summaryrefslogtreecommitdiff
path: root/src/zcompile/parser-util.c
diff options
context:
space:
mode:
authorOndřej Surý <ondrej@sury.org>2011-11-02 22:44:12 +0100
committerOndřej Surý <ondrej@sury.org>2011-11-02 22:44:12 +0100
commitc8d5977bb546dae9ed59d81556639c49badd8121 (patch)
tree4c86750db26c1c3502b60f2cd78ca9611cfa01d6 /src/zcompile/parser-util.c
downloadknot-upstream/0.8.0_pre1.tar.gz
Imported Upstream version 0.8.0~pre1upstream/0.8.0_pre1
Diffstat (limited to 'src/zcompile/parser-util.c')
-rw-r--r--src/zcompile/parser-util.c2435
1 files changed, 2435 insertions, 0 deletions
diff --git a/src/zcompile/parser-util.c b/src/zcompile/parser-util.c
new file mode 100644
index 0000000..e7733ef
--- /dev/null
+++ b/src/zcompile/parser-util.c
@@ -0,0 +1,2435 @@
+/*!
+ * \file parser-util.c
+ *
+ * \author NLnet Labs
+ * Copyright (c) 2001-2011, NLnet Labs. All rights reserved.
+ *
+ * \brief utility functions for zone parser.
+ *
+ * \addtogroup zoneparser
+ * @{
+ */
+
+/*
+ * Copyright (c) 2001-2011, NLnet Labs. All rights reserved.
+ *
+ * This software is open source.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of the NLNET LABS nor the names of its contributors may
+ * be used to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <config.h>
+#include <assert.h>
+#include <fcntl.h>
+#include <ctype.h>
+#include <errno.h>
+#include <limits.h>
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <stdlib.h>
+#include <time.h>
+#include <netinet/in.h>
+#include <sys/socket.h>
+#include <netdb.h>
+
+//#include "common.h"
+#include "common/base32hex.h"
+#include "zcompile/parser-util.h"
+#include "zcompile/zcompile.h"
+#include "libknot/util/descriptor.h"
+#include "libknot/util/utils.h"
+#include "zcompile/zcompile-error.h"
+
+#define IP6ADDRLEN (128/8)
+#define NS_INT16SZ 2
+#define NS_INADDRSZ 4
+#define NS_IN6ADDRSZ 16
+#define APL_NEGATION_MASK 0x80U
+
+/* int
+ * inet_pton(af, src, dst)
+ * convert from presentation format (which usually means ASCII printable)
+ * to network format (which is usually some kind of binary format).
+ * return:
+ * 1 if the address was valid for the specified address family
+ * 0 if the address wasn't valid (`dst' is untouched in this case)
+ * -1 if some other error occurred (`dst' is untouched in this case, too)
+ * author:
+ * Paul Vixie, 1996.
+ */
+int inet_pton(int af, const char *src, void *dst)
+{
+ switch (af) {
+ case AF_INET:
+ return (inet_pton4(src, dst));
+ case AF_INET6:
+ return (inet_pton6(src, dst));
+ default:
+ errno = EAFNOSUPPORT;
+ return (-1);
+ }
+ /* NOTREACHED */
+}
+
+//int my_b32_pton(const char *src, uint8_t *target, size_t tsize)
+//{
+// char ch;
+// size_t p = 0;
+
+// memset(target, '\0', tsize);
+// while ((ch = *src++)) {
+// uint8_t d;
+// size_t b;
+// size_t n;
+
+// if (p + 5 >= tsize * 8) {
+// return -1;
+// }
+
+// if (isspace(ch)) {
+// continue;
+// }
+
+// if (ch >= '0' && ch <= '9') {
+// d = ch - '0';
+// } else if (ch >= 'A' && ch <= 'V') {
+// d = ch - 'A' + 10;
+// } else if (ch >= 'a' && ch <= 'v') {
+// d = ch - 'a' + 10;
+// } else {
+// return -1;
+// }
+
+// b = 7 - p % 8;
+// n = p / 8;
+
+// if (b >= 4) {
+// target[n] |= d << (b - 4);
+// } else {
+// target[n] |= d >> (4 - b);
+// target[n+1] |= d << (b + 4);
+// }
+// p += 5;
+// }
+// return (p + 7) / 8;
+//}
+
+
+#define Assert(Cond) if (!(Cond)) abort()
+
+static const char Base64[] =
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+static const char Pad64 = '=';
+
+/* int
+ * inet_pton4(src, dst)
+ * like inet_aton() but without all the hexadecimal and shorthand.
+ * return:
+ * 1 if `src' is a valid dotted quad, else 0.
+ * notice:
+ * does not touch `dst' unless it's returning 1.
+ * author:
+ * Paul Vixie, 1996.
+ */
+int inet_pton4(const char *src, uint8_t *dst)
+{
+ static const char digits[] = "0123456789";
+ int saw_digit, octets, ch;
+ uint8_t tmp[NS_INADDRSZ], *tp;
+
+ saw_digit = 0;
+ octets = 0;
+ *(tp = tmp) = 0;
+ while ((ch = *src++) != '\0') {
+ const char *pch;
+
+ if ((pch = strchr(digits, ch)) != NULL) {
+ uint32_t new = *tp * 10 + (pch - digits);
+
+ if (new > 255) {
+ return (0);
+ }
+ *tp = new;
+ if (! saw_digit) {
+ if (++octets > 4) {
+ return (0);
+ }
+ saw_digit = 1;
+ }
+ } else if (ch == '.' && saw_digit) {
+ if (octets == 4) {
+ return (0);
+ }
+ *++tp = 0;
+ saw_digit = 0;
+ } else {
+ return (0);
+ }
+ }
+ if (octets < 4) {
+ return (0);
+ }
+
+ memcpy(dst, tmp, NS_INADDRSZ);
+ return (1);
+}
+
+/* int
+ * inet_pton6(src, dst)
+ * convert presentation level address to network order binary form.
+ * return:
+ * 1 if `src' is a valid [RFC1884 2.2] address, else 0.
+ * notice:
+ * (1) does not touch `dst' unless it's returning 1.
+ * (2) :: in a full address is silently ignored.
+ * credit:
+ * inspired by Mark Andrews.
+ * author:
+ * Paul Vixie, 1996.
+ */
+int inet_pton6(const char *src, uint8_t *dst)
+{
+ static const char xdigits_l[] = "0123456789abcdef",
+ xdigits_u[] = "0123456789ABCDEF";
+ uint8_t tmp[NS_IN6ADDRSZ], *tp, *endp, *colonp;
+ const char *xdigits, *curtok;
+ int ch, saw_xdigit;
+ uint32_t val;
+
+ memset((tp = tmp), '\0', NS_IN6ADDRSZ);
+ endp = tp + NS_IN6ADDRSZ;
+ colonp = NULL;
+ /* Leading :: requires some special handling. */
+ if (*src == ':')
+ if (*++src != ':') {
+ return (0);
+ }
+ curtok = src;
+ saw_xdigit = 0;
+ val = 0;
+ while ((ch = *src++) != '\0') {
+ const char *pch;
+
+ if ((pch = strchr((xdigits = xdigits_l), ch)) == NULL) {
+ pch = strchr((xdigits = xdigits_u), ch);
+ }
+ if (pch != NULL) {
+ val <<= 4;
+ val |= (pch - xdigits);
+ if (val > 0xffff) {
+ return (0);
+ }
+ saw_xdigit = 1;
+ continue;
+ }
+ if (ch == ':') {
+ curtok = src;
+ if (!saw_xdigit) {
+ if (colonp) {
+ return (0);
+ }
+ colonp = tp;
+ continue;
+ }
+ if (tp + NS_INT16SZ > endp) {
+ return (0);
+ }
+ *tp++ = (uint8_t)(val >> 8) & 0xff;
+ *tp++ = (uint8_t) val & 0xff;
+ saw_xdigit = 0;
+ val = 0;
+ continue;
+ }
+ if (ch == '.' && ((tp + NS_INADDRSZ) <= endp) &&
+ inet_pton4(curtok, tp) > 0) {
+ tp += NS_INADDRSZ;
+ saw_xdigit = 0;
+ break; /* '\0' was seen by inet_pton4(). */
+ }
+ return (0);
+ }
+ if (saw_xdigit) {
+ if (tp + NS_INT16SZ > endp) {
+ return (0);
+ }
+ *tp++ = (uint8_t)(val >> 8) & 0xff;
+ *tp++ = (uint8_t) val & 0xff;
+ }
+ if (colonp != NULL) {
+ /*
+ * Since some memmove()'s erroneously fail to handle
+ * overlapping regions, we'll do the shift by hand.
+ */
+ const int n = tp - colonp;
+ int i;
+
+ for (i = 1; i <= n; i++) {
+ endp[- i] = colonp[n - i];
+ colonp[n - i] = 0;
+ }
+ tp = endp;
+ }
+ if (tp != endp) {
+ return (0);
+ }
+ memcpy(dst, tmp, NS_IN6ADDRSZ);
+ return (1);
+}
+
+
+#ifndef IN6ADDRSZ
+#define IN6ADDRSZ 16 /* IPv6 T_AAAA */
+#endif
+
+#ifndef INT16SZ
+#define INT16SZ 2 /* for systems without 16-bit ints */
+#endif
+
+/*
+ * WARNING: Don't even consider trying to compile this on a system where
+ * sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
+ */
+
+
+/* char *
+ * inet_ntop(af, src, dst, size)
+ * convert a network format address to presentation format.
+ * return:
+ * pointer to presentation format address (`dst'), or NULL (see errno).
+ * author:
+ * Paul Vixie, 1996.
+ */
+//const char *inet_ntop(int af, const void *src, char *dst, size_t size)
+//{
+// switch (af) {
+// case AF_INET:
+// return (inet_ntop4(src, dst, size));
+// case AF_INET6:
+// return (inet_ntop6(src, dst, size));
+// default:
+// errno = EAFNOSUPPORT;
+// return (NULL);
+// }
+// /* NOTREACHED */
+//}
+
+/* const char *
+ * inet_ntop4(src, dst, size)
+ * format an IPv4 address, more or less like inet_ntoa()
+ * return:
+ * `dst' (as a const)
+ * notes:
+ * (1) uses no statics
+ * (2) takes a u_char* not an in_addr as input
+ * author:
+ * Paul Vixie, 1996.
+ */
+const char *inet_ntop4(const u_char *src, char *dst, size_t size)
+{
+ static const char fmt[] = "%u.%u.%u.%u";
+ char tmp[sizeof "255.255.255.255"];
+ int l;
+
+ l = snprintf(tmp, size, fmt, src[0], src[1], src[2], src[3]);
+ if (l <= 0 || l >= (int)size) {
+ errno = ENOSPC;
+ return (NULL);
+ }
+ knot_strlcpy(dst, tmp, size);
+ return (dst);
+}
+
+/* const char *
+ * inet_ntop6(src, dst, size)
+ * convert IPv6 binary address into presentation (printable) format
+ * author:
+ * Paul Vixie, 1996.
+ */
+const char *inet_ntop6(const u_char *src, char *dst, size_t size)
+{
+ /*
+ * Note that int32_t and int16_t need only be "at least" large enough
+ * to contain a value of the specified size. On some systems, like
+ * Crays, there is no such thing as an integer variable with 16 bits.
+ * Keep this in mind if you think this function should have been coded
+ * to use pointer overlays. All the world's not a VAX.
+ */
+ char tmp[sizeof "ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255"];
+ char *tp, *ep;
+ struct {
+ int base, len;
+ } best, cur;
+ best.base = cur.base =-1;
+ best.len = cur.len = 0;
+ u_int words[IN6ADDRSZ / INT16SZ];
+ int i;
+ int advance;
+
+ /*
+ * Preprocess:
+ * Copy the input (bytewise) array into a wordwise array.
+ * Find the longest run of 0x00's in src[] for :: shorthanding.
+ */
+ memset(words, '\0', sizeof words);
+ for (i = 0; i < IN6ADDRSZ; i++) {
+ words[i / 2] |= (src[i] << ((1 - (i % 2)) << 3));
+ }
+
+ for (i = 0; i < (IN6ADDRSZ / INT16SZ); i++) {
+ if (words[i] == 0) {
+ if (cur.base == -1) {
+ cur.base = i, cur.len = 1;
+ } else {
+ cur.len++;
+ }
+ } else {
+ if (cur.base != -1) {
+ if (best.base == -1 || cur.len > best.len) {
+ best = cur;
+ }
+ cur.base = -1;
+ }
+ }
+ }
+ if (cur.base != -1) {
+ if (best.base == -1 || cur.len > best.len) {
+ best = cur;
+ }
+ }
+ if (best.base != -1 && best.len < 2) {
+ best.base = -1;
+ }
+
+ /*
+ * Format the result.
+ */
+ tp = tmp;
+ ep = tmp + sizeof(tmp);
+ for (i = 0; i < (IN6ADDRSZ / INT16SZ) && tp < ep; i++) {
+ /* Are we inside the best run of 0x00's? */
+ if (best.base != -1 && i >= best.base &&
+ i < (best.base + best.len)) {
+ if (i == best.base) {
+ if (tp + 1 >= ep) {
+ return (NULL);
+ }
+ *tp++ = ':';
+ }
+ continue;
+ }
+ /* Are we following an initial run of 0x00s or any real hex? */
+ if (i != 0) {
+ if (tp + 1 >= ep) {
+ return (NULL);
+ }
+ *tp++ = ':';
+ }
+ /* Is this address an encapsulated IPv4? */
+ if (i == 6 && best.base == 0 &&
+ (best.len == 6 ||
+ (best.len == 5 && words[5] == 0xffff))) {
+ if (!inet_ntop4(src + 12, tp, (size_t)(ep - tp))) {
+ return (NULL);
+ }
+ tp += strlen(tp);
+ break;
+ }
+ advance = snprintf(tp, ep - tp, "%x", words[i]);
+ if (advance <= 0 || advance >= ep - tp) {
+ return (NULL);
+ }
+ tp += advance;
+ }
+ /* Was it a trailing run of 0x00's? */
+ if (best.base != -1 && (best.base + best.len) ==
+ (IN6ADDRSZ / INT16SZ)) {
+ if (tp + 1 >= ep) {
+ return (NULL);
+ }
+ *tp++ = ':';
+ }
+ if (tp + 1 >= ep) {
+ return (NULL);
+ }
+ *tp++ = '\0';
+
+ /*
+ * Check for overflow, copy, and we're done.
+ */
+ if ((size_t)(tp - tmp) > size) {
+ errno = ENOSPC;
+ return (NULL);
+ }
+ knot_strlcpy(dst, tmp, size);
+ return (dst);
+}
+
+
+static int b64rmap_initialized = 0;
+static uint8_t b64rmap[256];
+
+static const uint8_t b64rmap_special = 0xf0;
+static const uint8_t b64rmap_end = 0xfd;
+static const uint8_t b64rmap_space = 0xfe;
+static const uint8_t b64rmap_invalid = 0xff;
+
+/**
+ * Initializing the reverse map is not thread safe.
+ * Which is fine for NSD. For now...
+ **/
+void b64_initialize_rmap()
+{
+ int i;
+ char ch;
+
+ /* Null: end of string, stop parsing */
+ b64rmap[0] = b64rmap_end;
+
+ for (i = 1; i < 256; ++i) {
+ ch = (char)i;
+ /* Whitespaces */
+ if (isspace(ch)) {
+ b64rmap[i] = b64rmap_space;
+ }
+ /* Padding: stop parsing */
+ else if (ch == Pad64) {
+ b64rmap[i] = b64rmap_end;
+ }
+ /* Non-base64 char */
+ else {
+ b64rmap[i] = b64rmap_invalid;
+ }
+ }
+
+ /* Fill reverse mapping for base64 chars */
+ for (i = 0; Base64[i] != '\0'; ++i) {
+ b64rmap[(uint8_t)Base64[i]] = i;
+ }
+
+ b64rmap_initialized = 1;
+}
+
+int b64_pton_do(char const *src, uint8_t *target, size_t targsize)
+{
+ int tarindex, state, ch;
+ uint8_t ofs;
+
+ state = 0;
+ tarindex = 0;
+
+ while (1) {
+ ch = *src++;
+ ofs = b64rmap[ch];
+
+ if (ofs >= b64rmap_special) {
+ /* Ignore whitespaces */
+ if (ofs == b64rmap_space) {
+ continue;
+ }
+ /* End of base64 characters */
+ if (ofs == b64rmap_end) {
+ break;
+ }
+ /* A non-base64 character. */
+ return (-1);
+ }
+
+ switch (state) {
+ case 0:
+ if ((size_t)tarindex >= targsize) {
+ return (-1);
+ }
+ target[tarindex] = ofs << 2;
+ state = 1;
+ break;
+ case 1:
+ if ((size_t)tarindex + 1 >= targsize) {
+ return (-1);
+ }
+ target[tarindex] |= ofs >> 4;
+ target[tarindex+1] = (ofs & 0x0f)
+ << 4 ;
+ tarindex++;
+ state = 2;
+ break;
+ case 2:
+ if ((size_t)tarindex + 1 >= targsize) {
+ return (-1);
+ }
+ target[tarindex] |= ofs >> 2;
+ target[tarindex+1] = (ofs & 0x03)
+ << 6;
+ tarindex++;
+ state = 3;
+ break;
+ case 3:
+ if ((size_t)tarindex >= targsize) {
+ return (-1);
+ }
+ target[tarindex] |= ofs;
+ tarindex++;
+ state = 0;
+ break;
+ default:
+ abort();
+ }
+ }
+
+ /*
+ * We are done decoding Base-64 chars. Let's see if we ended
+ * on a byte boundary, and/or with erroneous trailing characters.
+ */
+
+ if (ch == Pad64) { /* We got a pad char. */
+ ch = *src++; /* Skip it, get next. */
+ switch (state) {
+ case 0: /* Invalid = in first position */
+ case 1: /* Invalid = in second position */
+ return (-1);
+
+ case 2: /* Valid, means one byte of info */
+ /* Skip any number of spaces. */
+ for ((void)NULL; ch != '\0'; ch = *src++)
+ if (b64rmap[ch] != b64rmap_space) {
+ break;
+ }
+ /* Make sure there is another trailing = sign. */
+ if (ch != Pad64) {
+ return (-1);
+ }
+ ch = *src++; /* Skip the = */
+ /* Fall through to "single trailing =" case. */
+ /* FALLTHROUGH */
+
+ case 3: /* Valid, means two bytes of info */
+ /*
+ * We know this char is an =. Is there anything but
+ * whitespace after it?
+ */
+ for ((void)NULL; ch != '\0'; ch = *src++)
+ if (b64rmap[ch] != b64rmap_space) {
+ return (-1);
+ }
+
+ /*
+ * Now make sure for cases 2 and 3 that the "extra"
+ * bits that slopped past the last full byte were
+ * zeros. If we don't check them, they become a
+ * subliminal channel.
+ */
+ if (target[tarindex] != 0) {
+ return (-1);
+ }
+ }
+ } else {
+ /*
+ * We ended by seeing the end of the string. Make sure we
+ * have no partial bytes lying around.
+ */
+ if (state != 0) {
+ return (-1);
+ }
+ }
+
+ return (tarindex);
+}
+
+
+int b64_pton_len(char const *src)
+{
+ int tarindex, state, ch;
+ uint8_t ofs;
+
+ state = 0;
+ tarindex = 0;
+
+ while (1) {
+ ch = *src++;
+ ofs = b64rmap[ch];
+
+ if (ofs >= b64rmap_special) {
+ /* Ignore whitespaces */
+ if (ofs == b64rmap_space) {
+ continue;
+ }
+ /* End of base64 characters */
+ if (ofs == b64rmap_end) {
+ break;
+ }
+ /* A non-base64 character. */
+ return (-1);
+ }
+
+ switch (state) {
+ case 0:
+ state = 1;
+ break;
+ case 1:
+ tarindex++;
+ state = 2;
+ break;
+ case 2:
+ tarindex++;
+ state = 3;
+ break;
+ case 3:
+ tarindex++;
+ state = 0;
+ break;
+ default:
+ abort();
+ }
+ }
+
+ /*
+ * We are done decoding Base-64 chars. Let's see if we ended
+ * on a byte boundary, and/or with erroneous trailing characters.
+ */
+
+ if (ch == Pad64) { /* We got a pad char. */
+ ch = *src++; /* Skip it, get next. */
+ switch (state) {
+ case 0: /* Invalid = in first position */
+ case 1: /* Invalid = in second position */
+ return (-1);
+
+ case 2: /* Valid, means one byte of info */
+ /* Skip any number of spaces. */
+ for ((void)NULL; ch != '\0'; ch = *src++)
+ if (b64rmap[ch] != b64rmap_space) {
+ break;
+ }
+ /* Make sure there is another trailing = sign. */
+ if (ch != Pad64) {
+ return (-1);
+ }
+ ch = *src++; /* Skip the = */
+ /* Fall through to "single trailing =" case. */
+ /* FALLTHROUGH */
+
+ case 3: /* Valid, means two bytes of info */
+ /*
+ * We know this char is an =. Is there anything but
+ * whitespace after it?
+ */
+ for ((void)NULL; ch != '\0'; ch = *src++)
+ if (b64rmap[ch] != b64rmap_space) {
+ return (-1);
+ }
+
+ }
+ } else {
+ /*
+ * We ended by seeing the end of the string. Make sure we
+ * have no partial bytes lying around.
+ */
+ if (state != 0) {
+ return (-1);
+ }
+ }
+
+ return (tarindex);
+}
+
+int b64_pton(char const *src, uint8_t *target, size_t targsize)
+{
+ if (!b64rmap_initialized) {
+ b64_initialize_rmap();
+ }
+
+ if (target) {
+ return b64_pton_do(src, target, targsize);
+ } else {
+ return b64_pton_len(src);
+ }
+}
+
+void set_bit(uint8_t bits[], size_t index)
+{
+ /*
+ * The bits are counted from left to right, so bit #0 is the
+ * left most bit.
+ */
+ bits[index / 8] |= (1 << (7 - index % 8));
+}
+
+uint32_t strtoserial(const char *nptr, const char **endptr)
+{
+ uint32_t i = 0;
+ uint32_t serial = 0;
+
+ for (*endptr = nptr; **endptr; (*endptr)++) {
+ switch (**endptr) {
+ case ' ':
+ case '\t':
+ break;
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ i *= 10;
+ i += (**endptr - '0');
+ break;
+ default:
+ break;
+ }
+ }
+ serial += i;
+ return serial;
+}
+
+inline void write_uint32(void *dst, uint32_t data)
+{
+#ifdef ALLOW_UNALIGNED_ACCESSES
+ *(uint32_t *) dst = htonl(data);
+#else
+ uint8_t *p = (uint8_t *) dst;
+ p[0] = (uint8_t)((data >> 24) & 0xff);
+ p[1] = (uint8_t)((data >> 16) & 0xff);
+ p[2] = (uint8_t)((data >> 8) & 0xff);
+ p[3] = (uint8_t)(data & 0xff);
+#endif
+}
+
+uint32_t strtottl(const char *nptr, const char **endptr)
+{
+ uint32_t i = 0;
+ uint32_t seconds = 0;
+
+ for (*endptr = nptr; **endptr; (*endptr)++) {
+ switch (**endptr) {
+ case ' ':
+ case '\t':
+ break;
+ case 's':
+ case 'S':
+ seconds += i;
+ i = 0;
+ break;
+ case 'm':
+ case 'M':
+ seconds += i * 60;
+ i = 0;
+ break;
+ case 'h':
+ case 'H':
+ seconds += i * 60 * 60;
+ i = 0;
+ break;
+ case 'd':
+ case 'D':
+ seconds += i * 60 * 60 * 24;
+ i = 0;
+ break;
+ case 'w':
+ case 'W':
+ seconds += i * 60 * 60 * 24 * 7;
+ i = 0;
+ break;
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9':
+ i *= 10;
+ i += (**endptr - '0');
+ break;
+ default:
+ seconds += i;
+ return seconds;
+ }
+ }
+ seconds += i;
+ return seconds;
+}
+
+/* Number of days per month (except for February in leap years). */
+static const int mdays[] = {
+ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+static int is_leap_year(int year)
+{
+ return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
+}
+
+static int leap_days(int y1, int y2)
+{
+ --y1;
+ --y2;
+ return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400);
+}
+
+/*
+ * Code adapted from Python 2.4.1 sources (Lib/calendar.py).
+ */
+time_t mktime_from_utc(const struct tm *tm)
+{
+ int year = 1900 + tm->tm_year;
+ time_t days = 365 * (year - 1970) + leap_days(1970, year);
+ time_t hours;
+ time_t minutes;
+ time_t seconds;
+ int i;
+
+ for (i = 0; i < tm->tm_mon; ++i) {
+ days += mdays[i];
+ }
+ if (tm->tm_mon > 1 && is_leap_year(year)) {
+ ++days;
+ }
+ days += tm->tm_mday - 1;
+
+ hours = days * 24 + tm->tm_hour;
+ minutes = hours * 60 + tm->tm_min;
+ seconds = minutes * 60 + tm->tm_sec;
+
+ return seconds;
+}
+
+/*!< Following functions are conversions from text to wire. */
+
+//#define DEBUG_UNKNOWN_RDATA
+
+#ifdef DEBUG_UNKNOWN_RDATA
+#define dbg_rdata(msg...) fprintf(stderr, msg)
+#define DBG_RDATA(cmds) do { cmds } while (0)
+#else
+#define dbg_rdata(msg...)
+#define DBG_RDATA(cmds)
+#endif
+
+
+
+#define IP6ADDRLEN (128/8)
+#define NS_INT16SZ 2
+#define NS_INADDRSZ 4
+#define NS_IN6ADDRSZ 16
+#define APL_NEGATION_MASK 0x80U
+#define APL_LENGTH_MASK (~APL_NEGATION_MASK)
+
+//#define ZP_DEBUG
+
+#ifdef ZP_DEBUG
+#define dbg_zp(msg...) fprintf(stderr, msg)
+#else
+#define dbg_zp(msg...)
+#endif
+
+
+/*!
+ * \brief Return data of raw data item.
+ *
+ * \param item Item.
+ * \return uint16_t * Raw data.
+ */
+static inline uint16_t * rdata_atom_data(knot_rdata_item_t item)
+{
+ return (uint16_t *)(item.raw_data + 1);
+}
+
+/*!
+ * \brief Return type of RRSet covered by given RRSIG.
+ *
+ * \param rrset RRSIG.
+ * \return uint16_t Type covered.
+ */
+uint16_t rrsig_type_covered(knot_rrset_t *rrset)
+{
+ assert(rrset->rdata->items[0].raw_data[0] == sizeof(uint16_t));
+
+ return ntohs(*(uint16_t *) rdata_atom_data(rrset->rdata->items[0]));
+}
+
+/*!
+ * \brief Checks if item contains domain.
+ *
+ * \param type Type of RRSet.
+ * \param index Index to check.
+ *
+ * \return > 1 if item is domain, 0 otherwise.
+ */
+static inline int rdata_atom_is_domain(uint16_t type, size_t index)
+{
+ const knot_rrtype_descriptor_t *descriptor
+ = knot_rrtype_descriptor_by_type(type);
+ return (index < descriptor->length
+ && (descriptor->wireformat[index] ==
+ KNOT_RDATA_WF_COMPRESSED_DNAME ||
+ descriptor->wireformat[index] ==
+ KNOT_RDATA_WF_UNCOMPRESSED_DNAME));
+}
+
+/*!
+ * \brief Returns which wireformat type is on given index.
+ *
+ * \param type Type of RRSet.
+ * \param index Index.
+ *
+ * \return uint8_t Wireformat type.
+ */
+static inline uint8_t rdata_atom_wireformat_type(uint16_t type, size_t index)
+{
+ const knot_rrtype_descriptor_t *descriptor =
+ knot_rrtype_descriptor_by_type(type);
+ assert(index < descriptor->length);
+ return descriptor->wireformat[index];
+}
+
+/*!
+ * \brief Converts rdata wireformat to rdata items.
+ *
+ * \param wireformat Wireformat/.
+ * \param rrtype RR type.
+ * \param data_size Size of wireformat.
+ * \param items created rdata items.
+ *
+ * \return Number of items converted.
+ */
+static ssize_t rdata_wireformat_to_rdata_atoms(const uint16_t *wireformat,
+ uint16_t rrtype,
+ const uint16_t data_size,
+ knot_rdata_item_t **items)
+{
+ dbg_rdata("read length: %d\n", data_size);
+ uint16_t const *end = (uint16_t *)((uint8_t *)wireformat + (data_size));
+ dbg_rdata("set end pointer: %p which means length: %d\n", end,
+ (uint8_t *)end - (uint8_t *)wireformat);
+ size_t i;
+ knot_rdata_item_t *temp_rdatas =
+ malloc(sizeof(*temp_rdatas) * MAXRDATALEN);
+ if (temp_rdatas == NULL) {
+ ERR_ALLOC_FAILED;
+ return KNOTDZCOMPILE_ENOMEM;
+ }
+ memset(temp_rdatas, 0, sizeof(*temp_rdatas) * MAXRDATALEN);
+
+ knot_rrtype_descriptor_t *descriptor =
+ knot_rrtype_descriptor_by_type(rrtype);
+
+ assert(descriptor->length <= MAXRDATALEN);
+
+ dbg_rdata("will be parsing %d items, total size: %d\n",
+ descriptor->length, data_size);
+
+ for (i = 0; i < descriptor->length; ++i) {
+ int is_domain = 0;
+ int is_wirestore = 0;
+ size_t length = 0;
+ length = 0;
+ int required = descriptor->length;
+
+ switch (rdata_atom_wireformat_type(rrtype, i)) {
+ case KNOT_RDATA_WF_COMPRESSED_DNAME:
+ case KNOT_RDATA_WF_UNCOMPRESSED_DNAME:
+ is_domain = 1;
+ break;
+ case KNOT_RDATA_WF_LITERAL_DNAME:
+ is_domain = 1;
+ is_wirestore = 1;
+ break;
+ case KNOT_RDATA_WF_BYTE:
+ length = sizeof(uint8_t);
+ break;
+ case KNOT_RDATA_WF_SHORT:
+ length = sizeof(uint16_t);
+ break;
+ case KNOT_RDATA_WF_LONG:
+ length = sizeof(uint32_t);
+ break;
+ case KNOT_RDATA_WF_TEXT:
+ case KNOT_RDATA_WF_BINARYWITHLENGTH:
+ /* Length is stored in the first byte. */
+ length = 1;
+ if ((uint8_t *)wireformat + length <= (uint8_t *)end) {
+ // length += wireformat[length - 1];
+ length += *((uint8_t *)wireformat);
+ dbg_rdata("%d: set new length: %d\n", i,
+ length);
+ }
+ /*if (buffer_position(packet) + length <= end) {
+ length += buffer_current(packet)[length - 1];
+ }*/
+ break;
+ case KNOT_RDATA_WF_A:
+ length = sizeof(in_addr_t);
+ break;
+ case KNOT_RDATA_WF_AAAA:
+ length = IP6ADDRLEN;
+ break;
+ case KNOT_RDATA_WF_BINARY:
+ /* Remaining RDATA is binary. */
+ dbg_rdata("%d: guessing length from pointers: %p %p\n",
+ i,
+ wireformat, end);
+ length = (uint8_t *)end - (uint8_t *)wireformat;
+// length = end - buffer_position(packet);
+ break;
+ case KNOT_RDATA_WF_APL:
+ length = (sizeof(uint16_t) /* address family */
+ + sizeof(uint8_t) /* prefix */
+ + sizeof(uint8_t)); /* length */
+ if ((uint8_t *)wireformat + length <= (uint8_t *)end) {
+ /* Mask out negation bit. */
+ length += (wireformat[length - 1]
+ & APL_LENGTH_MASK);
+ }
+ break;
+ case KNOT_RDATA_WF_IPSECGATEWAY:
+ switch (rdata_atom_data(temp_rdatas[1])[0]) {
+ /* gateway type */
+ default:
+ case IPSECKEY_NOGATEWAY:
+ length = 0;
+ break;
+ case IPSECKEY_IP4:
+ length = 4;
+ break;
+ case IPSECKEY_IP6:
+ length = IP6ADDRLEN;
+ break;
+ case IPSECKEY_DNAME:
+ is_domain = 1;
+ is_wirestore = 1;
+ break;
+ }
+ break;
+ }
+
+ if (is_domain) {
+ knot_dname_t *dname;
+
+ if (!required && (wireformat == end)) {
+ break;
+ }
+
+ dname = knot_dname_new_from_str((char *)wireformat,
+ length,
+ NULL);
+
+ if (dname == NULL) {
+ dbg_rdata("malformed dname!\n");
+ /*! \todo rdata purge */
+ free(temp_rdatas);
+ return KNOTDZCOMPILE_EBRDATA;
+ }
+ dbg_rdata("%d: created dname: %s\n", i,
+ knot_dname_to_str(dname));
+
+ if (is_wirestore) {
+ /*temp_rdatas[i].raw_data =
+ (uint16_t *) region_alloc(
+ region, sizeof(uint16_t) + dname->name_size);
+ temp_rdatas[i].data[0] = dname->name_size;
+ memcpy(temp_rdatas[i].data+1, dname_name(dname),
+ dname->name_size); */
+ temp_rdatas[i].raw_data =
+ malloc(sizeof(uint16_t) +
+ sizeof(uint8_t) * dname->size);
+ if (temp_rdatas[i].raw_data == NULL) {
+ ERR_ALLOC_FAILED;
+ /*! \todo rdata purge */
+ free(temp_rdatas);
+ return KNOTDZCOMPILE_ENOMEM;
+ }
+
+ temp_rdatas[i].raw_data[0] = dname->size;
+ memcpy(temp_rdatas[i].raw_data + 1,
+ dname->name, dname->size);
+
+ knot_dname_release(dname);
+ } else {
+ temp_rdatas[i].dname = dname;
+ }
+
+ } else {
+ dbg_rdata("%d :length: %d %d %p %p\n", i, length,
+ end - wireformat,
+ wireformat, end);
+ if ((uint8_t *)wireformat + length > (uint8_t *)end) {
+ if (required) {
+ /* Truncated RDATA. */
+ /*! \todo rdata purge */
+ free(temp_rdatas);
+ dbg_rdata("truncated rdata\n");
+ return KNOTDZCOMPILE_EBRDATA;
+ } else {
+ break;
+ }
+ }
+
+ assert(wireformat <= end); /*!< \todo remove! */
+ dbg_rdata("calling init with: %p and length : %d\n",
+ wireformat, length);
+ temp_rdatas[i].raw_data = alloc_rdata_init(wireformat,
+ length);
+ if (temp_rdatas[i].raw_data == NULL) {
+ ERR_ALLOC_FAILED;
+ /*! \todo rdata purge */
+ free(temp_rdatas);
+ return -1;
+ }
+
+// temp_rdatas[i].raw_data[0] = length;
+// memcpy(temp_rdatas[i].raw_data + 1, wireformat, length);
+
+/* temp_rdatas[i].data = (uint16_t *) region_alloc(
+ region, sizeof(uint16_t) + length);
+ temp_rdatas[i].data[0] = length;
+ buffer_read(packet,
+ temp_rdatas[i].data + 1, length); */
+ }
+ dbg_rdata("%d: adding length: %d (remaining: %d)\n", i, length,
+ (uint8_t *)end - ((uint8_t *)wireformat + length));
+// hex_print(temp_rdatas[i].raw_data + 1, length);
+ wireformat = (uint16_t *)((uint8_t *)wireformat + length);
+// wireformat = wireformat + length;
+ dbg_rdata("wire: %p\n", wireformat);
+ dbg_rdata("remaining now: %d\n",
+ end - wireformat);
+
+ }
+
+ dbg_rdata("%p %p\n", wireformat, (uint8_t *)wireformat);
+
+ if (wireformat < end) {
+ /* Trailing garbage. */
+ dbg_rdata("w: %p e: %p %d\n", wireformat, end, end - wireformat);
+// region_destroy(temp_region);
+ free(temp_rdatas);
+ return KNOTDZCOMPILE_EBRDATA;
+ }
+
+ *items = temp_rdatas;
+ /* *rdatas = (rdata_atom_type *) region_alloc_init(
+ region, temp_rdatas, i * sizeof(rdata_atom_type)); */
+ return (ssize_t)i;
+}
+
+/* Taken from RFC 2535, section 7. */
+knot_lookup_table_t dns_algorithms[] = {
+ { 1, "RSAMD5" }, /* RFC 2537 */
+ { 2, "DH" }, /* RFC 2539 */
+ { 3, "DSA" }, /* RFC 2536 */
+ { 4, "ECC" },
+ { 5, "RSASHA1" }, /* RFC 3110 */
+ { 252, "INDIRECT" },
+ { 253, "PRIVATEDNS" },
+ { 254, "PRIVATEOID" },
+ { 0, NULL }
+};
+
+/* Taken from RFC 4398, section 2.1. */
+knot_lookup_table_t dns_certificate_types[] = {
+ /* 0 Reserved */
+ { 1, "PKIX" }, /* X.509 as per PKIX */
+ { 2, "SPKI" }, /* SPKI cert */
+ { 3, "PGP" }, /* OpenPGP packet */
+ { 4, "IPKIX" }, /* The URL of an X.509 data object */
+ { 5, "ISPKI" }, /* The URL of an SPKI certificate */
+ { 6, "IPGP" }, /* The fingerprint and URL of an OpenPGP packet */
+ { 7, "ACPKIX" }, /* Attribute Certificate */
+ { 8, "IACPKIX" }, /* The URL of an Attribute Certificate */
+ { 253, "URI" }, /* URI private */
+ { 254, "OID" }, /* OID private */
+ /* 255 Reserved */
+ /* 256-65279 Available for IANA assignment */
+ /* 65280-65534 Experimental */
+ /* 65535 Reserved */
+ { 0, NULL }
+};
+
+/* Imported from lexer. */
+extern int hexdigit_to_int(char ch);
+
+extern uint8_t nsecbits[NSEC_WINDOW_COUNT][NSEC_WINDOW_BITS_SIZE];
+extern uint16_t nsec_highest_rcode;
+
+/*!
+ * \brief Allocate SIZE+sizeof(uint16_t) bytes and store SIZE in the first
+ * element. Return a pointer to the allocation.
+ *
+ * \param size How many bytes to allocate.
+ */
+static uint16_t * alloc_rdata(size_t size)
+{
+ uint16_t *result = malloc(sizeof(uint16_t) + size);
+ *result = size;
+ return result;
+}
+
+uint16_t *alloc_rdata_init(const void *data, size_t size)
+{
+ uint16_t *result = malloc(sizeof(uint16_t) + size);
+ if (result == NULL) {
+ return NULL;
+ }
+ *result = size;
+ memcpy(result + 1, data, size);
+ return result;
+}
+
+/*
+ * These are parser function for generic zone file stuff.
+ */
+uint16_t * zparser_conv_hex(const char *hex, size_t len)
+{
+ /* convert a hex value to wireformat */
+ uint16_t *r = NULL;
+ uint8_t *t;
+ int i;
+
+ if (len % 2 != 0) {
+ zc_error_prev_line("number of hex digits "
+ "must be a multiple of 2");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else if (len > MAX_RDLENGTH * 2) {
+ zc_error_prev_line("hex data exceeds maximum rdata length (%d)",
+ MAX_RDLENGTH);
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ /* the length part */
+
+ r = alloc_rdata(len / 2);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ t = (uint8_t *)(r + 1);
+
+ /* Now process octet by octet... */
+ while (*hex) {
+ *t = 0;
+ for (i = 16; i >= 1; i -= 15) {
+ if (isxdigit((int)*hex)) {
+ *t += hexdigit_to_int(*hex) * i;
+ } else {
+ zc_error_prev_line(
+ "illegal hex character '%c'",
+ (int) *hex);
+ parser->error_occurred =
+ KNOTDZCOMPILE_EBRDATA;
+ free(r);
+ return NULL;
+ }
+ ++hex;
+ }
+ ++t;
+ }
+ }
+
+ return r;
+}
+
+/* convert hex, precede by a 1-byte length */
+uint16_t * zparser_conv_hex_length(const char *hex, size_t len)
+{
+ uint16_t *r = NULL;
+ uint8_t *t;
+ int i;
+ if (len % 2 != 0) {
+ zc_error_prev_line("number of hex digits must be a "
+ "multiple of 2");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else if (len > 255 * 2) {
+ zc_error_prev_line("hex data exceeds 255 bytes");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ uint8_t *l;
+
+ /* the length part */
+ r = alloc_rdata(len / 2 + 1);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+
+ t = (uint8_t *)(r + 1);
+
+ l = t++;
+ *l = '\0';
+
+ /* Now process octet by octet... */
+ while (*hex) {
+ *t = 0;
+ for (i = 16; i >= 1; i -= 15) {
+ if (isxdigit((int)*hex)) {
+ *t += hexdigit_to_int(*hex) * i;
+ } else {
+ zc_error_prev_line(
+ "illegal hex character '%c'",
+ (int) *hex);
+ parser->error_occurred =
+ KNOTDZCOMPILE_EBRDATA;
+ free(r);
+ return NULL;
+ }
+ ++hex;
+ }
+ ++t;
+ ++*l;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_time(const char *time)
+{
+ /* convert a time YYHM to wireformat */
+ uint16_t *r = NULL;
+ struct tm tm;
+
+ /* Try to scan the time... */
+ if (!strptime(time, "%Y%m%d%H%M%S", &tm)) {
+ zc_error_prev_line("date and time is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ uint32_t l = htonl(mktime_from_utc(&tm));
+ r = alloc_rdata_init(&l, sizeof(l));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_services(const char *protostr, char *servicestr)
+{
+ /*
+ * Convert a protocol and a list of service port numbers
+ * (separated by spaces) in the rdata to wireformat
+ */
+ uint16_t *r = NULL;
+ uint8_t *p;
+ uint8_t bitmap[65536/8];
+ char sep[] = " ";
+ char *word;
+ int max_port = -8;
+ /* convert a protocol in the rdata to wireformat */
+ struct protoent *proto;
+
+ memset(bitmap, 0, sizeof(bitmap));
+
+ proto = getprotobyname(protostr);
+ if (!proto) {
+ proto = getprotobynumber(atoi(protostr));
+ }
+ if (!proto) {
+ zc_error_prev_line("unknown protocol '%s'", protostr);
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ return NULL;
+ }
+
+ char *sp = 0;
+ while ((word = strtok_r(servicestr, sep, &sp))) {
+ struct servent *service;
+ int port;
+
+ service = getservbyname(word, proto->p_name);
+ if (service) {
+ /* Note: ntohs not ntohl! Strange but true. */
+ port = ntohs((uint16_t) service->s_port);
+ } else {
+ char *end;
+ port = strtol(word, &end, 10);
+ if (*end != '\0') {
+ zc_error_prev_line(
+ "unknown service '%s' for"
+ " protocol '%s'",
+ word, protostr);
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ continue;
+ }
+ }
+
+ if (port < 0 || port > 65535) {
+ zc_error_prev_line("bad port number %d", port);
+ } else {
+ set_bit(bitmap, port);
+ if (port > max_port) {
+ max_port = port;
+ }
+ }
+ }
+
+ r = alloc_rdata(sizeof(uint8_t) + max_port / 8 + 1);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+
+ p = (uint8_t *)(r + 1);
+ *p = proto->p_proto;
+ memcpy(p + 1, bitmap, *r);
+
+ return r;
+}
+
+uint16_t * zparser_conv_serial(const char *serialstr)
+{
+ uint16_t *r = NULL;
+ uint32_t serial;
+ const char *t;
+
+ serial = strtoserial(serialstr, &t);
+ if (*t != '\0') {
+ zc_error_prev_line("serial is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ serial = htonl(serial);
+ r = alloc_rdata_init(&serial, sizeof(serial));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_period(const char *periodstr)
+{
+ /* convert a time period (think TTL's) to wireformat) */
+ uint16_t *r = NULL;
+ uint32_t period;
+ const char *end;
+
+ /* Allocate required space... */
+ period = strtottl(periodstr, &end);
+ if (*end != '\0') {
+ zc_error_prev_line("time period is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ period = htonl(period);
+ r = alloc_rdata_init(&period, sizeof(period));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_short(const char *text)
+{
+ uint16_t *r = NULL;
+ uint16_t value;
+ char *end;
+
+ value = htons((uint16_t) strtol(text, &end, 10));
+ if (*end != '\0') {
+ zc_error_prev_line("integer value is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ r = alloc_rdata_init(&value, sizeof(value));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_byte(const char *text)
+{
+ uint16_t *r = NULL;
+ uint8_t value;
+ char *end;
+
+ value = (uint8_t) strtol(text, &end, 10);
+ if (*end != '\0') {
+ zc_error_prev_line("integer value is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ r = alloc_rdata_init(&value, sizeof(value));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_algorithm(const char *text)
+{
+ const knot_lookup_table_t *alg;
+ uint8_t id;
+
+ alg = knot_lookup_by_name(dns_algorithms, text);
+ if (alg) {
+ id = (uint8_t) alg->id;
+ } else {
+ char *end;
+ id = (uint8_t) strtol(text, &end, 10);
+ if (*end != '\0') {
+ zc_error_prev_line("algorithm is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ return NULL;
+ }
+ }
+
+ uint16_t *r = alloc_rdata_init(&id, sizeof(id));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+
+ return r;
+}
+
+uint16_t * zparser_conv_certificate_type(const char *text)
+{
+ /* convert a algoritm string to integer */
+ const knot_lookup_table_t *type;
+ uint16_t id;
+
+ type = knot_lookup_by_name(dns_certificate_types, text);
+ if (type) {
+ id = htons((uint16_t) type->id);
+ } else {
+ char *end;
+ id = htons((uint16_t) strtol(text, &end, 10));
+ if (*end != '\0') {
+ zc_error_prev_line("certificate type is expected");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ return NULL;
+ }
+ }
+
+ uint16_t *r = alloc_rdata_init(&id, sizeof(id));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+
+ return r;
+}
+
+uint16_t * zparser_conv_a(const char *text)
+{
+ in_addr_t address;
+ uint16_t *r = NULL;
+
+ if (inet_pton(AF_INET, text, &address) != 1) {
+ zc_error_prev_line("invalid IPv4 address '%s'", text);
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ r = alloc_rdata_init(&address, sizeof(address));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+
+ return r;
+}
+
+uint16_t * zparser_conv_aaaa(const char *text)
+{
+ uint8_t address[IP6ADDRLEN];
+ uint16_t *r = NULL;
+
+ if (inet_pton(AF_INET6, text, address) != 1) {
+ zc_error_prev_line("invalid IPv6 address '%s'", text);
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ r = alloc_rdata_init(address, sizeof(address));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_text(const char *text, size_t len)
+{
+ uint16_t *r = NULL;
+
+ dbg_zp("Converting text: %s\n", text);
+
+ if (len > 255) {
+ zc_error_prev_line("text string is longer than 255 characters,"
+ " try splitting it into multiple parts");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ uint8_t *p;
+ r = alloc_rdata(len + 1);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ p = (uint8_t *)(r + 1);
+ *p = len;
+ memcpy(p + 1, text, len);
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_dns_name(const uint8_t *name, size_t len)
+{
+ uint16_t *r = NULL;
+ uint8_t *p = NULL;
+ r = alloc_rdata(len);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ p = (uint8_t *)(r + 1);
+ memcpy(p, name, len);
+
+ return r;
+}
+
+uint16_t * zparser_conv_b32(const char *b32)
+{
+ uint8_t buffer[B64BUFSIZE];
+ uint16_t *r = NULL;
+ size_t i = B64BUFSIZE - 1;
+
+ if (strcmp(b32, "-") == 0) {
+ r = alloc_rdata_init("", 1);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ return r;
+ }
+
+ /*!< \todo BLEEDING EYES! */
+
+ char b32_copy[strlen(b32) + 1];
+
+ for (int i = 0; i < strlen(b32); i++) {
+ b32_copy[i] = toupper(b32[i]);
+ }
+
+ /*!< \todo BLEEDING EYES! */
+ b32_copy[strlen(b32)] = '\0';
+
+ if (!base32hex_decode(b32_copy,
+ strlen(b32_copy), (char *)buffer + 1, &i)) {
+ zc_error_prev_line("invalid base32 data");
+ parser->error_occurred = 1;
+ } else {
+ buffer[0] = i; /* store length byte */
+ r = alloc_rdata_init(buffer, i + 1);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_b64(const char *b64)
+{
+ uint8_t buffer[B64BUFSIZE];
+ uint16_t *r = NULL;
+ int i;
+
+ i = b64_pton(b64, buffer, B64BUFSIZE);
+ if (i == -1) {
+ zc_error_prev_line("invalid base64 data\n");
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ r = alloc_rdata_init(buffer, i);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_rrtype(const char *text)
+{
+ uint16_t *r = NULL;
+ uint16_t type = knot_rrtype_from_string(text);
+
+ if (type == 0) {
+ zc_error_prev_line("unrecognized RR type '%s'", text);
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ } else {
+ type = htons(type);
+ r = alloc_rdata_init(&type, sizeof(type));
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+ }
+ return r;
+}
+
+uint16_t * zparser_conv_nxt(uint8_t nxtbits[])
+{
+ /* nxtbits[] consists of 16 bytes with some zero's in it
+ * copy every byte with zero to r and write the length in
+ * the first byte
+ */
+ uint16_t i;
+ uint16_t last = 0;
+
+ for (i = 0; i < 16; i++) {
+ if (nxtbits[i] != 0) {
+ last = i + 1;
+ }
+ }
+
+ uint16_t *r = alloc_rdata_init(nxtbits, last);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ return NULL;
+ }
+
+ return r;
+}
+
+
+/* we potentially have 256 windows, each one is numbered. empty ones
+ * should be discarded
+ */
+uint16_t * zparser_conv_nsec(uint8_t nsecbits[NSEC_WINDOW_COUNT]
+ [NSEC_WINDOW_BITS_SIZE])
+{
+ /* nsecbits contains up to 64K of bits which represent the
+ * types available for a name. Walk the bits according to
+ * nsec++ draft from jakob
+ */
+ uint16_t *r;
+ uint8_t *ptr;
+ size_t i, j;
+ uint16_t window_count = 0;
+ uint16_t total_size = 0;
+ uint16_t window_max = 0;
+
+ /* The used windows. */
+ int used[NSEC_WINDOW_COUNT];
+ /* The last byte used in each the window. */
+ int size[NSEC_WINDOW_COUNT];
+
+ window_max = 1 + (nsec_highest_rcode / 256);
+
+ /* used[i] is the i-th window included in the nsec
+ * size[used[0]] is the size of window 0
+ */
+
+ /* walk through the 256 windows */
+ for (i = 0; i < window_max; ++i) {
+ int empty_window = 1;
+ /* check each of the 32 bytes */
+ for (j = 0; j < NSEC_WINDOW_BITS_SIZE; ++j) {
+ if (nsecbits[i][j] != 0) {
+ size[i] = j + 1;
+ empty_window = 0;
+ }
+ }
+ if (!empty_window) {
+ used[window_count] = i;
+ window_count++;
+ }
+ }
+
+ for (i = 0; i < window_count; ++i) {
+ total_size += sizeof(uint16_t) + size[used[i]];
+ }
+
+ r = alloc_rdata(total_size);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ parser->error_occurred = KNOTDZCOMPILE_EBRDATA;
+ return NULL;
+ }
+ ptr = (uint8_t *)(r + 1);
+
+ /* now walk used and copy it */
+ for (i = 0; i < window_count; ++i) {
+ ptr[0] = used[i];
+ ptr[1] = size[used[i]];
+ memcpy(ptr + 2, &nsecbits[used[i]], size[used[i]]);
+ ptr += size[used[i]] + 2;
+ }
+
+ return r;
+}
+
+/* Parse an int terminated in the specified range. */
+static int parse_int(const char *str,
+ char **end,
+ int *result,
+ const char *name,
+ int min,
+ int max)
+{
+ long value;
+ value = strtol(str, end, 10);
+ if (value < min || value > max) {
+ zc_error_prev_line("%s must be within the range [%d .. %d]",
+ name,
+ min,
+ max);
+ return 0;
+ } else {
+ *result = (int) value;
+ return 1;
+ }
+}
+
+/* RFC1876 conversion routines */
+static uint32_t poweroften[10] = {1, 10, 100, 1000, 10000, 100000,
+ 1000000, 10000000, 100000000, 1000000000
+ };
+
+/*
+ * Converts ascii size/precision X * 10**Y(cm) to 0xXY.
+ * Sets the given pointer to the last used character.
+ *
+ */
+static uint8_t precsize_aton(char *cp, char **endptr)
+{
+ unsigned int mval = 0, cmval = 0;
+ uint8_t retval = 0;
+ int exponent;
+ int mantissa;
+
+ while (isdigit((int)*cp)) {
+ mval = mval * 10 + hexdigit_to_int(*cp++);
+ }
+
+ if (*cp == '.') { /* centimeters */
+ cp++;
+ if (isdigit((int)*cp)) {
+ cmval = hexdigit_to_int(*cp++) * 10;
+ if (isdigit((int)*cp)) {
+ cmval += hexdigit_to_int(*cp++);
+ }
+ }
+ }
+
+ if (mval >= poweroften[7]) {
+ /* integer overflow possible for *100 */
+ mantissa = mval / poweroften[7];
+ exponent = 9; /* max */
+ } else {
+ cmval = (mval * 100) + cmval;
+
+ for (exponent = 0; exponent < 9; exponent++)
+ if (cmval < poweroften[exponent+1]) {
+ break;
+ }
+
+ mantissa = cmval / poweroften[exponent];
+ }
+ if (mantissa > 9) {
+ mantissa = 9;
+ }
+
+ retval = (mantissa << 4) | exponent;
+
+ if (*cp == 'm') {
+ cp++;
+ }
+
+ *endptr = cp;
+
+ return (retval);
+}
+
+/*
+ * Parses a specific part of rdata.
+ *
+ * Returns:
+ *
+ * number of elements parsed
+ * zero on error
+ *
+ */
+uint16_t * zparser_conv_loc(char *str)
+{
+ uint16_t *r;
+ uint32_t *p;
+ int i;
+ int deg, min, secs; /* Secs is stored times 1000. */
+ uint32_t lat = 0, lon = 0, alt = 0;
+ /* encoded defaults: version=0 sz=1m hp=10000m vp=10m */
+ uint8_t vszhpvp[4] = {0, 0x12, 0x16, 0x13};
+ char *start;
+ double d;
+
+ for (;;) {
+ deg = min = secs = 0;
+
+ /* Degrees */
+ if (*str == '\0') {
+ zc_error_prev_line("unexpected end of LOC data");
+ return NULL;
+ }
+
+ if (!parse_int(str, &str, &deg, "degrees", 0, 180)) {
+ return NULL;
+ }
+ if (!isspace((int)*str)) {
+ zc_error_prev_line("space expected after degrees");
+ return NULL;
+ }
+ ++str;
+
+ /* Minutes? */
+ if (isdigit((int)*str)) {
+ if (!parse_int(str, &str, &min, "minutes", 0, 60)) {
+ return NULL;
+ }
+ if (!isspace((int)*str)) {
+ zc_error_prev_line("space expected after minutes");
+ return NULL;
+ }
+ ++str;
+ }
+
+ /* Seconds? */
+ if (isdigit((int)*str)) {
+ start = str;
+ if (!parse_int(str, &str, &i, "seconds", 0, 60)) {
+ return NULL;
+ }
+
+ if (*str == '.' && !parse_int(str + 1, &str, &i,
+ "seconds fraction",
+ 0, 999)) {
+ return NULL;
+ }
+
+ if (!isspace((int)*str)) {
+ zc_error_prev_line("space expected after seconds");
+ return NULL;
+ }
+
+ if (sscanf(start, "%lf", &d) != 1) {
+ zc_error_prev_line("error parsing seconds");
+ }
+
+ if (d < 0.0 || d > 60.0) {
+ zc_error_prev_line(
+ "seconds not in range 0.0 .. 60.0");
+ }
+
+ secs = (int)(d * 1000.0 + 0.5);
+ ++str;
+ }
+
+ switch (*str) {
+ case 'N':
+ case 'n':
+ lat = ((uint32_t)1 << 31) +
+ (deg * 3600000 + min * 60000 + secs);
+ break;
+ case 'E':
+ case 'e':
+ lon = ((uint32_t)1 << 31) +
+ (deg * 3600000 + min * 60000 + secs);
+ break;
+ case 'S':
+ case 's':
+ lat = ((uint32_t)1 << 31) -
+ (deg * 3600000 + min * 60000 + secs);
+ break;
+ case 'W':
+ case 'w':
+ lon = ((uint32_t)1 << 31) -
+ (deg * 3600000 + min * 60000 + secs);
+ break;
+ default:
+ zc_error_prev_line(
+ "invalid latitude/longtitude: '%c'", *str);
+ return NULL;
+ }
+ ++str;
+
+ if (lat != 0 && lon != 0) {
+ break;
+ }
+
+ if (!isspace((int)*str)) {
+ zc_error_prev_line("space expected after"
+ " latitude/longitude");
+ return NULL;
+ }
+ ++str;
+ }
+
+ /* Altitude */
+ if (*str == '\0') {
+ zc_error_prev_line("unexpected end of LOC data");
+ return NULL;
+ }
+
+ if (!isspace((int)*str)) {
+ zc_error_prev_line("space expected before altitude");
+ return NULL;
+ }
+ ++str;
+
+ start = str;
+
+ /* Sign */
+ if (*str == '+' || *str == '-') {
+ ++str;
+ }
+
+ /* Meters of altitude... */
+ int ret = strtol(str, &str, 10);
+ UNUSED(ret); // Result checked in following switch
+
+ switch (*str) {
+ case ' ':
+ case '\0':
+ case 'm':
+ break;
+ case '.':
+ if (!parse_int(str + 1, &str, &i, "altitude fraction", 0, 99)) {
+ return NULL;
+ }
+ if (!isspace((int)*str) && *str != '\0' && *str != 'm') {
+ zc_error_prev_line("altitude fraction must be a number");
+ return NULL;
+ }
+ break;
+ default:
+ zc_error_prev_line("altitude must be expressed in meters");
+ return NULL;
+ }
+ if (!isspace((int)*str) && *str != '\0') {
+ ++str;
+ }
+
+ if (sscanf(start, "%lf", &d) != 1) {
+ zc_error_prev_line("error parsing altitude");
+ }
+
+ alt = (uint32_t)(10000000.0 + d * 100 + 0.5);
+
+ if (!isspace((int)*str) && *str != '\0') {
+ zc_error_prev_line("unexpected character after altitude");
+ return NULL;
+ }
+
+ /* Now parse size, horizontal precision and vertical precision if any */
+ for (i = 1; isspace((int)*str) && i <= 3; i++) {
+ vszhpvp[i] = precsize_aton(str + 1, &str);
+
+ if (!isspace((int)*str) && *str != '\0') {
+ zc_error_prev_line("invalid size or precision");
+ return NULL;
+ }
+ }
+
+ /* Allocate required space... */
+ r = alloc_rdata(16);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ return NULL;
+ }
+ p = (uint32_t *)(r + 1);
+
+ memmove(p, vszhpvp, 4);
+ write_uint32(p + 1, lat);
+ write_uint32(p + 2, lon);
+ write_uint32(p + 3, alt);
+
+ return r;
+}
+
+/*
+ * Convert an APL RR RDATA element.
+ */
+uint16_t * zparser_conv_apl_rdata(char *str)
+{
+ int negated = 0;
+ uint16_t address_family;
+ uint8_t prefix;
+ uint8_t maximum_prefix;
+ uint8_t length;
+ uint8_t address[IP6ADDRLEN];
+ char *colon = strchr(str, ':');
+ char *slash = strchr(str, '/');
+ int af;
+ int rc;
+ uint16_t rdlength;
+ uint16_t *r;
+ uint8_t *t;
+ char *end;
+ long p;
+
+ if (!colon) {
+ zc_error_prev_line("address family separator is missing");
+ return NULL;
+ }
+ if (!slash) {
+ zc_error_prev_line("prefix separator is missing");
+ return NULL;
+ }
+
+ *colon = '\0';
+ *slash = '\0';
+
+ if (*str == '!') {
+ negated = 1;
+ ++str;
+ }
+
+ if (strcmp(str, "1") == 0) {
+ address_family = htons(1);
+ af = AF_INET;
+ length = sizeof(in_addr_t);
+ maximum_prefix = length * 8;
+ } else if (strcmp(str, "2") == 0) {
+ address_family = htons(2);
+ af = AF_INET6;
+ length = IP6ADDRLEN;
+ maximum_prefix = length * 8;
+ } else {
+ zc_error_prev_line("invalid address family '%s'", str);
+ return NULL;
+ }
+
+ rc = inet_pton(af, colon + 1, address);
+ if (rc == 0) {
+ zc_error_prev_line("invalid address '%s'", colon + 1);
+ return NULL;
+ } else if (rc == -1) {
+ char ebuf[256];
+ zc_error_prev_line("inet_pton failed: %s",
+ strerror_r(errno, ebuf, sizeof(ebuf)));
+ return NULL;
+ }
+
+ /* Strip trailing zero octets. */
+ while (length > 0 && address[length - 1] == 0) {
+ --length;
+ }
+
+
+ p = strtol(slash + 1, &end, 10);
+ if (p < 0 || p > maximum_prefix) {
+ zc_error_prev_line("prefix not in the range 0 .. %d",
+ maximum_prefix);
+ return NULL;
+ } else if (*end != '\0') {
+ zc_error_prev_line("invalid prefix '%s'", slash + 1);
+ return NULL;
+ }
+ prefix = (uint8_t) p;
+
+ rdlength = (sizeof(address_family) + sizeof(prefix) + sizeof(length)
+ + length);
+ r = alloc_rdata(rdlength);
+ if (r == NULL) {
+ ERR_ALLOC_FAILED;
+ return NULL;
+ }
+ t = (uint8_t *)(r + 1);
+
+ memcpy(t, &address_family, sizeof(address_family));
+ t += sizeof(address_family);
+ memcpy(t, &prefix, sizeof(prefix));
+ t += sizeof(prefix);
+ memcpy(t, &length, sizeof(length));
+ if (negated) {
+ *t |= APL_NEGATION_MASK;
+ }
+ t += sizeof(length);
+ memcpy(t, address, length);
+
+ return r;
+}
+
+/*
+ * Below some function that also convert but not to wireformat
+ * but to "normal" (int,long,char) types
+ */
+
+uint32_t zparser_ttl2int(const char *ttlstr, int *error)
+{
+ /* convert a ttl value to a integer
+ * return the ttl in a int
+ * -1 on error
+ */
+
+ uint32_t ttl;
+ const char *t;
+
+ ttl = strtottl(ttlstr, &t);
+ if (*t != 0) {
+ zc_error_prev_line("invalid TTL value: %s", ttlstr);
+ *error = 1;
+ }
+
+ return ttl;
+}
+
+void zadd_rdata_wireformat(uint16_t *data)
+{
+ parser->temporary_items[parser->rdata_count].raw_data = data;
+ parser->rdata_count++;
+}
+
+/**
+ * Used for TXT RR's to grow with undefined number of strings.
+ */
+void zadd_rdata_txt_wireformat(uint16_t *data, int first)
+{
+ dbg_zp("Adding text!\n");
+// hex_print(data + 1, data[0]);
+ knot_rdata_item_t *rd;
+
+ /* First STR in str_seq, allocate 65K in first unused rdata
+ * else find last used rdata */
+ if (first) {
+ rd = &parser->temporary_items[parser->rdata_count];
+// if ((rd->data = (uint8_t *) region_alloc(parser->rr_region,
+// sizeof(uint8_t) + 65535 * sizeof(uint8_t))) == NULL) {
+// zc_error_prev_line("Could not allocate memory for TXT RR");
+// return;
+// }
+ rd->raw_data = alloc_rdata(65535 * sizeof(uint8_t));
+ if (rd->raw_data == NULL) {
+ parser->error_occurred = KNOTDZCOMPILE_ENOMEM;
+ }
+ parser->rdata_count++;
+ rd->raw_data[0] = 0;
+ } else {
+// assert(0);
+ rd = &parser->temporary_items[parser->rdata_count-1];
+ }
+
+ if ((size_t)rd->raw_data[0] + (size_t)data[0] > 65535) {
+ zc_error_prev_line("too large rdata element");
+ return;
+ }
+
+ memcpy((uint8_t *)rd->raw_data + 2 + rd->raw_data[0],
+ data + 1, data[0]);
+ rd->raw_data[0] += data[0];
+ free(data);
+ dbg_zp("Item after add\n");
+// hex_print(rd->raw_data + 1, rd->raw_data[0]);
+}
+
+void zadd_rdata_domain(knot_dname_t *dname)
+{
+ knot_dname_retain(dname);
+// printf("Adding rdata name: %s %p\n", dname->name, dname);
+ parser->temporary_items[parser->rdata_count].dname = dname;
+ parser->rdata_count++;
+}
+
+void parse_unknown_rdata(uint16_t type, uint16_t *wireformat)
+{
+ dbg_rdata("parsing unknown rdata for type: %d\n", type);
+// buffer_type packet;
+ uint16_t size;
+ ssize_t rdata_count;
+ ssize_t i;
+ knot_rdata_item_t *items = NULL;
+
+ if (wireformat) {
+ size = *wireformat;
+ } else {
+ return;
+ }
+
+// buffer_create_from(&packet, wireformat + 1, *wireformat);
+ rdata_count = rdata_wireformat_to_rdata_atoms(wireformat + 1, type,
+ size, &items);
+// dbg_rdata("got %d items\n", rdata_count);
+ dbg_rdata("wf to items returned error: %s (%d)\n",
+ error_to_str(knot_zcompile_error_msgs, rdata_count),
+ rdata_count);
+ if (rdata_count < 0) {
+ zc_error_prev_line("bad unknown RDATA\n");
+ /*!< \todo leaks */
+ return;
+ }
+
+ for (i = 0; i < rdata_count; ++i) {
+ if (rdata_atom_is_domain(type, i)) {
+ zadd_rdata_domain(items[i].dname);
+ } else {
+ //XXX won't this create size two times?
+ zadd_rdata_wireformat((uint16_t *)items[i].raw_data);
+ }
+ }
+ free(items);
+ /* Free wireformat */
+ free(wireformat);
+}
+
+void set_bitnsec(uint8_t bits[NSEC_WINDOW_COUNT][NSEC_WINDOW_BITS_SIZE],
+ uint16_t index)
+{
+ /*
+ * The bits are counted from left to right, so bit #0 is the
+ * left most bit.
+ */
+ uint8_t window = index / 256;
+ uint8_t bit = index % 256;
+
+ bits[window][bit / 8] |= (1 << (7 - bit % 8));
+}
+