1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
/**
* @file dSFMT.c
* @brief double precision SIMD-oriented Fast Mersenne Twister (dSFMT)
* based on IEEE 754 format.
*
* @author Mutsuo Saito (Hiroshima University)
* @author Makoto Matsumoto (Hiroshima University)
*
* Copyright (C) 2007,2008 Mutsuo Saito, Makoto Matsumoto and Hiroshima
* University. All rights reserved.
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "dSFMT-params.h"
/** dsfmt internal state vector */
dsfmt_t dsfmt_global_data;
/** dsfmt mexp for check */
static const int dsfmt_mexp = DSFMT_MEXP;
/*----------------
STATIC FUNCTIONS
----------------*/
inline static uint32_t ini_func1(uint32_t x);
inline static uint32_t ini_func2(uint32_t x);
inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
int size);
inline static int idxof(int i);
static void initial_mask(dsfmt_t *dsfmt);
static void period_certification(dsfmt_t *dsfmt);
#if defined(HAVE_SSE2)
# include <emmintrin.h>
/** mask data for sse2 */
static __m128i sse2_param_mask;
/** 1 in 64bit for sse2 */
static __m128i sse2_int_one;
/** 2.0 double for sse2 */
static __m128d sse2_double_two;
/** -1.0 double for sse2 */
static __m128d sse2_double_m_one;
static void setup_const(void);
#endif
/**
* This function simulate a 32-bit array index overlapped to 64-bit
* array of LITTLE ENDIAN in BIG ENDIAN machine.
*/
#if defined(DSFMT_BIG_ENDIAN)
inline static int idxof(int i) {
return i ^ 1;
}
#else
inline static int idxof(int i) {
return i;
}
#endif
/**
* This function represents the recursion formula.
* @param r output
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param lung a 128-bit part of the internal state array
*/
#if defined(HAVE_ALTIVEC)
inline static void do_recursion(w128_t *r, w128_t *a, w128_t * b,
w128_t *lung) {
const vector unsigned char sl1 = ALTI_SL1;
const vector unsigned char sl1_perm = ALTI_SL1_PERM;
const vector unsigned int sl1_msk = ALTI_SL1_MSK;
const vector unsigned char sr1 = ALTI_SR;
const vector unsigned char sr1_perm = ALTI_SR_PERM;
const vector unsigned int sr1_msk = ALTI_SR_MSK;
const vector unsigned char perm = ALTI_PERM;
const vector unsigned int msk1 = ALTI_MSK;
vector unsigned int w, x, y, z;
z = a->s;
w = lung->s;
x = vec_perm(w, (vector unsigned int)perm, perm);
y = vec_perm(z, sl1_perm, sl1_perm);
y = vec_sll(y, sl1);
y = vec_and(y, sl1_msk);
w = vec_xor(x, b->s);
w = vec_xor(w, y);
x = vec_perm(w, (vector unsigned int)sr1_perm, sr1_perm);
x = vec_srl(x, sr1);
x = vec_and(x, sr1_msk);
y = vec_and(w, msk1);
z = vec_xor(z, y);
r->s = vec_xor(z, x);
lung->s = w;
}
#elif defined(HAVE_SSE2)
/**
* This function setup some constant variables for SSE2.
*/
static void setup_const(void) {
static int first = 1;
if (!first) {
return;
}
sse2_param_mask = _mm_set_epi32(DSFMT_MSK32_3, DSFMT_MSK32_4,
DSFMT_MSK32_1, DSFMT_MSK32_2);
sse2_int_one = _mm_set_epi32(0, 1, 0, 1);
sse2_double_two = _mm_set_pd(2.0, 2.0);
sse2_double_m_one = _mm_set_pd(-1.0, -1.0);
first = 0;
}
/**
* This function represents the recursion formula.
* @param r output 128-bit
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param d a 128-bit part of the internal state array (I/O)
*/
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *u) {
__m128i v, w, x, y, z;
x = a->si;
z = _mm_slli_epi64(x, DSFMT_SL1);
y = _mm_shuffle_epi32(u->si, SSE2_SHUFF);
z = _mm_xor_si128(z, b->si);
y = _mm_xor_si128(y, z);
v = _mm_srli_epi64(y, DSFMT_SR);
w = _mm_and_si128(y, sse2_param_mask);
v = _mm_xor_si128(v, x);
v = _mm_xor_si128(v, w);
r->si = v;
u->si = y;
}
#else /* standard C */
/**
* This function represents the recursion formula.
* @param r output 128-bit
* @param a a 128-bit part of the internal state array
* @param b a 128-bit part of the internal state array
* @param lung a 128-bit part of the internal state array (I/O)
*/
inline static void do_recursion(w128_t *r, w128_t *a, w128_t * b,
w128_t *lung) {
uint64_t t0, t1, L0, L1;
t0 = a->u[0];
t1 = a->u[1];
L0 = lung->u[0];
L1 = lung->u[1];
lung->u[0] = (t0 << DSFMT_SL1) ^ (L1 >> 32) ^ (L1 << 32) ^ b->u[0];
lung->u[1] = (t1 << DSFMT_SL1) ^ (L0 >> 32) ^ (L0 << 32) ^ b->u[1];
r->u[0] = (lung->u[0] >> DSFMT_SR) ^ (lung->u[0] & DSFMT_MSK1) ^ t0;
r->u[1] = (lung->u[1] >> DSFMT_SR) ^ (lung->u[1] & DSFMT_MSK2) ^ t1;
}
#endif
#if defined(HAVE_SSE2)
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range [0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_c0o1(w128_t *w) {
w->sd = _mm_add_pd(w->sd, sse2_double_m_one);
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1].
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0c1(w128_t *w) {
w->sd = _mm_sub_pd(sse2_double_two, w->sd);
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0o1(w128_t *w) {
w->si = _mm_or_si128(w->si, sse2_int_one);
w->sd = _mm_add_pd(w->sd, sse2_double_m_one);
}
#else /* standard C and altivec */
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range [0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_c0o1(w128_t *w) {
w->d[0] -= 1.0;
w->d[1] -= 1.0;
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1].
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0c1(w128_t *w) {
w->d[0] = 2.0 - w->d[0];
w->d[1] = 2.0 - w->d[1];
}
/**
* This function converts the double precision floating point numbers which
* distribute uniformly in the range [1, 2) to those which distribute uniformly
* in the range (0, 1).
* @param w 128bit stracture of double precision floating point numbers (I/O)
*/
inline static void convert_o0o1(w128_t *w) {
w->u[0] |= 1;
w->u[1] |= 1;
w->d[0] -= 1.0;
w->d[1] -= 1.0;
}
#endif
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
convert_c0o1(&array[i - DSFMT_N]);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
convert_c0o1(&array[i - DSFMT_N]);
}
for (i = size - DSFMT_N; i < size; i++) {
convert_c0o1(&array[i]);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
convert_o0o1(&array[i - DSFMT_N]);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
convert_o0o1(&array[i - DSFMT_N]);
}
for (i = size - DSFMT_N; i < size; i++) {
convert_o0o1(&array[i]);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function fills the user-specified array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
int size) {
int i, j;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
&lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&array[i], &dsfmt->status[i],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
}
for (; i < size - DSFMT_N; i++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
convert_o0c1(&array[i - DSFMT_N]);
}
for (j = 0; j < 2 * DSFMT_N - size; j++) {
dsfmt->status[j] = array[j + size - DSFMT_N];
}
for (; i < size; i++, j++) {
do_recursion(&array[i], &array[i - DSFMT_N],
&array[i + DSFMT_POS1 - DSFMT_N], &lung);
dsfmt->status[j] = array[i];
convert_o0c1(&array[i - DSFMT_N]);
}
for (i = size - DSFMT_N; i < size; i++) {
convert_o0c1(&array[i]);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t ini_func1(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}
/**
* This function represents a function used in the initialization
* by init_by_array
* @param x 32-bit integer
* @return 32-bit integer
*/
static uint32_t ini_func2(uint32_t x) {
return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}
/**
* This function initializes the internal state array to fit the IEEE
* 754 format.
* @param dsfmt dsfmt state vector.
*/
static void initial_mask(dsfmt_t *dsfmt) {
int i;
uint64_t *psfmt;
psfmt = &dsfmt->status[0].u[0];
for (i = 0; i < DSFMT_N * 2; i++) {
psfmt[i] = (psfmt[i] & DSFMT_LOW_MASK) | DSFMT_HIGH_CONST;
}
}
/**
* This function certificate the period of 2^{SFMT_MEXP}-1.
* @param dsfmt dsfmt state vector.
*/
static void period_certification(dsfmt_t *dsfmt) {
uint64_t pcv[2] = {DSFMT_PCV1, DSFMT_PCV2};
uint64_t tmp[2];
uint64_t inner;
int i;
#if (DSFMT_PCV2 & 1) != 1
int j;
uint64_t work;
#endif
tmp[0] = (dsfmt->status[DSFMT_N].u[0] ^ DSFMT_FIX1);
tmp[1] = (dsfmt->status[DSFMT_N].u[1] ^ DSFMT_FIX2);
inner = tmp[0] & pcv[0];
inner ^= tmp[1] & pcv[1];
for (i = 32; i > 0; i >>= 1) {
inner ^= inner >> i;
}
inner &= 1;
/* check OK */
if (inner == 1) {
return;
}
/* check NG, and modification */
#if (DSFMT_PCV2 & 1) == 1
dsfmt->status[DSFMT_N].u[1] ^= 1;
#else
for (i = 1; i >= 0; i--) {
work = 1;
for (j = 0; j < 64; j++) {
if ((work & pcv[i]) != 0) {
dsfmt->status[DSFMT_N].u[i] ^= work;
return;
}
work = work << 1;
}
}
#endif
return;
}
/*----------------
PUBLIC FUNCTIONS
----------------*/
/**
* This function returns the identification string. The string shows
* the Mersenne exponent, and all parameters of this generator.
* @return id string.
*/
const char *dsfmt_get_idstring(void) {
return DSFMT_IDSTR;
}
/**
* This function returns the minimum size of array used for \b
* fill_array functions.
* @return minimum size of array used for fill_array functions.
*/
int dsfmt_get_min_array_size(void) {
return DSFMT_N64;
}
/**
* This function fills the internal state array with double precision
* floating point pseudorandom numbers of the IEEE 754 format.
* @param dsfmt dsfmt state vector.
*/
void dsfmt_gen_rand_all(dsfmt_t *dsfmt) {
int i;
w128_t lung;
lung = dsfmt->status[DSFMT_N];
do_recursion(&dsfmt->status[0], &dsfmt->status[0],
&dsfmt->status[DSFMT_POS1], &lung);
for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
do_recursion(&dsfmt->status[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1], &lung);
}
for (; i < DSFMT_N; i++) {
do_recursion(&dsfmt->status[i], &dsfmt->status[i],
&dsfmt->status[i + DSFMT_POS1 - DSFMT_N], &lung);
}
dsfmt->status[DSFMT_N] = lung;
}
/**
* This function generates double precision floating point
* pseudorandom numbers which distribute in the range [1, 2) to the
* specified array[] by one call. The number of pseudorandom numbers
* is specified by the argument \b size, which must be at least (SFMT_MEXP
* / 128) * 2 and a multiple of two. The function
* get_min_array_size() returns this minimum size. The generation by
* this function is much faster than the following fill_array_xxx functions.
*
* For initialization, init_gen_rand() or init_by_array() must be called
* before the first call of this function. This function can not be
* used after calling genrand_xxx functions, without initialization.
*
* @param dsfmt dsfmt state vector.
* @param array an array where pseudorandom numbers are filled
* by this function. The pointer to the array must be "aligned"
* (namely, must be a multiple of 16) in the SIMD version, since it
* refers to the address of a 128-bit integer. In the standard C
* version, the pointer is arbitrary.
*
* @param size the number of 64-bit pseudorandom integers to be
* generated. size must be a multiple of 2, and greater than or equal
* to (SFMT_MEXP / 128) * 2.
*
* @note \b memalign or \b posix_memalign is available to get aligned
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
* returns the pointer to the aligned memory block.
*/
void dsfmt_fill_array_close1_open2(dsfmt_t *dsfmt, double array[], int size) {
assert(size % 2 == 0);
assert(size >= DSFMT_N64);
gen_rand_array_c1o2(dsfmt, (w128_t *)array, size / 2);
}
/**
* This function generates double precision floating point
* pseudorandom numbers which distribute in the range (0, 1] to the
* specified array[] by one call. This function is the same as
* fill_array_close1_open2() except the distribution range.
*
* @param dsfmt dsfmt state vector.
* @param array an array where pseudorandom numbers are filled
* by this function.
* @param size the number of pseudorandom numbers to be generated.
* see also \sa fill_array_close1_open2()
*/
void dsfmt_fill_array_open_close(dsfmt_t *dsfmt, double array[], int size) {
assert(size % 2 == 0);
assert(size >= DSFMT_N64);
gen_rand_array_o0c1(dsfmt, (w128_t *)array, size / 2);
}
/**
* This function generates double precision floating point
* pseudorandom numbers which distribute in the range [0, 1) to the
* specified array[] by one call. This function is the same as
* fill_array_close1_open2() except the distribution range.
*
* @param array an array where pseudorandom numbers are filled
* by this function.
* @param dsfmt dsfmt state vector.
* @param size the number of pseudorandom numbers to be generated.
* see also \sa fill_array_close1_open2()
*/
void dsfmt_fill_array_close_open(dsfmt_t *dsfmt, double array[], int size) {
assert(size % 2 == 0);
assert(size >= DSFMT_N64);
gen_rand_array_c0o1(dsfmt, (w128_t *)array, size / 2);
}
/**
* This function generates double precision floating point
* pseudorandom numbers which distribute in the range (0, 1) to the
* specified array[] by one call. This function is the same as
* fill_array_close1_open2() except the distribution range.
*
* @param dsfmt dsfmt state vector.
* @param array an array where pseudorandom numbers are filled
* by this function.
* @param size the number of pseudorandom numbers to be generated.
* see also \sa fill_array_close1_open2()
*/
void dsfmt_fill_array_open_open(dsfmt_t *dsfmt, double array[], int size) {
assert(size % 2 == 0);
assert(size >= DSFMT_N64);
gen_rand_array_o0o1(dsfmt, (w128_t *)array, size / 2);
}
#if defined(__INTEL_COMPILER)
# pragma warning(disable:981)
#endif
/**
* This function initializes the internal state array with a 32-bit
* integer seed.
* @param dsfmt dsfmt state vector.
* @param seed a 32-bit integer used as the seed.
* @param mexp caller's mersenne expornent
*/
void dsfmt_chk_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed, int mexp) {
int i;
uint32_t *psfmt;
/* make sure caller program is compiled with the same MEXP */
if (mexp != dsfmt_mexp) {
fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
exit(1);
}
psfmt = &dsfmt->status[0].u32[0];
psfmt[idxof(0)] = seed;
for (i = 1; i < (DSFMT_N + 1) * 4; i++) {
psfmt[idxof(i)] = 1812433253UL
* (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i;
}
initial_mask(dsfmt);
period_certification(dsfmt);
dsfmt->idx = DSFMT_N64;
#if defined(HAVE_SSE2)
setup_const();
#endif
}
/**
* This function initializes the internal state array,
* with an array of 32-bit integers used as the seeds
* @param dsfmt dsfmt state vector.
* @param init_key the array of 32-bit integers, used as a seed.
* @param key_length the length of init_key.
* @param mexp caller's mersenne expornent
*/
void dsfmt_chk_init_by_array(dsfmt_t *dsfmt, uint32_t init_key[],
int key_length, int mexp) {
int i, j, count;
uint32_t r;
uint32_t *psfmt32;
int lag;
int mid;
int size = (DSFMT_N + 1) * 4; /* pulmonary */
/* make sure caller program is compiled with the same MEXP */
if (mexp != dsfmt_mexp) {
fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
exit(1);
}
if (size >= 623) {
lag = 11;
} else if (size >= 68) {
lag = 7;
} else if (size >= 39) {
lag = 5;
} else {
lag = 3;
}
mid = (size - lag) / 2;
psfmt32 = &dsfmt->status[0].u32[0];
memset(dsfmt->status, 0x8b, sizeof(dsfmt->status));
if (key_length + 1 > size) {
count = key_length + 1;
} else {
count = size;
}
r = ini_func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid % size)]
^ psfmt32[idxof((size - 1) % size)]);
psfmt32[idxof(mid % size)] += r;
r += key_length;
psfmt32[idxof((mid + lag) % size)] += r;
psfmt32[idxof(0)] = r;
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = ini_func1(psfmt32[idxof(i)]
^ psfmt32[idxof((i + mid) % size)]
^ psfmt32[idxof((i + size - 1) % size)]);
psfmt32[idxof((i + mid) % size)] += r;
r += init_key[j] + i;
psfmt32[idxof((i + mid + lag) % size)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % size;
}
for (; j < count; j++) {
r = ini_func1(psfmt32[idxof(i)]
^ psfmt32[idxof((i + mid) % size)]
^ psfmt32[idxof((i + size - 1) % size)]);
psfmt32[idxof((i + mid) % size)] += r;
r += i;
psfmt32[idxof((i + mid + lag) % size)] += r;
psfmt32[idxof(i)] = r;
i = (i + 1) % size;
}
for (j = 0; j < size; j++) {
r = ini_func2(psfmt32[idxof(i)]
+ psfmt32[idxof((i + mid) % size)]
+ psfmt32[idxof((i + size - 1) % size)]);
psfmt32[idxof((i + mid) % size)] ^= r;
r -= i;
psfmt32[idxof((i + mid + lag) % size)] ^= r;
psfmt32[idxof(i)] = r;
i = (i + 1) % size;
}
initial_mask(dsfmt);
period_certification(dsfmt);
dsfmt->idx = DSFMT_N64;
#if defined(HAVE_SSE2)
setup_const();
#endif
}
#if defined(__INTEL_COMPILER)
# pragma warning(default:981)
#endif
|