return (0); if (io_bitmap_ptr + port/8 > tr_seg.limit) return (0); r = ops->read_std(tr_seg.base + io_bitmap_ptr + port / 8, &perm, 1, ctxt->vcpu, NULL); if (r != X86EMUL_CONTINUE) return (0); if ((perm >> bit_idx) & mask) return (0); return (1); } static int emulator_io_permited(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops, uint16_t port, uint16_t len) { if (emulator_bad_iopl(ctxt)) { if (!emulator_io_port_access_allowed(ctxt, ops, port, len)) return (0); } return (1); } int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) { #ifdef XXX kvm_mmu_invlpg(vcpu, address); #else XXX_KVM_PROBE; #endif return (X86EMUL_CONTINUE); } void realmode_lgdt(struct kvm_vcpu *vcpu, uint16_t limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_x86_ops->set_gdt(vcpu, &dt); } void realmode_lidt(struct kvm_vcpu *vcpu, uint16_t limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_x86_ops->set_idt(vcpu, &dt); } void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, unsigned long *rflags) { kvm_lmsw(vcpu, msw); *rflags = kvm_get_rflags(vcpu); } int kvm_fix_hypercall(struct kvm_vcpu *vcpu) { #ifdef XXX char instruction[3]; unsigned long rip = kvm_rip_read(vcpu); /* * Blow out the MMU to ensure that no other VCPU has an active mapping * to ensure that the updated hypercall appears atomically across all * VCPUs. */ kvm_mmu_zap_all(vcpu->kvm); kvm_x86_ops->patch_hypercall(vcpu, instruction); return (emulator_write_emulated(rip, instruction, 3, vcpu)); #else XXX_KVM_PROBE; return (1); #endif } extern ulong kvm_read_cr4_bits(struct kvm_vcpu *vcpu, ulong mask); extern ulong kvm_read_cr4(struct kvm_vcpu *vcpu); unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) { unsigned long value; switch (cr) { case 0: value = kvm_read_cr0(vcpu); break; case 2: value = vcpu->arch.cr2; break; case 3: value = vcpu->arch.cr3; break; case 4: value = kvm_read_cr4(vcpu); break; case 8: value = kvm_get_cr8(vcpu); break; default: cmn_err(CE_NOTE, "%s: unexpected cr %u\n", __func__, cr); return (0); } return (value); } static uint64_t mk_cr_64(uint64_t curr_cr, uint32_t new_val) { return ((curr_cr & ~((1ULL << 32) - 1)) | new_val); } void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, unsigned long *rflags) { switch (cr) { case 0: kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); *rflags = kvm_get_rflags(vcpu); break; case 2: vcpu->arch.cr2 = val; break; case 3: kvm_set_cr3(vcpu, val); break; case 4: kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); break; case 8: kvm_set_cr8(vcpu, val & 0xfUL); break; default: cmn_err(CE_NOTE, "%s: unexpected cr %u\n", __func__, cr); } } static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, uint32_t access, uint32_t *error) { uintptr_t data = (uintptr_t)val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error); unsigned offset = addr & (PAGESIZE-1); unsigned toread = min(bytes, (unsigned)PAGESIZE - offset); int ret; if (gpa == UNMAPPED_GVA) { r = X86EMUL_PROPAGATE_FAULT; goto out; } ret = kvm_read_guest(vcpu->kvm, gpa, (void *)data, toread); if (ret < 0) { r = X86EMUL_UNHANDLEABLE; goto out; } bytes -= toread; data += toread; addr += toread; } out: return (r); } static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, uint32_t *error) { uint32_t access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; return (kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, error)); } static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, uint32_t *error) { return (kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error)); } static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu, uint32_t *error) { uintptr_t data = (uintptr_t)val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error); unsigned offset = addr & (PAGESIZE-1); unsigned towrite = min(bytes, (unsigned)PAGESIZE - offset); int ret; if (gpa == UNMAPPED_GVA) { r = X86EMUL_PROPAGATE_FAULT; goto out; } ret = kvm_write_guest(vcpu->kvm, gpa, (void *)data, towrite); if (ret < 0) { r = X86EMUL_UNHANDLEABLE; goto out; } bytes -= towrite; data += towrite; addr += towrite; } out: return (r); } int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port); static int pio_copy_data(struct kvm_vcpu *vcpu) { void *p = vcpu->arch.pio_data; gva_t q = vcpu->arch.pio.guest_gva; unsigned bytes; int ret; uint32_t error_code; bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count; if (vcpu->arch.pio.in) ret = kvm_write_guest_virt(q, p, bytes, vcpu, &error_code); else ret = kvm_read_guest_virt(q, p, bytes, vcpu, &error_code); if (ret == X86EMUL_PROPAGATE_FAULT) kvm_inject_page_fault(vcpu, q, error_code); return (ret); } static int pio_string_write(struct kvm_vcpu *vcpu) { struct kvm_pio_request *io = &vcpu->arch.pio; uintptr_t pd = (uintptr_t)vcpu->arch.pio_data; int i, r = 0; for (i = 0; i < io->cur_count; i++) { if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, io->port, io->size, (void *)pd)) { r = -ENOTSUP; break; } pd += io->size; } return (r); } int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in, int size, unsigned long count, int down, gva_t address, int rep, unsigned port) { unsigned now, in_page; int ret = 0; DTRACE_PROBE4(kvm__pio, int, !in, unsigned, port, int, size, unsigned long, count) vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = vcpu->arch.pio.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGESIZE; vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count; vcpu->run->io.port = vcpu->arch.pio.port = port; vcpu->arch.pio.in = in; vcpu->arch.pio.string = 1; vcpu->arch.pio.down = down; vcpu->arch.pio.rep = rep; if (!count) { kvm_x86_ops->skip_emulated_instruction(vcpu); return (1); } if (!down) in_page = PAGESIZE - offset_in_page(address); else in_page = offset_in_page(address) + size; now = min(count, (unsigned long)in_page / size); if (!now) now = 1; if (down) { /* * String I/O in reverse. Yuck. Kill the guest, fix later. */ #ifdef XXX pr_unimpl(vcpu, "guest string pio down\n"); #else XXX_KVM_PROBE; #endif kvm_inject_gp(vcpu, 0); return (1); } vcpu->run->io.count = now; vcpu->arch.pio.cur_count = now; if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count) kvm_x86_ops->skip_emulated_instruction(vcpu); vcpu->arch.pio.guest_gva = address; if (!vcpu->arch.pio.in) { /* string PIO write */ ret = pio_copy_data(vcpu); if (ret == X86EMUL_PROPAGATE_FAULT) return (1); if (ret == 0 && !pio_string_write(vcpu)) { complete_pio(vcpu); if (vcpu->arch.pio.count == 0) ret = 1; } } /* no string PIO read support yet */ return (ret); } int emulate_clts(struct kvm_vcpu *vcpu) { kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); kvm_x86_ops->fpu_activate(vcpu); return (X86EMUL_CONTINUE); } int x86_emulate_insn(struct x86_emulate_ctxt *ctxt, struct x86_emulate_ops *ops) { unsigned long memop = 0; uint64_t msr_data; unsigned long saved_eip = 0; struct decode_cache *c = &ctxt->decode; unsigned int port; int io_dir_in; int rc = 0; ctxt->interruptibility = 0; /* * Shadow copy of register state. Committed on successful emulation. * NOTE: we can copy them from vcpu as x86_decode_insn() doesn't * modify them. */ memcpy(c->regs, ctxt->vcpu->arch.regs, sizeof (c->regs)); saved_eip = c->eip; /* LOCK prefix is allowed only with some instructions */ if (c->lock_prefix && !(c->d & Lock)) { kvm_queue_exception(ctxt->vcpu, UD_VECTOR); goto done; } /* Privileged instruction can be executed only in CPL=0 */ if ((c->d & Priv) && kvm_x86_ops->get_cpl(ctxt->vcpu)) { kvm_inject_gp(ctxt->vcpu, 0); goto done; } if (((c->d & ModRM) && (c->modrm_mod != 3)) || (c->d & MemAbs)) memop = c->modrm_ea; if (c->rep_prefix && (c->d & String)) { /* All REP prefixes have the same first termination condition */ if (c->regs[VCPU_REGS_RCX] == 0) { kvm_rip_write(ctxt->vcpu, c->eip); goto done; } /* * The second termination condition only applies for REPE * and REPNE. Test if the repeat string operation prefix is * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the * corresponding termination condition according to: * - if REPE/REPZ and ZF = 0 then done * - if REPNE/REPNZ and ZF = 1 then done */ if ((c->b == 0xa6) || (c->b == 0xa7) || (c->b == 0xae) || (c->b == 0xaf)) { if ((c->rep_prefix == REPE_PREFIX) && ((ctxt->eflags & EFLG_ZF) == 0)) { kvm_rip_write(ctxt->vcpu, c->eip); goto done; } if ((c->rep_prefix == REPNE_PREFIX) && ((ctxt->eflags & EFLG_ZF) == EFLG_ZF)) { kvm_rip_write(ctxt->vcpu, c->eip); goto done; } } c->regs[VCPU_REGS_RCX]--; c->eip = kvm_rip_read(ctxt->vcpu); } if (c->src.type == OP_MEM) { c->src.ptr = (unsigned long *)memop; c->src.val = 0; rc = ops->read_emulated((unsigned long)c->src.ptr, &c->src.val, c->src.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; c->src.orig_val = c->src.val; } if ((c->d & DstMask) == ImplicitOps) goto special_insn; if (c->dst.type == OP_MEM) { c->dst.ptr = (unsigned long *)memop; c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.val = 0; if (c->d & BitOp) { unsigned long mask = ~(c->dst.bytes * 8 - 1); c->dst.ptr = (void *)((uintptr_t)c->dst.ptr + (c->src.val & mask) / 8); } if (!(c->d & Mov)) { /* optimisation - avoid slow emulated read */ rc = ops->read_emulated((unsigned long)c->dst.ptr, &c->dst.val, c->dst.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; } } c->dst.orig_val = c->dst.val; special_insn: if (c->twobyte) goto twobyte_insn; switch (c->b) { case 0x00 ... 0x05: add: /* add */ emulate_2op_SrcV("add", c->src, c->dst, ctxt->eflags); break; case 0x06: /* push es */ emulate_push_sreg(ctxt, VCPU_SREG_ES); break; case 0x07: /* pop es */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_ES); if (rc != 0) goto done; break; case 0x08 ... 0x0d: or: /* or */ emulate_2op_SrcV("or", c->src, c->dst, ctxt->eflags); break; case 0x0e: /* push cs */ emulate_push_sreg(ctxt, VCPU_SREG_CS); break; case 0x10 ... 0x15: adc: /* adc */ emulate_2op_SrcV("adc", c->src, c->dst, ctxt->eflags); break; case 0x16: /* push ss */ emulate_push_sreg(ctxt, VCPU_SREG_SS); break; case 0x17: /* pop ss */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_SS); if (rc != 0) goto done; break; case 0x18 ... 0x1d: sbb: /* sbb */ emulate_2op_SrcV("sbb", c->src, c->dst, ctxt->eflags); break; case 0x1e: /* push ds */ emulate_push_sreg(ctxt, VCPU_SREG_DS); break; case 0x1f: /* pop ds */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_DS); if (rc != 0) goto done; break; case 0x20 ... 0x25: and: /* and */ emulate_2op_SrcV("and", c->src, c->dst, ctxt->eflags); break; case 0x28 ... 0x2d: sub: /* sub */ emulate_2op_SrcV("sub", c->src, c->dst, ctxt->eflags); break; case 0x30 ... 0x35: xor: /* xor */ emulate_2op_SrcV("xor", c->src, c->dst, ctxt->eflags); break; case 0x38 ... 0x3d: cmp: /* cmp */ emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags); break; case 0x40 ... 0x47: /* inc r16/r32 */ emulate_1op("inc", c->dst, ctxt->eflags); break; case 0x48 ... 0x4f: /* dec r16/r32 */ emulate_1op("dec", c->dst, ctxt->eflags); break; case 0x50 ... 0x57: /* push reg */ emulate_push(ctxt); break; case 0x58 ... 0x5f: /* pop reg */ pop_instruction: rc = emulate_pop(ctxt, ops, &c->dst.val, c->op_bytes); if (rc != 0) goto done; break; case 0x60: /* pusha */ emulate_pusha(ctxt); break; case 0x61: /* popa */ rc = emulate_popa(ctxt, ops); if (rc != 0) goto done; break; case 0x63: /* movsxd */ if (ctxt->mode != X86EMUL_MODE_PROT64) goto cannot_emulate; c->dst.val = (int32_t) c->src.val; break; case 0x68: /* push imm */ case 0x6a: /* push imm8 */ emulate_push(ctxt); break; case 0x6c: /* insb */ case 0x6d: /* insw/insd */ if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX], (c->d & ByteOp) ? 1 : c->op_bytes)) { kvm_inject_gp(ctxt->vcpu, 0); goto done; } if (kvm_emulate_pio_string(ctxt->vcpu, 1, (c->d & ByteOp) ? 1 : c->op_bytes, c->rep_prefix ? address_mask(c, c->regs[VCPU_REGS_RCX]) : 1, (ctxt->eflags & EFLG_DF), register_address(c, es_base(ctxt), c->regs[VCPU_REGS_RDI]), c->rep_prefix, c->regs[VCPU_REGS_RDX]) == 0) { c->eip = saved_eip; return (-1); } return (0); case 0x6e: /* outsb */ case 0x6f: /* outsw/outsd */ if (!emulator_io_permited(ctxt, ops, c->regs[VCPU_REGS_RDX], (c->d & ByteOp) ? 1 : c->op_bytes)) { kvm_inject_gp(ctxt->vcpu, 0); goto done; } if (kvm_emulate_pio_string(ctxt->vcpu, 0, (c->d & ByteOp) ? 1 : c->op_bytes, c->rep_prefix ? address_mask(c, c->regs[VCPU_REGS_RCX]) : 1, (ctxt->eflags & EFLG_DF), register_address(c, seg_override_base(ctxt, c), c->regs[VCPU_REGS_RSI]), c->rep_prefix, c->regs[VCPU_REGS_RDX]) == 0) { c->eip = saved_eip; return (-1); } return (0); case 0x70 ... 0x7f: /* jcc (short) */ if (test_cc(c->b, ctxt->eflags)) jmp_rel(c, c->src.val); break; case 0x80 ... 0x83: /* Grp1 */ switch (c->modrm_reg) { case 0: goto add; case 1: goto or; case 2: goto adc; case 3: goto sbb; case 4: goto and; case 5: goto sub; case 6: goto xor; case 7: goto cmp; } break; case 0x84 ... 0x85: emulate_2op_SrcV("test", c->src, c->dst, ctxt->eflags); break; case 0x86 ... 0x87: /* xchg */ xchg: /* Write back the register source. */ switch (c->dst.bytes) { case 1: *(uint8_t *) c->src.ptr = (uint8_t) c->dst.val; break; case 2: *(uint16_t *) c->src.ptr = (uint16_t) c->dst.val; break; case 4: *c->src.ptr = (uint32_t) c->dst.val; break; /* 64b reg: zero-extend */ case 8: *c->src.ptr = c->dst.val; break; } /* * Write back the memory destination with implicit LOCK * prefix. */ c->dst.val = c->src.val; c->lock_prefix = 1; break; case 0x88 ... 0x8b: /* mov */ goto mov; case 0x8c: { /* mov r/m, sreg */ struct kvm_segment segreg; if (c->modrm_reg <= 5) kvm_get_segment(ctxt->vcpu, &segreg, c->modrm_reg); else { cmn_err(CE_NOTE, "0x8c: Invalid segreg in " "modrm byte 0x%02x\n", c->modrm); goto cannot_emulate; } c->dst.val = segreg.selector; break; } case 0x8d: /* lea r16/r32, m */ c->dst.val = c->modrm_ea; break; case 0x8e: { /* mov seg, r/m16 */ uint16_t sel; sel = c->src.val; if (c->modrm_reg == VCPU_SREG_CS || c->modrm_reg > VCPU_SREG_GS) { kvm_queue_exception(ctxt->vcpu, UD_VECTOR); goto done; } if (c->modrm_reg == VCPU_SREG_SS) toggle_interruptibility(ctxt, X86_SHADOW_INT_MOV_SS); rc = kvm_load_segment_descriptor(ctxt->vcpu, sel, c->modrm_reg); c->dst.type = OP_NONE; /* Disable writeback. */ break; } case 0x8f: /* pop (sole member of Grp1a) */ rc = emulate_grp1a(ctxt, ops); if (rc != 0) goto done; break; case 0x90: /* nop / xchg r8,rax */ if (!(c->rex_prefix & 1)) { /* nop */ c->dst.type = OP_NONE; break; } case 0x91 ... 0x97: /* xchg reg,rax */ c->src.type = c->dst.type = OP_REG; c->src.bytes = c->dst.bytes = c->op_bytes; c->src.ptr = (unsigned long *) &c->regs[VCPU_REGS_RAX]; c->src.val = *(c->src.ptr); goto xchg; case 0x9c: /* pushf */ c->src.val = (unsigned long) ctxt->eflags; emulate_push(ctxt); break; case 0x9d: /* popf */ c->dst.type = OP_REG; c->dst.ptr = (unsigned long *) &ctxt->eflags; c->dst.bytes = c->op_bytes; rc = emulate_popf(ctxt, ops, &c->dst.val, c->op_bytes); if (rc != X86EMUL_CONTINUE) goto done; break; case 0xa0 ... 0xa1: /* mov */ c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX]; c->dst.val = c->src.val; break; case 0xa2 ... 0xa3: /* mov */ c->dst.val = (unsigned long)c->regs[VCPU_REGS_RAX]; break; case 0xa4 ... 0xa5: /* movs */ c->dst.type = OP_MEM; c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.ptr = (unsigned long *)register_address(c, es_base(ctxt), c->regs[VCPU_REGS_RDI]); rc = ops->read_emulated(register_address(c, seg_override_base(ctxt, c), c->regs[VCPU_REGS_RSI]), &c->dst.val, c->dst.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; register_address_increment(c, &c->regs[VCPU_REGS_RSI], (ctxt->eflags & EFLG_DF) ? -c->dst.bytes : c->dst.bytes); register_address_increment(c, &c->regs[VCPU_REGS_RDI], (ctxt->eflags & EFLG_DF) ? -c->dst.bytes : c->dst.bytes); break; case 0xa6 ... 0xa7: /* cmps */ c->src.type = OP_NONE; /* Disable writeback. */ c->src.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->src.ptr = (unsigned long *)register_address(c, seg_override_base(ctxt, c), c->regs[VCPU_REGS_RSI]); rc = ops->read_emulated((unsigned long)c->src.ptr, &c->src.val, c->src.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; c->dst.type = OP_NONE; /* Disable writeback. */ c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.ptr = (unsigned long *)register_address(c, es_base(ctxt), c->regs[VCPU_REGS_RDI]); rc = ops->read_emulated((unsigned long)c->dst.ptr, &c->dst.val, c->dst.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; DPRINTF("cmps: mem1=0x%p mem2=0x%p\n", c->src.ptr, c->dst.ptr); emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags); register_address_increment(c, &c->regs[VCPU_REGS_RSI], (ctxt->eflags & EFLG_DF) ? -c->src.bytes : c->src.bytes); register_address_increment(c, &c->regs[VCPU_REGS_RDI], (ctxt->eflags & EFLG_DF) ? -c->dst.bytes : c->dst.bytes); break; case 0xaa ... 0xab: /* stos */ c->dst.type = OP_MEM; c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.ptr = (unsigned long *)register_address(c, es_base(ctxt), c->regs[VCPU_REGS_RDI]); c->dst.val = c->regs[VCPU_REGS_RAX]; register_address_increment(c, &c->regs[VCPU_REGS_RDI], (ctxt->eflags & EFLG_DF) ? -c->dst.bytes : c->dst.bytes); break; case 0xac ... 0xad: /* lods */ c->dst.type = OP_REG; c->dst.bytes = (c->d & ByteOp) ? 1 : c->op_bytes; c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX]; rc = ops->read_emulated(register_address(c, seg_override_base(ctxt, c), c->regs[VCPU_REGS_RSI]), &c->dst.val, c->dst.bytes, ctxt->vcpu); if (rc != X86EMUL_CONTINUE) goto done; register_address_increment(c, &c->regs[VCPU_REGS_RSI], (ctxt->eflags & EFLG_DF) ? -c->dst.bytes : c->dst.bytes); break; case 0xae ... 0xaf: /* scas */ DPRINTF("Urk! I don't handle SCAS.\n"); goto cannot_emulate; case 0xb0 ... 0xbf: /* mov r, imm */ goto mov; case 0xc0 ... 0xc1: emulate_grp2(ctxt); break; case 0xc3: /* ret */ c->dst.type = OP_REG; c->dst.ptr = &c->eip; c->dst.bytes = c->op_bytes; goto pop_instruction; case 0xc6 ... 0xc7: /* mov (sole member of Grp11) */ mov: c->dst.val = c->src.val; break; case 0xcb: /* ret far */ rc = emulate_ret_far(ctxt, ops); if (rc) goto done; break; case 0xd0 ... 0xd1: /* Grp2 */ c->src.val = 1; emulate_grp2(ctxt); break; case 0xd2 ... 0xd3: /* Grp2 */ c->src.val = c->regs[VCPU_REGS_RCX]; emulate_grp2(ctxt); break; case 0xe4: /* inb */ case 0xe5: /* in */ port = c->src.val; io_dir_in = 1; goto do_io; case 0xe6: /* outb */ case 0xe7: /* out */ port = c->src.val; io_dir_in = 0; goto do_io; case 0xe8: /* call (near) */ { long int rel = c->src.val; c->src.val = (unsigned long) c->eip; jmp_rel(c, rel); emulate_push(ctxt); break; } case 0xe9: /* jmp rel */ goto jmp; case 0xea: /* jmp far */ if (kvm_load_segment_descriptor(ctxt->vcpu, c->src2.val, VCPU_SREG_CS)) goto done; c->eip = c->src.val; break; case 0xeb: jmp: /* jmp rel short */ jmp_rel(c, c->src.val); c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xec: /* in al,dx */ case 0xed: /* in (e/r)ax,dx */ port = c->regs[VCPU_REGS_RDX]; io_dir_in = 1; goto do_io; case 0xee: /* out al,dx */ case 0xef: /* out (e/r)ax,dx */ port = c->regs[VCPU_REGS_RDX]; io_dir_in = 0; do_io: if (!emulator_io_permited(ctxt, ops, port, (c->d & ByteOp) ? 1 : c->op_bytes)) { kvm_inject_gp(ctxt->vcpu, 0); goto done; } if (kvm_emulate_pio(ctxt->vcpu, io_dir_in, (c->d & ByteOp) ? 1 : c->op_bytes, port) != 0) { c->eip = saved_eip; goto cannot_emulate; } goto cannot_emulate; break; case 0xf4: /* hlt */ ctxt->vcpu->arch.halt_request = 1; break; case 0xf5: /* cmc */ /* complement carry flag from eflags reg */ ctxt->eflags ^= EFLG_CF; c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xf6 ... 0xf7: /* Grp3 */ rc = emulate_grp3(ctxt, ops); if (rc != 0) goto done; break; case 0xf8: /* clc */ ctxt->eflags &= ~EFLG_CF; c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xfa: /* cli */ if (emulator_bad_iopl(ctxt)) kvm_inject_gp(ctxt->vcpu, 0); else { ctxt->eflags &= ~X86_EFLAGS_IF; c->dst.type = OP_NONE; /* Disable writeback. */ } break; case 0xfb: /* sti */ if (emulator_bad_iopl(ctxt)) kvm_inject_gp(ctxt->vcpu, 0); else { toggle_interruptibility(ctxt, X86_SHADOW_INT_STI); ctxt->eflags |= X86_EFLAGS_IF; c->dst.type = OP_NONE; /* Disable writeback. */ } break; case 0xfc: /* cld */ ctxt->eflags &= ~EFLG_DF; c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xfd: /* std */ ctxt->eflags |= EFLG_DF; c->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xfe ... 0xff: /* Grp4/Grp5 */ rc = emulate_grp45(ctxt, ops); if (rc != 0) goto done; break; } writeback: rc = writeback(ctxt, ops); if (rc != 0) goto done; /* Commit shadow register state. */ memcpy(ctxt->vcpu->arch.regs, c->regs, sizeof (c->regs)); kvm_rip_write(ctxt->vcpu, c->eip); done: if (rc == X86EMUL_UNHANDLEABLE) { c->eip = saved_eip; return (-1); } return (0); twobyte_insn: switch (c->b) { case 0x01: /* lgdt, lidt, lmsw */ switch (c->modrm_reg) { uint16_t size; unsigned long address; case 0: /* vmcall */ if (c->modrm_mod != 3 || c->modrm_rm != 1) goto cannot_emulate; rc = kvm_fix_hypercall(ctxt->vcpu); if (rc) goto done; /* Let the processor re-execute the fixed hypercall */ c->eip = kvm_rip_read(ctxt->vcpu); /* Disable writeback. */ c->dst.type = OP_NONE; break; case 2: /* lgdt */ rc = read_descriptor(ctxt, ops, c->src.ptr, &size, &address, c->op_bytes); if (rc) goto done; realmode_lgdt(ctxt->vcpu, size, address); /* Disable writeback. */ c->dst.type = OP_NONE; break; case 3: /* lidt/vmmcall */ if (c->modrm_mod == 3) { switch (c->modrm_rm) { case 1: rc = kvm_fix_hypercall(ctxt->vcpu); if (rc) goto done; break; default: goto cannot_emulate; } } else { rc = read_descriptor(ctxt, ops, c->src.ptr, &size, &address, c->op_bytes); if (rc) goto done; realmode_lidt(ctxt->vcpu, size, address); } /* Disable writeback. */ c->dst.type = OP_NONE; break; case 4: /* smsw */ c->dst.bytes = 2; c->dst.val = realmode_get_cr(ctxt->vcpu, 0); break; case 6: /* lmsw */ realmode_lmsw(ctxt->vcpu, (uint16_t)c->src.val, &ctxt->eflags); c->dst.type = OP_NONE; break; case 7: /* invlpg */ emulate_invlpg(ctxt->vcpu, memop); /* Disable writeback. */ c->dst.type = OP_NONE; break; default: goto cannot_emulate; } break; case 0x05: /* syscall */ rc = emulate_syscall(ctxt); if (rc != X86EMUL_CONTINUE) goto done; else goto writeback; break; case 0x06: emulate_clts(ctxt->vcpu); c->dst.type = OP_NONE; break; case 0x08: /* invd */ case 0x09: /* wbinvd */ case 0x0d: /* GrpP (prefetch) */ case 0x18: /* Grp16 (prefetch/nop) */ c->dst.type = OP_NONE; break; case 0x20: /* mov cr, reg */ if (c->modrm_mod != 3) goto cannot_emulate; c->regs[c->modrm_rm] = realmode_get_cr(ctxt->vcpu, c->modrm_reg); c->dst.type = OP_NONE; /* no writeback */ break; case 0x21: /* mov from dr to reg */ if (c->modrm_mod != 3) goto cannot_emulate; #ifdef XXX rc = emulator_get_dr(ctxt, c->modrm_reg, &c->regs[c->modrm_rm]); if (rc) goto cannot_emulate; #else XXX_KVM_PROBE; #endif c->dst.type = OP_NONE; /* no writeback */ break; case 0x22: /* mov reg, cr */ if (c->modrm_mod != 3) goto cannot_emulate; realmode_set_cr(ctxt->vcpu, c->modrm_reg, c->modrm_val, &ctxt->eflags); c->dst.type = OP_NONE; break; case 0x23: /* mov from reg to dr */ if (c->modrm_mod != 3) goto cannot_emulate; #ifdef XXX rc = emulator_set_dr(ctxt, c->modrm_reg, c->regs[c->modrm_rm]); if (rc) goto cannot_emulate; #else XXX_KVM_PROBE; #endif c->dst.type = OP_NONE; /* no writeback */ break; case 0x30: /* wrmsr */ msr_data = (uint32_t)c->regs[VCPU_REGS_RAX] | ((uint64_t)c->regs[VCPU_REGS_RDX] << 32); rc = kvm_set_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], msr_data); if (rc) { kvm_inject_gp(ctxt->vcpu, 0); c->eip = kvm_rip_read(ctxt->vcpu); } rc = X86EMUL_CONTINUE; c->dst.type = OP_NONE; break; case 0x32: /* rdmsr */ rc = kvm_get_msr(ctxt->vcpu, c->regs[VCPU_REGS_RCX], &msr_data); if (rc) { kvm_inject_gp(ctxt->vcpu, 0); c->eip = kvm_rip_read(ctxt->vcpu); } else { c->regs[VCPU_REGS_RAX] = (uint32_t)msr_data; c->regs[VCPU_REGS_RDX] = msr_data >> 32; } rc = X86EMUL_CONTINUE; c->dst.type = OP_NONE; break; case 0x34: /* sysenter */ rc = emulate_sysenter(ctxt); if (rc != X86EMUL_CONTINUE) goto done; else goto writeback; break; case 0x35: /* sysexit */ rc = emulate_sysexit(ctxt); if (rc != X86EMUL_CONTINUE) goto done; else goto writeback; break; case 0x40 ... 0x4f: /* cmov */ c->dst.val = c->dst.orig_val = c->src.val; if (!test_cc(c->b, ctxt->eflags)) c->dst.type = OP_NONE; /* no writeback */ break; case 0x80 ... 0x8f: /* jnz rel, etc. */ if (test_cc(c->b, ctxt->eflags)) jmp_rel(c, c->src.val); c->dst.type = OP_NONE; break; case 0xa0: /* push fs */ emulate_push_sreg(ctxt, VCPU_SREG_FS); break; case 0xa1: /* pop fs */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_FS); if (rc != 0) goto done; break; case 0xa3: bt: /* bt */ c->dst.type = OP_NONE; /* only subword offset */ c->src.val &= (c->dst.bytes << 3) - 1; emulate_2op_SrcV_nobyte("bt", c->src, c->dst, ctxt->eflags); break; case 0xa4: /* shld imm8, r, r/m */ case 0xa5: /* shld cl, r, r/m */ emulate_2op_cl("shld", c->src2, c->src, c->dst, ctxt->eflags); break; case 0xa8: /* push gs */ emulate_push_sreg(ctxt, VCPU_SREG_GS); break; case 0xa9: /* pop gs */ rc = emulate_pop_sreg(ctxt, ops, VCPU_SREG_GS); if (rc != 0) goto done; break; case 0xab: bts: /* bts */ /* only subword offset */ c->src.val &= (c->dst.bytes << 3) - 1; emulate_2op_SrcV_nobyte("bts", c->src, c->dst, ctxt->eflags); break; case 0xac: /* shrd imm8, r, r/m */ case 0xad: /* shrd cl, r, r/m */ emulate_2op_cl("shrd", c->src2, c->src, c->dst, ctxt->eflags); break; case 0xae: /* clflush */ break; case 0xb0 ... 0xb1: /* cmpxchg */ /* * Save real source value, then compare EAX against * destination. */ c->src.orig_val = c->src.val; c->src.val = c->regs[VCPU_REGS_RAX]; emulate_2op_SrcV("cmp", c->src, c->dst, ctxt->eflags); if (ctxt->eflags & EFLG_ZF) { /* Success: write back to memory. */ c->dst.val = c->src.orig_val; } else { /* Failure: write the value we saw to EAX. */ c->dst.type = OP_REG; c->dst.ptr = (unsigned long *)&c->regs[VCPU_REGS_RAX]; } break; case 0xb3: btr: /* btr */ /* only subword offset */ c->src.val &= (c->dst.bytes << 3) - 1; emulate_2op_SrcV_nobyte("btr", c->src, c->dst, ctxt->eflags); break; case 0xb6 ... 0xb7: /* movzx */ c->dst.bytes = c->op_bytes; c->dst.val = (c->d & ByteOp) ? (uint8_t) c->src.val : (uint16_t) c->src.val; break; case 0xba: /* Grp8 */ switch (c->modrm_reg & 3) { case 0: goto bt; case 1: goto bts; case 2: goto btr; case 3: goto btc; } break; case 0xbb: btc: /* btc */ /* only subword offset */ c->src.val &= (c->dst.bytes << 3) - 1; emulate_2op_SrcV_nobyte("btc", c->src, c->dst, ctxt->eflags); break; case 0xbe ... 0xbf: /* movsx */ c->dst.bytes = c->op_bytes; c->dst.val = (c->d & ByteOp) ? (int8_t) c->src.val : (int16_t) c->src.val; break; case 0xc3: /* movnti */ c->dst.bytes = c->op_bytes; c->dst.val = (c->op_bytes == 4) ? (uint32_t) c->src.val : (uint64_t) c->src.val; break; case 0xc7: /* Grp9 (cmpxchg8b) */ rc = emulate_grp9(ctxt, ops, memop); if (rc != 0) goto done; c->dst.type = OP_NONE; break; } goto writeback; cannot_emulate: DPRINTF("Cannot emulate %02x\n", c->b); c->eip = saved_eip; return (-1); }