/* * 8259 interrupt controller emulation * * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * Authors: * Yaozu (Eddie) Dong * Port from Qemu. * * Copyright 2011 Joyent, Inc. All Rights Reserved. */ #include #include #include "kvm_bitops.h" #include "kvm_host.h" #include "kvm_irq.h" static void pic_clear_isr(struct kvm_kpic_state *s, int irq) { s->isr &= ~(1 << irq); s->isr_ack |= (1 << irq); if (s != &s->pics_state->pics[0]) irq += 8; /* * We are dropping lock while calling ack notifiers since ack * notifier callbacks for assigned devices call into PIC recursively. * Other interrupt may be delivered to PIC while lock is dropped but * it should be safe since PIC state is already updated at this stage. */ mutex_exit(&s->pics_state->lock); kvm_notify_acked_irq(s->pics_state->kvm, SELECT_PIC(irq), irq); mutex_enter(&s->pics_state->lock); } void kvm_pic_clear_isr_ack(struct kvm *kvm) { struct kvm_pic *s = pic_irqchip(kvm); mutex_enter(&s->lock); s->pics[0].isr_ack = 0xff; s->pics[1].isr_ack = 0xff; mutex_exit(&s->lock); } /* * set irq level. If an edge is detected, then the IRR is set to 1 */ static int pic_set_irq1(struct kvm_kpic_state *s, int irq, int level) { int mask, ret = 1; mask = 1 << irq; if (s->elcr & mask) { /* level triggered */ if (level) { ret = !(s->irr & mask); s->irr |= mask; s->last_irr |= mask; } else { s->irr &= ~mask; s->last_irr &= ~mask; } } else { /* edge triggered */ if (level) { if ((s->last_irr & mask) == 0) { ret = !(s->irr & mask); s->irr |= mask; } s->last_irr |= mask; } else { s->last_irr &= ~mask; } } return ((s->imr & mask) ? -1 : ret); } /* * return the highest priority found in mask (highest = smallest * number). Return 8 if no irq */ static int get_priority(struct kvm_kpic_state *s, int mask) { int priority; if (mask == 0) return (8); priority = 0; while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0) priority++; return (priority); } /* * return the pic wanted interrupt. return -1 if none */ static int pic_get_irq(struct kvm_kpic_state *s) { int mask, cur_priority, priority; mask = s->irr & ~s->imr; priority = get_priority(s, mask); if (priority == 8) return (-1); /* * compute current priority. If special fully nested mode on the * master, the IRQ coming from the slave is not taken into account * for the priority computation. */ mask = s->isr; if (s->special_fully_nested_mode && s == &s->pics_state->pics[0]) mask &= ~(1 << 2); cur_priority = get_priority(s, mask); if (priority < cur_priority) { /* * higher priority found: an irq should be generated */ return ((priority + s->priority_add) & 7); } else { return (-1); } } /* * raise irq to CPU if necessary. must be called every time the active * irq may change */ static void pic_update_irq(struct kvm_pic *s) { int irq2, irq; irq2 = pic_get_irq(&s->pics[1]); if (irq2 >= 0) { /* * if irq request by slave pic, signal master PIC */ pic_set_irq1(&s->pics[0], 2, 1); pic_set_irq1(&s->pics[0], 2, 0); } irq = pic_get_irq(&s->pics[0]); if (irq >= 0) { s->irq_request(s->irq_request_opaque, 1); } else { s->irq_request(s->irq_request_opaque, 0); } } void kvm_pic_update_irq(struct kvm_pic *s) { mutex_enter(&s->lock); pic_update_irq(s); mutex_exit(&s->lock); } int kvm_pic_set_irq(void *opaque, int irq, int level) { struct kvm_pic *s = opaque; int ret = -1; mutex_enter(&s->lock); if (irq >= 0 && irq < PIC_NUM_PINS) { ret = pic_set_irq1(&s->pics[irq >> 3], irq & 7, level); pic_update_irq(s); KVM_TRACE5(pic__set__irq, uintptr_t, irq >> 3, uintptr_t, irq & 7, uintptr_t, s->pics[irq >> 3].elcr, uintptr_t, s->pics[irq >> 3].imr, int, ret == 0); } mutex_exit(&s->lock); return (ret); } /* * acknowledge interrupt 'irq' */ static void pic_intack(struct kvm_kpic_state *s, int irq) { s->isr |= 1 << irq; /* * We don't clear a level sensitive interrupt here */ if (!(s->elcr & (1 << irq))) s->irr &= ~(1 << irq); if (s->auto_eoi) { if (s->rotate_on_auto_eoi) s->priority_add = (irq + 1) & 7; pic_clear_isr(s, irq); } } int kvm_pic_read_irq(struct kvm *kvm) { int irq, irq2, intno; struct kvm_pic *s = pic_irqchip(kvm); mutex_enter(&s->lock); irq = pic_get_irq(&s->pics[0]); if (irq >= 0) { pic_intack(&s->pics[0], irq); if (irq == 2) { irq2 = pic_get_irq(&s->pics[1]); if (irq2 >= 0) pic_intack(&s->pics[1], irq2); else /* * spurious IRQ on slave controller */ irq2 = 7; intno = s->pics[1].irq_base + irq2; irq = irq2 + 8; } else { intno = s->pics[0].irq_base + irq; } } else { /* * spurious IRQ on host controller */ irq = 7; intno = s->pics[0].irq_base + irq; } pic_update_irq(s); mutex_exit(&s->lock); return (intno); } void kvm_pic_reset(struct kvm_kpic_state *s) { int irq; struct kvm *kvm = s->pics_state->irq_request_opaque; struct kvm_vcpu *vcpu0 = kvm->bsp_vcpu; uint8_t irr = s->irr, isr = s->imr; s->last_irr = 0; s->irr = 0; s->imr = 0; s->isr = 0; s->isr_ack = 0xff; s->priority_add = 0; s->irq_base = 0; s->read_reg_select = 0; s->poll = 0; s->special_mask = 0; s->init_state = 0; s->auto_eoi = 0; s->rotate_on_auto_eoi = 0; s->special_fully_nested_mode = 0; s->init4 = 0; for (irq = 0; irq < PIC_NUM_PINS/2; irq++) { if (vcpu0 && kvm_apic_accept_pic_intr(vcpu0)) if (irr & (1 << irq) || isr & (1 << irq)) { pic_clear_isr(s, irq); } } } static void pic_ioport_write(void *opaque, uint32_t addr, uint32_t val) { struct kvm_kpic_state *s = opaque; int priority, cmd, irq; addr &= 1; if (addr == 0) { if (val & 0x10) { struct kvm_pic *pic; kvm_pic_reset(s); /* init */ /* * deassert a pending interrupt */ pic = s->pics_state; pic->irq_request(pic->irq_request_opaque, 0); s->init_state = 1; s->init4 = val & 1; if (val & 0x02) cmn_err(CE_WARN, "single mode not supported"); if (val & 0x08) { cmn_err(CE_WARN, "level sensitive irq " "not supported"); } } else if (val & 0x08) { if (val & 0x04) s->poll = 1; if (val & 0x02) s->read_reg_select = val & 1; if (val & 0x40) s->special_mask = (val >> 5) & 1; } else { cmd = val >> 5; switch (cmd) { case 0: case 4: s->rotate_on_auto_eoi = cmd >> 2; break; case 1: /* end of interrupt */ case 5: priority = get_priority(s, s->isr); if (priority != 8) { irq = (priority + s->priority_add) & 7; if (cmd == 5) s->priority_add = (irq + 1) & 7; pic_clear_isr(s, irq); pic_update_irq(s->pics_state); } break; case 3: irq = val & 7; pic_clear_isr(s, irq); pic_update_irq(s->pics_state); break; case 6: s->priority_add = (val + 1) & 7; pic_update_irq(s->pics_state); break; case 7: irq = val & 7; s->priority_add = (irq + 1) & 7; pic_clear_isr(s, irq); pic_update_irq(s->pics_state); break; default: break; /* no operation */ } } } else { switch (s->init_state) { case 0: /* normal mode */ s->imr = val; pic_update_irq(s->pics_state); break; case 1: s->irq_base = val & 0xf8; s->init_state = 2; break; case 2: if (s->init4) s->init_state = 3; else s->init_state = 0; break; case 3: s->special_fully_nested_mode = (val >> 4) & 1; s->auto_eoi = (val >> 1) & 1; s->init_state = 0; break; } } } static uint32_t pic_poll_read(struct kvm_kpic_state *s, uint32_t addr1) { int ret; ret = pic_get_irq(s); if (ret >= 0) { if (addr1 >> 7) { s->pics_state->pics[0].isr &= ~(1 << 2); s->pics_state->pics[0].irr &= ~(1 << 2); } s->irr &= ~(1 << ret); pic_clear_isr(s, ret); if (addr1 >> 7 || ret != 2) pic_update_irq(s->pics_state); } else { ret = 0x07; pic_update_irq(s->pics_state); } return (ret); } static uint32_t pic_ioport_read(void *opaque, uint32_t addr1) { struct kvm_kpic_state *s = opaque; unsigned int addr; int ret; addr = addr1; addr &= 1; if (s->poll) { ret = pic_poll_read(s, addr1); s->poll = 0; } else { if (addr == 0) { if (s->read_reg_select) { ret = s->isr; } else { ret = s->irr; } } else { ret = s->imr; } } return (ret); } static void elcr_ioport_write(void *opaque, uint32_t addr, uint32_t val) { struct kvm_kpic_state *s = opaque; s->elcr = val & s->elcr_mask; } static uint32_t elcr_ioport_read(void *opaque, uint32_t addr1) { struct kvm_kpic_state *s = opaque; return (s->elcr); } static int picdev_in_range(gpa_t addr) { switch (addr) { case 0x20: case 0x21: case 0xa0: case 0xa1: case 0x4d0: case 0x4d1: return (1); default: return (0); } } static inline struct kvm_pic * to_pic(struct kvm_io_device *dev) { return ((struct kvm_pic *)((caddr_t)dev-offsetof(struct kvm_pic, dev))); } static int picdev_write(struct kvm_io_device *this, gpa_t addr, int len, const void *val) { struct kvm_pic *s = to_pic(this); unsigned char data = *(unsigned char *)val; if (!picdev_in_range(addr)) return (-EOPNOTSUPP); if (len != 1) return (0); mutex_enter(&s->lock); switch (addr) { case 0x20: case 0x21: case 0xa0: case 0xa1: pic_ioport_write(&s->pics[addr >> 7], addr, data); break; case 0x4d0: case 0x4d1: elcr_ioport_write(&s->pics[addr & 1], addr, data); break; } mutex_exit(&s->lock); return (0); } static int picdev_read(struct kvm_io_device *this, gpa_t addr, int len, void *val) { struct kvm_pic *s = to_pic(this); unsigned char data = 0; if (!picdev_in_range(addr)) return (-EOPNOTSUPP); if (len != 1) return (0); mutex_enter(&s->lock); switch (addr) { case 0x20: case 0x21: case 0xa0: case 0xa1: data = pic_ioport_read(&s->pics[addr >> 7], addr); break; case 0x4d0: case 0x4d1: data = elcr_ioport_read(&s->pics[addr & 1], addr); break; } *(unsigned char *)val = data; mutex_exit(&s->lock); return (0); } /* * callback when PIC0 irq status changed */ static void pic_irq_request(void *opaque, int level) { struct kvm *kvm = opaque; struct kvm_vcpu *vcpu = kvm->bsp_vcpu; struct kvm_pic *s = pic_irqchip(kvm); int irq = pic_get_irq(&s->pics[0]); s->output = level; if (vcpu && level && (s->pics[0].isr_ack & (1 << irq))) { s->pics[0].isr_ack &= ~(1 << irq); kvm_vcpu_kick(vcpu); } } static const struct kvm_io_device_ops picdev_ops = { .read = picdev_read, .write = picdev_write, }; struct kvm_pic * kvm_create_pic(struct kvm *kvm) { struct kvm_pic *s; int ret; s = kmem_zalloc(sizeof (struct kvm_pic), KM_SLEEP); mutex_init(&s->lock, NULL, MUTEX_DRIVER, 0); s->kvm = kvm; s->pics[0].elcr_mask = 0xf8; s->pics[1].elcr_mask = 0xde; s->irq_request = pic_irq_request; s->irq_request_opaque = kvm; s->pics[0].pics_state = s; s->pics[1].pics_state = s; /* * Initialize PIO device */ kvm_iodevice_init(&s->dev, &picdev_ops); mutex_enter(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, &s->dev); mutex_exit(&kvm->slots_lock); if (ret < 0) { kmem_free(s, sizeof (struct kvm_pic)); return (NULL); } return (s); } void kvm_destroy_pic(struct kvm *kvm) { struct kvm_pic *vpic = kvm->arch.vpic; if (vpic) { kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &vpic->dev); kvm->arch.vpic = NULL; kmem_free(vpic, sizeof (struct kvm_pic)); } }