1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
|
/*
* This file is part of hat-trie.
*
* Copyright (c) 2011 by Daniel C. Jones <dcjones@cs.washington.edu>
*
*/
#include <config.h>
#include <stdint.h>
#include <assert.h>
#include <string.h>
#include "common/hattrie/hat-trie.h"
#include "common/hhash.h"
/* number of child nodes for used alphabet */
#define NODE_CHILDS (TRIE_MAXCHAR+1)
/* initial nodestack size */
#define NODESTACK_INIT 128
/* hashtable max fill (undefine to maximize) */
#define HHASH_MAX_FILL 0.9
static const uint8_t NODE_TYPE_TRIE = 0x1;
static const uint8_t NODE_TYPE_PURE_BUCKET = 0x2;
static const uint8_t NODE_TYPE_HYBRID_BUCKET = 0x4;
static const uint8_t NODE_HAS_VAL = 0x8;
struct trie_node_t_;
/* Node's may be trie nodes or buckets. This union allows us to keep
* non-specific pointer. */
typedef union node_ptr_
{
hhash_t* b;
struct trie_node_t_* t;
uint8_t* flag;
} node_ptr;
typedef struct trie_node_t_
{
uint8_t flag;
/* the value for the key that is consumed on a trie node */
value_t val;
/* Map a character to either a trie_node_t or a hhash_t. The first byte
* must be examined to determine which. */
node_ptr xs[NODE_CHILDS];
} trie_node_t;
struct hattrie_t_
{
node_ptr root; // root node
size_t m; // number of stored keys
unsigned bsize; // bucket size
mm_ctx_t mm;
};
/* Create an empty trie node. */
static trie_node_t* alloc_empty_node(hattrie_t* T)
{
trie_node_t* node = T->mm.alloc(T->mm.ctx, sizeof(trie_node_t));
node->flag = NODE_TYPE_TRIE;
node->val = 0;
memset(node->xs, 0, sizeof(node_ptr) * NODE_CHILDS);
return node;
}
/* Create a new trie node with all pointer pointing to the given child (which
* can be NULL). */
static trie_node_t* alloc_trie_node(hattrie_t* T, node_ptr child)
{
trie_node_t* node = T->mm.alloc(T->mm.ctx, sizeof(trie_node_t));
node->flag = NODE_TYPE_TRIE;
node->val = 0;
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) node->xs[i] = child;
return node;
}
/* iterate trie nodes until string is consumed or bucket is found */
static node_ptr hattrie_consume_ns(node_ptr **s, size_t *sp, size_t slen,
const char **k, size_t *l, unsigned brk)
{
node_ptr *bs = *s;
node_ptr node = bs[*sp].t->xs[(unsigned char) **k];
while (node.flag && *node.flag & NODE_TYPE_TRIE && *l > brk) {
++*k;
--*l;
/* build node stack if slen > 0 */
if (slen > 0) {
if (*sp == slen - 1) {
/* switch pointers if allocating from base
* this is a bit ugly, but needed to avoid memory allocation
* most of the time
*/
slen *= 2;
if (bs == *s) { /* points to original stack mem */
bs = malloc(slen * sizeof(node_ptr));
memcpy(bs, *s, (slen/2) * sizeof(node_ptr));
} else { /* points to heap memory already */
node_ptr *bs_new = realloc(bs, slen * sizeof(node_ptr));
/* \note tricky, hattrie should be slowly moved from 'never-expect-malloc-fail' state */
if (bs_new == NULL) {
*sp = 0; /* caller will get take care of freeing old 'bs' */
return bs[0]; /* return root node, so the search fails */
} else {
bs = bs_new;
}
}
/* update parent pointer on resize */
*s = bs;
}
/* increment stack pointer */
++*sp;
}
bs[*sp] = node;
node = node.t->xs[(unsigned char) **k];
}
/* stack top is always parent node */
assert(*bs[*sp].flag & NODE_TYPE_TRIE);
return node;
}
static inline node_ptr hattrie_consume(node_ptr *parent, const char **k,
size_t *l, unsigned brk)
{
size_t sp = 0;
return hattrie_consume_ns(&parent, &sp, 0, k, l, brk);
}
/* use node value and return pointer to it */
static inline value_t* hattrie_useval(hattrie_t *T, node_ptr n)
{
if (!(n.t->flag & NODE_HAS_VAL)) {
n.t->flag |= NODE_HAS_VAL;
++T->m;
}
return &n.t->val;
}
/* clear node value if exists */
static inline int hattrie_clrval(hattrie_t *T, node_ptr n)
{
if (n.t->flag & NODE_HAS_VAL) {
n.t->flag &= ~NODE_HAS_VAL;
n.t->val = 0;
--T->m;
return 0;
}
return -1;
}
/* find rightmost non-empty node */
static value_t* hattrie_find_rightmost(node_ptr node)
{
/* iterate children from right */
if (*node.flag & NODE_TYPE_TRIE) {
for (int i = TRIE_MAXCHAR; i > -1; --i) {
/* skip repeated pointers to hybrid bucket */
if (i < TRIE_MAXCHAR && node.t->xs[i].t == node.t->xs[i + 1].t)
continue;
/* nest if trie */
value_t *ret = hattrie_find_rightmost(node.t->xs[i]);
if (ret) {
return ret;
}
}
/* use trie node value if no children found */
if (node.t->flag & NODE_HAS_VAL) {
return &node.t->val;
}
/* no non-empty children? */
return NULL;
}
/* node is hashtable */
if (node.b->weight == 0) {
return NULL;
}
/* return rightmost value */
assert(node.b->index);
return hhash_indexval(node.b, node.b->weight - 1);
}
/* find node in trie and keep node stack (if slen > 0) */
static node_ptr hattrie_find_ns(node_ptr **s, size_t *sp, size_t slen,
const char **key, size_t *len)
{
assert(*(*s)[*sp].flag & NODE_TYPE_TRIE);
if (*len == 0) return (*s)[*sp]; /* parent, as sp == 0 */
node_ptr node = hattrie_consume_ns(s, sp, slen, key, len, 1);
/* using pure trie and couldn't find the key, return stack top */
if (node.flag == NULL) {
node = (*s)[*sp];
}
/* if the trie node consumes value, use it */
if (*node.flag & NODE_TYPE_TRIE) {
if (!(node.t->flag & NODE_HAS_VAL)) {
node.flag = NULL;
}
return node;
}
/* pure bucket holds only key suffixes, skip current char */
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
++*key;
--*len;
}
/* do not scan bucket, it's not needed for this operation */
return node;
}
/* find node in trie */
static inline node_ptr hattrie_find(node_ptr *parent, const char **key, size_t *len)
{
size_t sp = 0;
return hattrie_find_ns(&parent, &sp, 0, key, len);
}
static inline value_t hattrie_setval(value_t v) {
return v;
}
/* initialize root node */
static void hattrie_initroot(hattrie_t *T)
{
node_ptr node;
if (T->bsize > 0) {
node.b = hhash_create(TRIE_BUCKET_SIZE);
node.b->flag = NODE_TYPE_HYBRID_BUCKET;
node.b->c0 = 0x00;
node.b->c1 = TRIE_MAXCHAR;
T->root.t = alloc_trie_node(T, node);
} else {
T->root.t = alloc_empty_node(T);
}
}
/* Free hat-trie nodes recursively. */
static void hattrie_free_node(node_ptr node, mm_free_t free_cb)
{
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t)
continue;
/* XXX: recursion might not be the best choice here. It is possible
* to build a very deep trie. */
if (node.t->xs[i].t)
hattrie_free_node(node.t->xs[i], free_cb);
}
if (free_cb)
free_cb(node.t);
}
else {
hhash_free(node.b);
}
}
/* Initialize hat-trie. */
static void hattrie_init(hattrie_t * T, unsigned bucket_size)
{
T->m = 0;
T->bsize = bucket_size;
hattrie_initroot(T);
}
/* Deinitialize hat-trie. */
static void hattrie_deinit(hattrie_t * T)
{
if (T->bsize > 0 || T->mm.free)
hattrie_free_node(T->root, T->mm.free);
}
hattrie_t* hattrie_create()
{
mm_ctx_t mm;
mm_ctx_init(&mm);
return hattrie_create_n(TRIE_BUCKET_SIZE, &mm);
}
void hattrie_free(hattrie_t* T)
{
if (T == NULL) {
return;
}
hattrie_deinit(T);
if (T->mm.free)
T->mm.free(T);
}
void hattrie_clear(hattrie_t* T)
{
if (T == NULL) {
return;
}
hattrie_deinit(T);
hattrie_init(T, T->bsize);
}
hattrie_t* hattrie_dup(const hattrie_t* T, value_t (*nval)(value_t))
{
hattrie_t *N = hattrie_create_n(T->bsize, &T->mm);
/* assignment */
if (!nval) nval = hattrie_setval;
/*! \todo could be probably implemented faster */
size_t l = 0;
const char *k = NULL;
hattrie_iter_t *i = hattrie_iter_begin(T, false);
while (!hattrie_iter_finished(i)) {
k = hattrie_iter_key(i, &l);
*hattrie_get(N, k, l) = nval(*hattrie_iter_val(i));
hattrie_iter_next(i);
}
hattrie_iter_free(i);
return N;
}
size_t hattrie_weight (hattrie_t* T)
{
return T->m;
}
hattrie_t* hattrie_create_n(unsigned bucket_size, const mm_ctx_t *mm)
{
hattrie_t* T = mm->alloc(mm->ctx, sizeof(hattrie_t));
memcpy(&T->mm, mm, sizeof(mm_ctx_t));
hattrie_init(T, bucket_size);
return T;
}
static void node_build_index(node_ptr node)
{
/* build index on all hashtable nodes */
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t) continue;
if (node.t->xs[i].t) node_build_index(node.t->xs[i]);
}
}
else {
hhash_build_index(node.b);
}
}
void hattrie_build_index(hattrie_t *T)
{
node_build_index(T->root);
}
static int node_apply(node_ptr node, int (*f)(value_t*,void*), void* d)
{
int result = TRIE_EOK;
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t) {
continue;
}
if (node.t->xs[i].t) {
result = node_apply(node.t->xs[i], f, d);
}
if (result == TRIE_EOK && *node.flag & NODE_HAS_VAL) {
result = f(&node.t->val, d);
}
if (result != TRIE_EOK) {
break;
}
}
}
else {
hhash_iter_t i;
hhash_iter_begin(node.b, &i, false);
while (!hhash_iter_finished(&i)) {
result = f(hhash_iter_val(&i), d);
if (result != TRIE_EOK) {
break;
}
hhash_iter_next(&i);
}
}
return result;
}
static int node_apply_ahtable(node_ptr node, int (*f)(void*,void*), void* d)
{
int result = TRIE_EOK;
if (*node.flag & NODE_TYPE_TRIE) {
size_t i;
for (i = 0; i < NODE_CHILDS; ++i) {
if (i > 0 && node.t->xs[i].t == node.t->xs[i - 1].t) {
continue;
}
if (node.t->xs[i].t) {
result = node_apply_ahtable(node.t->xs[i], f, d);
if (result != TRIE_EOK) {
break;
}
}
}
}
else {
result = f(node.b, d);
}
return result;
}
int hattrie_apply_rev(hattrie_t* T, int (*f)(value_t*,void*), void* d)
{
return node_apply(T->root, f, d);
}
int hattrie_apply_rev_ahtable(hattrie_t* T, int (*f)(void*,void*), void* d)
{
return node_apply_ahtable(T->root, f, d);
}
int hattrie_split_mid(node_ptr node, unsigned *left_m, unsigned *right_m)
{
/* count the number of occourances of every leading character */
unsigned int cs[NODE_CHILDS]; // occurance count for leading chars
memset(cs, 0, NODE_CHILDS * sizeof(unsigned int));
uint16_t len;
const char* key;
/*! \todo expensive, maybe some heuristics or precalc would be better */
hhash_iter_t i;
hhash_iter_begin(node.b, &i, false);
while (!hhash_iter_finished(&i)) {
key = hhash_iter_key(&i, &len);
assert(len > 0);
cs[(unsigned char) key[0]] += 1;
hhash_iter_next(&i);
}
/* choose a split point */
unsigned int all_m;
unsigned char j = node.b->c0;
all_m = node.b->weight;
*left_m = cs[j];
*right_m = all_m - *left_m;
int d;
while (j + 1 < node.b->c1) {
d = abs((int) (*left_m + cs[j + 1]) - (int) (*right_m - cs[j + 1]));
if (d <= abs(*left_m - *right_m) && *left_m + cs[j + 1] < all_m) {
j += 1;
*left_m += cs[j];
*right_m -= cs[j];
}
else break;
}
return j;
}
static value_t *find_below(hattrie_t *T, node_ptr parent,
const char *key, size_t len);
static void hashnode_split_reinsert(hattrie_t *T, node_ptr parent, node_ptr src)
{
value_t* u = NULL;
const char* key = NULL;
uint16_t len = 0;
hhash_iter_t i;
hhash_iter_begin(src.b, &i, false);
while (!hhash_iter_finished(&i)) {
key = hhash_iter_key(&i, &len);
u = hhash_iter_val(&i);
*find_below(T, parent, key, len) = *u;
hhash_iter_next(&i);
}
hhash_free(src.b);
}
static void hashnode_split(hattrie_t *T, node_ptr parent, node_ptr node)
{
/* Find split point. */
unsigned left_m, right_m;
unsigned char j = hattrie_split_mid(node, &left_m, &right_m);
/* now split into two nodes corresponding to ranges [0, j] and
* [j + 1, TRIE_MAXCHAR], respectively. */
/* create new left and right nodes
* one node may reuse existing if it keeps hybrid flag
* hybrid -> pure always needs a new table
*/
unsigned char c0 = node.b->c0, c1 = node.b->c1;
node_ptr left, right;
right.b = hhash_create(TRIE_BUCKET_SIZE);
left.b = hhash_create(TRIE_BUCKET_SIZE);
/* setup created nodes */
left.b->c0 = c0;
left.b->c1 = j;
left.b->flag = c0 == j ? NODE_TYPE_PURE_BUCKET : NODE_TYPE_HYBRID_BUCKET; // need to force it
right.b->c0 = j + 1;
right.b->c1 = c1;
right.b->flag = right.b->c0 == right.b->c1 ?
NODE_TYPE_PURE_BUCKET : NODE_TYPE_HYBRID_BUCKET;
/* update the parent's pointer */
unsigned int c;
for (c = c0; c <= j; ++c) parent.t->xs[c] = left;
for (; c <= c1; ++c) parent.t->xs[c] = right;
/* fill new tables */
hashnode_split_reinsert(T, parent, node);
}
/* Perform one split operation on the given node with the given parent.
*/
static void node_split(hattrie_t* T, node_ptr parent, node_ptr node)
{
/* only buckets may be split */
assert(*node.flag & NODE_TYPE_PURE_BUCKET ||
*node.flag & NODE_TYPE_HYBRID_BUCKET);
assert(*parent.flag & NODE_TYPE_TRIE);
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
/* turn the pure bucket into a hybrid bucket */
parent.t->xs[node.b->c0].t = alloc_trie_node(T, node);
/* if the bucket had an empty key, move it to the new trie node */
value_t* val = hhash_find(node.b, NULL, 0);
if (val) {
parent.t->xs[node.b->c0].t->val = *val;
parent.t->xs[node.b->c0].t->flag |= NODE_HAS_VAL;
*val = 0;
hhash_del(node.b, NULL, 0);
}
node.b->c0 = 0x00;
node.b->c1 = TRIE_MAXCHAR;
node.b->flag = NODE_TYPE_HYBRID_BUCKET;
return;
}
/* This is a hybrid bucket. Perform a proper split. */
hashnode_split(T, parent, node);
}
static value_t *find_below(hattrie_t *T, node_ptr parent, const char *key, size_t len)
{
/* consume all trie nodes, now parent must be trie and child anything */
node_ptr node = hattrie_consume(&parent, &key, &len, 0);
assert(*parent.flag & NODE_TYPE_TRIE);
/* if the key has been consumed on a trie node, use its value */
if (len == 0) {
if (*node.flag & NODE_TYPE_TRIE) {
return hattrie_useval(T, node);
} else if (*node.flag & NODE_TYPE_HYBRID_BUCKET) {
return hattrie_useval(T, parent);
}
}
#ifdef HHASH_MAX_FILL
/* preemptively split the bucket if fill is over threshold */
if (node.b->weight >= node.b->size * HHASH_MAX_FILL) {
node_split(T, parent, node);
return find_below(T, parent, key, len);
}
#endif
/* attempt to fit new element and split if it doesn't fit */
value_t *val = NULL;
assert(len > 0);
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
val = hhash_map(node.b, key + 1, len - 1, HHASH_INSERT);
}
else {
val = hhash_map(node.b, key, len, HHASH_INSERT);
}
/* not inserted, recursively split */
if (val == NULL) {
node_split(T, parent, node);
val = find_below(T, parent, key, len);
}
return val;
}
value_t* hattrie_get(hattrie_t* T, const char* key, size_t len)
{
node_ptr parent = T->root;
value_t *val = NULL;
assert(*parent.flag & NODE_TYPE_TRIE);
/* Find value below root node if not empty string. */
if (len == 0) {
val = &parent.t->val;
} else {
val = find_below(T, parent, key, len);
}
/* Count insertions. */
if (val && *val == NULL) {
++T->m;
}
return val;
}
value_t* hattrie_tryget(hattrie_t* T, const char* key, size_t len)
{
/* find node for given key */
node_ptr parent = T->root;
node_ptr node = hattrie_find(&parent, &key, &len);
if (node.flag == NULL) {
return NULL;
}
/* if the trie node consumes value, use it */
if (*node.flag & NODE_TYPE_TRIE) {
return &node.t->val;
}
return hhash_find(node.b, key, len);
}
static value_t* hattrie_walk(node_ptr* s, size_t sp,
const char* key, value_t* (*f)(node_ptr))
{
value_t *r = NULL;
while (r == NULL) {
/* if not found prev in table, it should be
* the rightmost of the nodes left of the current
*/
node_ptr visited = s[sp].t->xs[(unsigned char)*key];
for (int i = *key - 1; i > -1; --i) {
if (s[sp].t->xs[i].flag == visited.flag)
continue; /* skip pointers to visited container */
r = f(s[sp].t->xs[i]);
if (r) {
return r;
}
}
/* use trie node value if possible */
if (s[sp].t->flag & NODE_HAS_VAL) {
return &s[sp].t->val;
}
/* consumed whole stack */
if (sp == 0) {
break;
}
/* pop stack */
--key;
--sp;
}
return NULL;
}
int hattrie_find_leq (hattrie_t* T, const char* key, size_t len, value_t** dst)
{
/* create node stack for traceback */
size_t sp = 0;
node_ptr bs[NODESTACK_INIT]; /* base stack (will be enough mostly) */
node_ptr *ns = bs; /* generic ptr, could point to new mem */
ns[sp] = T->root;
/* find node for given key */
int ret = 1; /* no node on the left matches */
node_ptr node = hattrie_find_ns(&ns, &sp, NODESTACK_INIT, &key, &len);
if (node.flag == NULL) {
*dst = hattrie_walk(ns, sp, key, hattrie_find_rightmost);
if (ns != bs) free(ns);
if (*dst) {
return -1; /* found previous */
}
return 1; /* no previous key found */
}
/* assign value from trie or find in table */
if (*node.flag & NODE_TYPE_TRIE) {
*dst = &node.t->val;
ret = 0; /* found exact match */
} else {
*dst = hhash_find(node.b, key, len);
if (*dst) {
ret = 0; /* found exact match */
} else { /* look for previous in hashtable */
ret = hhash_find_leq(node.b, key, len, dst);
}
}
/* return if found equal or left in hashtable */
if (*dst == 0) {
*dst = hattrie_walk(ns, sp, key, hattrie_find_rightmost);
if (*dst) {
ret = -1; /* found previous */
} else {
ret = 1; /* no previous key found */
}
}
if (ns != bs) free(ns);
return ret;
}
int hattrie_find_lpr (hattrie_t* T, const char* key, size_t len, value_t** dst)
{
/* create node stack for traceback */
int ret = -1;
size_t sp = 0;
node_ptr bs[NODESTACK_INIT]; /* base stack (will be enough mostly) */
node_ptr *ns = bs; /* generic ptr, could point to new mem */
ns[sp] = T->root;
*dst = NULL;
/* consume trie nodes for key (thus building prefix chain) */
node_ptr node = hattrie_find_ns(&ns, &sp, NODESTACK_INIT, &key, &len);
if (node.flag == NULL) {
if (sp == 0) { /* empty trie, no prefix match */
if (ns != bs) free(ns);
return -1;
}
node = ns[--sp]; /* dead end, pop node */
}
/* search for suffix in current node */
size_t suffix = len; /* suffix length */
if (*node.flag & NODE_TYPE_TRIE) {
*dst = &node.t->val; /* use current trie node value */
} else {
while (*dst == NULL) { /* find remainder in current hashtable */
*dst = hhash_find(node.b, key, suffix);
if (suffix == 0)
break;
--suffix;
}
}
/* not in current node, need to traceback node stack */
while (*dst == NULL) {
node = ns[sp]; /* parent node, always a trie node type */
if (*node.flag & NODE_HAS_VAL)
*dst = &node.t->val;
if (sp == 0)
break;
--sp;
}
if (*dst) { /* prefix found? */
ret = 0;
}
if (ns != bs) free(ns);
return ret;
}
int hattrie_del(hattrie_t* T, const char* key, size_t len)
{
node_ptr parent = T->root;
assert(*parent.flag & NODE_TYPE_TRIE);
/* find node for deletion */
node_ptr node = hattrie_find(&parent, &key, &len);
if (node.flag == NULL) {
return -1;
}
/* if consumed on a trie node, clear the value */
if (*node.flag & NODE_TYPE_TRIE) {
return hattrie_clrval(T, node);
}
/* remove from bucket */
size_t m_old = node.b->weight;
int ret = hhash_del(node.b, key, len);
T->m -= (m_old - node.b->weight);
/* merge empty buckets */
/*! \todo */
return ret;
}
/* plan for iteration:
* This is tricky, as we have no parent pointers currently, and I would like to
* avoid adding them. That means maintaining a stack
*
*/
typedef struct hattrie_node_stack_t_
{
unsigned char c;
size_t level;
node_ptr node;
struct hattrie_node_stack_t_* next;
} hattrie_node_stack_t;
struct hattrie_iter_t_
{
char* key;
size_t keysize; // space reserved for the key
size_t level;
/* keep track of keys stored in trie nodes */
bool has_nil_key;
value_t nil_val;
const hattrie_t* T;
bool sorted;
hhash_iter_t* i;
hattrie_node_stack_t* stack;
};
static void hattrie_iter_pushchar(hattrie_iter_t* i, size_t level, char c)
{
if (i->keysize < level) {
i->keysize *= 2;
i->key = realloc(i->key, i->keysize * sizeof(char));
}
if (level > 0) {
i->key[level - 1] = c;
}
i->level = level;
}
static void hattrie_iter_nextnode(hattrie_iter_t* i)
{
if (i->stack == NULL) return;
/* pop the stack */
node_ptr node;
hattrie_node_stack_t* next;
unsigned char c;
size_t level;
node = i->stack->node;
next = i->stack->next;
c = i->stack->c;
level = i->stack->level;
free(i->stack);
i->stack = next;
if (*node.flag & NODE_TYPE_TRIE) {
hattrie_iter_pushchar(i, level, c);
if(node.t->flag & NODE_HAS_VAL) {
i->has_nil_key = true;
i->nil_val = node.t->val;
}
/* push all child nodes from right to left */
int j;
for (j = TRIE_MAXCHAR; j >= 0; --j) {
/* skip repeated pointers to hybrid bucket */
if (j < TRIE_MAXCHAR && node.t->xs[j].t == node.t->xs[j + 1].t) continue;
// push stack
next = i->stack;
i->stack = malloc(sizeof(hattrie_node_stack_t));
i->stack->node = node.t->xs[j];
i->stack->next = next;
i->stack->level = level + 1;
i->stack->c = (unsigned char) j;
}
}
else {
if (*node.flag & NODE_TYPE_PURE_BUCKET) {
hattrie_iter_pushchar(i, level, c);
}
else {
i->level = level - 1;
}
i->i = malloc(sizeof(hhash_iter_t));
hhash_iter_begin(node.b, i->i, i->sorted);
}
}
hattrie_iter_t* hattrie_iter_begin(const hattrie_t* T, bool sorted)
{
hattrie_iter_t* i = malloc(sizeof(hattrie_iter_t));
i->T = T;
i->sorted = sorted;
i->i = NULL;
i->keysize = 16;
i->key = malloc(i->keysize * sizeof(char));
i->level = 0;
i->has_nil_key = false;
i->nil_val = 0;
i->stack = malloc(sizeof(hattrie_node_stack_t));
i->stack->next = NULL;
i->stack->node = T->root;
i->stack->c = '\0';
i->stack->level = 0;
while (((i->i == NULL || hhash_iter_finished(i->i)) && !i->has_nil_key) &&
i->stack != NULL ) {
free(i->i);
i->i = NULL;
hattrie_iter_nextnode(i);
}
if (i->i != NULL && hhash_iter_finished(i->i)) {
free(i->i);
i->i = NULL;
}
return i;
}
void hattrie_iter_next(hattrie_iter_t* i)
{
if (hattrie_iter_finished(i)) return;
if (i->i != NULL && !hhash_iter_finished(i->i)) {
hhash_iter_next(i->i);
}
else if (i->has_nil_key) {
i->has_nil_key = false;
i->nil_val = 0;
hattrie_iter_nextnode(i);
}
while (((i->i == NULL || hhash_iter_finished(i->i)) && !i->has_nil_key) &&
i->stack != NULL ) {
free(i->i);
i->i = NULL;
hattrie_iter_nextnode(i);
}
if (i->i != NULL && hhash_iter_finished(i->i)) {
free(i->i);
i->i = NULL;
}
}
bool hattrie_iter_finished(hattrie_iter_t* i)
{
return i->stack == NULL && i->i == NULL && !i->has_nil_key;
}
void hattrie_iter_free(hattrie_iter_t* i)
{
if (i == NULL) return;
if (i->i) {
free(i->i);
}
hattrie_node_stack_t* next;
while (i->stack) {
next = i->stack->next;
free(i->stack);
i->stack = next;
}
free(i->key);
free(i);
}
const char* hattrie_iter_key(hattrie_iter_t* i, size_t* len)
{
if (hattrie_iter_finished(i)) return NULL;
uint16_t sublen;
const char* subkey;
if (i->has_nil_key) {
subkey = NULL;
sublen = 0;
}
else subkey = hhash_iter_key(i->i, &sublen);
if (i->keysize < i->level + sublen + 1) {
while (i->keysize < i->level + sublen + 1) i->keysize *= 2;
i->key = realloc(i->key, i->keysize * sizeof(char));
}
if (sublen > 0) {
memcpy(i->key + i->level, subkey, sublen);
}
i->key[i->level + sublen] = '\0';
*len = i->level + sublen;
return i->key;
}
value_t* hattrie_iter_val(hattrie_iter_t* i)
{
if (i->has_nil_key) return &i->nil_val;
if (hattrie_iter_finished(i)) return NULL;
return hhash_iter_val(i->i);
}
|