1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
Install["Vegas"]
Install["Suave"]
Install["Divonne"]
Install["Cuhre"]
test[n_] := {t[n, Vegas], t[n, Suave], t[n, Divonne], t[n, Cuhre]}
t[n_, int_] := int[f[n][x, y, z], {x,0,1}, {y,0,1}, {z,0,1}]
f[1][x_, y_, z_] := Sin[x] Cos[y] Exp[z]
f[2][x_, y_, z_] := 1/((x + y)^2 + .003) Cos[y] Exp[z]
f[3][x_, y_, z_] := 1/(3.75 - Cos[Pi x] - Cos[Pi y] - Cos[Pi z])
f[4][x_, y_, z_] := Abs[x^2 + y^2 + z^2 - .125]
f[5][x_, y_, z_] := Exp[-x^2 - y^2 - z^2]
f[6][x_, y_, z_] := 1/(1 - x y z + 10^-10)
f[7][x_, y_, z_] := Sqrt[Abs[x - y - z]]
f[8][x_, y_, z_] := Exp[-x y z]
f[9][x_, y_, z_] := x^2/(Cos[x + y + z + 1] + 5)
f[10][x_, y_, z_] := If[ x > .5, 1/Sqrt[x y z + 10^-5], Sqrt[x y z] ]
f[11][x_, y_, z_] := If[ x^2 + y^2 + z^2 < 1, 1, 0 ]
|