/* * Local APIC virtualization * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2007 Novell * Copyright (C) 2007 Intel * * Authors: * Dor Laor * Gregory Haskins * Yaozu (Eddie) Dong * * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Copyright (c) 2012 Joyent, Inc. All rights reserved. */ #include #include #include "kvm_bitops.h" #include "kvm_msr.h" #include "kvm_apicdef.h" #include "kvm_cpuid.h" #include "kvm_x86host.h" #include "kvm_x86impl.h" #include "kvm_lapic.h" #include "kvm_ioapic.h" #include "kvm_irq.h" static int __apic_accept_irq(struct kvm_lapic *, int, int, int, int); #define APIC_BUS_CYCLE_NS 1 #define APIC_LDR 0xD0 #define LAPIC_MMIO_LENGTH (1 << 12) /* followed define is not in apicdef.h */ #define APIC_SHORT_MASK 0xc0000 #define APIC_DEST_NOSHORT 0x0 #define APIC_DEST_MASK 0x800 #define MAX_APIC_VECTOR 256 #define LVT_MASK \ (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK) #define LINT_MASK \ (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \ APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER) #define VEC_POS(v) ((v) & (32 - 1)) #define REG_POS(v) (((v) >> 5) << 4) uint32_t apic_get_reg(struct kvm_lapic *apic, int reg_off) { return (*((uint32_t *)((uintptr_t)apic->regs + reg_off))); } void apic_set_reg(struct kvm_lapic *apic, int reg_off, uint32_t val) { *((uint32_t *)((uintptr_t)apic->regs + reg_off)) = val; } static int apic_test_and_set_vector(int vec, caddr_t bitmap) { return (test_and_set_bit(VEC_POS(vec), (unsigned long *)(bitmap + REG_POS(vec)))); } static int apic_test_and_clear_vector(int vec, caddr_t bitmap) { return (test_and_clear_bit(VEC_POS(vec), (unsigned long *)(bitmap + REG_POS(vec)))); } void apic_set_vector(int vec, caddr_t bitmap) { set_bit(VEC_POS(vec), (unsigned long *)(bitmap + REG_POS(vec))); } void apic_clear_vector(int vec, caddr_t bitmap) { clear_bit(VEC_POS(vec), (unsigned long *)(bitmap + REG_POS(vec))); } int apic_hw_enabled(struct kvm_lapic *apic) { return ((apic)->vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); } int apic_sw_enabled(struct kvm_lapic *apic) { return (apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_APIC_ENABLED); } int apic_enabled(struct kvm_lapic *apic) { return (apic_sw_enabled(apic) && apic_hw_enabled(apic)); } int kvm_apic_id(struct kvm_lapic *apic) { return ((apic_get_reg(apic, APIC_ID) >> 24) & 0xff); } static int apic_lvt_enabled(struct kvm_lapic *apic, int lvt_type) { return (!(apic_get_reg(apic, lvt_type) & APIC_LVT_MASKED)); } static int apic_lvtt_period(struct kvm_lapic *apic) { return (apic_get_reg(apic, APIC_LVTT) & APIC_LVT_TIMER_PERIODIC); } static int apic_lvt_nmi_mode(uint32_t lvt_val) { return ((lvt_val & (APIC_MODE_MASK | APIC_LVT_MASKED)) == APIC_DM_NMI); } void kvm_apic_set_version(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; struct kvm_cpuid_entry2 *feat; uint32_t v = APIC_VERSION; if (!irqchip_in_kernel(vcpu->kvm)) return; feat = kvm_find_cpuid_entry(apic->vcpu, 0x1, 0); if (feat && (feat->ecx & (1 << (X86_FEATURE_X2APIC & 31)))) v |= APIC_LVR_DIRECTED_EOI; apic_set_reg(apic, APIC_LVR, v); } static int apic_x2apic_mode(struct kvm_lapic *apic) { return (apic->vcpu->arch.apic_base & X2APIC_ENABLE); } static unsigned int apic_lvt_mask[APIC_LVT_NUM] = { LVT_MASK | APIC_LVT_TIMER_PERIODIC, /* LVTT */ LVT_MASK | APIC_MODE_MASK, /* LVTTHMR */ LVT_MASK | APIC_MODE_MASK, /* LVTPC */ LINT_MASK, LINT_MASK, /* LVT0-1 */ LVT_MASK /* LVTERR */ }; static int fls(int x) { int r = 32; if (!x) return (0); if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1; } return (r); } static int find_highest_vector(void *bitmap) { uint32_t *word = bitmap; int word_offset = MAX_APIC_VECTOR >> 5; while ((word_offset != 0) && (word[(--word_offset) << 2] == 0)) continue; if (!word_offset && !word[0]) return (-1); else return (fls(word[word_offset << 2]) - 1 + (word_offset << 5)); } static int apic_test_and_set_irr(int vec, struct kvm_lapic *apic) { apic->irr_pending = 1; return (apic_test_and_set_vector(vec, (void *)((uintptr_t)apic->regs + APIC_IRR))); } static int apic_search_irr(struct kvm_lapic *apic) { return (find_highest_vector((void *)((uintptr_t)apic->regs + APIC_IRR))); } static int apic_find_highest_irr(struct kvm_lapic *apic) { int result; if (!apic->irr_pending) return (-1); result = apic_search_irr(apic); ASSERT(result == -1 || result >= 16); return (result); } static void apic_clear_irr(int vec, struct kvm_lapic *apic) { apic->irr_pending = 0; apic_clear_vector(vec, (void *)((uintptr_t)apic->regs + APIC_IRR)); if (apic_search_irr(apic) != -1) apic->irr_pending = 1; } int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; int highest_irr; /* * This may race with setting of irr in __apic_accept_irq() and * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq * will cause vmexit immediately and the value will be recalculated * on the next vmentry. */ if (!apic) return (0); highest_irr = apic_find_highest_irr(apic); return (highest_irr); } int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq) { struct kvm_lapic *apic = vcpu->arch.apic; return (__apic_accept_irq(apic, irq->delivery_mode, irq->vector, irq->level, irq->trig_mode)); } int apic_find_highest_isr(struct kvm_lapic *apic) { int ret; ret = find_highest_vector((void *)((uintptr_t)apic->regs + APIC_ISR)); ASSERT(ret == -1 || ret >= 16); return (ret); } void apic_update_ppr(struct kvm_lapic *apic) { uint32_t tpr, isrv, ppr; int isr; tpr = apic_get_reg(apic, APIC_TASKPRI); isr = apic_find_highest_isr(apic); isrv = (isr != -1) ? isr : 0; if ((tpr & 0xf0) >= (isrv & 0xf0)) ppr = tpr & 0xff; else ppr = isrv & 0xf0; apic_set_reg(apic, APIC_PROCPRI, ppr); } void apic_set_tpr(struct kvm_lapic *apic, uint32_t tpr) { apic_set_reg(apic, APIC_TASKPRI, tpr); apic_update_ppr(apic); } int kvm_apic_match_physical_addr(struct kvm_lapic *apic, uint16_t dest) { return (dest == 0xff || kvm_apic_id(apic) == dest); } int kvm_apic_match_logical_addr(struct kvm_lapic *apic, uint8_t mda) { int result = 0; uint32_t logical_id; if (apic_x2apic_mode(apic)) { logical_id = apic_get_reg(apic, APIC_LDR); return (logical_id & mda); } logical_id = GET_APIC_LOGICAL_ID(apic_get_reg(apic, APIC_LDR)); switch (apic_get_reg(apic, APIC_DFR)) { case APIC_DFR_FLAT: if (logical_id & mda) result = 1; break; case APIC_DFR_CLUSTER: if (((logical_id >> 4) == (mda >> 0x4)) && (logical_id & mda & 0xf)) result = 1; break; default: cmn_err(CE_WARN, "Bad DFR vcpu %d: %08x\n", apic->vcpu->vcpu_id, apic_get_reg(apic, APIC_DFR)); break; } return (result); } int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source, int short_hand, int dest, int dest_mode) { int result = 0; struct kvm_lapic *target = vcpu->arch.apic; ASSERT(target != NULL); switch (short_hand) { case APIC_DEST_NOSHORT: if (dest_mode == 0) /* Physical mode. */ result = kvm_apic_match_physical_addr(target, dest); else /* Logical mode. */ result = kvm_apic_match_logical_addr(target, dest); break; case APIC_DEST_SELF: result = (target == source); break; case APIC_DEST_ALLINC: result = 1; break; case APIC_DEST_ALLBUT: result = (target != source); break; default: cmn_err(CE_WARN, "Bad dest shorthand value %x\n", short_hand); break; } return (result); } /* * Add a pending IRQ into lapic. * Return 1 if successfully added and 0 if discarded. */ static int __apic_accept_irq(struct kvm_lapic *apic, int delivery_mode, int vector, int level, int trig_mode) { int result = 0; struct kvm_vcpu *vcpu = apic->vcpu; switch (delivery_mode) { case APIC_DM_LOWEST: vcpu->arch.apic_arb_prio++; case APIC_DM_FIXED: /* FIXME add logic for vcpu on reset */ if (!apic_enabled(apic)) break; if (trig_mode) { apic_set_vector(vector, (void *)((uintptr_t)apic->regs + APIC_TMR)); } else apic_clear_vector(vector, (void *)((uintptr_t)apic->regs + APIC_TMR)); result = !apic_test_and_set_irr(vector, apic); if (!result) { break; } kvm_vcpu_kick(vcpu); break; case APIC_DM_REMRD: break; case APIC_DM_SMI: break; case APIC_DM_NMI: result = 1; kvm_inject_nmi(vcpu); kvm_vcpu_kick(vcpu); break; case APIC_DM_INIT: if (level) { result = 1; vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; kvm_vcpu_kick(vcpu); } break; case APIC_DM_STARTUP: if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { result = 1; vcpu->arch.sipi_vector = vector; vcpu->arch.mp_state = KVM_MP_STATE_SIPI_RECEIVED; kvm_vcpu_kick(vcpu); } break; case APIC_DM_EXTINT: /* * Should only be called by kvm_apic_local_deliver() with LVT0, * before NMI watchdog was enabled. Already handled by * kvm_apic_accept_pic_intr(). */ break; default: break; } return (result); } int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2) { return (vcpu1->arch.apic_arb_prio - vcpu2->arch.apic_arb_prio); } static void apic_set_eoi(struct kvm_lapic *apic) { int vector = apic_find_highest_isr(apic); int trigger_mode; /* * Not every write EOI will has corresponding ISR, * one example is when Kernel check timer on setup_IO_APIC */ if (vector == -1) return; apic_clear_vector(vector, (void *)((uintptr_t)apic->regs + APIC_ISR)); apic_update_ppr(apic); if (apic_test_and_clear_vector(vector, (void *)((uintptr_t)apic->regs + APIC_TMR))) trigger_mode = IOAPIC_LEVEL_TRIG; else trigger_mode = IOAPIC_EDGE_TRIG; if (!(apic_get_reg(apic, APIC_SPIV) & APIC_SPIV_DIRECTED_EOI)) kvm_ioapic_update_eoi(apic->vcpu->kvm, vector, trigger_mode); } static void apic_send_ipi(struct kvm_lapic *apic) { uint32_t icr_low = apic_get_reg(apic, APIC_ICR); uint32_t icr_high = apic_get_reg(apic, APIC_ICR2); struct kvm_lapic_irq irq; irq.vector = icr_low & APIC_VECTOR_MASK; irq.delivery_mode = icr_low & APIC_MODE_MASK; irq.dest_mode = icr_low & APIC_DEST_MASK; irq.level = icr_low & APIC_INT_ASSERT; irq.trig_mode = icr_low & APIC_INT_LEVELTRIG; irq.shorthand = icr_low & APIC_SHORT_MASK; if (apic_x2apic_mode(apic)) irq.dest_id = icr_high; else irq.dest_id = GET_APIC_DEST_FIELD(icr_high); KVM_TRACE2(apic__ipi, uint32_t, icr_low, uint32_t, irq.dest_id); kvm_irq_delivery_to_apic(apic->vcpu->kvm, apic, &irq); } static uint32_t apic_get_tmcct(struct kvm_lapic *apic) { hrtime_t now, remaining, elapsed; uint32_t tmcct; VERIFY(apic != NULL); /* if initial count is 0, current count should also be 0 */ if (apic_get_reg(apic, APIC_TMICT) == 0) return (0); now = gethrtime(); elapsed = now - apic->lapic_timer.start - apic->lapic_timer.period * apic->lapic_timer.intervals; remaining = apic->lapic_timer.period - elapsed; if (remaining < 0) remaining = 0; remaining = remaining % apic->lapic_timer.period; tmcct = remaining / (APIC_BUS_CYCLE_NS * apic->divide_count); return (tmcct); } static void __report_tpr_access(struct kvm_lapic *apic, int write) { struct kvm_vcpu *vcpu = apic->vcpu; struct kvm_run *run = vcpu->run; set_bit(KVM_REQ_REPORT_TPR_ACCESS, &vcpu->requests); run->tpr_access.rip = kvm_rip_read(vcpu); run->tpr_access.is_write = write; } static void report_tpr_access(struct kvm_lapic *apic, int write) { if (apic->vcpu->arch.tpr_access_reporting) __report_tpr_access(apic, write); } static uint32_t __apic_read(struct kvm_lapic *apic, unsigned int offset) { uint32_t val = 0; if (offset >= LAPIC_MMIO_LENGTH) return (0); switch (offset) { case APIC_ID: if (apic_x2apic_mode(apic)) val = kvm_apic_id(apic); else val = kvm_apic_id(apic) << 24; break; case APIC_ARBPRI: cmn_err(CE_WARN, "Access APIC ARBPRI register " "which is for P6\n"); break; case APIC_TMCCT: /* Timer CCR */ val = apic_get_tmcct(apic); break; case APIC_TASKPRI: report_tpr_access(apic, 0); /* fall thru */ default: apic_update_ppr(apic); val = apic_get_reg(apic, offset); break; } return (val); } static struct kvm_lapic * to_lapic(struct kvm_io_device *dev) { return ((struct kvm_lapic *)((uintptr_t)dev - offsetof(struct kvm_lapic, dev))); } int apic_reg_read(struct kvm_lapic *apic, uint32_t offset, int len, void *data) { unsigned char alignment = offset & 0xf; uint32_t result; /* this bitmask has a bit cleared for each reserver register */ static const uint64_t rmask = 0x43ff01ffffffe70cULL; if ((alignment + len) > 4) { return (1); } if (offset > 0x3f0 || !(rmask & (1ULL << (offset >> 4)))) { return (1); } result = __apic_read(apic, offset & ~0xf); KVM_TRACE2(apic__read, uint32_t, offset, uint32_t, result); switch (len) { case 1: case 2: case 4: memcpy(data, (char *)&result + alignment, len); break; default: cmn_err(CE_WARN, "Local APIC read with len = %x, " "should be 1,2, or 4 instead\n", len); break; } return (0); } static int apic_mmio_in_range(struct kvm_lapic *apic, gpa_t addr) { return (apic_hw_enabled(apic) && addr >= apic->base_address && addr < apic->base_address + LAPIC_MMIO_LENGTH); } static int apic_mmio_read(struct kvm_io_device *this, gpa_t address, int len, void *data) { struct kvm_lapic *apic = to_lapic(this); uint32_t offset = address - apic->base_address; if (!apic_mmio_in_range(apic, address)) return (-EOPNOTSUPP); apic_reg_read(apic, offset, len, data); return (0); } void update_divide_count(struct kvm_lapic *apic) { uint32_t tmp1, tmp2, tdcr; tdcr = apic_get_reg(apic, APIC_TDCR); tmp1 = tdcr & 0xf; tmp2 = ((tmp1 & 0x3) | ((tmp1 & 0x8) >> 1)) + 1; apic->divide_count = 0x1 << (tmp2 & 0x7); } void start_apic_timer(struct kvm_lapic *apic) { hrtime_t now = gethrtime(), when; struct kvm_timer *timer = &apic->lapic_timer; timer->period = (uint64_t)apic_get_reg(apic, APIC_TMICT) * APIC_BUS_CYCLE_NS * apic->divide_count; if (timer->active) { if (timer->period != 0 && !apic_lvtt_period(apic) && timer->kvm_cyc_when.cyt_interval == CY_INFINITY) { /* * If we were a one-shot timer and we remain a * one-shot timer, we will cyclic_reprogram() instead * of horsing around with removing and re-adding * the cyclic. */ timer->start = gethrtime(); timer->kvm_cyc_when.cyt_when = when = timer->start + timer->period; timer->intervals = 0; cyclic_reprogram(timer->kvm_cyclic_id, when); return; } mutex_enter(&cpu_lock); cyclic_remove(timer->kvm_cyclic_id); timer->active = 0; mutex_exit(&cpu_lock); } if (!timer->period) return; mutex_enter(&cpu_lock); timer->start = gethrtime(); /* * Do not allow the guest to program periodic timers with small * interval, since the hrtimers are not throttled by the host * scheduler. * * If it is a one shot, we want to program it differently. */ if (apic_lvtt_period(apic)) { if (timer->period < NSEC_PER_MSEC / 2) timer->period = NSEC_PER_MSEC / 2; timer->kvm_cyc_when.cyt_when = 0; timer->kvm_cyc_when.cyt_interval = timer->period; } else { timer->kvm_cyc_when.cyt_when = timer->start + timer->period; timer->kvm_cyc_when.cyt_interval = CY_INFINITY; } timer->kvm_cyclic_id = cyclic_add(&timer->kvm_cyc_handler, &timer->kvm_cyc_when); timer->active = 1; timer->intervals = 0; mutex_exit(&cpu_lock); } static void apic_manage_nmi_watchdog(struct kvm_lapic *apic, uint32_t lvt0_val) { int nmi_wd_enabled = apic_lvt_nmi_mode(apic_get_reg(apic, APIC_LVT0)); if (apic_lvt_nmi_mode(lvt0_val)) { if (!nmi_wd_enabled) apic->vcpu->kvm->arch.vapics_in_nmi_mode++; } else if (nmi_wd_enabled) apic->vcpu->kvm->arch.vapics_in_nmi_mode--; } int apic_reg_write(struct kvm_lapic *apic, uint32_t reg, uint32_t val) { int ret = 0; KVM_TRACE2(apic__write, uint32_t, reg, uint32_t, val); switch (reg) { case APIC_ID: /* Local APIC ID */ if (!apic_x2apic_mode(apic)) apic_set_reg(apic, APIC_ID, val); else ret = 1; break; case APIC_TASKPRI: report_tpr_access(apic, 1); apic_set_tpr(apic, val & 0xff); break; case APIC_EOI: apic_set_eoi(apic); break; case APIC_LDR: if (!apic_x2apic_mode(apic)) apic_set_reg(apic, APIC_LDR, val & APIC_LDR_MASK); else ret = 1; break; case APIC_DFR: if (!apic_x2apic_mode(apic)) apic_set_reg(apic, APIC_DFR, val | 0x0FFFFFFF); else ret = 1; break; case APIC_SPIV: { uint32_t mask = 0x3ff; if (apic_get_reg(apic, APIC_LVR) & APIC_LVR_DIRECTED_EOI) mask |= APIC_SPIV_DIRECTED_EOI; apic_set_reg(apic, APIC_SPIV, val & mask); if (!(val & APIC_SPIV_APIC_ENABLED)) { int i; uint32_t lvt_val; for (i = 0; i < APIC_LVT_NUM; i++) { lvt_val = apic_get_reg(apic, APIC_LVTT + 0x10 * i); apic_set_reg(apic, APIC_LVTT + 0x10 * i, lvt_val | APIC_LVT_MASKED); } apic->lapic_timer.pending = 0; } break; } case APIC_ICR: /* No delay here, so we always clear the pending bit */ apic_set_reg(apic, APIC_ICR, val & ~(1 << 12)); apic_send_ipi(apic); break; case APIC_ICR2: if (!apic_x2apic_mode(apic)) val &= 0xff000000; apic_set_reg(apic, APIC_ICR2, val); break; case APIC_LVT0: apic_manage_nmi_watchdog(apic, val); case APIC_LVTT: case APIC_LVTTHMR: case APIC_LVTPC: case APIC_LVT1: case APIC_LVTERR: /* TODO: Check vector */ if (!apic_sw_enabled(apic)) val |= APIC_LVT_MASKED; val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4]; apic_set_reg(apic, reg, val); break; case APIC_TMICT: apic_set_reg(apic, APIC_TMICT, val); start_apic_timer(apic); break; case APIC_TDCR: if (val & 4) cmn_err(CE_WARN, "KVM_WRITE:TDCR %x\n", val); apic_set_reg(apic, APIC_TDCR, val); update_divide_count(apic); break; case APIC_ESR: if (apic_x2apic_mode(apic) && val != 0) { cmn_err(CE_WARN, "KVM_WRITE:ESR not zero %x\n", val); ret = 1; } break; case APIC_SELF_IPI: if (apic_x2apic_mode(apic)) { apic_reg_write(apic, APIC_ICR, 0x40000 | (val & 0xff)); } else ret = 1; break; default: ret = 1; break; } return (ret); } static int apic_mmio_write(struct kvm_io_device *this, gpa_t address, int len, const void *data) { struct kvm_lapic *apic = to_lapic(this); unsigned int offset = address - apic->base_address; uint32_t val; if (!apic_mmio_in_range(apic, address)) return (-EOPNOTSUPP); /* * APIC register must be aligned on 128-bits boundary. * 32/64/128 bits registers must be accessed thru 32 bits. * Refer SDM 8.4.1 */ if (len != 4 || (offset & 0xf)) { /* Don't shout loud, $infamous_os would cause only noise. */ return (0); } val = *(uint32_t *)data; apic_reg_write(apic, offset & 0xff0, val); return (0); } void kvm_free_lapic(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; if (apic == NULL) return; mutex_enter(&cpu_lock); if (apic->lapic_timer.active) cyclic_remove(apic->lapic_timer.kvm_cyclic_id); mutex_exit(&cpu_lock); if (apic->regs) kmem_free(apic->regs, PAGESIZE); kmem_free(vcpu->arch.apic, sizeof (struct kvm_lapic)); } /* * Local APIC interface. */ void kvm_lapic_set_tpr(struct kvm_vcpu *vcpu, unsigned long cr8) { struct kvm_lapic *apic = vcpu->arch.apic; if (!apic) return; apic_set_tpr(apic, ((cr8 & 0x0f) << 4) | (apic_get_reg(apic, APIC_TASKPRI) & 4)); } uint64_t kvm_lapic_get_cr8(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; uint64_t tpr; if (apic == NULL) return (0); tpr = (uint64_t)apic_get_reg(apic, APIC_TASKPRI); return ((tpr & 0xf0) >> 4); } void kvm_lapic_set_base(struct kvm_vcpu *vcpu, uint64_t value) { struct kvm_lapic *apic = vcpu->arch.apic; if (!apic) { value |= MSR_IA32_APICBASE_BSP; vcpu->arch.apic_base = value; return; } if (!kvm_vcpu_is_bsp(apic->vcpu)) value &= ~MSR_IA32_APICBASE_BSP; vcpu->arch.apic_base = value; if (apic_x2apic_mode(apic)) { uint32_t id = kvm_apic_id(apic); uint32_t ldr = ((id & ~0xf) << 16) | (1 << (id & 0xf)); apic_set_reg(apic, APIC_LDR, ldr); } apic->base_address = apic->vcpu->arch.apic_base & MSR_IA32_APICBASE_BASE; } void kvm_lapic_reset(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic; int i; ASSERT(vcpu); apic = vcpu->arch.apic; ASSERT(apic != NULL); /* Stop the timer in case it's a reset to an active apic */ mutex_enter(&cpu_lock); if (apic->lapic_timer.active) { cyclic_remove(apic->lapic_timer.kvm_cyclic_id); apic->lapic_timer.active = 0; } mutex_exit(&cpu_lock); apic_set_reg(apic, APIC_ID, vcpu->vcpu_id << 24); kvm_apic_set_version(apic->vcpu); for (i = 0; i < APIC_LVT_NUM; i++) apic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); apic_set_reg(apic, APIC_LVT0, SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); apic_set_reg(apic, APIC_DFR, 0xffffffffU); apic_set_reg(apic, APIC_SPIV, 0xff); apic_set_reg(apic, APIC_TASKPRI, 0); apic_set_reg(apic, APIC_LDR, 0); apic_set_reg(apic, APIC_ESR, 0); apic_set_reg(apic, APIC_ICR, 0); apic_set_reg(apic, APIC_ICR2, 0); apic_set_reg(apic, APIC_TDCR, 0); apic_set_reg(apic, APIC_TMICT, 0); for (i = 0; i < 8; i++) { apic_set_reg(apic, APIC_IRR + 0x10 * i, 0); apic_set_reg(apic, APIC_ISR + 0x10 * i, 0); apic_set_reg(apic, APIC_TMR + 0x10 * i, 0); } apic->irr_pending = 0; update_divide_count(apic); apic->lapic_timer.pending = 0; if (kvm_vcpu_is_bsp(vcpu)) vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; apic_update_ppr(apic); vcpu->arch.apic_arb_prio = 0; cmn_err(CE_CONT, "!%s: vcpu=%p, id=%d, base_msr= %lx PRIx64 " "base_address=%lx\n", __func__, vcpu, kvm_apic_id(apic), vcpu->arch.apic_base, apic->base_address); } int kvm_apic_present(struct kvm_vcpu *vcpu) { return (vcpu->arch.apic && apic_hw_enabled(vcpu->arch.apic)); } int kvm_lapic_enabled(struct kvm_vcpu *vcpu) { return (kvm_apic_present(vcpu) && apic_sw_enabled(vcpu->arch.apic)); } /* * APIC timer interface */ static int lapic_is_periodic(struct kvm_timer *ktimer) { struct kvm_lapic *apic = (struct kvm_lapic *)((caddr_t)ktimer - offsetof(struct kvm_lapic, lapic_timer)); return (apic_lvtt_period(apic)); } int apic_has_pending_timer(struct kvm_vcpu *vcpu) { struct kvm_lapic *lapic = vcpu->arch.apic; if (lapic && apic_enabled(lapic) && apic_lvt_enabled(lapic, APIC_LVTT)) return (lapic->lapic_timer.pending); return (0); } static int kvm_apic_local_deliver(struct kvm_lapic *apic, int lvt_type) { uint32_t reg = apic_get_reg(apic, lvt_type); int vector, mode, trig_mode; if (apic_hw_enabled(apic) && !(reg & APIC_LVT_MASKED)) { vector = reg & APIC_VECTOR_MASK; mode = reg & APIC_MODE_MASK; trig_mode = reg & APIC_LVT_LEVEL_TRIGGER; return (__apic_accept_irq(apic, mode, vector, 1, trig_mode)); } return (0); } void kvm_apic_nmi_wd_deliver(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; if (apic) kvm_apic_local_deliver(apic, APIC_LVT0); } static struct kvm_timer_ops lapic_timer_ops = { .is_periodic = lapic_is_periodic, }; static const struct kvm_io_device_ops apic_mmio_ops = { .read = apic_mmio_read, .write = apic_mmio_write, }; int kvm_create_lapic(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic; ASSERT(vcpu != NULL); apic = kmem_zalloc(sizeof (*apic), KM_SLEEP); if (!apic) goto nomem; vcpu->arch.apic = apic; apic->regs = kmem_zalloc(PAGESIZE, KM_SLEEP); memset(apic->regs, 0, PAGESIZE); apic->vcpu = vcpu; apic->lapic_timer.kvm_cyc_handler.cyh_func = kvm_timer_fire; apic->lapic_timer.kvm_cyc_handler.cyh_arg = &apic->lapic_timer; apic->lapic_timer.kvm_cyc_handler.cyh_level = CY_LOW_LEVEL; apic->lapic_timer.active = 0; apic->lapic_timer.t_ops = &lapic_timer_ops; apic->lapic_timer.kvm = vcpu->kvm; apic->lapic_timer.vcpu = vcpu; apic->base_address = APIC_DEFAULT_PHYS_BASE; vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE; kvm_lapic_reset(vcpu); kvm_iodevice_init(&apic->dev, &apic_mmio_ops); apic->dev.lapic = apic; return (0); nomem_free_apic: if (apic) kmem_free(apic, sizeof (struct kvm_lapic)); nomem: return (-ENOMEM); } int kvm_apic_has_interrupt(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; int highest_irr; if (!apic || !apic_enabled(apic)) return (-1); apic_update_ppr(apic); highest_irr = apic_find_highest_irr(apic); if ((highest_irr == -1) || ((highest_irr & 0xF0) <= apic_get_reg(apic, APIC_PROCPRI))) return (-1); return (highest_irr); } int kvm_apic_accept_pic_intr(struct kvm_vcpu *vcpu) { uint32_t lvt0 = apic_get_reg(vcpu->arch.apic, APIC_LVT0); int r = 0; if (kvm_vcpu_is_bsp(vcpu)) { if (!apic_hw_enabled(vcpu->arch.apic)) r = 1; if ((lvt0 & APIC_LVT_MASKED) == 0 && GET_APIC_DELIVERY_MODE(lvt0) == APIC_MODE_EXTINT) r = 1; } return (r); } void kvm_inject_apic_timer_irqs(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; if (apic && apic->lapic_timer.pending > 0) { if (kvm_apic_local_deliver(apic, APIC_LVTT)) atomic_dec_32((volatile uint32_t *)&apic-> lapic_timer.pending); } } int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu) { int vector = kvm_apic_has_interrupt(vcpu); struct kvm_lapic *apic = vcpu->arch.apic; if (vector == -1) return (-1); apic_set_vector(vector, (void *)((uintptr_t)apic->regs + APIC_ISR)); apic_update_ppr(apic); apic_clear_irr(vector, apic); return (vector); } void kvm_apic_post_state_restore(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; apic->base_address = vcpu->arch.apic_base & MSR_IA32_APICBASE_BASE; kvm_apic_set_version(vcpu); apic_update_ppr(apic); update_divide_count(apic); start_apic_timer(apic); apic->irr_pending = 1; } void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) { uint32_t data; void *vapic; if (!irqchip_in_kernel(vcpu->kvm) || !vcpu->arch.apic->vapic_addr) return; vapic = page_address(vcpu->arch.apic->vapic_page); data = *(uint32_t *)((uintptr_t)vapic + offset_in_page(vcpu->arch.apic->vapic_addr)); apic_set_tpr(vcpu->arch.apic, data & 0xff); } void kvm_lapic_sync_to_vapic(struct kvm_vcpu *vcpu) { uint32_t data, tpr; int max_irr, max_isr; struct kvm_lapic *apic; void *vapic; if (!irqchip_in_kernel(vcpu->kvm) || !vcpu->arch.apic->vapic_addr) return; apic = vcpu->arch.apic; tpr = apic_get_reg(apic, APIC_TASKPRI) & 0xff; max_irr = apic_find_highest_irr(apic); if (max_irr < 0) max_irr = 0; max_isr = apic_find_highest_isr(apic); if (max_isr < 0) max_isr = 0; data = (tpr & 0xff) | ((max_isr & 0xf0) << 8) | (max_irr << 24); vapic = page_address(vcpu->arch.apic->vapic_page); *(uint32_t *)((uintptr_t)vapic + offset_in_page(vcpu->arch.apic->vapic_addr)) = data; } int kvm_lapic_set_vapic_addr(struct kvm_vcpu *vcpu, struct kvm_vapic_addr *va) { if (!irqchip_in_kernel(vcpu->kvm)) return (EINVAL); vcpu->arch.apic->vapic_addr = va->vapic_addr; return (0); } int kvm_x2apic_msr_write(struct kvm_vcpu *vcpu, uint32_t msr, uint64_t data) { struct kvm_lapic *apic = vcpu->arch.apic; uint32_t reg = (msr - APIC_BASE_MSR) << 4; if (!irqchip_in_kernel(vcpu->kvm) || !apic_x2apic_mode(apic)) return (1); /* if this is ICR write vector before command */ if (msr == 0x830) apic_reg_write(apic, APIC_ICR2, (uint32_t)(data >> 32)); return (apic_reg_write(apic, reg, (uint32_t)data)); } int kvm_x2apic_msr_read(struct kvm_vcpu *vcpu, uint32_t msr, uint64_t *data) { struct kvm_lapic *apic = vcpu->arch.apic; uint32_t reg = (msr - APIC_BASE_MSR) << 4, low, high = 0; if (!irqchip_in_kernel(vcpu->kvm) || !apic_x2apic_mode(apic)) return (1); if (apic_reg_read(apic, reg, 4, &low)) return (1); if (msr == 0x830) apic_reg_read(apic, APIC_ICR2, 4, &high); *data = (((uint64_t)high) << 32) | low; return (0); } int kvm_hv_vapic_msr_write(struct kvm_vcpu *vcpu, uint32_t reg, uint64_t data) { struct kvm_lapic *apic = vcpu->arch.apic; if (!irqchip_in_kernel(vcpu->kvm)) return (1); /* if this is ICR write vector before command */ if (reg == APIC_ICR) apic_reg_write(apic, APIC_ICR2, (uint32_t)(data >> 32)); return (apic_reg_write(apic, reg, (uint32_t)data)); } int kvm_hv_vapic_msr_read(struct kvm_vcpu *vcpu, uint32_t reg, uint64_t *data) { struct kvm_lapic *apic = vcpu->arch.apic; uint32_t low, high = 0; if (!irqchip_in_kernel(vcpu->kvm)) return (1); if (apic_reg_read(apic, reg, 4, &low)) return (1); if (reg == APIC_ICR) apic_reg_read(apic, APIC_ICR2, 4, &high); *data = (((uint64_t)high) << 32) | low; return (0); }