/* FindMinimum.c find minimum (maximum) of hyperrectangular region this file is part of Divonne last modified 8 Jun 10 th */ #define EPS 0x1p-52 #define RTEPS 0x1p-26 #define QEPS 0x1p-13 #define DELTA 0x1p-16 #define RTDELTA 0x1p-8 #define QDELTA 0x1p-4 /* #define DELTA 1e-5 #define RTDELTA 3.1622776601683791e-3 #define QDELTA 5.6234132519034912e-2 */ #define SUFTOL 8*QEPS*QDELTA #define FTOL 5e-2 #define GTOL 1e-2 #define Hessian(i, j) hessian[(i)*t->ndim + j] typedef struct { real dx, f; } Point; /*********************************************************************/ static inline real Dot(ccount n, creal *a, creal *b) { real sum = 0; count i; for( i = 0; i < n; ++i ) sum += a[i]*b[i]; return sum; } /*********************************************************************/ static inline real Length(ccount n, creal *vec) { return sqrt(Dot(n, vec, vec)); } /*********************************************************************/ static inline void LinearSolve(cThis *t, ccount n, creal *hessian, creal *grad, real *p) { int i, j; real dir; for( i = 0; i < n; ++i ) { dir = -grad[i]; for( j = 0; j < i; ++j ) dir -= Hessian(i, j)*p[j]; p[i] = dir; } while( --i >= 0 ) { if( Hessian(i, i) <= 0 ) return; dir = p[i]/Hessian(i, i); for( j = i + 1; j < n; ++j ) dir -= Hessian(j, i)*p[j]; p[i] = dir; } } /*********************************************************************/ static void RenormalizeCholesky(cThis *t, ccount n, real *hessian, real *z, real alpha) { count i, j; for( i = 0; i < n; ++i ) { creal dir = z[i]; real beta = alpha*dir; real gamma = Hessian(i, i); real gammanew = Hessian(i, i) += beta*dir; if( i + 1 >= n || gammanew < 0 || (gammanew < 1 && gamma > DBL_MAX*gammanew) ) return; gamma /= gammanew; beta /= gammanew; alpha *= gamma; if( gamma < .25 ) { for( j = i + 1; j < n; ++j ) { real delta = beta*z[j]; z[j] -= dir*Hessian(j, i); Hessian(j, i) = Hessian(j, i)*gamma + delta; } } else { for( j = i + 1; j < n; ++j ) { z[j] -= dir*Hessian(j, i); Hessian(j, i) += beta*z[j]; } } } } /*********************************************************************/ static void UpdateCholesky(cThis *t, ccount n, real *hessian, real *z, real *p) { int i, j; real gamma = 0; for( i = 0; i < n; ++i ) { real dir = z[i]; for( j = 0; j < i; ++j ) dir -= Hessian(i, j)*p[j]; p[i] = dir; gamma += Sq(dir)/Hessian(i, i); } gamma = Max(fabs(1 - gamma), EPS); while( --i >= 0 ) { creal dir = z[i] = p[i]; real beta = dir/Hessian(i, i); creal gammanew = gamma + dir*beta; Hessian(i, i) *= gamma/gammanew; beta /= gamma; gamma = gammanew; for( j = i + 1; j < n; ++j ) { creal delta = beta*z[j]; z[j] += dir*Hessian(j, i); Hessian(j, i) -= delta; } } } /*********************************************************************/ static inline void BFGS(cThis *t, ccount n, real *hessian, creal *gnew, creal *g, real *p, creal dx) { real y[NDIM], c; count i, j; for( i = 0; i < n; ++i ) y[i] = gnew[i] - g[i]; c = dx*Dot(n, y, p); if( c < 1e-10 ) return; RenormalizeCholesky(t, n, hessian, y, 1/c); c = Dot(n, g, p); if( c >= 0 ) return; c = 1/sqrt(-c); for( i = 0; i < n; ++i ) y[i] = c*g[i]; UpdateCholesky(t, n, hessian, y, p); for( i = 0; i < n - 1; ++i ) for( j = i + 1; j < n; ++j ) Hessian(i, j) = Hessian(j, i); } /*********************************************************************/ static void Gradient(This *t, ccount nfree, ccount *ifree, cBounds *b, real *x, creal y, real *grad) { count i; for( i = 0; i < nfree; ++i ) { ccount dim = Untag(ifree[i]); creal xd = x[dim]; creal delta = (b[dim].upper - xd < DELTA) ? -DELTA : DELTA; x[dim] += delta; grad[i] = (Sample(t, x) - y)/delta; x[dim] = xd; } } /*********************************************************************/ static Point LineSearch(This *t, ccount nfree, ccount *ifree, creal *p, creal *xini, real fini, real *x, real step, creal range, creal grad, creal ftol, creal xtol, creal gtol) { real tol = ftol, tol2 = tol + tol; Point cur = {0, fini}; VecCopy(x, xini); /* don't even try if a) we'd walk backwards, b) the range to explore is too small, c) the gradient is positive, i.e. we'd move uphill */ if( step > 0 && range > tol2 && grad <= 0 ) { creal eps = RTEPS*fabs(range) + ftol; creal mingrad = -1e-4*grad, maxgrad = -gtol*grad; real end = range + eps; real maxstep = range - eps/(1 + RTEPS); Point min = cur, v = cur, w = cur; Point a = cur, b = {end, 0}; real a1, b1 = end; /* distmin: distance along p from xini to the minimum, u: second-lowest point, v: third-lowest point, a, b: interval in which the minimum is sought. */ real distmin = 0, dist, mid, q, r, s; count i; int shift; bool first; for( first = true; ; first = false ) { if( step >= maxstep ) { step = maxstep; maxstep = maxstep*(1 + .75*RTEPS) + .75*tol; } cur.dx = (fabs(step) >= tol) ? step : (step > 0) ? tol : -tol; dist = distmin + cur.dx; for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; x[dim] = xini[dim] + dist*p[i]; } cur.f = Sample(t, x); if( cur.f <= min.f ) { v = w; w = min; min.f = cur.f; distmin = dist; /* shift everything to the new minimum position */ maxstep -= cur.dx; v.dx -= cur.dx; w.dx -= cur.dx; a.dx -= cur.dx; b.dx -= cur.dx; if( cur.dx < 0 ) b = w; else a = w; tol = RTEPS*fabs(distmin) + ftol; tol2 = tol + tol; } else { if( cur.dx < 0 ) a = cur; else b = cur; if( cur.f <= w.f || w.dx == 0 ) v = w, w = cur; else if( cur.f <= v.f || v.dx == 0 || v.dx == w.dx ) v = cur; } if( distmin + b.dx <= xtol ) break; if( min.f < fini && a.f - min.f <= fabs(a.dx)*maxgrad && (fabs(distmin - range) > tol || maxstep < b.dx) ) break; mid = .5*(a.dx + b.dx); if( fabs(mid) <= tol2 - .5*(b.dx - a.dx) ) break; r = q = s = 0; if( fabs(end) > tol ) { if( first ) { creal s1 = w.dx*grad; creal s2 = w.f - min.f; s = (s1 - ((distmin == 0) ? 0 : 2*s2))*w.dx; q = 2*(s2 - s1); } else { creal s1 = w.dx*(v.f - min.f); creal s2 = v.dx*(w.f - min.f); s = s1*w.dx - s2*v.dx; q = 2*(s2 - s1); } if( q > 0 ) s = -s; q = fabs(q); r = end; if( step != b1 || b.dx <= maxstep ) end = step; } if( distmin == a.dx ) step = mid; else if( b.dx > maxstep ) step = (step < b.dx) ? -4*a.dx : maxstep; else { real num = a.dx, den = b.dx; if( fabs(b.dx) <= tol || (w.dx > 0 && fabs(a.dx) > tol) ) num = b.dx, den = a.dx; num /= -den; step = (num < 1) ? .5*den*sqrt(num) : 5/11.*den*(.1 + 1/num); } if( step > 0 ) a1 = a.dx, b1 = step; else a1 = step, b1 = b.dx; if( fabs(s) < fabs(.5*q*r) && s > q*a1 && s < q*b1 ) { step = s/q; if( step - a.dx < tol2 || b.dx - step < tol2 ) step = (mid > 0) ? tol : -tol; } else end = (mid > 0) ? b.dx : a.dx; } first = true; if( fabs(distmin - range) < tol ) { distmin = range; if( maxstep > b.dx ) first = false; } for( cur.dx = distmin, cur.f = min.f, shift = -1; ; cur.dx = Max(ldexp(distmin, shift), ftol), shift <<= 1 ) { for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; x[dim] = xini[dim] + cur.dx*p[i]; } if( !first ) cur.f = Sample(t, x); if( cur.dx + b.dx <= xtol ) { cur.dx = 0; break; } if( fini - cur.f > cur.dx*mingrad ) break; if( cur.dx <= ftol ) { cur.dx = 0; break; } first = false; } } return cur; } /*********************************************************************/ static real LocalSearch(This *t, ccount nfree, ccount *ifree, cBounds *b, creal *x, creal fx, real *z) { real delta, smax, sopp, spmax, snmax; real y[NDIM], fy, fz, ftest; real p[NDIM]; int sign; count i; /* Choose a direction p along which to move away from the present x. We choose the direction which leads farthest away from all borders. */ smax = INFTY; for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; creal sp = b[dim].upper - x[dim]; creal sn = x[dim] - b[dim].lower; if( sp < sn ) { smax = Min(smax, sn); p[i] = -1; } else { smax = Min(smax, sp); p[i] = 1; } } smax *= .9; /* Move along p until the integrand changes appreciably or we come close to a border. */ VecCopy(y, x); ftest = SUFTOL*(1 + fabs(fx)); delta = RTDELTA/5; do { delta = Min(5*delta, smax); for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; y[dim] = x[dim] + delta*p[i]; } fy = Sample(t, y); if( fabs(fy - fx) > ftest ) break; } while( delta != smax ); /* Construct a second direction p' orthogonal to p, i.e. p.p' = 0. We let pairs of coordinates cancel in the dot product, i.e. we choose p'[0] = p[0], p'[1] = -p[1], etc. (It should really be 1/p and -1/p, but p consists of 1's and -1's.) For odd nfree, we let the last three components cancel by choosing p'[nfree - 3] = p[nfree - 3], p'[nfree - 2] = -1/2 p[nfree - 2], and p'[nfree - 1] = -1/2 p[nfree - 1]. */ sign = (nfree <= 1 && fy > fx) ? 1 : -1; spmax = snmax = INFTY; for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; real sp, sn; p[i] *= (nfree & 1 && nfree - i <= 2) ? -.5*sign : (sign = -sign); sp = (b[dim].upper - y[dim])/p[i]; sn = (y[dim] - b[dim].lower)/p[i]; if( p[i] > 0 ) { spmax = Min(spmax, sp); snmax = Min(snmax, sn); } else { spmax = Min(spmax, -sn); snmax = Min(snmax, -sp); } } smax = .9*spmax; sopp = .9*snmax; if( nfree > 1 && smax < snmax ) { real tmp = smax; smax = sopp; sopp = tmp; for( i = 0; i < nfree; ++i ) p[i] = -p[i]; } /* Move along p' until the integrand changes appreciably or we come close to a border. */ VecCopy(z, y); ftest = SUFTOL*(1 + fabs(fy)); delta = RTDELTA/5; do { delta = Min(5*delta, smax); for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; z[dim] = y[dim] + delta*p[i]; } fz = Sample(t, z); if( fabs(fz - fy) > ftest ) break; } while( delta != smax ); if( fy != fz ) { real pleneps, grad, range, step; Point low; if( fy > fz ) { grad = (fz - fy)/delta; range = smax/.9; step = Min(delta + delta, smax); } else { grad = (fy - fz)/delta; range = sopp/.9 + delta; step = Min(delta + delta, sopp); VecCopy(y, z); fy = fz; for( i = 0; i < nfree; ++i ) p[i] = -p[i]; } pleneps = Length(nfree, p) + RTEPS; low = LineSearch(t, nfree, ifree, p, y, fy, z, step, range, grad, RTEPS/pleneps, 0., RTEPS); fz = low.f; } if( fz != fx ) { real pleneps, grad, range, step; Point low; spmax = snmax = INFTY; for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; p[i] = z[dim] - x[dim]; if( p[i] != 0 ) { creal sp = (b[dim].upper - x[dim])/p[i]; creal sn = (x[dim] - b[dim].lower)/p[i]; if( p[i] > 0 ) { spmax = Min(spmax, sp); snmax = Min(snmax, sn); } else { spmax = Min(spmax, -sn); snmax = Min(snmax, -sp); } } } grad = fz - fx; range = spmax; step = Min(.9*spmax, 2.); pleneps = Length(nfree, p) + RTEPS; if( fz > fx ) { delta = Min(.9*snmax, RTDELTA/pleneps); for( i = 0; i < nfree; ++i ) { ccount dim = ifree[i]; z[dim] = x[dim] - delta*p[i]; } fz = Sample(t, z); if( fz < fx ) { grad = (fz - fx)/delta; range = snmax; step = Min(.9*snmax, delta + delta); for( i = 0; i < nfree; ++i ) p[i] = -p[i]; } else if( delta < 1 ) grad = (fx - fz)/delta; } low = LineSearch(t, nfree, ifree, p, x, fx, z, step, range, grad, RTEPS/pleneps, 0., RTEPS); fz = low.f; } return fz; } /*********************************************************************/ static real FindMinimum(This *t, cBounds *b, real *xmin, real fmin) { real hessian[NDIM*NDIM]; real gfree[NDIM], p[NDIM]; real tmp[NDIM], ftmp, fini = fmin; ccount maxeval = t->neval + 50*t->ndim; count nfree, nfix; count ifree[NDIM], ifix[NDIM]; count dim, local; Zap(hessian); for( dim = 0; dim < t->ndim; ++dim ) Hessian(dim, dim) = 1; /* Step 1: - classify the variables as "fixed" (sufficiently close to a border) and "free", - if the integrand is flat in the direction of the gradient w.r.t. the free dimensions, perform a local search. */ for( local = 0; local < 2; ++local ) { bool resample = false; nfree = nfix = 0; for( dim = 0; dim < t->ndim; ++dim ) { if( xmin[dim] < b[dim].lower + (1 + fabs(b[dim].lower))*QEPS ) { xmin[dim] = b[dim].lower; ifix[nfix++] = dim; resample = true; } else if( xmin[dim] > b[dim].upper - (1 + fabs(b[dim].upper))*QEPS ) { xmin[dim] = b[dim].upper; ifix[nfix++] = Tag(dim); resample = true; } else ifree[nfree++] = dim; } if( resample ) fini = fmin = Sample(t, xmin); if( nfree == 0 ) goto releasebounds; Gradient(t, nfree, ifree, b, xmin, fmin, gfree); if( local || Length(nfree, gfree) > GTOL ) break; ftmp = LocalSearch(t, nfree, ifree, b, xmin, fmin, tmp); if( ftmp > fmin - (1 + fabs(fmin))*RTEPS ) goto releasebounds; fmin = ftmp; VecCopy(xmin, tmp); } while( t->neval <= maxeval ) { /* Step 2a: perform a quasi-Newton iteration on the free variables only. */ if( nfree > 0 ) { real plen, pleneps; real minstep; count i, mini = 0, minfix = 0; Point low; LinearSolve(t, nfree, hessian, gfree, p); plen = Length(nfree, p); pleneps = plen + RTEPS; minstep = INFTY; for( i = 0; i < nfree; ++i ) { count dim = Untag(ifree[i]); if( fabs(p[i]) > EPS ) { real step; count fix; if( p[i] < 0 ) { step = (b[dim].lower - xmin[dim])/p[i]; fix = dim; } else { step = (b[dim].upper - xmin[dim])/p[i]; fix = Tag(dim); } if( step < minstep ) { minstep = step; mini = i; minfix = fix; } } } if( minstep*pleneps <= DELTA ) { fixbound: ifix[nfix++] = minfix; if( mini < --nfree ) { creal diag = Hessian(mini, mini); Clear(tmp, mini); for( i = mini; i < nfree; ++i ) tmp[i] = Hessian(i + 1, mini); for( i = mini; i < nfree; ++i ) { Copy(&Hessian(i, 0), &Hessian(i + 1, 0), i); Hessian(i, i) = Hessian(i + 1, i + 1); } RenormalizeCholesky(t, nfree, hessian, tmp, diag); Copy(&ifree[mini], &ifree[mini + 1], nfree - mini); Copy(&gfree[mini], &gfree[mini + 1], nfree - mini); } continue; } low = LineSearch(t, nfree, ifree, p, xmin, fmin, tmp, Min(minstep, 1.), Min(minstep, 100.), Dot(nfree, gfree, p), RTEPS/pleneps, DELTA/pleneps, .2); if( low.dx > 0 ) { real fdiff; fmin = low.f; VecCopy(xmin, tmp); Gradient(t, nfree, ifree, b, xmin, fmin, tmp); BFGS(t, nfree, hessian, tmp, gfree, p, low.dx); VecCopy(gfree, tmp); if( fabs(low.dx - minstep) < QEPS*minstep ) goto fixbound; fdiff = fini - fmin; fini = fmin; if( fdiff > (1 + fabs(fmin))*FTOL || low.dx*plen > (1 + Length(t->ndim, xmin))*FTOL ) continue; } } /* Step 2b: check whether freeing any fixed variable will lead to a reduction in f. */ releasebounds: if( nfix > 0 ) { real mingrad = INFTY; count i, mini = 0; bool repeat = false; Gradient(t, nfix, ifix, b, xmin, fmin, tmp); for( i = 0; i < nfix; ++i ) { creal grad = Sign(ifix[i])*tmp[i]; if( grad < -RTEPS ) { repeat = true; if( grad < mingrad ) { mingrad = grad; mini = i; } } } if( repeat ) { gfree[nfree] = tmp[mini]; ifree[nfree] = Untag(ifix[mini]); Clear(&Hessian(nfree, 0), nfree); Hessian(nfree, nfree) = 1; ++nfree; --nfix; Copy(&ifix[mini], &ifix[mini + 1], nfix - mini); continue; } } break; } return fmin; }