1 : // Functor implementations -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 : // Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 2, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // You should have received a copy of the GNU General Public License along
18 : // with this library; see the file COPYING. If not, write to the Free
19 : // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 : // USA.
21 :
22 : // As a special exception, you may use this file as part of a free software
23 : // library without restriction. Specifically, if other files instantiate
24 : // templates or use macros or inline functions from this file, or you compile
25 : // this file and link it with other files to produce an executable, this
26 : // file does not by itself cause the resulting executable to be covered by
27 : // the GNU General Public License. This exception does not however
28 : // invalidate any other reasons why the executable file might be covered by
29 : // the GNU General Public License.
30 :
31 : /*
32 : *
33 : * Copyright (c) 1994
34 : * Hewlett-Packard Company
35 : *
36 : * Permission to use, copy, modify, distribute and sell this software
37 : * and its documentation for any purpose is hereby granted without fee,
38 : * provided that the above copyright notice appear in all copies and
39 : * that both that copyright notice and this permission notice appear
40 : * in supporting documentation. Hewlett-Packard Company makes no
41 : * representations about the suitability of this software for any
42 : * purpose. It is provided "as is" without express or implied warranty.
43 : *
44 : *
45 : * Copyright (c) 1996-1998
46 : * Silicon Graphics Computer Systems, Inc.
47 : *
48 : * Permission to use, copy, modify, distribute and sell this software
49 : * and its documentation for any purpose is hereby granted without fee,
50 : * provided that the above copyright notice appear in all copies and
51 : * that both that copyright notice and this permission notice appear
52 : * in supporting documentation. Silicon Graphics makes no
53 : * representations about the suitability of this software for any
54 : * purpose. It is provided "as is" without express or implied warranty.
55 : */
56 :
57 : /** @file stl_function.h
58 : * This is an internal header file, included by other library headers.
59 : * You should not attempt to use it directly.
60 : */
61 :
62 : #ifndef _STL_FUNCTION_H
63 : #define _STL_FUNCTION_H 1
64 :
65 : _GLIBCXX_BEGIN_NAMESPACE(std)
66 :
67 : // 20.3.1 base classes
68 : /** @defgroup s20_3_1_base Functor Base Classes
69 : * Function objects, or @e functors, are objects with an @c operator()
70 : * defined and accessible. They can be passed as arguments to algorithm
71 : * templates and used in place of a function pointer. Not only is the
72 : * resulting expressiveness of the library increased, but the generated
73 : * code can be more efficient than what you might write by hand. When we
74 : * refer to "functors," then, generally we include function pointers in
75 : * the description as well.
76 : *
77 : * Often, functors are only created as temporaries passed to algorithm
78 : * calls, rather than being created as named variables.
79 : *
80 : * Two examples taken from the standard itself follow. To perform a
81 : * by-element addition of two vectors @c a and @c b containing @c double,
82 : * and put the result in @c a, use
83 : * \code
84 : * transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
85 : * \endcode
86 : * To negate every element in @c a, use
87 : * \code
88 : * transform(a.begin(), a.end(), a.begin(), negate<double>());
89 : * \endcode
90 : * The addition and negation functions will be inlined directly.
91 : *
92 : * The standard functors are derived from structs named @c unary_function
93 : * and @c binary_function. These two classes contain nothing but typedefs,
94 : * to aid in generic (template) programming. If you write your own
95 : * functors, you might consider doing the same.
96 : *
97 : * @{
98 : */
99 : /**
100 : * This is one of the @link s20_3_1_base functor base classes@endlink.
101 : */
102 : template<typename _Arg, typename _Result>
103 : struct unary_function
104 21 : {
105 : typedef _Arg argument_type; ///< @c argument_type is the type of the
106 : /// argument (no surprises here)
107 :
108 : typedef _Result result_type; ///< @c result_type is the return type
109 : };
110 :
111 : /**
112 : * This is one of the @link s20_3_1_base functor base classes@endlink.
113 : */
114 : template<typename _Arg1, typename _Arg2, typename _Result>
115 : struct binary_function
116 : {
117 : typedef _Arg1 first_argument_type; ///< the type of the first argument
118 : /// (no surprises here)
119 :
120 : typedef _Arg2 second_argument_type; ///< the type of the second argument
121 : typedef _Result result_type; ///< type of the return type
122 : };
123 : /** @} */
124 :
125 : // 20.3.2 arithmetic
126 : /** @defgroup s20_3_2_arithmetic Arithmetic Classes
127 :
128 : * Because basic math often needs to be done during an algorithm,
129 : * the library provides functors for those operations. See the
130 : * documentation for @link s20_3_1_base the base classes@endlink
131 : * for examples of their use.
132 : *
133 : * @{
134 : */
135 : /// One of the @link s20_3_2_arithmetic math functors@endlink.
136 : template<typename _Tp>
137 : struct plus : public binary_function<_Tp, _Tp, _Tp>
138 : {
139 : _Tp
140 4 : operator()(const _Tp& __x, const _Tp& __y) const
141 4 : { return __x + __y; }
142 : };
143 :
144 : /// One of the @link s20_3_2_arithmetic math functors@endlink.
145 : template<typename _Tp>
146 : struct minus : public binary_function<_Tp, _Tp, _Tp>
147 : {
148 : _Tp
149 : operator()(const _Tp& __x, const _Tp& __y) const
150 : { return __x - __y; }
151 : };
152 :
153 : /// One of the @link s20_3_2_arithmetic math functors@endlink.
154 : template<typename _Tp>
155 : struct multiplies : public binary_function<_Tp, _Tp, _Tp>
156 : {
157 : _Tp
158 : operator()(const _Tp& __x, const _Tp& __y) const
159 : { return __x * __y; }
160 : };
161 :
162 : /// One of the @link s20_3_2_arithmetic math functors@endlink.
163 : template<typename _Tp>
164 : struct divides : public binary_function<_Tp, _Tp, _Tp>
165 : {
166 : _Tp
167 : operator()(const _Tp& __x, const _Tp& __y) const
168 : { return __x / __y; }
169 : };
170 :
171 : /// One of the @link s20_3_2_arithmetic math functors@endlink.
172 : template<typename _Tp>
173 : struct modulus : public binary_function<_Tp, _Tp, _Tp>
174 : {
175 : _Tp
176 : operator()(const _Tp& __x, const _Tp& __y) const
177 : { return __x % __y; }
178 : };
179 :
180 : /// One of the @link s20_3_2_arithmetic math functors@endlink.
181 : template<typename _Tp>
182 : struct negate : public unary_function<_Tp, _Tp>
183 : {
184 : _Tp
185 : operator()(const _Tp& __x) const
186 : { return -__x; }
187 : };
188 : /** @} */
189 :
190 : // 20.3.3 comparisons
191 : /** @defgroup s20_3_3_comparisons Comparison Classes
192 : * The library provides six wrapper functors for all the basic comparisons
193 : * in C++, like @c <.
194 : *
195 : * @{
196 : */
197 : /// One of the @link s20_3_3_comparisons comparison functors@endlink.
198 : template<typename _Tp>
199 : struct equal_to : public binary_function<_Tp, _Tp, bool>
200 : {
201 : bool
202 66 : operator()(const _Tp& __x, const _Tp& __y) const
203 66 : { return __x == __y; }
204 : };
205 :
206 : /// One of the @link s20_3_3_comparisons comparison functors@endlink.
207 : template<typename _Tp>
208 : struct not_equal_to : public binary_function<_Tp, _Tp, bool>
209 : {
210 : bool
211 : operator()(const _Tp& __x, const _Tp& __y) const
212 : { return __x != __y; }
213 : };
214 :
215 : /// One of the @link s20_3_3_comparisons comparison functors@endlink.
216 : template<typename _Tp>
217 : struct greater : public binary_function<_Tp, _Tp, bool>
218 : {
219 : bool
220 : operator()(const _Tp& __x, const _Tp& __y) const
221 : { return __x > __y; }
222 : };
223 :
224 : /// One of the @link s20_3_3_comparisons comparison functors@endlink.
225 : template<typename _Tp>
226 : struct less : public binary_function<_Tp, _Tp, bool>
227 : {
228 : bool
229 10727242 : operator()(const _Tp& __x, const _Tp& __y) const
230 10727242 : { return __x < __y; }
231 : };
232 :
233 : /// One of the @link s20_3_3_comparisons comparison functors@endlink.
234 : template<typename _Tp>
235 : struct greater_equal : public binary_function<_Tp, _Tp, bool>
236 : {
237 : bool
238 : operator()(const _Tp& __x, const _Tp& __y) const
239 : { return __x >= __y; }
240 : };
241 :
242 : /// One of the @link s20_3_3_comparisons comparison functors@endlink.
243 : template<typename _Tp>
244 : struct less_equal : public binary_function<_Tp, _Tp, bool>
245 : {
246 : bool
247 : operator()(const _Tp& __x, const _Tp& __y) const
248 : { return __x <= __y; }
249 : };
250 : /** @} */
251 :
252 : // 20.3.4 logical operations
253 : /** @defgroup s20_3_4_logical Boolean Operations Classes
254 : * Here are wrapper functors for Boolean operations: @c &&, @c ||,
255 : * and @c !.
256 : *
257 : * @{
258 : */
259 : /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
260 : template<typename _Tp>
261 : struct logical_and : public binary_function<_Tp, _Tp, bool>
262 : {
263 : bool
264 : operator()(const _Tp& __x, const _Tp& __y) const
265 : { return __x && __y; }
266 : };
267 :
268 : /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
269 : template<typename _Tp>
270 : struct logical_or : public binary_function<_Tp, _Tp, bool>
271 : {
272 : bool
273 : operator()(const _Tp& __x, const _Tp& __y) const
274 : { return __x || __y; }
275 : };
276 :
277 : /// One of the @link s20_3_4_logical Boolean operations functors@endlink.
278 : template<typename _Tp>
279 : struct logical_not : public unary_function<_Tp, bool>
280 : {
281 : bool
282 : operator()(const _Tp& __x) const
283 : { return !__x; }
284 : };
285 : /** @} */
286 :
287 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
288 : // DR 660. Missing Bitwise Operations.
289 : template<typename _Tp>
290 : struct bit_and : public binary_function<_Tp, _Tp, _Tp>
291 : {
292 : _Tp
293 : operator()(const _Tp& __x, const _Tp& __y) const
294 : { return __x & __y; }
295 : };
296 :
297 : template<typename _Tp>
298 : struct bit_or : public binary_function<_Tp, _Tp, _Tp>
299 : {
300 : _Tp
301 : operator()(const _Tp& __x, const _Tp& __y) const
302 : { return __x | __y; }
303 : };
304 :
305 : template<typename _Tp>
306 : struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
307 : {
308 : _Tp
309 : operator()(const _Tp& __x, const _Tp& __y) const
310 : { return __x ^ __y; }
311 : };
312 :
313 : // 20.3.5 negators
314 : /** @defgroup s20_3_5_negators Negators
315 : * The functions @c not1 and @c not2 each take a predicate functor
316 : * and return an instance of @c unary_negate or
317 : * @c binary_negate, respectively. These classes are functors whose
318 : * @c operator() performs the stored predicate function and then returns
319 : * the negation of the result.
320 : *
321 : * For example, given a vector of integers and a trivial predicate,
322 : * \code
323 : * struct IntGreaterThanThree
324 : * : public std::unary_function<int, bool>
325 : * {
326 : * bool operator() (int x) { return x > 3; }
327 : * };
328 : *
329 : * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
330 : * \endcode
331 : * The call to @c find_if will locate the first index (i) of @c v for which
332 : * "!(v[i] > 3)" is true.
333 : *
334 : * The not1/unary_negate combination works on predicates taking a single
335 : * argument. The not2/binary_negate combination works on predicates which
336 : * take two arguments.
337 : *
338 : * @{
339 : */
340 : /// One of the @link s20_3_5_negators negation functors@endlink.
341 : template<typename _Predicate>
342 : class unary_negate
343 : : public unary_function<typename _Predicate::argument_type, bool>
344 : {
345 : protected:
346 : _Predicate _M_pred;
347 :
348 : public:
349 : explicit
350 : unary_negate(const _Predicate& __x) : _M_pred(__x) { }
351 :
352 : bool
353 : operator()(const typename _Predicate::argument_type& __x) const
354 : { return !_M_pred(__x); }
355 : };
356 :
357 : /// One of the @link s20_3_5_negators negation functors@endlink.
358 : template<typename _Predicate>
359 : inline unary_negate<_Predicate>
360 : not1(const _Predicate& __pred)
361 : { return unary_negate<_Predicate>(__pred); }
362 :
363 : /// One of the @link s20_3_5_negators negation functors@endlink.
364 : template<typename _Predicate>
365 : class binary_negate
366 : : public binary_function<typename _Predicate::first_argument_type,
367 : typename _Predicate::second_argument_type, bool>
368 : {
369 : protected:
370 : _Predicate _M_pred;
371 :
372 : public:
373 : explicit
374 : binary_negate(const _Predicate& __x) : _M_pred(__x) { }
375 :
376 : bool
377 : operator()(const typename _Predicate::first_argument_type& __x,
378 : const typename _Predicate::second_argument_type& __y) const
379 : { return !_M_pred(__x, __y); }
380 : };
381 :
382 : /// One of the @link s20_3_5_negators negation functors@endlink.
383 : template<typename _Predicate>
384 : inline binary_negate<_Predicate>
385 : not2(const _Predicate& __pred)
386 : { return binary_negate<_Predicate>(__pred); }
387 : /** @} */
388 :
389 : // 20.3.7 adaptors pointers functions
390 : /** @defgroup s20_3_7_adaptors Adaptors for pointers to functions
391 : * The advantage of function objects over pointers to functions is that
392 : * the objects in the standard library declare nested typedefs describing
393 : * their argument and result types with uniform names (e.g., @c result_type
394 : * from the base classes @c unary_function and @c binary_function).
395 : * Sometimes those typedefs are required, not just optional.
396 : *
397 : * Adaptors are provided to turn pointers to unary (single-argument) and
398 : * binary (double-argument) functions into function objects. The
399 : * long-winded functor @c pointer_to_unary_function is constructed with a
400 : * function pointer @c f, and its @c operator() called with argument @c x
401 : * returns @c f(x). The functor @c pointer_to_binary_function does the same
402 : * thing, but with a double-argument @c f and @c operator().
403 : *
404 : * The function @c ptr_fun takes a pointer-to-function @c f and constructs
405 : * an instance of the appropriate functor.
406 : *
407 : * @{
408 : */
409 : /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
410 : template<typename _Arg, typename _Result>
411 : class pointer_to_unary_function : public unary_function<_Arg, _Result>
412 : {
413 : protected:
414 : _Result (*_M_ptr)(_Arg);
415 :
416 : public:
417 : pointer_to_unary_function() { }
418 :
419 : explicit
420 2 : pointer_to_unary_function(_Result (*__x)(_Arg))
421 2 : : _M_ptr(__x) { }
422 :
423 : _Result
424 516 : operator()(_Arg __x) const
425 516 : { return _M_ptr(__x); }
426 : };
427 :
428 : /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
429 : template<typename _Arg, typename _Result>
430 : inline pointer_to_unary_function<_Arg, _Result>
431 2 : ptr_fun(_Result (*__x)(_Arg))
432 2 : { return pointer_to_unary_function<_Arg, _Result>(__x); }
433 :
434 : /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
435 : template<typename _Arg1, typename _Arg2, typename _Result>
436 : class pointer_to_binary_function
437 : : public binary_function<_Arg1, _Arg2, _Result>
438 : {
439 : protected:
440 : _Result (*_M_ptr)(_Arg1, _Arg2);
441 :
442 : public:
443 : pointer_to_binary_function() { }
444 :
445 : explicit
446 : pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
447 : : _M_ptr(__x) { }
448 :
449 : _Result
450 : operator()(_Arg1 __x, _Arg2 __y) const
451 : { return _M_ptr(__x, __y); }
452 : };
453 :
454 : /// One of the @link s20_3_7_adaptors adaptors for function pointers@endlink.
455 : template<typename _Arg1, typename _Arg2, typename _Result>
456 : inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
457 : ptr_fun(_Result (*__x)(_Arg1, _Arg2))
458 : { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
459 : /** @} */
460 :
461 : template<typename _Tp>
462 : struct _Identity : public unary_function<_Tp,_Tp>
463 : {
464 : _Tp&
465 : operator()(_Tp& __x) const
466 : { return __x; }
467 :
468 : const _Tp&
469 16055496 : operator()(const _Tp& __x) const
470 16055496 : { return __x; }
471 : };
472 :
473 : template<typename _Pair>
474 : struct _Select1st : public unary_function<_Pair,
475 : typename _Pair::first_type>
476 : {
477 : typename _Pair::first_type&
478 : operator()(_Pair& __x) const
479 : { return __x.first; }
480 :
481 : const typename _Pair::first_type&
482 4509167 : operator()(const _Pair& __x) const
483 4509167 : { return __x.first; }
484 : };
485 :
486 : template<typename _Pair>
487 : struct _Select2nd : public unary_function<_Pair,
488 : typename _Pair::second_type>
489 : {
490 : typename _Pair::second_type&
491 : operator()(_Pair& __x) const
492 : { return __x.second; }
493 :
494 : const typename _Pair::second_type&
495 : operator()(const _Pair& __x) const
496 : { return __x.second; }
497 : };
498 :
499 : // 20.3.8 adaptors pointers members
500 : /** @defgroup s20_3_8_memadaptors Adaptors for pointers to members
501 : * There are a total of 8 = 2^3 function objects in this family.
502 : * (1) Member functions taking no arguments vs member functions taking
503 : * one argument.
504 : * (2) Call through pointer vs call through reference.
505 : * (3) Const vs non-const member function.
506 : *
507 : * All of this complexity is in the function objects themselves. You can
508 : * ignore it by using the helper function mem_fun and mem_fun_ref,
509 : * which create whichever type of adaptor is appropriate.
510 : *
511 : * @{
512 : */
513 : /// One of the @link s20_3_8_memadaptors adaptors for member
514 : /// pointers@endlink.
515 : template<typename _Ret, typename _Tp>
516 : class mem_fun_t : public unary_function<_Tp*, _Ret>
517 : {
518 : public:
519 : explicit
520 : mem_fun_t(_Ret (_Tp::*__pf)())
521 : : _M_f(__pf) { }
522 :
523 : _Ret
524 : operator()(_Tp* __p) const
525 : { return (__p->*_M_f)(); }
526 :
527 : private:
528 : _Ret (_Tp::*_M_f)();
529 : };
530 :
531 : /// One of the @link s20_3_8_memadaptors adaptors for member
532 : /// pointers@endlink.
533 : template<typename _Ret, typename _Tp>
534 : class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
535 : {
536 : public:
537 : explicit
538 : const_mem_fun_t(_Ret (_Tp::*__pf)() const)
539 : : _M_f(__pf) { }
540 :
541 : _Ret
542 : operator()(const _Tp* __p) const
543 : { return (__p->*_M_f)(); }
544 :
545 : private:
546 : _Ret (_Tp::*_M_f)() const;
547 : };
548 :
549 : /// One of the @link s20_3_8_memadaptors adaptors for member
550 : /// pointers@endlink.
551 : template<typename _Ret, typename _Tp>
552 : class mem_fun_ref_t : public unary_function<_Tp, _Ret>
553 : {
554 : public:
555 : explicit
556 : mem_fun_ref_t(_Ret (_Tp::*__pf)())
557 : : _M_f(__pf) { }
558 :
559 : _Ret
560 : operator()(_Tp& __r) const
561 : { return (__r.*_M_f)(); }
562 :
563 : private:
564 : _Ret (_Tp::*_M_f)();
565 : };
566 :
567 : /// One of the @link s20_3_8_memadaptors adaptors for member
568 : /// pointers@endlink.
569 : template<typename _Ret, typename _Tp>
570 : class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
571 : {
572 : public:
573 : explicit
574 : const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
575 : : _M_f(__pf) { }
576 :
577 : _Ret
578 : operator()(const _Tp& __r) const
579 : { return (__r.*_M_f)(); }
580 :
581 : private:
582 : _Ret (_Tp::*_M_f)() const;
583 : };
584 :
585 : /// One of the @link s20_3_8_memadaptors adaptors for member
586 : /// pointers@endlink.
587 : template<typename _Ret, typename _Tp, typename _Arg>
588 : class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
589 : {
590 : public:
591 : explicit
592 : mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
593 : : _M_f(__pf) { }
594 :
595 : _Ret
596 : operator()(_Tp* __p, _Arg __x) const
597 : { return (__p->*_M_f)(__x); }
598 :
599 : private:
600 : _Ret (_Tp::*_M_f)(_Arg);
601 : };
602 :
603 : /// One of the @link s20_3_8_memadaptors adaptors for member
604 : /// pointers@endlink.
605 : template<typename _Ret, typename _Tp, typename _Arg>
606 : class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
607 : {
608 : public:
609 : explicit
610 : const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
611 : : _M_f(__pf) { }
612 :
613 : _Ret
614 : operator()(const _Tp* __p, _Arg __x) const
615 : { return (__p->*_M_f)(__x); }
616 :
617 : private:
618 : _Ret (_Tp::*_M_f)(_Arg) const;
619 : };
620 :
621 : /// One of the @link s20_3_8_memadaptors adaptors for member
622 : /// pointers@endlink.
623 : template<typename _Ret, typename _Tp, typename _Arg>
624 : class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
625 : {
626 : public:
627 : explicit
628 : mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
629 : : _M_f(__pf) { }
630 :
631 : _Ret
632 : operator()(_Tp& __r, _Arg __x) const
633 : { return (__r.*_M_f)(__x); }
634 :
635 : private:
636 : _Ret (_Tp::*_M_f)(_Arg);
637 : };
638 :
639 : /// One of the @link s20_3_8_memadaptors adaptors for member
640 : /// pointers@endlink.
641 : template<typename _Ret, typename _Tp, typename _Arg>
642 : class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
643 : {
644 : public:
645 : explicit
646 : const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
647 : : _M_f(__pf) { }
648 :
649 : _Ret
650 : operator()(const _Tp& __r, _Arg __x) const
651 : { return (__r.*_M_f)(__x); }
652 :
653 : private:
654 : _Ret (_Tp::*_M_f)(_Arg) const;
655 : };
656 :
657 : // Mem_fun adaptor helper functions. There are only two:
658 : // mem_fun and mem_fun_ref.
659 : template<typename _Ret, typename _Tp>
660 : inline mem_fun_t<_Ret, _Tp>
661 : mem_fun(_Ret (_Tp::*__f)())
662 : { return mem_fun_t<_Ret, _Tp>(__f); }
663 :
664 : template<typename _Ret, typename _Tp>
665 : inline const_mem_fun_t<_Ret, _Tp>
666 : mem_fun(_Ret (_Tp::*__f)() const)
667 : { return const_mem_fun_t<_Ret, _Tp>(__f); }
668 :
669 : template<typename _Ret, typename _Tp>
670 : inline mem_fun_ref_t<_Ret, _Tp>
671 : mem_fun_ref(_Ret (_Tp::*__f)())
672 : { return mem_fun_ref_t<_Ret, _Tp>(__f); }
673 :
674 : template<typename _Ret, typename _Tp>
675 : inline const_mem_fun_ref_t<_Ret, _Tp>
676 : mem_fun_ref(_Ret (_Tp::*__f)() const)
677 : { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }
678 :
679 : template<typename _Ret, typename _Tp, typename _Arg>
680 : inline mem_fun1_t<_Ret, _Tp, _Arg>
681 : mem_fun(_Ret (_Tp::*__f)(_Arg))
682 : { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
683 :
684 : template<typename _Ret, typename _Tp, typename _Arg>
685 : inline const_mem_fun1_t<_Ret, _Tp, _Arg>
686 : mem_fun(_Ret (_Tp::*__f)(_Arg) const)
687 : { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
688 :
689 : template<typename _Ret, typename _Tp, typename _Arg>
690 : inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
691 : mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
692 : { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
693 :
694 : template<typename _Ret, typename _Tp, typename _Arg>
695 : inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
696 : mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
697 : { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
698 :
699 : /** @} */
700 :
701 : _GLIBCXX_END_NAMESPACE
702 :
703 : #if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_DEPRECATED
704 : # include <backward/binders.h>
705 : #endif
706 :
707 : #endif /* _STL_FUNCTION_H */
|