/* * Sleepable Read-Copy Update mechanism for mutual exclusion. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2006 * * Author: Paul McKenney * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) || \ (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33) && defined(CONFIG_SMP)) /* * srcu_readers_active_idx -- returns approximate number of readers * active on the specified rank of per-CPU counters. */ static int srcu_readers_active_idx(struct srcu_struct *sp, int idx) { int cpu; int sum; sum = 0; for_each_possible_cpu(cpu) sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]; return sum; } /* * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). */ static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)) { int idx; idx = sp->completed; mutex_lock(&sp->mutex); /* * Check to see if someone else did the work for us while we were * waiting to acquire the lock. We need -two- advances of * the counter, not just one. If there was but one, we might have * shown up -after- our helper's first synchronize_sched(), thus * having failed to prevent CPU-reordering races with concurrent * srcu_read_unlock()s on other CPUs (see comment below). So we * either (1) wait for two or (2) supply the second ourselves. */ if ((sp->completed - idx) >= 2) { mutex_unlock(&sp->mutex); return; } sync_func(); /* Force memory barrier on all CPUs. */ /* * The preceding synchronize_sched() ensures that any CPU that * sees the new value of sp->completed will also see any preceding * changes to data structures made by this CPU. This prevents * some other CPU from reordering the accesses in its SRCU * read-side critical section to precede the corresponding * srcu_read_lock() -- ensuring that such references will in * fact be protected. * * So it is now safe to do the flip. */ idx = sp->completed & 0x1; sp->completed++; sync_func(); /* Force memory barrier on all CPUs. */ /* * At this point, because of the preceding synchronize_sched(), * all srcu_read_lock() calls using the old counters have completed. * Their corresponding critical sections might well be still * executing, but the srcu_read_lock() primitives themselves * will have finished executing. */ while (srcu_readers_active_idx(sp, idx)) schedule_timeout_interruptible(1); sync_func(); /* Force memory barrier on all CPUs. */ /* * The preceding synchronize_sched() forces all srcu_read_unlock() * primitives that were executing concurrently with the preceding * for_each_possible_cpu() loop to have completed by this point. * More importantly, it also forces the corresponding SRCU read-side * critical sections to have also completed, and the corresponding * references to SRCU-protected data items to be dropped. * * Note: * * Despite what you might think at first glance, the * preceding synchronize_sched() -must- be within the * critical section ended by the following mutex_unlock(). * Otherwise, a task taking the early exit can race * with a srcu_read_unlock(), which might have executed * just before the preceding srcu_readers_active() check, * and whose CPU might have reordered the srcu_read_unlock() * with the preceding critical section. In this case, there * is nothing preventing the synchronize_sched() task that is * taking the early exit from freeing a data structure that * is still being referenced (out of order) by the task * doing the srcu_read_unlock(). * * Alternatively, the comparison with "2" on the early exit * could be changed to "3", but this increases synchronize_srcu() * latency for bulk loads. So the current code is preferred. */ mutex_unlock(&sp->mutex); } #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) #undef kvm_init_srcu_struct #undef kvm_cleanup_srcu_struct #undef kvm_srcu_read_lock #undef kvm_srcu_read_unlock #undef kvm_synchronize_srcu #undef kvm_srcu_batches_completed static int srcu_readers_active_idx(struct srcu_struct *sp, int idx); static void __synchronize_srcu(struct srcu_struct *sp, void (*sync_func)(void)); /** * init_srcu_struct - initialize a sleep-RCU structure * @sp: structure to initialize. * * Must invoke this on a given srcu_struct before passing that srcu_struct * to any other function. Each srcu_struct represents a separate domain * of SRCU protection. */ int kvm_init_srcu_struct(struct srcu_struct *sp) { sp->completed = 0; mutex_init(&sp->mutex); sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); return (sp->per_cpu_ref ? 0 : -ENOMEM); } /** * srcu_readers_active - returns approximate number of readers. * @sp: which srcu_struct to count active readers (holding srcu_read_lock). * * Note that this is not an atomic primitive, and can therefore suffer * severe errors when invoked on an active srcu_struct. That said, it * can be useful as an error check at cleanup time. */ static int srcu_readers_active(struct srcu_struct *sp) { return srcu_readers_active_idx(sp, 0) + srcu_readers_active_idx(sp, 1); } /** * cleanup_srcu_struct - deconstruct a sleep-RCU structure * @sp: structure to clean up. * * Must invoke this after you are finished using a given srcu_struct that * was initialized via init_srcu_struct(), else you leak memory. */ void kvm_cleanup_srcu_struct(struct srcu_struct *sp) { int sum; sum = srcu_readers_active(sp); WARN_ON(sum); /* Leakage unless caller handles error. */ if (sum != 0) return; free_percpu(sp->per_cpu_ref); sp->per_cpu_ref = NULL; } /** * srcu_read_lock - register a new reader for an SRCU-protected structure. * @sp: srcu_struct in which to register the new reader. * * Counts the new reader in the appropriate per-CPU element of the * srcu_struct. Must be called from process context. * Returns an index that must be passed to the matching srcu_read_unlock(). */ int kvm_srcu_read_lock(struct srcu_struct *sp) { int idx; preempt_disable(); idx = sp->completed & 0x1; barrier(); /* ensure compiler looks -once- at sp->completed. */ per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]++; srcu_barrier(); /* ensure compiler won't misorder critical section. */ preempt_enable(); return idx; } /** * srcu_read_unlock - unregister a old reader from an SRCU-protected structure. * @sp: srcu_struct in which to unregister the old reader. * @idx: return value from corresponding srcu_read_lock(). * * Removes the count for the old reader from the appropriate per-CPU * element of the srcu_struct. Note that this may well be a different * CPU than that which was incremented by the corresponding srcu_read_lock(). * Must be called from process context. */ void kvm_srcu_read_unlock(struct srcu_struct *sp, int idx) { preempt_disable(); srcu_barrier(); /* ensure compiler won't misorder critical section. */ per_cpu_ptr(sp->per_cpu_ref, smp_processor_id())->c[idx]--; preempt_enable(); } /** * synchronize_srcu - wait for prior SRCU read-side critical-section completion * @sp: srcu_struct with which to synchronize. * * Flip the completed counter, and wait for the old count to drain to zero. * As with classic RCU, the updater must use some separate means of * synchronizing concurrent updates. Can block; must be called from * process context. * * Note that it is illegal to call synchronize_srcu() from the corresponding * SRCU read-side critical section; doing so will result in deadlock. * However, it is perfectly legal to call synchronize_srcu() on one * srcu_struct from some other srcu_struct's read-side critical section. */ void kvm_synchronize_srcu(struct srcu_struct *sp) { __synchronize_srcu(sp, synchronize_sched); } /** * srcu_batches_completed - return batches completed. * @sp: srcu_struct on which to report batch completion. * * Report the number of batches, correlated with, but not necessarily * precisely the same as, the number of grace periods that have elapsed. */ long kvm_srcu_batches_completed(struct srcu_struct *sp) { return sp->completed; } EXPORT_SYMBOL_GPL(kvm_init_srcu_struct); EXPORT_SYMBOL_GPL(kvm_cleanup_srcu_struct); EXPORT_SYMBOL_GPL(kvm_srcu_read_lock); EXPORT_SYMBOL_GPL(kvm_srcu_read_unlock); EXPORT_SYMBOL_GPL(kvm_synchronize_srcu); EXPORT_SYMBOL_GPL(kvm_srcu_batches_completed); #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33) && defined(CONFIG_SMP) struct sync_req { struct list_head list; bool pending; bool success; struct completion done; }; static DEFINE_PER_CPU(struct sync_req, sync_req); static DEFINE_PER_CPU(struct task_struct *, sync_thread); static DEFINE_MUTEX(rcu_sched_expedited_mutex); static long synchronize_sched_expedited_count; static int kvm_rcu_sync_thread(void *data) { int badcpu; int cpu = (long)data; struct sync_req *req = &per_cpu(sync_req, cpu); set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { if (!req->pending) { schedule(); set_current_state(TASK_INTERRUPTIBLE); continue; } req->pending = false; preempt_disable(); badcpu = smp_processor_id(); if (likely(cpu == badcpu)) { req->success = true; } else { req->success = false; WARN_ONCE(1, "kvm_rcu_sync_thread() on CPU %d, " "expected %d\n", badcpu, cpu); } preempt_enable(); complete(&req->done); } __set_current_state(TASK_RUNNING); return 0; } static void kvm_synchronize_sched_expedited(void) { int cpu; bool need_full_sync = 0; struct sync_req *req; long snap; int trycount = 0; smp_mb(); /* ensure prior mod happens before capturing snap. */ snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; get_online_cpus(); while (!mutex_trylock(&rcu_sched_expedited_mutex)) { put_online_cpus(); if (trycount++ < 10) udelay(trycount * num_online_cpus()); else { synchronize_sched(); return; } if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { smp_mb(); /* ensure test happens before caller kfree */ return; } get_online_cpus(); } for_each_online_cpu(cpu) { req = &per_cpu(sync_req, cpu); init_completion(&req->done); smp_wmb(); req->pending = true; wake_up_process(per_cpu(sync_thread, cpu)); } for_each_online_cpu(cpu) { req = &per_cpu(sync_req, cpu); wait_for_completion(&req->done); if (unlikely(!req->success)) need_full_sync = 1; } synchronize_sched_expedited_count++; mutex_unlock(&rcu_sched_expedited_mutex); put_online_cpus(); if (need_full_sync) synchronize_sched(); } /** * synchronize_srcu_expedited - like synchronize_srcu, but less patient * @sp: srcu_struct with which to synchronize. * * Flip the completed counter, and wait for the old count to drain to zero. * As with classic RCU, the updater must use some separate means of * synchronizing concurrent updates. Can block; must be called from * process context. * * Note that it is illegal to call synchronize_srcu_expedited() * from the corresponding SRCU read-side critical section; doing so * will result in deadlock. However, it is perfectly legal to call * synchronize_srcu_expedited() on one srcu_struct from some other * srcu_struct's read-side critical section. */ void kvm_synchronize_srcu_expedited(struct srcu_struct *sp) { __synchronize_srcu(sp, kvm_synchronize_sched_expedited); } EXPORT_SYMBOL_GPL(kvm_synchronize_srcu_expedited); static struct sched_param sync_thread_param = { .sched_priority = MAX_RT_PRIO-1 }; #ifdef CONFIG_HOTPLUG_CPU #include static int cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { int hotcpu = (unsigned long)hcpu; struct task_struct *p; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: p = kthread_create(kvm_rcu_sync_thread, hcpu, "kvmsrcusync/%d", hotcpu); if (IS_ERR(p)) { printk(KERN_ERR "kvm: kvmsrcsync for %d failed\n", hotcpu); return NOTIFY_BAD; } kthread_bind(p, hotcpu); sched_setscheduler(p, SCHED_FIFO, &sync_thread_param); per_cpu(sync_thread, hotcpu) = p; break; case CPU_ONLINE: case CPU_ONLINE_FROZEN: wake_up_process(per_cpu(sync_thread, hotcpu)); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: if (!per_cpu(sync_thread, hotcpu)) break; /* Unbind so it can run. Fall thru. */ kthread_bind(per_cpu(sync_thread, hotcpu), cpumask_any(cpu_online_mask)); case CPU_DEAD: case CPU_DEAD_FROZEN: p = per_cpu(sync_thread, hotcpu); per_cpu(sync_thread, hotcpu) = NULL; kthread_stop(p); break; } return NOTIFY_OK; } static struct notifier_block cpu_nfb = { .notifier_call = cpu_callback }; #endif /* CONFIG_HOTPLUG_CPU */ int kvm_init_srcu(void) { struct task_struct *p; int cpu; int err; get_online_cpus(); for_each_online_cpu(cpu) { p = kthread_create(kvm_rcu_sync_thread, (void *)(long)cpu, "kvmsrcusync/%d", cpu); if (IS_ERR(p)) goto error_out; kthread_bind(p, cpu); sched_setscheduler(p, SCHED_FIFO, &sync_thread_param); per_cpu(sync_thread, cpu) = p; wake_up_process(p); } #ifdef CONFIG_HOTPLUG_CPU register_cpu_notifier(&cpu_nfb); #endif /* CONFIG_HOTPLUG_CPU */ put_online_cpus(); return 0; error_out: put_online_cpus(); printk(KERN_ERR "kvm: kvmsrcsync for %d failed\n", cpu); err = PTR_ERR(p); kvm_exit_srcu(); return err; } void kvm_exit_srcu(void) { int cpu; #ifdef CONFIG_HOTPLUG_CPU unregister_cpu_notifier(&cpu_nfb); #endif /* CONFIG_HOTPLUG_CPU */ for_each_online_cpu(cpu) if (per_cpu(sync_thread, cpu)) kthread_stop(per_cpu(sync_thread, cpu)); } #else int kvm_init_srcu(void) { return 0; } void kvm_exit_srcu(void) { } #endif