1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/callo.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/cpuvar.h>
#include <sys/thread.h>
#include <sys/kmem.h>
#include <sys/kmem_impl.h>
#include <sys/cmn_err.h>
#include <sys/callb.h>
#include <sys/debug.h>
#include <sys/vtrace.h>
#include <sys/sysmacros.h>
#include <sys/sdt.h>
/*
* Callout tables. See timeout(9F) for details.
*/
static hrtime_t callout_debug_hrtime; /* debugger entry time */
static int callout_min_resolution; /* Minimum resolution */
static callout_table_t *callout_boot_ct; /* Boot CPU's callout tables */
static hrtime_t callout_longterm; /* longterm nanoseconds */
static ulong_t callout_counter_low; /* callout ID increment */
static ulong_t callout_table_bits; /* number of table bits in ID */
static ulong_t callout_table_mask; /* mask for the table bits */
static callout_cache_t *callout_caches; /* linked list of caches */
#pragma align 64(callout_table)
static callout_table_t *callout_table; /* global callout table array */
static char *callout_kstat_names[] = {
"callout_timeouts",
"callout_timeouts_pending",
"callout_untimeouts_unexpired",
"callout_untimeouts_executing",
"callout_untimeouts_expired",
"callout_expirations",
"callout_allocations",
};
#define CALLOUT_HASH_INSERT(hash, cp, cnext, cprev) \
{ \
callout_hash_t *hashp = &(hash); \
\
cp->cprev = NULL; \
cp->cnext = hashp->ch_head; \
if (hashp->ch_head == NULL) \
hashp->ch_tail = cp; \
else \
cp->cnext->cprev = cp; \
hashp->ch_head = cp; \
}
#define CALLOUT_HASH_APPEND(hash, cp, cnext, cprev) \
{ \
callout_hash_t *hashp = &(hash); \
\
cp->cnext = NULL; \
cp->cprev = hashp->ch_tail; \
if (hashp->ch_tail == NULL) \
hashp->ch_head = cp; \
else \
cp->cprev->cnext = cp; \
hashp->ch_tail = cp; \
}
#define CALLOUT_HASH_DELETE(hash, cp, cnext, cprev) \
{ \
callout_hash_t *hashp = &(hash); \
\
if (cp->cnext == NULL) \
hashp->ch_tail = cp->cprev; \
else \
cp->cnext->cprev = cp->cprev; \
if (cp->cprev == NULL) \
hashp->ch_head = cp->cnext; \
else \
cp->cprev->cnext = cp->cnext; \
}
/*
* These definitions help us queue callouts and callout lists. Here is
* the queueing rationale:
*
* - callouts are queued in a FIFO manner in the ID hash table.
* TCP timers are typically cancelled in the same order that they
* were issued. The FIFO queueing shortens the search for a callout
* during untimeout().
*
* - callouts are queued in a FIFO manner in their callout lists.
* This ensures that the callouts are executed in the same order that
* they were queued. This is fair. Plus, it helps to make each
* callout expiration timely. It also favors cancellations.
*
* - callout lists are queued in a LIFO manner in the callout list hash
* table. This ensures that long term timers stay at the rear of the
* hash lists.
*
* - callout lists are queued in a FIFO manner in the expired callouts
* list. This ensures that callout lists are executed in the order
* of expiration.
*/
#define CALLOUT_APPEND(ct, cp) \
CALLOUT_HASH_APPEND(ct->ct_idhash[CALLOUT_IDHASH(cp->c_xid)], \
cp, c_idnext, c_idprev); \
CALLOUT_HASH_APPEND(cp->c_list->cl_callouts, cp, c_clnext, c_clprev)
#define CALLOUT_DELETE(ct, cp) \
CALLOUT_HASH_DELETE(ct->ct_idhash[CALLOUT_IDHASH(cp->c_xid)], \
cp, c_idnext, c_idprev); \
CALLOUT_HASH_DELETE(cp->c_list->cl_callouts, cp, c_clnext, c_clprev)
#define CALLOUT_LIST_INSERT(hash, cl) \
CALLOUT_HASH_INSERT(hash, cl, cl_next, cl_prev)
#define CALLOUT_LIST_APPEND(hash, cl) \
CALLOUT_HASH_APPEND(hash, cl, cl_next, cl_prev)
#define CALLOUT_LIST_DELETE(hash, cl) \
CALLOUT_HASH_DELETE(hash, cl, cl_next, cl_prev)
/*
* Allocate a callout structure. We try quite hard because we
* can't sleep, and if we can't do the allocation, we're toast.
* Failing all, we try a KM_PANIC allocation. Note that we never
* deallocate a callout. See untimeout() for the reasoning.
*/
static callout_t *
callout_alloc(callout_table_t *ct)
{
size_t size;
callout_t *cp;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
mutex_exit(&ct->ct_mutex);
cp = kmem_cache_alloc(ct->ct_cache, KM_NOSLEEP);
if (cp == NULL) {
size = sizeof (callout_t);
cp = kmem_alloc_tryhard(size, &size, KM_NOSLEEP | KM_PANIC);
}
cp->c_xid = 0;
mutex_enter(&ct->ct_mutex);
ct->ct_allocations++;
return (cp);
}
/*
* Allocate a callout list structure. We try quite hard because we
* can't sleep, and if we can't do the allocation, we're toast.
* Failing all, we try a KM_PANIC allocation. Note that we never
* deallocate a callout list.
*/
static void
callout_list_alloc(callout_table_t *ct)
{
size_t size;
callout_list_t *cl;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
mutex_exit(&ct->ct_mutex);
cl = kmem_cache_alloc(ct->ct_lcache, KM_NOSLEEP);
if (cl == NULL) {
size = sizeof (callout_list_t);
cl = kmem_alloc_tryhard(size, &size, KM_NOSLEEP | KM_PANIC);
}
bzero(cl, sizeof (callout_list_t));
mutex_enter(&ct->ct_mutex);
cl->cl_next = ct->ct_lfree;
ct->ct_lfree = cl;
}
/*
* Find the callout list that corresponds to an expiration. There can
* be only one.
*/
static callout_list_t *
callout_list_get(callout_table_t *ct, hrtime_t expiration, int hash)
{
callout_list_t *cl;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
for (cl = ct->ct_clhash[hash].ch_head; (cl != NULL); cl = cl->cl_next) {
if (cl->cl_expiration == expiration)
return (cl);
}
return (NULL);
}
/*
* Find the callout list that corresponds to an expiration. There can
* be only one. If the callout list is null, free it. Else, return it.
*/
static callout_list_t *
callout_list_check(callout_table_t *ct, hrtime_t expiration, int hash)
{
callout_list_t *cl;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
cl = callout_list_get(ct, expiration, hash);
if (cl != NULL) {
if (cl->cl_callouts.ch_head != NULL) {
/*
* There is exactly one callout list for every
* unique expiration. So, we are done.
*/
return (cl);
}
CALLOUT_LIST_DELETE(ct->ct_clhash[hash], cl);
cl->cl_next = ct->ct_lfree;
ct->ct_lfree = cl;
}
return (NULL);
}
/*
* Initialize a callout table's heap, if necessary. Preallocate some free
* entries so we don't have to check for NULL elsewhere.
*/
static void
callout_heap_init(callout_table_t *ct)
{
size_t size;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(ct->ct_heap == NULL);
ct->ct_heap_num = 0;
ct->ct_heap_max = CALLOUT_CHUNK;
size = sizeof (hrtime_t) * CALLOUT_CHUNK;
ct->ct_heap = kmem_alloc(size, KM_SLEEP);
}
/*
* Reallocate the heap. We try quite hard because we can't sleep, and if
* we can't do the allocation, we're toast. Failing all, we try a KM_PANIC
* allocation. Note that the heap only expands, it never contracts.
*/
static void
callout_heap_expand(callout_table_t *ct)
{
size_t max, size, osize;
hrtime_t *heap;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(ct->ct_heap_num <= ct->ct_heap_max);
while (ct->ct_heap_num == ct->ct_heap_max) {
max = ct->ct_heap_max;
mutex_exit(&ct->ct_mutex);
osize = sizeof (hrtime_t) * max;
size = sizeof (hrtime_t) * (max + CALLOUT_CHUNK);
heap = kmem_alloc_tryhard(size, &size, KM_NOSLEEP | KM_PANIC);
mutex_enter(&ct->ct_mutex);
if (max < ct->ct_heap_max) {
/*
* Someone beat us to the allocation. Free what we
* just allocated and proceed.
*/
kmem_free(heap, size);
continue;
}
bcopy(ct->ct_heap, heap, osize);
kmem_free(ct->ct_heap, osize);
ct->ct_heap = heap;
ct->ct_heap_max = size / sizeof (hrtime_t);
}
}
/*
* Move an expiration from the bottom of the heap to its correct place
* in the heap. If we reached the root doing this, return 1. Else,
* return 0.
*/
static int
callout_upheap(callout_table_t *ct)
{
int current, parent;
hrtime_t *heap, current_expiration, parent_expiration;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(ct->ct_heap_num >= 1);
if (ct->ct_heap_num == 1) {
return (1);
}
heap = ct->ct_heap;
current = ct->ct_heap_num - 1;
for (;;) {
parent = CALLOUT_HEAP_PARENT(current);
current_expiration = heap[current];
parent_expiration = heap[parent];
/*
* We have an expiration later than our parent; we're done.
*/
if (current_expiration >= parent_expiration) {
return (0);
}
/*
* We need to swap with our parent, and continue up the heap.
*/
heap[parent] = current_expiration;
heap[current] = parent_expiration;
/*
* If we just reached the root, we're done.
*/
if (parent == 0) {
return (1);
}
current = parent;
}
/*NOTREACHED*/
}
/*
* Insert a new, unique expiration into a callout table's heap.
*/
static void
callout_heap_insert(callout_table_t *ct, hrtime_t expiration)
{
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(ct->ct_heap_num < ct->ct_heap_max);
/*
* First, copy the expiration to the bottom of the heap.
*/
ct->ct_heap[ct->ct_heap_num] = expiration;
ct->ct_heap_num++;
/*
* Now, perform an upheap operation. If we reached the root, then
* the cyclic needs to be reprogrammed as we have an earlier
* expiration.
*
* Also, during the CPR suspend phase, do not reprogram the cyclic.
* We don't want any callout activity. When the CPR resume phase is
* entered, the cyclic will be programmed for the earliest expiration
* in the heap.
*/
if (callout_upheap(ct) && !(ct->ct_flags & CALLOUT_TABLE_SUSPENDED))
(void) cyclic_reprogram(ct->ct_cyclic, expiration);
}
/*
* Move an expiration from the top of the heap to its correct place
* in the heap.
*/
static void
callout_downheap(callout_table_t *ct)
{
int left, right, current, nelems;
hrtime_t *heap, left_expiration, right_expiration, current_expiration;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(ct->ct_heap_num >= 1);
heap = ct->ct_heap;
current = 0;
nelems = ct->ct_heap_num;
for (;;) {
/*
* If we don't have a left child (i.e., we're a leaf), we're
* done.
*/
if ((left = CALLOUT_HEAP_LEFT(current)) >= nelems)
return;
left_expiration = heap[left];
current_expiration = heap[current];
right = CALLOUT_HEAP_RIGHT(current);
/*
* Even if we don't have a right child, we still need to compare
* our expiration against that of our left child.
*/
if (right >= nelems)
goto comp_left;
right_expiration = heap[right];
/*
* We have both a left and a right child. We need to compare
* the expiration of the children to determine which
* expires earlier.
*/
if (right_expiration < left_expiration) {
/*
* Our right child is the earlier of our children.
* We'll now compare our expiration to its expiration.
* If ours is the earlier one, we're done.
*/
if (current_expiration <= right_expiration)
return;
/*
* Our right child expires earlier than we do; swap
* with our right child, and descend right.
*/
heap[right] = current_expiration;
heap[current] = right_expiration;
current = right;
continue;
}
comp_left:
/*
* Our left child is the earlier of our children (or we have
* no right child). We'll now compare our expiration
* to its expiration. If ours is the earlier one, we're done.
*/
if (current_expiration <= left_expiration)
return;
/*
* Our left child expires earlier than we do; swap with our
* left child, and descend left.
*/
heap[left] = current_expiration;
heap[current] = left_expiration;
current = left;
}
}
/*
* Delete and handle all past expirations in a callout table's heap.
*/
static void
callout_heap_delete(callout_table_t *ct)
{
hrtime_t now, expiration;
callout_list_t *cl;
int hash;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
now = gethrtime();
while (ct->ct_heap_num > 0) {
expiration = ct->ct_heap[0];
/*
* Find the callout list that corresponds to the expiration.
* If the callout list is empty, callout_list_check()
* will free the callout list and return NULL.
*/
hash = CALLOUT_CLHASH(expiration);
cl = callout_list_check(ct, expiration, hash);
if (cl != NULL) {
/*
* If the root of the heap expires in the future, we are
* done. We are doing this check here instead of at the
* beginning because we want to first free all the
* empty callout lists at the top of the heap.
*/
if (expiration > now)
break;
/*
* Move the callout list for this expiration to the
* list of expired callout lists. It will be processed
* by the callout executor.
*/
CALLOUT_LIST_DELETE(ct->ct_clhash[hash], cl);
CALLOUT_LIST_APPEND(ct->ct_expired, cl);
}
/*
* Now delete the root. This is done by swapping the root with
* the last item in the heap and downheaping the item.
*/
ct->ct_heap_num--;
if (ct->ct_heap_num > 0) {
ct->ct_heap[0] = ct->ct_heap[ct->ct_heap_num];
callout_downheap(ct);
}
}
/*
* If this callout table is empty or callouts have been suspended
* by CPR, just return. The cyclic has already been programmed to
* infinity by the cyclic subsystem.
*/
if ((ct->ct_heap_num == 0) || (ct->ct_flags & CALLOUT_TABLE_SUSPENDED))
return;
(void) cyclic_reprogram(ct->ct_cyclic, expiration);
}
callout_id_t
timeout_generic(int type, void (*func)(void *), void *arg,
hrtime_t expiration, hrtime_t resolution, int flags)
{
callout_table_t *ct;
callout_t *cp;
callout_id_t id;
callout_list_t *cl;
hrtime_t now, interval;
int hash;
ASSERT(resolution > 0);
ASSERT(func != NULL);
/*
* Please see comment about minimum resolution in callout_init().
*/
if (resolution < callout_min_resolution)
resolution = callout_min_resolution;
/*
* We disable kernel preemption so that we remain on the same CPU
* throughout. If we needed to reprogram the callout table's cyclic,
* we can avoid X-calls if we are on the same CPU.
*
* Note that callout_alloc() releases and reacquires the callout
* table mutex. While reacquiring the mutex, it is possible for us
* to go to sleep and later migrate to another CPU. This should be
* pretty rare, though.
*/
kpreempt_disable();
ct = &callout_table[CALLOUT_TABLE(type, CPU->cpu_seqid)];
mutex_enter(&ct->ct_mutex);
if (ct->ct_cyclic == CYCLIC_NONE) {
mutex_exit(&ct->ct_mutex);
/*
* The callout table has not yet been initialized fully.
* So, put this one on the boot callout table which is
* always initialized.
*/
ct = &callout_boot_ct[type];
mutex_enter(&ct->ct_mutex);
}
if ((cp = ct->ct_free) == NULL)
cp = callout_alloc(ct);
else
ct->ct_free = cp->c_idnext;
cp->c_func = func;
cp->c_arg = arg;
/*
* Compute the expiration hrtime.
*/
now = gethrtime();
if (flags & CALLOUT_FLAG_ABSOLUTE) {
ASSERT(expiration > 0);
interval = expiration - now;
} else {
interval = expiration;
expiration += now;
ASSERT(expiration > 0);
}
if (flags & CALLOUT_FLAG_ROUNDUP)
expiration += resolution - 1;
expiration = (expiration / resolution) * resolution;
/*
* Assign an ID to this callout
*/
if (flags & CALLOUT_FLAG_32BIT) {
if (interval > callout_longterm) {
id = (ct->ct_long_id - callout_counter_low);
id |= CALLOUT_COUNTER_HIGH;
ct->ct_long_id = id;
} else {
id = (ct->ct_short_id - callout_counter_low);
id |= CALLOUT_COUNTER_HIGH;
ct->ct_short_id = id;
}
} else {
id = (ct->ct_gen_id - callout_counter_low);
if ((id & CALLOUT_COUNTER_HIGH) == 0) {
id |= CALLOUT_COUNTER_HIGH;
id += CALLOUT_GENERATION_LOW;
}
ct->ct_gen_id = id;
}
cp->c_xid = id;
if (flags & CALLOUT_FLAG_HRESTIME)
cp->c_xid |= CALLOUT_HRESTIME;
hash = CALLOUT_CLHASH(expiration);
again:
/*
* Try to see if a callout list already exists for this expiration.
* Most of the time, this will be the case.
*/
cl = callout_list_get(ct, expiration, hash);
if (cl == NULL) {
/*
* Check if we have enough space in the heap to insert one
* expiration. If not, expand the heap.
*/
if (ct->ct_heap_num == ct->ct_heap_max) {
callout_heap_expand(ct);
/*
* In the above call, we drop the lock, allocate and
* reacquire the lock. So, we could have been away
* for a while. In the meantime, someone could have
* inserted a callout list with the same expiration.
* So, the best course is to repeat the steps. This
* should be an infrequent event.
*/
goto again;
}
/*
* Check the free list. If we don't find one, we have to
* take the slow path and allocate from kmem.
*/
if ((cl = ct->ct_lfree) == NULL) {
callout_list_alloc(ct);
/*
* In the above call, we drop the lock, allocate and
* reacquire the lock. So, we could have been away
* for a while. In the meantime, someone could have
* inserted a callout list with the same expiration.
* Plus, the heap could have become full. So, the best
* course is to repeat the steps. This should be an
* infrequent event.
*/
goto again;
}
ct->ct_lfree = cl->cl_next;
cl->cl_expiration = expiration;
CALLOUT_LIST_INSERT(ct->ct_clhash[hash], cl);
/*
* This is a new expiration. So, insert it into the heap.
* This will also reprogram the cyclic, if the expiration
* propagated to the root of the heap.
*/
callout_heap_insert(ct, expiration);
}
cp->c_list = cl;
CALLOUT_APPEND(ct, cp);
ct->ct_timeouts++;
ct->ct_timeouts_pending++;
mutex_exit(&ct->ct_mutex);
kpreempt_enable();
TRACE_4(TR_FAC_CALLOUT, TR_TIMEOUT,
"timeout:%K(%p) in %llx expiration, cp %p", func, arg, expiration,
cp);
return (id);
}
timeout_id_t
timeout(void (*func)(void *), void *arg, clock_t delta)
{
ulong_t id;
/*
* Make sure the callout runs at least 1 tick in the future.
*/
if (delta <= 0)
delta = 1;
id = (ulong_t)timeout_generic(CALLOUT_NORMAL, func, arg,
TICK_TO_NSEC(delta), nsec_per_tick, CALLOUT_LEGACY);
return ((timeout_id_t)id);
}
/*
* Convenience function that creates a normal callout with default parameters
* and returns a full ID.
*/
callout_id_t
timeout_default(void (*func)(void *), void *arg, clock_t delta)
{
callout_id_t id;
/*
* Make sure the callout runs at least 1 tick in the future.
*/
if (delta <= 0)
delta = 1;
id = timeout_generic(CALLOUT_NORMAL, func, arg, TICK_TO_NSEC(delta),
nsec_per_tick, 0);
return (id);
}
timeout_id_t
realtime_timeout(void (*func)(void *), void *arg, clock_t delta)
{
ulong_t id;
/*
* Make sure the callout runs at least 1 tick in the future.
*/
if (delta <= 0)
delta = 1;
id = (ulong_t)timeout_generic(CALLOUT_REALTIME, func, arg,
TICK_TO_NSEC(delta), nsec_per_tick, CALLOUT_LEGACY);
return ((timeout_id_t)id);
}
/*
* Convenience function that creates a realtime callout with default parameters
* and returns a full ID.
*/
callout_id_t
realtime_timeout_default(void (*func)(void *), void *arg, clock_t delta)
{
callout_id_t id;
/*
* Make sure the callout runs at least 1 tick in the future.
*/
if (delta <= 0)
delta = 1;
id = timeout_generic(CALLOUT_REALTIME, func, arg, TICK_TO_NSEC(delta),
nsec_per_tick, 0);
return (id);
}
hrtime_t
untimeout_generic(callout_id_t id, int nowait)
{
callout_table_t *ct;
callout_t *cp;
callout_id_t xid;
callout_list_t *cl;
int hash;
callout_id_t bogus;
ct = &callout_table[CALLOUT_ID_TO_TABLE(id)];
hash = CALLOUT_IDHASH(id);
mutex_enter(&ct->ct_mutex);
/*
* Search the ID hash table for the callout.
*/
for (cp = ct->ct_idhash[hash].ch_head; cp; cp = cp->c_idnext) {
xid = cp->c_xid;
/*
* Match the ID and generation number.
*/
if ((xid & CALLOUT_ID_MASK) != id)
continue;
cl = cp->c_list;
if ((xid & CALLOUT_EXECUTING) == 0) {
hrtime_t expiration;
/*
* Delete the callout. If the callout list becomes
* NULL, we don't remove it from the table. This is
* so it can be reused. If the empty callout list
* corresponds to the top of the the callout heap, we
* don't reprogram the table cyclic here. This is in
* order to avoid lots of X-calls to the CPU associated
* with the callout table.
*/
expiration = cl->cl_expiration;
CALLOUT_DELETE(ct, cp);
cp->c_idnext = ct->ct_free;
ct->ct_free = cp;
ct->ct_untimeouts_unexpired++;
ct->ct_timeouts_pending--;
mutex_exit(&ct->ct_mutex);
expiration -= gethrtime();
TRACE_2(TR_FAC_CALLOUT, TR_UNTIMEOUT,
"untimeout:ID %lx hrtime left %llx", id,
expiration);
return (expiration < 0 ? 0 : expiration);
}
ct->ct_untimeouts_executing++;
/*
* The callout we want to delete is currently executing.
* The DDI states that we must wait until the callout
* completes before returning, so we block on cl_done until the
* callout ID changes (to the old ID if it's on the freelist,
* or to a new callout ID if it's in use). This implicitly
* assumes that callout structures are persistent (they are).
*/
if (cl->cl_executor == curthread) {
/*
* The timeout handler called untimeout() on itself.
* Stupid, but legal. We can't wait for the timeout
* to complete without deadlocking, so we just return.
*/
mutex_exit(&ct->ct_mutex);
TRACE_1(TR_FAC_CALLOUT, TR_UNTIMEOUT_SELF,
"untimeout_self:ID %x", id);
return (-1);
}
if (nowait == 0) {
/*
* We need to wait. Indicate that we are waiting by
* incrementing cl_waiting. This prevents the executor
* from doing a wakeup on cl_done if there are no
* waiters.
*/
while (cp->c_xid == xid) {
cl->cl_waiting = 1;
cv_wait(&cl->cl_done, &ct->ct_mutex);
}
}
mutex_exit(&ct->ct_mutex);
TRACE_1(TR_FAC_CALLOUT, TR_UNTIMEOUT_EXECUTING,
"untimeout_executing:ID %lx", id);
return (-1);
}
ct->ct_untimeouts_expired++;
mutex_exit(&ct->ct_mutex);
TRACE_1(TR_FAC_CALLOUT, TR_UNTIMEOUT_BOGUS_ID,
"untimeout_bogus_id:ID %lx", id);
/*
* We didn't find the specified callout ID. This means either
* (1) the callout already fired, or (2) the caller passed us
* a bogus value. Perform a sanity check to detect case (2).
*/
bogus = (CALLOUT_EXECUTING | CALLOUT_HRESTIME | CALLOUT_COUNTER_HIGH);
if (((id & bogus) != CALLOUT_COUNTER_HIGH) && (id != 0))
panic("untimeout: impossible timeout id %llx",
(unsigned long long)id);
return (-1);
}
clock_t
untimeout(timeout_id_t id_arg)
{
hrtime_t hleft;
clock_t tleft;
callout_id_t id;
id = (ulong_t)id_arg;
hleft = untimeout_generic(id, 0);
if (hleft < 0)
tleft = -1;
else if (hleft == 0)
tleft = 0;
else
tleft = NSEC_TO_TICK(hleft);
return (tleft);
}
/*
* Convenience function to untimeout a timeout with a full ID with default
* parameters.
*/
clock_t
untimeout_default(callout_id_t id, int nowait)
{
hrtime_t hleft;
clock_t tleft;
hleft = untimeout_generic(id, nowait);
if (hleft < 0)
tleft = -1;
else if (hleft == 0)
tleft = 0;
else
tleft = NSEC_TO_TICK(hleft);
return (tleft);
}
/*
* Expire all the callouts queued in the specified callout list.
*/
static void
callout_list_expire(callout_table_t *ct, callout_list_t *cl)
{
callout_t *cp;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(cl != NULL);
cl->cl_executor = curthread;
while ((cp = cl->cl_callouts.ch_head) != NULL) {
/*
* Indicate to untimeout() that a callout is
* being expired by the executor.
*/
cp->c_xid |= CALLOUT_EXECUTING;
mutex_exit(&ct->ct_mutex);
DTRACE_PROBE1(callout__start, callout_t *, cp);
(*cp->c_func)(cp->c_arg);
DTRACE_PROBE1(callout__end, callout_t *, cp);
mutex_enter(&ct->ct_mutex);
ct->ct_expirations++;
ct->ct_timeouts_pending--;
/*
* Indicate completion for cl_done.
*/
cp->c_xid &= ~CALLOUT_EXECUTING;
/*
* Delete callout from ID hash table and the callout
* list, return to freelist, and tell any untimeout() that
* cares that we're done.
*/
CALLOUT_DELETE(ct, cp);
cp->c_idnext = ct->ct_free;
ct->ct_free = cp;
if (cl->cl_waiting) {
cl->cl_waiting = 0;
cv_broadcast(&cl->cl_done);
}
}
cl->cl_executor = NULL;
}
/*
* Execute all expired callout lists for a callout table.
*/
static void
callout_expire(callout_table_t *ct)
{
callout_list_t *cl, *clnext;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
for (cl = ct->ct_expired.ch_head; (cl != NULL); cl = clnext) {
/*
* Multiple executor threads could be running at the same
* time. Each callout list is processed by only one thread.
* If this callout list is already being processed by another
* executor, go on to the next one.
*/
if (cl->cl_executor != NULL) {
clnext = cl->cl_next;
continue;
}
/*
* Expire all the callouts in this callout list.
*/
callout_list_expire(ct, cl);
/*
* Free the callout list.
*/
clnext = cl->cl_next;
CALLOUT_LIST_DELETE(ct->ct_expired, cl);
cl->cl_next = ct->ct_lfree;
ct->ct_lfree = cl;
}
}
/*
* The cyclic handlers below process callouts in two steps:
*
* 1. Find all expired callout lists and queue them in a separate
* list of expired callouts.
* 2. Execute the expired callout lists.
*
* This is done for two reasons:
*
* 1. We want to quickly find the next earliest expiration to program
* the cyclic to and reprogram it. We can do this right at the end
* of step 1.
* 2. The realtime cyclic handler expires callouts in place. However,
* for normal callouts, callouts are expired by a taskq thread.
* So, it is simpler and more robust to have the taskq thread just
* do step 2.
*/
/*
* Realtime callout cyclic handler.
*/
void
callout_realtime(callout_table_t *ct)
{
mutex_enter(&ct->ct_mutex);
callout_heap_delete(ct);
callout_expire(ct);
mutex_exit(&ct->ct_mutex);
}
void
callout_execute(callout_table_t *ct)
{
mutex_enter(&ct->ct_mutex);
callout_expire(ct);
mutex_exit(&ct->ct_mutex);
}
/*
* Normal callout cyclic handler.
*/
void
callout_normal(callout_table_t *ct)
{
int exec;
mutex_enter(&ct->ct_mutex);
callout_heap_delete(ct);
exec = (ct->ct_expired.ch_head != NULL);
mutex_exit(&ct->ct_mutex);
if (exec) {
ASSERT(ct->ct_taskq != NULL);
(void) taskq_dispatch(ct->ct_taskq,
(task_func_t *)callout_execute, ct, TQ_NOSLEEP);
}
}
/*
* Suspend callout processing.
*/
static void
callout_suspend(void)
{
int t, f;
callout_table_t *ct;
/*
* Traverse every callout table in the system and suspend callout
* processing.
*
* We need to suspend all the tables (including the inactive ones)
* so that if a table is made active while the suspend is still on,
* the table remains suspended.
*/
for (f = 0; f < max_ncpus; f++) {
for (t = 0; t < CALLOUT_NTYPES; t++) {
ct = &callout_table[CALLOUT_TABLE(t, f)];
mutex_enter(&ct->ct_mutex);
ct->ct_flags |= CALLOUT_TABLE_SUSPENDED;
if (ct->ct_cyclic == CYCLIC_NONE) {
mutex_exit(&ct->ct_mutex);
continue;
}
(void) cyclic_reprogram(ct->ct_cyclic, CY_INFINITY);
mutex_exit(&ct->ct_mutex);
}
}
}
static void
callout_adjust(callout_table_t *ct, hrtime_t delta)
{
int hash, newhash;
hrtime_t expiration;
callout_list_t *cl;
callout_hash_t list;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
/*
* In order to adjust the expirations, we null out the heap. Then,
* we reinsert adjusted expirations in the heap. Keeps it simple.
* Note that since the CALLOUT_TABLE_SUSPENDED flag is set by the
* caller, the heap insert does not result in cyclic reprogramming.
*/
ct->ct_heap_num = 0;
/*
* First, remove all the callout lists from the table and string them
* in a list.
*/
list.ch_head = list.ch_tail = NULL;
for (hash = 0; hash < CALLOUT_BUCKETS; hash++) {
while ((cl = ct->ct_clhash[hash].ch_head) != NULL) {
CALLOUT_LIST_DELETE(ct->ct_clhash[hash], cl);
CALLOUT_LIST_APPEND(list, cl);
}
}
/*
* Now, traverse the callout lists and adjust their expirations.
*/
while ((cl = list.ch_head) != NULL) {
CALLOUT_LIST_DELETE(list, cl);
/*
* Set the new expiration and reinsert in the right
* hash bucket.
*/
expiration = cl->cl_expiration;
expiration += delta;
cl->cl_expiration = expiration;
newhash = CALLOUT_CLHASH(expiration);
CALLOUT_LIST_INSERT(ct->ct_clhash[newhash], cl);
callout_heap_insert(ct, expiration);
}
}
/*
* Resume callout processing.
*/
static void
callout_resume(hrtime_t delta)
{
hrtime_t exp;
int t, f;
callout_table_t *ct;
/*
* Traverse every callout table in the system and resume callout
* processing. For active tables, perform any hrtime adjustments
* necessary.
*/
for (f = 0; f < max_ncpus; f++) {
for (t = 0; t < CALLOUT_NTYPES; t++) {
ct = &callout_table[CALLOUT_TABLE(t, f)];
mutex_enter(&ct->ct_mutex);
if (ct->ct_cyclic == CYCLIC_NONE) {
ct->ct_flags &= ~CALLOUT_TABLE_SUSPENDED;
mutex_exit(&ct->ct_mutex);
continue;
}
if (delta)
callout_adjust(ct, delta);
ct->ct_flags &= ~CALLOUT_TABLE_SUSPENDED;
/*
* If the expired list is non-empty, then have the
* cyclic expire immediately. Else, program the
* cyclic based on the heap.
*/
if (ct->ct_expired.ch_head != NULL)
exp = gethrtime();
else if (ct->ct_heap_num > 0)
exp = ct->ct_heap[0];
else
exp = 0;
if (exp != 0)
(void) cyclic_reprogram(ct->ct_cyclic, exp);
mutex_exit(&ct->ct_mutex);
}
}
}
/*
* Callback handler used by CPR to stop and resume callouts.
*/
/*ARGSUSED*/
static boolean_t
callout_cpr_callb(void *arg, int code)
{
if (code == CB_CODE_CPR_CHKPT)
callout_suspend();
else
callout_resume(0);
return (B_TRUE);
}
/*
* Callback handler invoked when the debugger is entered or exited.
*/
/*ARGSUSED*/
static boolean_t
callout_debug_callb(void *arg, int code)
{
hrtime_t delta;
/*
* When the system enters the debugger. make a note of the hrtime.
* When it is resumed, compute how long the system was in the
* debugger. This interval should not be counted for callouts.
*/
if (code == 0) {
callout_suspend();
callout_debug_hrtime = gethrtime();
} else {
delta = gethrtime() - callout_debug_hrtime;
callout_resume(delta);
}
return (B_TRUE);
}
/*
* Move the hrestime callouts to the expired list. Then program the table's
* cyclic to expire immediately so that the callouts can be executed
* immediately.
*/
static void
callout_hrestime_one(callout_table_t *ct)
{
callout_list_t *cl, *ecl;
callout_t *cp;
int hash;
mutex_enter(&ct->ct_mutex);
if (ct->ct_heap_num == 0) {
mutex_exit(&ct->ct_mutex);
return;
}
if (ct->ct_lfree == NULL)
callout_list_alloc(ct);
ecl = ct->ct_lfree;
ct->ct_lfree = ecl->cl_next;
for (hash = 0; hash < CALLOUT_BUCKETS; hash++) {
for (cl = ct->ct_clhash[hash].ch_head; cl; cl = cl->cl_next) {
for (cp = cl->cl_callouts.ch_head; cp;
cp = cp->c_clnext) {
if ((cp->c_xid & CALLOUT_HRESTIME) == 0)
continue;
CALLOUT_HASH_DELETE(cl->cl_callouts, cp,
c_clnext, c_clprev);
cp->c_list = ecl;
CALLOUT_HASH_APPEND(ecl->cl_callouts, cp,
c_clnext, c_clprev);
}
}
}
if (ecl->cl_callouts.ch_head != NULL) {
CALLOUT_LIST_APPEND(ct->ct_expired, ecl);
if (!(ct->ct_flags & CALLOUT_TABLE_SUSPENDED))
(void) cyclic_reprogram(ct->ct_cyclic, gethrtime());
} else {
ecl->cl_next = ct->ct_lfree;
ct->ct_lfree = ecl;
}
mutex_exit(&ct->ct_mutex);
}
/*
* This function is called whenever system time (hrestime) is changed
* explicitly. All the HRESTIME callouts must be expired at once.
*/
/*ARGSUSED*/
void
callout_hrestime(void)
{
int t, f;
callout_table_t *ct;
/*
* Traverse every callout table in the system and process the hrestime
* callouts therein.
*
* We look at all the tables because we don't know which ones were
* onlined and offlined in the past. The offlined tables may still
* have active cyclics processing timers somewhere.
*/
for (f = 0; f < max_ncpus; f++) {
for (t = 0; t < CALLOUT_NTYPES; t++) {
ct = &callout_table[CALLOUT_TABLE(t, f)];
callout_hrestime_one(ct);
}
}
}
/*
* Create the hash tables for this callout table.
*/
static void
callout_hash_init(callout_table_t *ct)
{
size_t size;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT((ct->ct_idhash == NULL) && (ct->ct_clhash == NULL));
size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
ct->ct_idhash = kmem_zalloc(size, KM_SLEEP);
ct->ct_clhash = kmem_zalloc(size, KM_SLEEP);
}
/*
* Create per-callout table kstats.
*/
static void
callout_kstat_init(callout_table_t *ct)
{
callout_stat_type_t stat;
kstat_t *ct_kstats;
int ndx;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
ASSERT(ct->ct_kstats == NULL);
ndx = ct - callout_table;
ct_kstats = kstat_create("unix", ndx, "callout",
"misc", KSTAT_TYPE_NAMED, CALLOUT_NUM_STATS, KSTAT_FLAG_VIRTUAL);
if (ct_kstats == NULL) {
cmn_err(CE_WARN, "kstat_create for callout table %p failed",
(void *)ct);
} else {
ct_kstats->ks_data = ct->ct_kstat_data;
for (stat = 0; stat < CALLOUT_NUM_STATS; stat++)
kstat_named_init(&ct->ct_kstat_data[stat],
callout_kstat_names[stat], KSTAT_DATA_INT64);
ct->ct_kstats = ct_kstats;
kstat_install(ct_kstats);
}
}
static void
callout_cyclic_init(callout_table_t *ct)
{
cyc_handler_t hdlr;
cyc_time_t when;
processorid_t seqid;
int t;
ASSERT(MUTEX_HELD(&ct->ct_mutex));
t = CALLOUT_TABLE_TYPE(ct);
seqid = CALLOUT_TABLE_SEQID(ct);
/*
* Create the taskq thread if the table type is normal.
* Realtime tables are handled at PIL1 by a softint
* handler.
*/
if (t == CALLOUT_NORMAL) {
ASSERT(ct->ct_taskq == NULL);
/*
* Each callout thread consumes exactly one
* task structure while active. Therefore,
* prepopulating with 2 * CALLOUT_THREADS tasks
* ensures that there's at least one task per
* thread that's either scheduled or on the
* freelist. In turn, this guarantees that
* taskq_dispatch() will always either succeed
* (because there's a free task structure) or
* be unnecessary (because "callout_excute(ct)"
* has already scheduled).
*/
ct->ct_taskq =
taskq_create_instance("callout_taskq", seqid,
CALLOUT_THREADS, maxclsyspri,
2 * CALLOUT_THREADS, 2 * CALLOUT_THREADS,
TASKQ_PREPOPULATE | TASKQ_CPR_SAFE);
}
/*
* callouts can only be created in a table whose
* cyclic has been initialized.
*/
ASSERT(ct->ct_heap_num == 0);
/*
* Create the callout table cyclics.
*/
ASSERT(ct->ct_cyclic == CYCLIC_NONE);
/*
* Ideally, the handlers for CALLOUT_REALTIME and CALLOUT_NORMAL should
* be run at CY_LOW_LEVEL. But there are some callers of the delay(9F)
* function that call delay(9F) illegally from PIL > 0. delay(9F) uses
* normal callouts. In order to avoid a deadlock, we run the normal
* handler from LOCK level. When the delay(9F) issue is fixed, this
* should be fixed as well.
*/
hdlr.cyh_func = (cyc_func_t)CALLOUT_CYCLIC_HANDLER(t);
hdlr.cyh_level = (t == CALLOUT_REALTIME) ? CY_LOW_LEVEL : CY_LOCK_LEVEL;
hdlr.cyh_arg = ct;
when.cyt_when = CY_INFINITY;
when.cyt_interval = CY_INFINITY;
ct->ct_cyclic = cyclic_add(&hdlr, &when);
}
void
callout_cpu_online(cpu_t *cp)
{
lgrp_handle_t hand;
callout_cache_t *cache;
char s[KMEM_CACHE_NAMELEN];
callout_table_t *ct;
processorid_t seqid;
int t;
ASSERT(MUTEX_HELD(&cpu_lock));
/*
* Locate the cache corresponding to the onlined CPU's lgroup.
* Note that access to callout_caches is protected by cpu_lock.
*/
hand = lgrp_plat_cpu_to_hand(cp->cpu_id);
for (cache = callout_caches; cache != NULL; cache = cache->cc_next) {
if (cache->cc_hand == hand)
break;
}
/*
* If not found, create one. The caches are never destroyed.
*/
if (cache == NULL) {
cache = kmem_alloc(sizeof (callout_cache_t), KM_SLEEP);
cache->cc_hand = hand;
(void) snprintf(s, KMEM_CACHE_NAMELEN, "callout_cache%lx",
(long)hand);
cache->cc_cache = kmem_cache_create(s, sizeof (callout_t),
CALLOUT_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
(void) snprintf(s, KMEM_CACHE_NAMELEN, "callout_lcache%lx",
(long)hand);
cache->cc_lcache = kmem_cache_create(s, sizeof (callout_list_t),
CALLOUT_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
cache->cc_next = callout_caches;
callout_caches = cache;
}
seqid = cp->cpu_seqid;
for (t = 0; t < CALLOUT_NTYPES; t++) {
ct = &callout_table[CALLOUT_TABLE(t, seqid)];
mutex_enter(&ct->ct_mutex);
/*
* Store convinience pointers to the kmem caches
* in the callout table. These assignments should always be
* done as callout tables can map to different physical
* CPUs each time.
*/
ct->ct_cache = cache->cc_cache;
ct->ct_lcache = cache->cc_lcache;
/*
* We use the heap pointer to check if stuff has been
* initialized for this callout table.
*/
if (ct->ct_heap == NULL) {
callout_heap_init(ct);
callout_hash_init(ct);
callout_kstat_init(ct);
callout_cyclic_init(ct);
}
mutex_exit(&ct->ct_mutex);
/*
* Move the cyclic to this CPU by doing a bind. Then unbind
* the cyclic. This will allow the cyclic subsystem to juggle
* the cyclic during CPU offline.
*/
cyclic_bind(ct->ct_cyclic, cp, NULL);
cyclic_bind(ct->ct_cyclic, NULL, NULL);
}
}
/*
* This is called to perform per-CPU initialization for slave CPUs at
* boot time.
*/
void
callout_mp_init(void)
{
cpu_t *cp;
mutex_enter(&cpu_lock);
cp = cpu_active;
do {
callout_cpu_online(cp);
} while ((cp = cp->cpu_next_onln) != cpu_active);
mutex_exit(&cpu_lock);
}
/*
* Initialize all callout tables. Called at boot time just before clkstart().
*/
void
callout_init(void)
{
int f, t;
size_t size;
int table_id;
callout_table_t *ct;
long bits, fanout;
uintptr_t buf;
/*
* Initialize callout globals.
*/
bits = 0;
for (fanout = 1; (fanout < max_ncpus); fanout <<= 1)
bits++;
callout_table_bits = CALLOUT_TYPE_BITS + bits;
callout_table_mask = (1 << callout_table_bits) - 1;
callout_counter_low = 1 << CALLOUT_COUNTER_SHIFT;
callout_longterm = TICK_TO_NSEC(CALLOUT_LONGTERM_TICKS);
/*
* Because of the variability in timing behavior across systems with
* different architectures, we cannot allow arbitrarily low
* resolutions. The minimum resolution has to be determined in a
* platform-specific way. Until then, we define a blanket minimum
* resolution for callouts of CALLOUT_MIN_RESOLUTION.
*
* If, in the future, someone requires lower resolution timers, they
* can do one of two things:
*
* - Define a lower value for callout_min_resolution. This would
* affect all clients of the callout subsystem. If this done
* via /etc/system, then no code changes are required and it
* would affect only that customer.
*
* - Define a flag to be passed to timeout creation that allows
* the lower resolution. This involves code changes. But it
* would affect only the calling module. It is the developer's
* responsibility to test on all systems and make sure that
* everything works.
*/
if (callout_min_resolution <= 0)
callout_min_resolution = CALLOUT_MIN_RESOLUTION;
/*
* Allocate all the callout tables based on max_ncpus. We have chosen
* to do boot-time allocation instead of dynamic allocation because:
*
* - the size of the callout tables is not too large.
* - there are race conditions involved in making this dynamic.
* - the hash tables that go with the callout tables consume
* most of the memory and they are only allocated in
* callout_cpu_online().
*
* Each CPU has two tables that are consecutive in the array. The first
* one is for realtime callouts and the second one is for normal ones.
*
* We do this alignment dance to make sure that callout table
* structures will always be on a cache line boundary.
*/
size = sizeof (callout_table_t) * CALLOUT_NTYPES * max_ncpus;
size += CALLOUT_ALIGN;
buf = (uintptr_t)kmem_zalloc(size, KM_SLEEP);
callout_table = (callout_table_t *)P2ROUNDUP(buf, CALLOUT_ALIGN);
size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
/*
* Now, initialize the tables for all the CPUs.
*/
for (f = 0; f < max_ncpus; f++) {
for (t = 0; t < CALLOUT_NTYPES; t++) {
table_id = CALLOUT_TABLE(t, f);
ct = &callout_table[table_id];
mutex_init(&ct->ct_mutex, NULL, MUTEX_DEFAULT, NULL);
/*
* Precompute the base IDs for long and short-term
* legacy IDs. This makes ID generation during
* timeout() fast.
*/
ct->ct_short_id = CALLOUT_SHORT_ID(table_id);
ct->ct_long_id = CALLOUT_LONG_ID(table_id);
/*
* Precompute the base ID for generation-based IDs.
* Note that when the first ID gets allocated, the
* ID will wrap. This will cause the generation
* number to be incremented to 1.
*/
ct->ct_gen_id = CALLOUT_SHORT_ID(table_id);
/*
* Initialize the cyclic as NONE. This will get set
* during CPU online. This is so that partially
* populated systems will only have the required
* number of cyclics, not more.
*/
ct->ct_cyclic = CYCLIC_NONE;
ct->ct_kstat_data = kmem_zalloc(size, KM_SLEEP);
}
}
/*
* Add the callback for CPR. This is called during checkpoint
* resume to suspend and resume callouts.
*/
(void) callb_add(callout_cpr_callb, 0, CB_CL_CPR_CALLOUT,
"callout_cpr");
(void) callb_add(callout_debug_callb, 0, CB_CL_ENTER_DEBUGGER,
"callout_debug");
/*
* Call the per-CPU initialization function for the boot CPU. This
* is done here because the function is not called automatically for
* the boot CPU from the CPU online/offline hooks. Note that the
* CPU lock is taken here because of convention.
*/
mutex_enter(&cpu_lock);
callout_boot_ct = &callout_table[CALLOUT_TABLE(0, CPU->cpu_seqid)];
callout_cpu_online(CPU);
mutex_exit(&cpu_lock);
}
|