summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/ipc.c
blob: 0094652f15baf3bbc4a631959713c7f2706880b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
/*	  All Rights Reserved  	*/


#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * Common Inter-Process Communication routines.
 *
 * Overview
 * --------
 *
 * The System V inter-process communication (IPC) facilities provide
 * three services, message queues, semaphore arrays, and shared memory
 * segments, which are mananged using filesystem-like namespaces.
 * Unlike a filesystem, these namespaces aren't mounted and accessible
 * via a path -- a special API is used to interact with the different
 * facilities (nothing precludes a VFS-based interface, but the
 * standards require the special APIs).  Furthermore, these special
 * APIs don't use file descriptors, nor do they have an equivalent.
 * This means that every operation which acts on an object needs to
 * perform the quivalent of a lookup, which in turn means that every
 * operation can fail if the specified object doesn't exist in the
 * facility's namespace.
 *
 * Objects
 * -------
 *
 * Each object in a namespace has a unique ID, which is assigned by the
 * system and is used to identify the object when performing operations
 * on it.  An object can also have a key, which is selected by the user
 * at allocation time and is used as a primitive rendezvous mechanism.
 * An object without a key is said to have a "private" key.
 *
 * To perform an operation on an object given its key, one must first
 * perform a lookup and obtain its ID.  The ID is then used to identify
 * the object when performing the operation.  If the object has a
 * private key, the ID must be known or obtained by other means.
 *
 * Each object in the namespace has a creator uid and gid, as well as
 * an owner uid and gid.  Both are initialized with the ruid and rgid
 * of the process which created the object.  The creator or current
 * owner has the ability to change the owner of the object.
 *
 * Each object in the namespace has a set of file-like permissions,
 * which, in conjunction with the creator and owner uid and gid,
 * control read and write access to the object (execute is ignored).
 *
 * Each object also has a creator project and zone, which are used to
 * account for its resource usage.
 *
 * Operations
 * ----------
 *
 * There are five operations which all three facilities have in
 * common: GET, SET, STAT, RMID, and IDS.
 *
 * GET, like open, is used to allocate a new object or obtain an
 * existing one (using its key).  It takes a key, a set of flags and
 * mode bits, and optionally facility-specific arguments.  If the key
 * is IPC_PRIVATE, a new object with the requested mode bits and
 * facility-specific attributes is created.  If the key isn't
 * IPC_PRIVATE, the GET will attempt to look up the specified key and
 * either return that or create a new key depending on the state of the
 * IPC_CREAT and IPC_EXCL flags, much like open.  If GET needs to
 * allocate an object, it can fail if there is insufficient space in
 * the namespace (the maximum number of ids for the facility has been
 * exceeded) or if the facility-specific initialization fails.  If GET
 * finds an object it can return, it can still fail if that object's
 * permissions or facility-specific attributes are less than those
 * requested.
 *
 * SET is used to adjust facility-specific parameters of an object, in
 * addition to the owner uid and gid, and mode bits.  It can fail if
 * the caller isn't the creator or owner.
 *
 * STAT is used to obtain information about an object including the
 * general attributes object described as well as facility-specific
 * information.  It can fail if the caller doesn't have read
 * permission.
 *
 * RMID removes an object from the namespace.  Subsequent operations
 * using the object's ID or key will fail (until another object is
 * created with the same key or ID).  Since an RMID may be performed
 * asynchronously with other operations, it is possible that other
 * threads and/or processes will have references to the object.  While
 * a facility may have actions which need to be performed at RMID time,
 * only when all references are dropped can the object be destroyed.
 * RMID will fail if the caller isn't the creator or owner.
 *
 * IDS obtains a list of all IDs in a facility's namespace.  There are
 * no facility-specific behaviors of IDS.
 *
 * Design
 * ------
 *
 * Because some IPC facilities provide services whose operations must
 * scale, a mechanism which allows fast, concurrent access to
 * individual objects is needed.  Of primary importance is object
 * lookup based on ID (SET, STAT, others).  Allocation (GET),
 * deallocation (RMID), ID enumeration (IDS), and key lookups (GET) are
 * lesser concerns, but should be implemented in such a way that ID
 * lookup isn't affected (at least not in the common case).
 *
 * Starting from the bottom up, each object is represented by a
 * structure, the first member of which must be a kipc_perm_t.  The
 * kipc_perm_t contains the information described above in "Objects", a
 * reference count (since the object may continue to exist after it has
 * been removed from the namespace), as well as some additional
 * metadata used to manage data structure membership.  These objects
 * are dynamically allocated.
 *
 * Above the objects is a power-of-two sized table of ID slots.  Each
 * slot contains a pointer to an object, a sequence number, and a
 * lock.  An object's ID is a function of its slot's index in the table
 * and its slot's sequence number.  Every time a slot is released (via
 * RMID) its sequence number is increased.  Strictly speaking, the
 * sequence number is unnecessary.  However, checking the sequence
 * number after a lookup provides a certain degree of robustness
 * against the use of stale IDs (useful since nothing else does).  When
 * the table fills up, it is resized (see Locking, below).
 *
 * Of an ID's 31 bits (an ID is, as defined by the standards, a signed
 * int) the top IPC_SEQ_BITS are used for the sequence number with the
 * remainder holding the index into the table.  The size of the table
 * is therefore bounded at 2 ^ (31 - IPC_SEQ_BITS) slots.
 *
 * Managing this table is the ipc_service structure.  It contains a
 * pointer to the dynamically allocated ID table, a namespace-global
 * lock, an id_space for managing the free space in the table, and
 * sundry other metadata necessary for the maintenance of the
 * namespace.  An AVL tree of all keyed objects in the table (sorted by
 * key) is used for key lookups.  An unordered doubly linked list of
 * all objects in the namespace (keyed or not) is maintained to
 * facilitate ID enumeration.
 *
 * To help visualize these relationships, here's a picture of a
 * namespace with a table of size 8 containing three objects
 * (IPC_SEQ_BITS = 28):
 *
 *
 * +-ipc_service_t--+
 * | table          *---\
 * | keys           *---+----------------------\
 * | all ids        *--\|                      |
 * |                |  ||                      |
 * +----------------+  ||                      |
 *                     ||                      |
 * /-------------------/|                      |
 * |    /---------------/                      |
 * |    |                                      |
 * |    v                                      |
 * |  +-0------+-1------+-2------+-3------+-4--+---+-5------+-6------+-7------+
 * |  | Seq=3  |        |        | Seq=1  |    :   |        |        | Seq=6  |
 * |  |        |        |        |        |    :   |        |        |        |
 * |  +-*------+--------+--------+-*------+----+---+--------+--------+-*------+
 * |    |                          |           |                       |
 * |    |                      /---/           |      /----------------/
 * |    |                      |               |      |
 * |    v                      v               |      v
 * |  +-kipc_perm_t-+        +-kipc_perm_t-+   |    +-kipc_perm_t-+
 * |  | id=0x30     |        | id=0x13     |   |    | id=0x67     |
 * |  | key=0xfeed  |        | key=0xbeef  |   |    | key=0xcafe  |
 * \->| [list]      |<------>| [list]      |<------>| [list]      |
 * /->| [avl left]  x   /--->| [avl left]  x   \--->| [avl left]  *---\
 * |  | [avl right] x   |    | [avl right] x        | [avl right] *---+-\
 * |  |             |   |    |             |        |             |   | |
 * |  +-------------+   |    +-------------+        +-------------+   | |
 * |                    \---------------------------------------------/ |
 * \--------------------------------------------------------------------/
 *
 * Locking
 * -------
 *
 * There are three locks (or sets of locks) which are used to ensure
 * correctness: the slot locks, the namespace lock, and p_lock (needed
 * when checking resource controls).  Their ordering is
 *
 *   namespace lock -> slot lock 0 -> ... -> slot lock t -> p_lock
 *
 * Generally speaking, the namespace lock is used to protect allocation
 * and removal from the namespace, ID enumeration, and resizing the ID
 * table.  Specifically:
 *
 * - write access to all fields of the ipc_service structure
 * - read access to all variable fields of ipc_service except
 *   ipcs_tabsz (table size) and ipcs_table (the table pointer)
 * - read/write access to ipc_avl, ipc_list in visible objects'
 *   kipc_perm structures (i.e. objects which have been removed from
 *   the namespace don't have this restriction)
 * - write access to ipct_seq and ipct_data in the table entries
 *
 * A slot lock by itself is meaningless (except when resizing).  Of
 * greater interest conceptually is the notion of an ID lock -- a
 * "virtual lock" which refers to whichever slot lock an object's ID
 * currently hashes to.
 *
 * An ID lock protects all objects with that ID.  Normally there will
 * only be one such object: the one pointed to by the locked slot.
 * However, if an object is removed from the namespace but retains
 * references (e.g. an attached shared memory segment which has been
 * RMIDed), it continues to use the lock associated with its original
 * ID.  While this can result in increased contention, operations which
 * require taking the ID lock of removed objects are infrequent.
 *
 * Specifically, an ID lock protects the contents of an object's
 * structure, including the contents of the embedded kipc_perm
 * structure (but excluding those fields protected by the namespace
 * lock).  It also protects the ipct_seq and ipct_data fields in its
 * slot (it is really a slot lock, after all).
 *
 * Recall that the table is resizable.  To avoid requiring every ID
 * lookup to take a global lock, a scheme much like that employed for
 * file descriptors (see the comment above UF_ENTER in user.h) is
 * used.  Note that the sequence number and data pointer are protected
 * by both the namespace lock and their slot lock.  When the table is
 * resized, the following operations take place:
 *
 *   1) A new table is allocated.
 *   2) The global lock is taken.
 *   3) All old slots are locked, in order.
 *   4) The first half of the new slots are locked.
 *   5) All table entries are copied to the new table, and cleared from
 *	the old table.
 *   6) The ipc_service structure is updated to point to the new table.
 *   7) The ipc_service structure is updated with the new table size.
 *   8) All slot locks (old and new) are dropped.
 *
 * Because the slot locks are embedded in the table, ID lookups and
 * other operations which require taking an slot lock need to verify
 * that the lock taken wasn't part of a stale table.  This is
 * accomplished by checking the table size before and after
 * dereferencing the table pointer and taking the lock: if the size
 * changes, the lock must be dropped and reacquired.  It is this
 * additional work which distinguishes an ID lock from a slot lock.
 *
 * Because we can't guarantee that threads aren't accessing the old
 * tables' locks, they are never deallocated.  To prevent spurious
 * reports of memory leaks, a pointer to the discarded table is stored
 * in the new one in step 5.  (Theoretically ipcs_destroy will delete
 * the discarded tables, but it is only ever called from a failed _init
 * invocation; i.e. when there aren't any.)
 *
 * Interfaces
 * ----------
 *
 * The following interfaces are provided by the ipc module for use by
 * the individual IPC facilities:
 *
 * ipcperm_access
 *
 *   Given an object and a cred structure, determines if the requested
 *   access type is allowed.
 *
 * ipcperm_set, ipcperm_stat,
 * ipcperm_set64, ipcperm_stat64
 *
 *   Performs the common portion of an STAT or SET operation.  All
 *   (except stat and stat64) can fail, so they should be called before
 *   any facility-specific non-reversible changes are made to an
 *   object.  Similarly, the set operations have side effects, so they
 *   should only be called once the possibility of a facility-specific
 *   failure is eliminated.
 *
 * ipcs_create
 *
 *   Creates an IPC namespace for use by an IPC facility.
 *
 * ipcs_destroy
 *
 *   Destroys an IPC namespace.
 *
 * ipcs_lock, ipcs_unlock
 *
 *   Takes the namespace lock.  Ideally such access wouldn't be
 *   necessary, but there may be facility-specific data protected by
 *   this lock (e.g. project-wide resource consumption).
 *
 * ipc_lock
 *
 *   Takes the lock associated with an ID.  Can't fail.
 *
 * ipc_relock
 *
 *   Like ipc_lock, but takes a pointer to a held lock.  Drops the lock
 *   unless it is the one that would have been returned by ipc_lock.
 *   Used after calls to cv_wait.
 *
 * ipc_lookup
 *
 *   Performs an ID lookup, returns with the ID lock held.  Fails if
 *   the ID doesn't exist in the namespace.
 *
 * ipc_hold
 *
 *   Takes a reference on an object.
 *
 * ipc_rele
 *
 *   Releases a reference on an object, and drops the object's lock.
 *   Calls the object's destructor if last reference is being
 *   released.
 *
 * ipc_rele_locked
 *
 *   Releases a reference on an object.  Doesn't drop lock, and may
 *   only be called when there is more than one reference to the
 *   object.
 *
 * ipc_get, ipc_commit_begin, ipc_commit_end, ipc_cleanup
 *
 *   Components of a GET operation.  ipc_get performs a key lookup,
 *   allocating an object if the key isn't found (returning with the
 *   namespace lock and p_lock held), and returning the existing object
 *   if it is (with the object lock held).  ipc_get doesn't modify the
 *   namespace.
 *
 *   ipc_commit_begin begins the process of inserting an object
 *   allocated by ipc_get into the namespace, and can fail.  If
 *   successful, it returns with the namespace lock and p_lock held.
 *   ipc_commit_end completes the process of inserting an object into
 *   the namespace and can't fail.  The facility can call ipc_cleanup
 *   at any time following a successful ipc_get and before
 *   ipc_commit_end or a failed ipc_commit_begin to fail the
 *   allocation.  Pseudocode for the suggested GET implementation:
 *
 *   top:
 *
 *     ipc_get
 *
 *     if failure
 *       return
 *
 *     if found {
 *
 *	 if object meets criteria
 *	   unlock object and return success
 *       else
 *	   unlock object and return failure
 *
 *     } else {
 *
 *	 perform resource control tests
 *	 drop namespace lock, p_lock
 *	 if failure
 *	   ipc_cleanup
 *
 *       perform facility-specific initialization
 *	 if failure {
 *	   facility-specific cleanup
 *	   ipc_cleanup
 *       }
 *
 *	 ( At this point the object should be destructible using the
 *	   destructor given to ipcs_create )
 *
 *       ipc_commit_begin
 *	 if retry
 *	   goto top
 *       else if failure
 *         return
 *
 *       perform facility-specific resource control tests/allocations
 *	 if failure
 *	   ipc_cleanup
 *
 *	 ipc_commit_end
 *	 perform any infallible post-creation actions, unlock, and return
 *
 *     }
 *
 * ipc_rmid
 *
 *   Performs the common portion of an RMID operation -- looks up an ID
 *   removes it, and calls the a facility-specific function to do
 *   RMID-time cleanup on the private portions of the object.
 *
 * ipc_ids
 *
 *   Performs the common portion of an IDS operation.
 *
 */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/cred.h>
#include <sys/policy.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/ipc.h>
#include <sys/ipc_impl.h>
#include <sys/errno.h>
#include <sys/systm.h>
#include <sys/list.h>
#include <sys/atomic.h>
#include <sys/zone.h>
#include <sys/task.h>
#include <sys/modctl.h>

#include <c2/audit.h>

static struct modlmisc modlmisc = {
	&mod_miscops,
	"common ipc code",
};

static struct modlinkage modlinkage = {
	MODREV_1, (void *)&modlmisc, NULL
};


int
_init(void)
{
	return (mod_install(&modlinkage));
}

int
_fini(void)
{
	return (mod_remove(&modlinkage));
}

int
_info(struct modinfo *modinfop)
{
	return (mod_info(&modlinkage, modinfop));
}


/*
 * Check message, semaphore, or shared memory access permissions.
 *
 * This routine verifies the requested access permission for the current
 * process.  The zone ids are compared, and the appropriate bits are
 * checked corresponding to owner, group (including the list of
 * supplementary groups), or everyone.  Zero is returned on success.
 * On failure, the security policy is asked to check to override the
 * permissions check; the policy will either return 0 for access granted
 * or EACCES.
 *
 * Access to objects in other zones requires that the caller be in the
 * global zone and have the appropriate IPC_DAC_* privilege, regardless
 * of whether the uid or gid match those of the object.  Note that
 * cross-zone accesses will normally never get here since they'll
 * fail in ipc_lookup or ipc_get.
 *
 * The arguments must be set up as follows:
 * 	p - Pointer to permission structure to verify
 * 	mode - Desired access permissions
 */
int
ipcperm_access(kipc_perm_t *p, int mode, cred_t *cr)
{
	int shifts = 0;
	uid_t uid = crgetuid(cr);
	zoneid_t zoneid = getzoneid();

	if (p->ipc_zoneid == zoneid) {
		if (uid != p->ipc_uid && uid != p->ipc_cuid) {
			shifts += 3;
			if (!groupmember(p->ipc_gid, cr) &&
			    !groupmember(p->ipc_cgid, cr))
				shifts += 3;
		}

		mode &= ~(p->ipc_mode << shifts);

		if (mode == 0)
			return (0);
	} else if (zoneid != GLOBAL_ZONEID)
		return (EACCES);

	return (secpolicy_ipc_access(cr, p, mode));
}

/*
 * There are two versions of the ipcperm_set/stat functions:
 *   ipcperm_???        - for use with IPC_SET/STAT
 *   ipcperm_???_64     - for use with IPC_SET64/STAT64
 *
 * These functions encapsulate the common portions (copying, permission
 * checks, and auditing) of the set/stat operations.  All, except for
 * stat and stat_64 which are void, return 0 on success or a non-zero
 * errno value on error.
 */

int
ipcperm_set(ipc_service_t *service, struct cred *cr,
    kipc_perm_t *kperm, struct ipc_perm *perm, model_t model)
{
	STRUCT_HANDLE(ipc_perm, lperm);
	uid_t uid;
	gid_t gid;
	mode_t mode;

	ASSERT(IPC_LOCKED(service, kperm));

	STRUCT_SET_HANDLE(lperm, model, perm);
	uid = STRUCT_FGET(lperm, uid);
	gid = STRUCT_FGET(lperm, gid);
	mode = STRUCT_FGET(lperm, mode);

	if (secpolicy_ipc_owner(cr, kperm) != 0)
		return (EPERM);

	if ((uid < 0) || (uid > MAXUID) || (gid < 0) || (gid > MAXUID))
		return (EINVAL);

	kperm->ipc_uid = uid;
	kperm->ipc_gid = gid;
	kperm->ipc_mode = (mode & 0777) | (kperm->ipc_mode & ~0777);

#ifdef C2_AUDIT
	if (audit_active)
		audit_ipcget(service->ipcs_atype, kperm);
#endif

	return (0);
}

void
ipcperm_stat(struct ipc_perm *perm, kipc_perm_t *kperm, model_t model)
{
	STRUCT_HANDLE(ipc_perm, lperm);

	STRUCT_SET_HANDLE(lperm, model, perm);
	STRUCT_FSET(lperm, uid, kperm->ipc_uid);
	STRUCT_FSET(lperm, gid, kperm->ipc_gid);
	STRUCT_FSET(lperm, cuid, kperm->ipc_cuid);
	STRUCT_FSET(lperm, cgid, kperm->ipc_cgid);
	STRUCT_FSET(lperm, mode, kperm->ipc_mode);
	STRUCT_FSET(lperm, seq, 0);
	STRUCT_FSET(lperm, key, kperm->ipc_key);
}

int
ipcperm_set64(ipc_service_t *service, struct cred *cr,
    kipc_perm_t *kperm, ipc_perm64_t *perm64)
{
	ASSERT(IPC_LOCKED(service, kperm));

	if (secpolicy_ipc_owner(cr, kperm) != 0)
		return (EPERM);

	if ((perm64->ipcx_uid < 0) || (perm64->ipcx_uid > MAXUID) ||
	    (perm64->ipcx_gid < 0) || (perm64->ipcx_gid > MAXUID))
		return (EINVAL);

	kperm->ipc_uid = perm64->ipcx_uid;
	kperm->ipc_gid = perm64->ipcx_gid;
	kperm->ipc_mode = (perm64->ipcx_mode & 0777) |
	    (kperm->ipc_mode & ~0777);

#ifdef C2_AUDIT
	if (audit_active)
		audit_ipcget(service->ipcs_atype, kperm);
#endif

	return (0);
}

void
ipcperm_stat64(ipc_perm64_t *perm64, kipc_perm_t *kperm)
{
	perm64->ipcx_uid = kperm->ipc_uid;
	perm64->ipcx_gid = kperm->ipc_gid;
	perm64->ipcx_cuid = kperm->ipc_cuid;
	perm64->ipcx_cgid = kperm->ipc_cgid;
	perm64->ipcx_mode = kperm->ipc_mode;
	perm64->ipcx_key = kperm->ipc_key;
	perm64->ipcx_projid = kperm->ipc_proj->kpj_id;
	perm64->ipcx_zoneid = kperm->ipc_zoneid;
}


/*
 * ipc key comparator.
 */
static int
ipc_key_compar(const void *a, const void *b)
{
	kipc_perm_t *aperm = (kipc_perm_t *)a;
	kipc_perm_t *bperm = (kipc_perm_t *)b;
	int ak = aperm->ipc_key;
	int bk = bperm->ipc_key;
	zoneid_t az;
	zoneid_t bz;

	ASSERT(ak != IPC_PRIVATE);
	ASSERT(bk != IPC_PRIVATE);

	/*
	 * Compare key first, then zoneid.  This optimizes performance for
	 * systems with only one zone, since the zone checks will only be
	 * made when the keys match.
	 */
	if (ak < bk)
		return (-1);
	if (ak > bk)
		return (1);

	/* keys match */
	az = aperm->ipc_zoneid;
	bz = bperm->ipc_zoneid;
	if (az < bz)
		return (-1);
	if (az > bz)
		return (1);
	return (0);
}

/*
 * Create an ipc service.
 */
ipc_service_t *
ipcs_create(const char *name, rctl_hndl_t proj_rctl, rctl_hndl_t zone_rctl,
    size_t size, ipc_func_t *dtor, ipc_func_t *rmid, int audit_type,
    size_t rctl_offset)
{
	ipc_service_t *result;

	result = kmem_alloc(sizeof (ipc_service_t), KM_SLEEP);

	mutex_init(&result->ipcs_lock, NULL, MUTEX_ADAPTIVE, NULL);
	result->ipcs_count = 0;
	avl_create(&result->ipcs_keys, ipc_key_compar, size, 0);
	result->ipcs_tabsz = IPC_IDS_MIN;
	result->ipcs_table =
	    kmem_zalloc(IPC_IDS_MIN * sizeof (ipc_slot_t), KM_SLEEP);
	result->ipcs_ssize = size;
	result->ipcs_ids = id_space_create(name, 0, IPC_IDS_MIN);
	result->ipcs_dtor = dtor;
	result->ipcs_rmid = rmid;
	result->ipcs_proj_rctl = proj_rctl;
	result->ipcs_zone_rctl = zone_rctl;
	result->ipcs_atype = audit_type;
	ASSERT(rctl_offset < sizeof (ipc_rqty_t));
	result->ipcs_rctlofs = rctl_offset;
	list_create(&result->ipcs_usedids, sizeof (kipc_perm_t),
	    offsetof(kipc_perm_t, ipc_list));

	return (result);
}

/*
 * Destroy an ipc service.
 */
void
ipcs_destroy(ipc_service_t *service)
{
	ipc_slot_t *slot, *next;

	mutex_enter(&service->ipcs_lock);

	ASSERT(service->ipcs_count == 0);
	avl_destroy(&service->ipcs_keys);
	list_destroy(&service->ipcs_usedids);
	id_space_destroy(service->ipcs_ids);

	for (slot = service->ipcs_table; slot; slot = next) {
		next = slot[0].ipct_chain;
		kmem_free(slot, service->ipcs_tabsz * sizeof (ipc_slot_t));
		service->ipcs_tabsz >>= 1;
	}

	mutex_destroy(&service->ipcs_lock);
	kmem_free(service, sizeof (ipc_service_t));
}

/*
 * Takes the service lock.
 */
void
ipcs_lock(ipc_service_t *service)
{
	mutex_enter(&service->ipcs_lock);
}

/*
 * Releases the service lock.
 */
void
ipcs_unlock(ipc_service_t *service)
{
	mutex_exit(&service->ipcs_lock);
}


/*
 * Locks the specified ID.  Returns the ID's ID table index.
 */
static int
ipc_lock_internal(ipc_service_t *service, uint_t id)
{
	uint_t	tabsz;
	uint_t	index;
	kmutex_t *mutex;

	for (;;) {
		tabsz = service->ipcs_tabsz;
		membar_consumer();
		index = id & (tabsz - 1);
		mutex = &service->ipcs_table[index].ipct_lock;
		mutex_enter(mutex);
		if (tabsz == service->ipcs_tabsz)
			break;
		mutex_exit(mutex);
	}

	return (index);
}

/*
 * Locks the specified ID.  Returns a pointer to the ID's lock.
 */
kmutex_t *
ipc_lock(ipc_service_t *service, int id)
{
	uint_t index;

	/*
	 * These assertions don't reflect requirements of the code
	 * which follows, but they should never fail nonetheless.
	 */
	ASSERT(id >= 0);
	ASSERT(IPC_INDEX(id) < service->ipcs_tabsz);
	index = ipc_lock_internal(service, id);

	return (&service->ipcs_table[index].ipct_lock);
}

/*
 * Checks to see if the held lock provided is the current lock for the
 * specified id.  If so, we return it instead of dropping it and
 * returning the result of ipc_lock.  This is intended to speed up cv
 * wakeups where we are left holding a lock which could be stale, but
 * probably isn't.
 */
kmutex_t *
ipc_relock(ipc_service_t *service, int id, kmutex_t *lock)
{
	ASSERT(id >= 0);
	ASSERT(IPC_INDEX(id) < service->ipcs_tabsz);
	ASSERT(MUTEX_HELD(lock));

	if (&service->ipcs_table[IPC_INDEX(id)].ipct_lock == lock)
		return (lock);

	mutex_exit(lock);
	return (ipc_lock(service, id));
}

/*
 * Performs an ID lookup.  If the ID doesn't exist or has been removed,
 * or isn't visible to the caller (because of zones), NULL is returned.
 * Otherwise, a pointer to the ID's perm structure and held ID lock are
 * returned.
 */
kmutex_t *
ipc_lookup(ipc_service_t *service, int id, kipc_perm_t **perm)
{
	kipc_perm_t *result;
	uint_t index;

	/*
	 * There is no need to check to see if id is in-range (i.e.
	 * positive and fits into the table).  If it is out-of-range,
	 * the id simply won't match the object's.
	 */

	index = ipc_lock_internal(service, id);
	result = service->ipcs_table[index].ipct_data;
	if (result == NULL || result->ipc_id != (uint_t)id ||
	    !HASZONEACCESS(curproc, result->ipc_zoneid)) {
		mutex_exit(&service->ipcs_table[index].ipct_lock);
		return (NULL);
	}

	ASSERT(IPC_SEQ(id) == service->ipcs_table[index].ipct_seq);

	*perm = result;
#ifdef C2_AUDIT
	if (audit_active)
		audit_ipc(service->ipcs_atype, id, result);
#endif

	return (&service->ipcs_table[index].ipct_lock);
}

/*
 * Increase the reference count on an ID.
 */
/*ARGSUSED*/
void
ipc_hold(ipc_service_t *s, kipc_perm_t *perm)
{
	ASSERT(IPC_INDEX(perm->ipc_id) < s->ipcs_tabsz);
	ASSERT(IPC_LOCKED(s, perm));
	perm->ipc_ref++;
}

/*
 * Decrease the reference count on an ID and drops the ID's lock.
 * Destroys the ID if the new reference count is zero.
 */
void
ipc_rele(ipc_service_t *s, kipc_perm_t *perm)
{
	int nref;

	ASSERT(IPC_INDEX(perm->ipc_id) < s->ipcs_tabsz);
	ASSERT(IPC_LOCKED(s, perm));
	ASSERT(perm->ipc_ref > 0);

	nref = --perm->ipc_ref;
	mutex_exit(&s->ipcs_table[IPC_INDEX(perm->ipc_id)].ipct_lock);

	if (nref == 0) {
		ASSERT(IPC_FREE(perm));		/* ipc_rmid clears IPC_ALLOC */
		s->ipcs_dtor(perm);
		project_rele(perm->ipc_proj);
		zone_rele(perm->ipc_zone);
		kmem_free(perm, s->ipcs_ssize);
	}
}

/*
 * Decrease the reference count on an ID, but don't drop the ID lock.
 * Used in cases where one thread needs to remove many references (on
 * behalf of other parties).
 */
void
ipc_rele_locked(ipc_service_t *s, kipc_perm_t *perm)
{
	ASSERT(perm->ipc_ref > 1);
	ASSERT(IPC_INDEX(perm->ipc_id) < s->ipcs_tabsz);
	ASSERT(IPC_LOCKED(s, perm));

	perm->ipc_ref--;
}


/*
 * Internal function to grow the service ID table.
 */
static int
ipc_grow(ipc_service_t *service)
{
	ipc_slot_t *new, *old;
	int i, oldsize, newsize;

	ASSERT(MUTEX_HELD(&service->ipcs_lock));
	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));

	if (service->ipcs_tabsz == IPC_IDS_MAX)
		return (ENOSPC);

	oldsize = service->ipcs_tabsz;
	newsize = oldsize << 1;
	new = kmem_zalloc(newsize * sizeof (ipc_slot_t), KM_NOSLEEP);
	if (new == NULL)
		return (ENOSPC);

	old = service->ipcs_table;
	for (i = 0; i < oldsize; i++) {
		mutex_enter(&old[i].ipct_lock);
		mutex_enter(&new[i].ipct_lock);

		new[i].ipct_seq = old[i].ipct_seq;
		new[i].ipct_data = old[i].ipct_data;
		old[i].ipct_data = NULL;
	}

	new[0].ipct_chain = old;
	service->ipcs_table = new;
	membar_producer();
	service->ipcs_tabsz = newsize;

	for (i = 0; i < oldsize; i++) {
		mutex_exit(&old[i].ipct_lock);
		mutex_exit(&new[i].ipct_lock);
	}

	id_space_extend(service->ipcs_ids, oldsize, service->ipcs_tabsz);

	return (0);
}


static int
ipc_keylookup(ipc_service_t *service, key_t key, int flag, kipc_perm_t **permp)
{
	kipc_perm_t *perm = NULL;
	avl_index_t where;
	kipc_perm_t template;

	ASSERT(MUTEX_HELD(&service->ipcs_lock));

	template.ipc_key = key;
	template.ipc_zoneid = getzoneid();
	if (perm = avl_find(&service->ipcs_keys, &template, &where)) {
		ASSERT(!IPC_FREE(perm));
		if ((flag & (IPC_CREAT | IPC_EXCL)) == (IPC_CREAT | IPC_EXCL))
			return (EEXIST);
		if ((flag & 0777) & ~perm->ipc_mode) {
#ifdef C2_AUDIT
			if (audit_active)
				audit_ipcget(NULL, (void *)perm);
#endif
			return (EACCES);
		}
		*permp = perm;
		return (0);
	} else if (flag & IPC_CREAT) {
		*permp = NULL;
		return (0);
	}
	return (ENOENT);
}

static int
ipc_alloc_test(ipc_service_t *service, proc_t *pp)
{
	ASSERT(MUTEX_HELD(&service->ipcs_lock));

	/*
	 * Resizing the table first would result in a cleaner code
	 * path, but would also allow a user to (permanently) double
	 * the id table size in cases where the allocation would be
	 * denied.  Hence we test the rctl first.
	 */
retry:
	mutex_enter(&pp->p_lock);
	if ((rctl_test(service->ipcs_proj_rctl, pp->p_task->tk_proj->kpj_rctls,
	    pp, 1, RCA_SAFE) & RCT_DENY) ||
	    (rctl_test(service->ipcs_zone_rctl, pp->p_zone->zone_rctls,
	    pp, 1, RCA_SAFE) & RCT_DENY)) {
		mutex_exit(&pp->p_lock);
		return (ENOSPC);
	}

	if (service->ipcs_count == service->ipcs_tabsz) {
		int error;

		mutex_exit(&pp->p_lock);
		if (error = ipc_grow(service))
			return (error);
		goto retry;
	}

	return (0);
}

/*
 * Given a key, search for or create the associated identifier.
 *
 * If IPC_CREAT is specified and the key isn't found, or if the key is
 * equal to IPC_PRIVATE, we return 0 and place a pointer to a newly
 * allocated object structure in permp.  A pointer to the held service
 * lock is placed in lockp.  ipc_mode's IPC_ALLOC bit is clear.
 *
 * If the key is found and no error conditions arise, we return 0 and
 * place a pointer to the existing object structure in permp.  A
 * pointer to the held ID lock is placed in lockp.  ipc_mode's
 * IPC_ALLOC bit is set.
 *
 * Otherwise, a non-zero errno value is returned.
 */
int
ipc_get(ipc_service_t *service, key_t key, int flag, kipc_perm_t **permp,
    kmutex_t **lockp)
{
	kipc_perm_t	*perm = NULL;
	proc_t		*pp = curproc;
	int		error, index;
	cred_t		*cr = CRED();

	if (key != IPC_PRIVATE) {

		mutex_enter(&service->ipcs_lock);
		error = ipc_keylookup(service, key, flag, &perm);
		if (perm != NULL)
			index = ipc_lock_internal(service, perm->ipc_id);
		mutex_exit(&service->ipcs_lock);

		if (error) {
			ASSERT(perm == NULL);
			return (error);
		}

		if (perm) {
			ASSERT(!IPC_FREE(perm));
			*permp = perm;
			*lockp = &service->ipcs_table[index].ipct_lock;
			return (0);
		}

		/* Key not found; fall through */
	}

	perm = kmem_zalloc(service->ipcs_ssize, KM_SLEEP);

	mutex_enter(&service->ipcs_lock);
	if (error = ipc_alloc_test(service, pp)) {
		mutex_exit(&service->ipcs_lock);
		kmem_free(perm, service->ipcs_ssize);
		return (error);
	}

	perm->ipc_cuid = perm->ipc_uid = crgetuid(cr);
	perm->ipc_cgid = perm->ipc_gid = crgetgid(cr);
	perm->ipc_zoneid = getzoneid();
	perm->ipc_mode = flag & 0777;
	perm->ipc_key = key;
	perm->ipc_ref = 1;
	perm->ipc_id = IPC_ID_INVAL;
	*permp = perm;
	*lockp = &service->ipcs_lock;

	return (0);
}

/*
 * Attempts to add the a newly created ID to the global namespace.  If
 * creating it would cause an error, we return the error.  If there is
 * the possibility that we could obtain the existing ID and return it
 * to the user, we return EAGAIN.  Otherwise, we return 0 with p_lock
 * and the service lock held.
 *
 * Since this should be only called after all initialization has been
 * completed, on failure we automatically invoke the destructor for the
 * object and deallocate the memory associated with it.
 */
int
ipc_commit_begin(ipc_service_t *service, key_t key, int flag,
    kipc_perm_t *newperm)
{
	kipc_perm_t *perm;
	int error;
	proc_t *pp = curproc;

	ASSERT(newperm->ipc_ref == 1);
	ASSERT(IPC_FREE(newperm));

	/*
	 * Set ipc_proj and ipc_zone so that future calls to ipc_cleanup()
	 * clean up the necessary state.  This must be done before the
	 * potential call to ipcs_dtor() below.
	 */
	newperm->ipc_proj = pp->p_task->tk_proj;
	newperm->ipc_zone = pp->p_zone;

	mutex_enter(&service->ipcs_lock);
	/*
	 * Ensure that no-one has raced with us and created the key.
	 */
	if ((key != IPC_PRIVATE) &&
	    (((error = ipc_keylookup(service, key, flag, &perm)) != 0) ||
	    (perm != NULL))) {
		error = error ? error : EAGAIN;
		goto errout;
	}

	/*
	 * Ensure that no-one has raced with us and used the last of
	 * the permissible ids, or the last of the free spaces in the
	 * id table.
	 */
	if (error = ipc_alloc_test(service, pp))
		goto errout;

	ASSERT(MUTEX_HELD(&service->ipcs_lock));
	ASSERT(MUTEX_HELD(&pp->p_lock));

	return (0);
errout:
	mutex_exit(&service->ipcs_lock);
	service->ipcs_dtor(newperm);
	kmem_free(newperm, service->ipcs_ssize);
	return (error);
}

/*
 * Commit the ID allocation transaction.  Called with p_lock and the
 * service lock held, both of which are dropped.  Returns the held ID
 * lock so the caller can extract the ID and perform ipcget auditing.
 */
kmutex_t *
ipc_commit_end(ipc_service_t *service, kipc_perm_t *perm)
{
	ipc_slot_t *slot;
	avl_index_t where;
	int index;
	void *loc;

	ASSERT(MUTEX_HELD(&service->ipcs_lock));
	ASSERT(MUTEX_HELD(&curproc->p_lock));

	(void) project_hold(perm->ipc_proj);
	(void) zone_hold(perm->ipc_zone);
	mutex_exit(&curproc->p_lock);

	/*
	 * Pick out our slot.
	 */
	service->ipcs_count++;
	index = id_alloc(service->ipcs_ids);
	ASSERT(index < service->ipcs_tabsz);
	slot = &service->ipcs_table[index];
	mutex_enter(&slot->ipct_lock);
	ASSERT(slot->ipct_data == NULL);

	/*
	 * Update the perm structure.
	 */
	perm->ipc_mode |= IPC_ALLOC;
	perm->ipc_id = (slot->ipct_seq << IPC_SEQ_SHIFT) | index;

	/*
	 * Push into global visibility.
	 */
	slot->ipct_data = perm;
	if (perm->ipc_key != IPC_PRIVATE) {
		loc = avl_find(&service->ipcs_keys, perm, &where);
		ASSERT(loc == NULL);
		avl_insert(&service->ipcs_keys, perm, where);
	}
	list_insert_head(&service->ipcs_usedids, perm);

	/*
	 * Update resource consumption.
	 */
	IPC_PROJ_USAGE(perm, service) += 1;
	IPC_ZONE_USAGE(perm, service) += 1;

	mutex_exit(&service->ipcs_lock);
	return (&slot->ipct_lock);
}

/*
 * Clean up function, in case the allocation fails.  If called between
 * ipc_lookup and ipc_commit_begin, perm->ipc_proj will be 0 and we
 * merely free the perm structure.  If called after ipc_commit_begin,
 * we also drop locks and call the ID's destructor.
 */
void
ipc_cleanup(ipc_service_t *service, kipc_perm_t *perm)
{
	ASSERT(IPC_FREE(perm));
	if (perm->ipc_proj) {
		mutex_exit(&curproc->p_lock);
		mutex_exit(&service->ipcs_lock);
		service->ipcs_dtor(perm);
	}
	kmem_free(perm, service->ipcs_ssize);
}


/*
 * Common code to remove an IPC object.  This should be called after
 * all permissions checks have been performed, and with the service
 * and ID locked.  Note that this does not remove the object from
 * the ipcs_usedids list (this needs to be done by the caller before
 * dropping the service lock).
 */
static void
ipc_remove(ipc_service_t *service, kipc_perm_t *perm)
{
	int id = perm->ipc_id;
	int index;

	ASSERT(MUTEX_HELD(&service->ipcs_lock));
	ASSERT(IPC_LOCKED(service, perm));

	index = IPC_INDEX(id);

	service->ipcs_table[index].ipct_data = NULL;

	if (perm->ipc_key != IPC_PRIVATE)
		avl_remove(&service->ipcs_keys, perm);
	list_remove(&service->ipcs_usedids, perm);
	perm->ipc_mode &= ~IPC_ALLOC;

	id_free(service->ipcs_ids, index);

	if (service->ipcs_table[index].ipct_seq++ == IPC_SEQ_MASK)
		service->ipcs_table[index].ipct_seq = 0;
	service->ipcs_count--;
	ASSERT(IPC_PROJ_USAGE(perm, service) > 0);
	ASSERT(IPC_ZONE_USAGE(perm, service) > 0);
	IPC_PROJ_USAGE(perm, service) -= 1;
	IPC_ZONE_USAGE(perm, service) -= 1;
	ASSERT(service->ipcs_count || ((IPC_PROJ_USAGE(perm, service) == 0) &&
	    (IPC_ZONE_USAGE(perm, service) == 0)));
}


/*
 * Common code to perform an IPC_RMID.  Returns an errno value on
 * failure, 0 on success.
 */
int
ipc_rmid(ipc_service_t *service, int id, cred_t *cr)
{
	kipc_perm_t *perm;
	kmutex_t *lock;

	mutex_enter(&service->ipcs_lock);

	lock = ipc_lookup(service, id, &perm);
	if (lock == NULL) {
		mutex_exit(&service->ipcs_lock);
		return (EINVAL);
	}

	ASSERT(service->ipcs_count > 0);

	if (secpolicy_ipc_owner(cr, perm) != 0) {
		mutex_exit(lock);
		mutex_exit(&service->ipcs_lock);
		return (EPERM);
	}

	/*
	 * Nothing can fail from this point on.
	 */
	ipc_remove(service, perm);
	mutex_exit(&service->ipcs_lock);

	/* perform any per-service removal actions */
	service->ipcs_rmid(perm);

	ipc_rele(service, perm);

	return (0);
}

/*
 * Implementation for shmids, semids, and msgids.  buf is the address
 * of the user buffer, nids is the size, and pnids is a pointer to
 * where we write the actual number of ids that [would] have been
 * copied out.
 */
int
ipc_ids(ipc_service_t *service, int *buf, uint_t nids, uint_t *pnids)
{
	kipc_perm_t *perm;
	size_t	idsize = 0;
	int	error = 0;
	int	idcount;
	int	*ids;
	int	numids = 0;
	zoneid_t zoneid = getzoneid();
	int	global = INGLOBALZONE(curproc);

	if (buf == NULL)
		nids = 0;

	/*
	 * Get an accurate count of the total number of ids, and allocate a
	 * staging buffer.  Since ipcs_count is always sane, we don't have
	 * to take ipcs_lock for our first guess.  If there are no ids, or
	 * we're in the global zone and the number of ids is greater than
	 * the size of the specified buffer, we shunt to the end.  Otherwise,
	 * we go through the id list looking for (and counting) what is
	 * visible in the specified zone.
	 */
	idcount = service->ipcs_count;
	for (;;) {
		if ((global && idcount > nids) || idcount == 0) {
			numids = idcount;
			nids = 0;
			goto out;
		}

		idsize = idcount * sizeof (int);
		ids = kmem_alloc(idsize, KM_SLEEP);

		mutex_enter(&service->ipcs_lock);
		if (idcount >= service->ipcs_count)
			break;
		idcount = service->ipcs_count;
		mutex_exit(&service->ipcs_lock);

		if (idsize != 0) {
			kmem_free(ids, idsize);
			idsize = 0;
		}
	}

	for (perm = list_head(&service->ipcs_usedids); perm != NULL;
	    perm = list_next(&service->ipcs_usedids, perm)) {
		ASSERT(!IPC_FREE(perm));
		if (global || perm->ipc_zoneid == zoneid)
			ids[numids++] = perm->ipc_id;
	}
	mutex_exit(&service->ipcs_lock);

	/*
	 * If there isn't enough space to hold all of the ids, just
	 * return the number of ids without copying out any of them.
	 */
	if (nids < numids)
		nids = 0;

out:
	if (suword32(pnids, (uint32_t)numids) ||
	    (nids != 0 && copyout(ids, buf, numids * sizeof (int))))
		error = EFAULT;
	if (idsize != 0)
		kmem_free(ids, idsize);
	return (error);
}

/*
 * Destroy IPC objects from the given service that are associated with
 * the given zone.
 *
 * We can't hold on to the service lock when freeing objects, so we
 * first search the service and move all the objects to a private
 * list, then walk through and free them after dropping the lock.
 */
void
ipc_remove_zone(ipc_service_t *service, zoneid_t zoneid)
{
	kipc_perm_t *perm, *next;
	list_t rmlist;
	kmutex_t *lock;

	list_create(&rmlist, sizeof (kipc_perm_t),
	    offsetof(kipc_perm_t, ipc_list));

	mutex_enter(&service->ipcs_lock);
	for (perm = list_head(&service->ipcs_usedids); perm != NULL;
	    perm = next) {
		next = list_next(&service->ipcs_usedids, perm);
		if (perm->ipc_zoneid != zoneid)
			continue;

		/*
		 * Remove the object from the service, then put it on
		 * the removal list so we can defer the call to
		 * ipc_rele (which will actually free the structure).
		 * We need to do this since the destructor may grab
		 * the service lock.
		 */
		ASSERT(!IPC_FREE(perm));
		lock = ipc_lock(service, perm->ipc_id);
		ipc_remove(service, perm);
		mutex_exit(lock);
		list_insert_tail(&rmlist, perm);
	}
	mutex_exit(&service->ipcs_lock);

	/*
	 * Now that we've dropped the service lock, loop through the
	 * private list freeing removed objects.
	 */
	for (perm = list_head(&rmlist); perm != NULL; perm = next) {
		next = list_next(&rmlist, perm);
		list_remove(&rmlist, perm);

		(void) ipc_lock(service, perm->ipc_id);

		/* perform any per-service removal actions */
		service->ipcs_rmid(perm);

		/* release reference */
		ipc_rele(service, perm);
	}

	list_destroy(&rmlist);
}