/* * UCW Library -- Memory Pools (One-Time Allocation) * * (c) 1997--2001 Martin Mares * (c) 2007 Pavel Charvat * * This software may be freely distributed and used according to the terms * of the GNU Lesser General Public License. */ #include #undef LOCAL_DEBUG #include "common/mempool.h" #include "common/mempattern.h" #include #include #include #include /** \todo This shouldn't be precalculated, but computed on load. */ #define CPU_PAGE_SIZE 4096 /** Align an integer @s to the nearest higher multiple of @a (which should be a power of two) **/ #define ALIGN_TO(s, a) (((s)+a-1)&~(a-1)) #define MP_CHUNK_TAIL ALIGN_TO(sizeof(struct mempool_chunk), CPU_STRUCT_ALIGN) #define MP_SIZE_MAX (~0U - MP_CHUNK_TAIL - CPU_PAGE_SIZE) #ifndef MAX #define MAX(a, b) \ ({ typeof (a) _a = (a); typeof (b) _b = (b); _a > _b ? _a : _b; }) #endif #define DBG(s...) struct mempool_chunk { struct mempool_chunk *next; unsigned size; }; static unsigned mp_align_size(unsigned size) { #ifdef CONFIG_UCW_POOL_IS_MMAP return ALIGN_TO(size + MP_CHUNK_TAIL, CPU_PAGE_SIZE) - MP_CHUNK_TAIL; #else return ALIGN_TO(size, CPU_STRUCT_ALIGN); #endif } void mp_init(struct mempool *pool, unsigned chunk_size) { chunk_size = mp_align_size(MAX(sizeof(struct mempool), chunk_size)); *pool = (struct mempool) { .chunk_size = chunk_size, .threshold = chunk_size >> 1, .last_big = &pool->last_big }; } static void * mp_new_big_chunk(unsigned size) { struct mempool_chunk *chunk; chunk = xmalloc(size + MP_CHUNK_TAIL) + size; chunk->size = size; return chunk; } static void mp_free_big_chunk(struct mempool_chunk *chunk) { free((void *)chunk - chunk->size); } static void * mp_new_chunk(unsigned size) { #ifdef CONFIG_UCW_POOL_IS_MMAP struct mempool_chunk *chunk; chunk = page_alloc(size + MP_CHUNK_TAIL) + size; chunk->size = size; return chunk; #else return mp_new_big_chunk(size); #endif } static void mp_free_chunk(struct mempool_chunk *chunk) { #ifdef CONFIG_UCW_POOL_IS_MMAP page_free((void *)chunk - chunk->size, chunk->size + MP_CHUNK_TAIL); #else mp_free_big_chunk(chunk); #endif } struct mempool * mp_new(unsigned chunk_size) { chunk_size = mp_align_size(MAX(sizeof(struct mempool), chunk_size)); struct mempool_chunk *chunk = mp_new_chunk(chunk_size); struct mempool *pool = (void *)chunk - chunk_size; DBG("Creating mempool %p with %u bytes long chunks", pool, chunk_size); chunk->next = NULL; *pool = (struct mempool) { .state = { .free = { chunk_size - sizeof(*pool) }, .last = { chunk } }, .chunk_size = chunk_size, .threshold = chunk_size >> 1, .last_big = &pool->last_big }; return pool; } static void mp_free_chain(struct mempool_chunk *chunk) { while (chunk) { struct mempool_chunk *next = chunk->next; mp_free_chunk(chunk); chunk = next; } } static void mp_free_big_chain(struct mempool_chunk *chunk) { while (chunk) { struct mempool_chunk *next = chunk->next; mp_free_big_chunk(chunk); chunk = next; } } void mp_delete(struct mempool *pool) { DBG("Deleting mempool %p", pool); mp_free_big_chain(pool->state.last[1]); mp_free_chain(pool->unused); mp_free_chain(pool->state.last[0]); // can contain the mempool structure } void mp_flush(struct mempool *pool) { mp_free_big_chain(pool->state.last[1]); struct mempool_chunk *chunk, *next; for (chunk = pool->state.last[0]; chunk && (void *)chunk - chunk->size != pool; chunk = next) { next = chunk->next; chunk->next = pool->unused; pool->unused = chunk; } pool->state.last[0] = chunk; pool->state.free[0] = chunk ? chunk->size - sizeof(*pool) : 0; pool->state.last[1] = NULL; pool->state.free[1] = 0; pool->state.next = NULL; pool->last_big = &pool->last_big; } static void mp_stats_chain(struct mempool_chunk *chunk, struct mempool_stats *stats, unsigned idx) { while (chunk) { stats->chain_size[idx] += chunk->size + sizeof(*chunk); stats->chain_count[idx]++; chunk = chunk->next; } stats->total_size += stats->chain_size[idx]; } void mp_stats(struct mempool *pool, struct mempool_stats *stats) { bzero(stats, sizeof(*stats)); mp_stats_chain(pool->state.last[0], stats, 0); mp_stats_chain(pool->state.last[1], stats, 1); mp_stats_chain(pool->unused, stats, 2); } uint64_t mp_total_size(struct mempool *pool) { struct mempool_stats stats; mp_stats(pool, &stats); return stats.total_size; } void * mp_alloc_internal(struct mempool *pool, unsigned size) { struct mempool_chunk *chunk; if (size <= pool->threshold) { pool->idx = 0; if (pool->unused) { chunk = pool->unused; pool->unused = chunk->next; } else chunk = mp_new_chunk(pool->chunk_size); chunk->next = pool->state.last[0]; pool->state.last[0] = chunk; pool->state.free[0] = pool->chunk_size - size; return (void *)chunk - pool->chunk_size; } else if (size <= MP_SIZE_MAX) { pool->idx = 1; unsigned aligned = ALIGN_TO(size, CPU_STRUCT_ALIGN); chunk = mp_new_big_chunk(aligned); chunk->next = pool->state.last[1]; pool->state.last[1] = chunk; pool->state.free[1] = aligned - size; return pool->last_big = (void *)chunk - aligned; } else { fprintf(stderr, "Cannot allocate %u bytes from a mempool", size); assert(0); return NULL; } } void * mp_alloc(struct mempool *pool, unsigned size) { return mp_alloc_fast(pool, size); } void * mp_alloc_noalign(struct mempool *pool, unsigned size) { return mp_alloc_fast_noalign(pool, size); } void * mp_alloc_zero(struct mempool *pool, unsigned size) { void *ptr = mp_alloc_fast(pool, size); bzero(ptr, size); return ptr; } void * mp_start_internal(struct mempool *pool, unsigned size) { void *ptr = mp_alloc_internal(pool, size); pool->state.free[pool->idx] += size; return ptr; } void * mp_start(struct mempool *pool, unsigned size) { return mp_start_fast(pool, size); } void * mp_start_noalign(struct mempool *pool, unsigned size) { return mp_start_fast_noalign(pool, size); } void * mp_grow_internal(struct mempool *pool, unsigned size) { if (size > MP_SIZE_MAX) { fprintf(stderr, "Cannot allocate %u bytes of memory", size); assert(0); } unsigned avail = mp_avail(pool); void *ptr = mp_ptr(pool); if (pool->idx) { unsigned amortized = (avail <= MP_SIZE_MAX / 2) ? avail * 2 : MP_SIZE_MAX; amortized = MAX(amortized, size); amortized = ALIGN_TO(amortized, CPU_STRUCT_ALIGN); struct mempool_chunk *chunk = pool->state.last[1], *next = chunk->next; ptr = xrealloc(ptr, amortized + MP_CHUNK_TAIL); chunk = ptr + amortized; chunk->next = next; chunk->size = amortized; pool->state.last[1] = chunk; pool->state.free[1] = amortized; pool->last_big = ptr; return ptr; } else { void *p = mp_start_internal(pool, size); memcpy(p, ptr, avail); return p; } } unsigned mp_open(struct mempool *pool, void *ptr) { return mp_open_fast(pool, ptr); } void * mp_realloc(struct mempool *pool, void *ptr, unsigned size) { return mp_realloc_fast(pool, ptr, size); } void * mp_realloc_zero(struct mempool *pool, void *ptr, unsigned size) { unsigned old_size = mp_open_fast(pool, ptr); ptr = mp_grow(pool, size); if (size > old_size) bzero(ptr + old_size, size - old_size); mp_end(pool, ptr + size); return ptr; } void * mp_spread_internal(struct mempool *pool, void *p, unsigned size) { void *old = mp_ptr(pool); void *new = mp_grow_internal(pool, p-old+size); return p-old+new; }