/* hash.c -- hash table maintenance Copyright (C) 1995, 1999, 2002, 2010 Free Software Foundation, Inc. Written by Greg McGary GNU Make is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "make.h" #include "hash.h" #define CALLOC(t, n) ((t *) calloc (sizeof (t), (n))) #define MALLOC(t, n) ((t *) xmalloc (sizeof (t) * (n))) #define REALLOC(o, t, n) ((t *) xrealloc ((o), sizeof (t) * (n))) #define CLONE(o, t, n) ((t *) memcpy (MALLOC (t, (n)), (o), sizeof (t) * (n))) static void hash_rehash __P((struct hash_table* ht)); static unsigned long round_up_2 __P((unsigned long rough)); /* Implement double hashing with open addressing. The table size is always a power of two. The secondary (`increment') hash function is forced to return an odd-value, in order to be relatively prime to the table size. This guarantees that the increment can potentially hit every slot in the table during collision resolution. */ void *hash_deleted_item = &hash_deleted_item; /* Force the table size to be a power of two, possibly rounding up the given size. */ void hash_init (struct hash_table *ht, unsigned long size, hash_func_t hash_1, hash_func_t hash_2, hash_cmp_func_t hash_cmp) { ht->ht_size = round_up_2 (size); ht->ht_empty_slots = ht->ht_size; ht->ht_vec = (void**) CALLOC (struct token *, ht->ht_size); if (ht->ht_vec == 0) { fprintf (stderr, _("can't allocate %lu bytes for hash table: memory exhausted"), ht->ht_size * (unsigned long) sizeof (struct token *)); exit (1); } ht->ht_capacity = ht->ht_size - (ht->ht_size / 16); /* 93.75% loading factor */ ht->ht_fill = 0; ht->ht_collisions = 0; ht->ht_lookups = 0; ht->ht_rehashes = 0; ht->ht_hash_1 = hash_1; ht->ht_hash_2 = hash_2; ht->ht_compare = hash_cmp; } /* Load an array of items into `ht'. */ void hash_load (struct hash_table *ht, void *item_table, unsigned long cardinality, unsigned long size) { char *items = (char *) item_table; while (cardinality--) { hash_insert (ht, items); items += size; } } /* Returns the address of the table slot matching `key'. If `key' is not found, return the address of an empty slot suitable for inserting `key'. The caller is responsible for incrementing ht_fill on insertion. */ void ** hash_find_slot (struct hash_table *ht, const void *key) { void **slot; void **deleted_slot = 0; unsigned int hash_2 = 0; unsigned int hash_1 = (*ht->ht_hash_1) (key); ht->ht_lookups++; for (;;) { hash_1 &= (ht->ht_size - 1); slot = &ht->ht_vec[hash_1]; if (*slot == 0) return (deleted_slot ? deleted_slot : slot); if (*slot == hash_deleted_item) { if (deleted_slot == 0) deleted_slot = slot; } else { if (key == *slot) return slot; if ((*ht->ht_compare) (key, *slot) == 0) return slot; ht->ht_collisions++; } if (!hash_2) hash_2 = (*ht->ht_hash_2) (key) | 1; hash_1 += hash_2; } } void * hash_find_item (struct hash_table *ht, const void *key) { void **slot = hash_find_slot (ht, key); return ((HASH_VACANT (*slot)) ? 0 : *slot); } void * hash_insert (struct hash_table *ht, const void *item) { void **slot = hash_find_slot (ht, item); const void *old_item = *slot; hash_insert_at (ht, item, slot); return (void *)((HASH_VACANT (old_item)) ? 0 : old_item); } void * hash_insert_at (struct hash_table *ht, const void *item, const void *slot) { const void *old_item = *(void **) slot; if (HASH_VACANT (old_item)) { ht->ht_fill++; if (old_item == 0) ht->ht_empty_slots--; old_item = item; } *(void const **) slot = item; if (ht->ht_empty_slots < ht->ht_size - ht->ht_capacity) { hash_rehash (ht); return (void *) hash_find_slot (ht, item); } else return (void *) slot; } void * hash_delete (struct hash_table *ht, const void *item) { void **slot = hash_find_slot (ht, item); return hash_delete_at (ht, slot); } void * hash_delete_at (struct hash_table *ht, const void *slot) { void *item = *(void **) slot; if (!HASH_VACANT (item)) { *(void const **) slot = hash_deleted_item; ht->ht_fill--; return item; } else return 0; } void hash_free_items (struct hash_table *ht) { void **vec = ht->ht_vec; void **end = &vec[ht->ht_size]; for (; vec < end; vec++) { void *item = *vec; if (!HASH_VACANT (item)) free (item); *vec = 0; } ht->ht_fill = 0; ht->ht_empty_slots = ht->ht_size; } void hash_delete_items (struct hash_table *ht) { void **vec = ht->ht_vec; void **end = &vec[ht->ht_size]; for (; vec < end; vec++) *vec = 0; ht->ht_fill = 0; ht->ht_collisions = 0; ht->ht_lookups = 0; ht->ht_rehashes = 0; ht->ht_empty_slots = ht->ht_size; } void hash_free (struct hash_table *ht, int free_items) { if (free_items) hash_free_items (ht); else { ht->ht_fill = 0; ht->ht_empty_slots = ht->ht_size; } free (ht->ht_vec); ht->ht_vec = 0; ht->ht_capacity = 0; } void hash_map (struct hash_table *ht, hash_map_func_t map) { void **slot; void **end = &ht->ht_vec[ht->ht_size]; for (slot = ht->ht_vec; slot < end; slot++) { if (!HASH_VACANT (*slot)) (*map) (*slot); } } void hash_map_arg (struct hash_table *ht, hash_map_arg_func_t map, void *arg) { void **slot; void **end = &ht->ht_vec[ht->ht_size]; for (slot = ht->ht_vec; slot < end; slot++) { if (!HASH_VACANT (*slot)) (*map) (*slot, arg); } } /* Double the size of the hash table in the event of overflow... */ static void hash_rehash (struct hash_table *ht) { unsigned long old_ht_size = ht->ht_size; void **old_vec = ht->ht_vec; void **ovp; if (ht->ht_fill >= ht->ht_capacity) { ht->ht_size *= 2; ht->ht_capacity = ht->ht_size - (ht->ht_size >> 4); } ht->ht_rehashes++; ht->ht_vec = (void **) CALLOC (struct token *, ht->ht_size); for (ovp = old_vec; ovp < &old_vec[old_ht_size]; ovp++) { if (! HASH_VACANT (*ovp)) { void **slot = hash_find_slot (ht, *ovp); *slot = *ovp; } } ht->ht_empty_slots = ht->ht_size - ht->ht_fill; free (old_vec); } void hash_print_stats (struct hash_table *ht, FILE *out_FILE) { /* GKM FIXME: honor NO_FLOAT */ fprintf (out_FILE, _("Load=%ld/%ld=%.0f%%, "), ht->ht_fill, ht->ht_size, 100.0 * (double) ht->ht_fill / (double) ht->ht_size); fprintf (out_FILE, _("Rehash=%d, "), ht->ht_rehashes); fprintf (out_FILE, _("Collisions=%ld/%ld=%.0f%%"), ht->ht_collisions, ht->ht_lookups, (ht->ht_lookups ? (100.0 * (double) ht->ht_collisions / (double) ht->ht_lookups) : 0)); } /* Dump all items into a NULL-terminated vector. Use the user-supplied vector, or malloc one. */ void ** hash_dump (struct hash_table *ht, void **vector_0, qsort_cmp_t compare) { void **vector; void **slot; void **end = &ht->ht_vec[ht->ht_size]; if (vector_0 == 0) vector_0 = MALLOC (void *, ht->ht_fill + 1); vector = vector_0; for (slot = ht->ht_vec; slot < end; slot++) if (!HASH_VACANT (*slot)) *vector++ = *slot; *vector = 0; if (compare) qsort (vector_0, ht->ht_fill, sizeof (void *), compare); return vector_0; } /* Round a given number up to the nearest power of 2. */ static unsigned long round_up_2 (unsigned long n) { n |= (n >> 1); n |= (n >> 2); n |= (n >> 4); n |= (n >> 8); n |= (n >> 16); #if !defined(HAVE_LIMITS_H) || ULONG_MAX > 4294967295 /* We only need this on systems where unsigned long is >32 bits. */ n |= (n >> 32); #endif return n + 1; }