summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/vm_pageout.c
blob: 6a514e0174b34c1e5565e6475fabee3de2f4ab3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
/*	  All Rights Reserved  	*/

/*
 * University Copyright- Copyright (c) 1982, 1986, 1988
 * The Regents of the University of California
 * All Rights Reserved
 *
 * University Acknowledgment- Portions of this document are derived from
 * software developed by the University of California, Berkeley, and its
 * contributors.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/cred.h>
#include <sys/vnode.h>
#include <sys/vm.h>
#include <sys/vmparam.h>
#include <sys/vtrace.h>
#include <sys/cmn_err.h>
#include <sys/cpuvar.h>
#include <sys/user.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/callb.h>
#include <sys/tnf_probe.h>
#include <sys/mem_cage.h>
#include <sys/time.h>

#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/seg_kmem.h>

static int checkpage(page_t *, int);

/*
 * The following parameters control operation of the page replacement
 * algorithm.  They are initialized to 0, and then computed at boot time
 * based on the size of the system.  If they are patched non-zero in
 * a loaded vmunix they are left alone and may thus be changed per system
 * using adb on the loaded system.
 */
pgcnt_t		slowscan = 0;
pgcnt_t		fastscan = 0;

static pgcnt_t	handspreadpages = 0;
static int	loopfraction = 2;
static pgcnt_t	looppages;
static int	min_percent_cpu = 4;
static int	max_percent_cpu = 80;
static pgcnt_t	maxfastscan = 0;
static pgcnt_t	maxslowscan = 100;

pgcnt_t	maxpgio = 0;
pgcnt_t	minfree = 0;
pgcnt_t	desfree = 0;
pgcnt_t	lotsfree = 0;
pgcnt_t	needfree = 0;
pgcnt_t	throttlefree = 0;
pgcnt_t	pageout_reserve = 0;

pgcnt_t	deficit;
pgcnt_t	nscan;
pgcnt_t	desscan;

/*
 * Values for min_pageout_ticks, max_pageout_ticks and pageout_ticks
 * are the number of ticks in each wakeup cycle that gives the
 * equivalent of some underlying %CPU duty cycle.
 * When RATETOSCHEDPAGING is 4,  and hz is 100, pageout_scanner is
 * awakened every 25 clock ticks.  So, converting from %CPU to ticks
 * per wakeup cycle would be x% of 25, that is (x * 100) / 25.
 * So, for example, 4% == 1 tick and 80% == 20 ticks.
 *
 * min_pageout_ticks:
 *     ticks/wakeup equivalent of min_percent_cpu.
 *
 * max_pageout_ticks:
 *     ticks/wakeup equivalent of max_percent_cpu.
 *
 * pageout_ticks:
 *     Number of clock ticks budgeted for each wakeup cycle.
 *     Computed each time around by schedpaging().
 *     Varies between min_pageout_ticks .. max_pageout_ticks,
 *     depending on memory pressure.
 *
 * pageout_lbolt:
 *     Timestamp of the last time pageout_scanner woke up and started
 *     (or resumed) scanning for not recently referenced pages.
 */

static clock_t	min_pageout_ticks;
static clock_t	max_pageout_ticks;
static clock_t	pageout_ticks;
static clock_t	pageout_lbolt;

static uint_t	reset_hands;

#define	PAGES_POLL_MASK	1023

/*
 * pageout_sample_lim:
 *     The limit on the number of samples needed to establish a value
 *     for new pageout parameters, fastscan, slowscan, and handspreadpages.
 *
 * pageout_sample_cnt:
 *     Current sample number.  Once the sample gets large enough,
 *     set new values for handspreadpages, fastscan and slowscan.
 *
 * pageout_sample_pages:
 *     The accumulated number of pages scanned during sampling.
 *
 * pageout_sample_ticks:
 *     The accumulated clock ticks for the sample.
 *
 * pageout_rate:
 *     Rate in pages/nanosecond, computed at the end of sampling.
 *
 * pageout_new_spread:
 *     The new value to use for fastscan and handspreadpages.
 *     Calculated after enough samples have been taken.
 */

typedef hrtime_t hrrate_t;

static uint64_t	pageout_sample_lim = 4;
static uint64_t	pageout_sample_cnt = 0;
static pgcnt_t	pageout_sample_pages = 0;
static hrrate_t	pageout_rate = 0;
static pgcnt_t	pageout_new_spread = 0;

static clock_t	pageout_cycle_ticks;
static hrtime_t	sample_start, sample_end;
static hrtime_t	pageout_sample_etime = 0;

/*
 * Record number of times a pageout_scanner wakeup cycle finished because it
 * timed out (exceeded its CPU budget), rather than because it visited
 * its budgeted number of pages.
 */
uint64_t pageout_timeouts = 0;

#ifdef VM_STATS
static struct pageoutvmstats_str {
	ulong_t	checkpage[3];
} pageoutvmstats;
#endif /* VM_STATS */

/*
 * Threads waiting for free memory use this condition variable and lock until
 * memory becomes available.
 */
kmutex_t	memavail_lock;
kcondvar_t	memavail_cv;

/*
 * The size of the clock loop.
 */
#define	LOOPPAGES	total_pages

/*
 * Set up the paging constants for the clock algorithm.
 * Called after the system is initialized and the amount of memory
 * and number of paging devices is known.
 *
 * lotsfree is 1/64 of memory, but at least 512K.
 * desfree is 1/2 of lotsfree.
 * minfree is 1/2 of desfree.
 *
 * Note: to revert to the paging algorithm of Solaris 2.4/2.5, set:
 *
 *	lotsfree = btop(512K)
 *	desfree = btop(200K)
 *	minfree = btop(100K)
 *	throttlefree = INT_MIN
 *	max_percent_cpu = 4
 */
void
setupclock(int recalc)
{

	static spgcnt_t init_lfree, init_dfree, init_mfree;
	static spgcnt_t init_tfree, init_preserve, init_mpgio;
	static spgcnt_t init_mfscan, init_fscan, init_sscan, init_hspages;

	looppages = LOOPPAGES;

	/*
	 * setupclock can now be called to recalculate the paging
	 * parameters in the case of dynamic addition of memory.
	 * So to make sure we make the proper calculations, if such a
	 * situation should arise, we save away the initial values
	 * of each parameter so we can recall them when needed. This
	 * way we don't lose the settings an admin might have made
	 * through the /etc/system file.
	 */

	if (!recalc) {
		init_lfree = lotsfree;
		init_dfree = desfree;
		init_mfree = minfree;
		init_tfree = throttlefree;
		init_preserve = pageout_reserve;
		init_mpgio = maxpgio;
		init_mfscan = maxfastscan;
		init_fscan = fastscan;
		init_sscan = slowscan;
		init_hspages = handspreadpages;
	}

	/*
	 * Set up thresholds for paging:
	 */

	/*
	 * Lotsfree is threshold where paging daemon turns on.
	 */
	if (init_lfree == 0 || init_lfree >= looppages)
		lotsfree = MAX(looppages / 64, btop(512 * 1024));
	else
		lotsfree = init_lfree;

	/*
	 * Desfree is amount of memory desired free.
	 * If less than this for extended period, start swapping.
	 */
	if (init_dfree == 0 || init_dfree >= lotsfree)
		desfree = lotsfree / 2;
	else
		desfree = init_dfree;

	/*
	 * Minfree is minimal amount of free memory which is tolerable.
	 */
	if (init_mfree == 0 || init_mfree >= desfree)
		minfree = desfree / 2;
	else
		minfree = init_mfree;

	/*
	 * Throttlefree is the point at which we start throttling
	 * PG_WAIT requests until enough memory becomes available.
	 */
	if (init_tfree == 0 || init_tfree >= desfree)
		throttlefree = minfree;
	else
		throttlefree = init_tfree;

	/*
	 * Pageout_reserve is the number of pages that we keep in
	 * stock for pageout's own use.  Having a few such pages
	 * provides insurance against system deadlock due to
	 * pageout needing pages.  When freemem < pageout_reserve,
	 * non-blocking allocations are denied to any threads
	 * other than pageout and sched.  (At some point we might
	 * want to consider a per-thread flag like T_PUSHING_PAGES
	 * to indicate that a thread is part of the page-pushing
	 * dance (e.g. an interrupt thread) and thus is entitled
	 * to the same special dispensation we accord pageout.)
	 */
	if (init_preserve == 0 || init_preserve >= throttlefree)
		pageout_reserve = throttlefree / 2;
	else
		pageout_reserve = init_preserve;

	/*
	 * Maxpgio thresholds how much paging is acceptable.
	 * This figures that 2/3 busy on an arm is all that is
	 * tolerable for paging.  We assume one operation per disk rev.
	 *
	 * XXX - Does not account for multiple swap devices.
	 */
	if (init_mpgio == 0)
		maxpgio = (DISKRPM * 2) / 3;
	else
		maxpgio = init_mpgio;

	/*
	 * The clock scan rate varies between fastscan and slowscan
	 * based on the amount of free memory available.  Fastscan
	 * rate should be set based on the number pages that can be
	 * scanned per sec using ~10% of processor time.  Since this
	 * value depends on the processor, MMU, Mhz etc., it is
	 * difficult to determine it in a generic manner for all
	 * architectures.
	 *
	 * Instead of trying to determine the number of pages scanned
	 * per sec for every processor, fastscan is set to be the smaller
	 * of 1/2 of memory or MAXHANDSPREADPAGES and the sampling
	 * time is limited to ~4% of processor time.
	 *
	 * Setting fastscan to be 1/2 of memory allows pageout to scan
	 * all of memory in ~2 secs.  This implies that user pages not
	 * accessed within 1 sec (assuming, handspreadpages == fastscan)
	 * can be reclaimed when free memory is very low.  Stealing pages
	 * not accessed within 1 sec seems reasonable and ensures that
	 * active user processes don't thrash.
	 *
	 * Smaller values of fastscan result in scanning fewer pages
	 * every second and consequently pageout may not be able to free
	 * sufficient memory to maintain the minimum threshold.  Larger
	 * values of fastscan result in scanning a lot more pages which
	 * could lead to thrashing and higher CPU usage.
	 *
	 * Fastscan needs to be limited to a maximum value and should not
	 * scale with memory to prevent pageout from consuming too much
	 * time for scanning on slow CPU's and avoid thrashing, as a
	 * result of scanning too many pages, on faster CPU's.
	 * The value of 64 Meg was chosen for MAXHANDSPREADPAGES
	 * (the upper bound for fastscan) based on the average number
	 * of pages that can potentially be scanned in ~1 sec (using ~4%
	 * of the CPU) on some of the following machines that currently
	 * run Solaris 2.x:
	 *
	 *			average memory scanned in ~1 sec
	 *
	 *	25 Mhz SS1+:		23 Meg
	 *	LX:			37 Meg
	 *	50 Mhz SC2000:		68 Meg
	 *
	 *	40 Mhz 486:		26 Meg
	 *	66 Mhz 486:		42 Meg
	 *
	 * When free memory falls just below lotsfree, the scan rate
	 * goes from 0 to slowscan (i.e., pageout starts running).  This
	 * transition needs to be smooth and is achieved by ensuring that
	 * pageout scans a small number of pages to satisfy the transient
	 * memory demand.  This is set to not exceed 100 pages/sec (25 per
	 * wakeup) since scanning that many pages has no noticible impact
	 * on system performance.
	 *
	 * In addition to setting fastscan and slowscan, pageout is
	 * limited to using ~4% of the CPU.  This results in increasing
	 * the time taken to scan all of memory, which in turn means that
	 * user processes have a better opportunity of preventing their
	 * pages from being stolen.  This has a positive effect on
	 * interactive and overall system performance when memory demand
	 * is high.
	 *
	 * Thus, the rate at which pages are scanned for replacement will
	 * vary linearly between slowscan and the number of pages that
	 * can be scanned using ~4% of processor time instead of varying
	 * linearly between slowscan and fastscan.
	 *
	 * Also, the processor time used by pageout will vary from ~1%
	 * at slowscan to ~4% at fastscan instead of varying between
	 * ~1% at slowscan and ~10% at fastscan.
	 *
	 * The values chosen for the various VM parameters (fastscan,
	 * handspreadpages, etc) are not universally true for all machines,
	 * but appear to be a good rule of thumb for the machines we've
	 * tested.  They have the following ranges:
	 *
	 *	cpu speed:	20 to 70 Mhz
	 *	page size:	4K to 8K
	 *	memory size:	16M to 5G
	 *	page scan rate:	4000 - 17400 4K pages per sec
	 *
	 * The values need to be re-examined for machines which don't
	 * fall into the various ranges (e.g., slower or faster CPUs,
	 * smaller or larger pagesizes etc) shown above.
	 *
	 * On an MP machine, pageout is often unable to maintain the
	 * minimum paging thresholds under heavy load.  This is due to
	 * the fact that user processes running on other CPU's can be
	 * dirtying memory at a much faster pace than pageout can find
	 * pages to free.  The memory demands could be met by enabling
	 * more than one CPU to run the clock algorithm in such a manner
	 * that the various clock hands don't overlap.  This also makes
	 * it more difficult to determine the values for fastscan, slowscan
	 * and handspreadpages.
	 *
	 * The swapper is currently used to free up memory when pageout
	 * is unable to meet memory demands by swapping out processes.
	 * In addition to freeing up memory, swapping also reduces the
	 * demand for memory by preventing user processes from running
	 * and thereby consuming memory.
	 */
	if (init_mfscan == 0) {
		if (pageout_new_spread != 0)
			maxfastscan = pageout_new_spread;
		else
			maxfastscan = MAXHANDSPREADPAGES;
	} else {
		maxfastscan = init_mfscan;
	}
	if (init_fscan == 0)
		fastscan = MIN(looppages / loopfraction, maxfastscan);
	else
		fastscan = init_fscan;
	if (fastscan > looppages / loopfraction)
		fastscan = looppages / loopfraction;

	/*
	 * Set slow scan time to 1/10 the fast scan time, but
	 * not to exceed maxslowscan.
	 */
	if (init_sscan == 0)
		slowscan = MIN(fastscan / 10, maxslowscan);
	else
		slowscan = init_sscan;
	if (slowscan > fastscan / 2)
		slowscan = fastscan / 2;

	/*
	 * Handspreadpages is distance (in pages) between front and back
	 * pageout daemon hands.  The amount of time to reclaim a page
	 * once pageout examines it increases with this distance and
	 * decreases as the scan rate rises. It must be < the amount
	 * of pageable memory.
	 *
	 * Since pageout is limited to ~4% of the CPU, setting handspreadpages
	 * to be "fastscan" results in the front hand being a few secs
	 * (varies based on the processor speed) ahead of the back hand
	 * at fastscan rates.  This distance can be further reduced, if
	 * necessary, by increasing the processor time used by pageout
	 * to be more than ~4% and preferrably not more than ~10%.
	 *
	 * As a result, user processes have a much better chance of
	 * referencing their pages before the back hand examines them.
	 * This also significantly lowers the number of reclaims from
	 * the freelist since pageout does not end up freeing pages which
	 * may be referenced a sec later.
	 */
	if (init_hspages == 0)
		handspreadpages = fastscan;
	else
		handspreadpages = init_hspages;

	/*
	 * Make sure that back hand follows front hand by at least
	 * 1/RATETOSCHEDPAGING seconds.  Without this test, it is possible
	 * for the back hand to look at a page during the same wakeup of
	 * the pageout daemon in which the front hand cleared its ref bit.
	 */
	if (handspreadpages >= looppages)
		handspreadpages = looppages - 1;

	/*
	 * If we have been called to recalculate the parameters,
	 * set a flag to re-evaluate the clock hand pointers.
	 */
	if (recalc)
		reset_hands = 1;
}

/*
 * Pageout scheduling.
 *
 * Schedpaging controls the rate at which the page out daemon runs by
 * setting the global variables nscan and desscan RATETOSCHEDPAGING
 * times a second.  Nscan records the number of pages pageout has examined
 * in its current pass; schedpaging resets this value to zero each time
 * it runs.  Desscan records the number of pages pageout should examine
 * in its next pass; schedpaging sets this value based on the amount of
 * currently available memory.
 */

#define	RATETOSCHEDPAGING	4		/* hz that is */

static kmutex_t	pageout_mutex;	/* held while pageout or schedpaging running */

/*
 * Pool of available async pageout putpage requests.
 */
static struct async_reqs *push_req;
static struct async_reqs *req_freelist;	/* available req structs */
static struct async_reqs *push_list;	/* pending reqs */
static kmutex_t push_lock;		/* protects req pool */
static kcondvar_t push_cv;

static int async_list_size = 256;	/* number of async request structs */

static void pageout_scanner(void);

/*
 * If a page is being shared more than "po_share" times
 * then leave it alone- don't page it out.
 */
#define	MIN_PO_SHARE	(8)
#define	MAX_PO_SHARE	((MIN_PO_SHARE) << 24)
ulong_t	po_share = MIN_PO_SHARE;

/*
 * Schedule rate for paging.
 * Rate is linear interpolation between
 * slowscan with lotsfree and fastscan when out of memory.
 */
static void
schedpaging(void *arg)
{
	spgcnt_t vavail;

	if (freemem < lotsfree + needfree + kmem_reapahead)
		kmem_reap();

	if (freemem < lotsfree + needfree + seg_preapahead)
		seg_preap();

	if (kcage_on && (kcage_freemem < kcage_desfree || kcage_needfree))
		kcage_cageout_wakeup();

	if (mutex_tryenter(&pageout_mutex)) {
		/* pageout() not running */
		nscan = 0;
		vavail = freemem - deficit;
		if (vavail < 0)
			vavail = 0;
		if (vavail > lotsfree)
			vavail = lotsfree;

		/*
		 * Fix for 1161438 (CRS SPR# 73922).  All variables
		 * in the original calculation for desscan were 32 bit signed
		 * ints.  As freemem approaches 0x0 on a system with 1 Gig or
		 * more of memory, the calculation can overflow.  When this
		 * happens, desscan becomes negative and pageout_scanner()
		 * stops paging out.
		 */
		if (needfree) {
			desscan = fastscan / RATETOSCHEDPAGING;
		} else {
			spgcnt_t faststmp, slowstmp, result;

			slowstmp = slowscan * vavail;
			faststmp = fastscan * (lotsfree - vavail);
			result = (slowstmp + faststmp) /
				nz(lotsfree) / RATETOSCHEDPAGING;
			desscan = (pgcnt_t)result;
		}

		pageout_ticks = min_pageout_ticks + (lotsfree - vavail) *
		    (max_pageout_ticks - min_pageout_ticks) / nz(lotsfree);

		if (freemem < lotsfree + needfree ||
		    pageout_sample_cnt < pageout_sample_lim) {
			TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
				"pageout_cv_signal:freemem %ld", freemem);
			cv_signal(&proc_pageout->p_cv);
		} else {
			/*
			 * There are enough free pages, no need to
			 * kick the scanner thread.  And next time
			 * around, keep more of the `highly shared'
			 * pages.
			 */
			cv_signal_pageout();
			if (po_share > MIN_PO_SHARE) {
				po_share >>= 1;
			}
		}
		mutex_exit(&pageout_mutex);
	}

	/*
	 * Signal threads waiting for available memory.
	 * NOTE: usually we need to grab memavail_lock before cv_broadcast, but
	 * in this case it is not needed - the waiters will be waken up during
	 * the next invocation of this function.
	 */
	if (kmem_avail() > 0)
		cv_broadcast(&memavail_cv);

	(void) timeout(schedpaging, arg, hz / RATETOSCHEDPAGING);
}

pgcnt_t		pushes;
ulong_t		push_list_size;		/* # of requests on pageout queue */

#define	FRONT	1
#define	BACK	2

int dopageout = 1;	/* must be non-zero to turn page stealing on */

/*
 * The page out daemon, which runs as process 2.
 *
 * As long as there are at least lotsfree pages,
 * this process is not run.  When the number of free
 * pages stays in the range desfree to lotsfree,
 * this daemon runs through the pages in the loop
 * at a rate determined in schedpaging().  Pageout manages
 * two hands on the clock.  The front hand moves through
 * memory, clearing the reference bit,
 * and stealing pages from procs that are over maxrss.
 * The back hand travels a distance behind the front hand,
 * freeing the pages that have not been referenced in the time
 * since the front hand passed.  If modified, they are pushed to
 * swap before being freed.
 *
 * There are 2 threads that act on behalf of the pageout process.
 * One thread scans pages (pageout_scanner) and frees them up if
 * they don't require any VOP_PUTPAGE operation. If a page must be
 * written back to its backing store, the request is put on a list
 * and the other (pageout) thread is signaled. The pageout thread
 * grabs VOP_PUTPAGE requests from the list, and processes them.
 * Some filesystems may require resources for the VOP_PUTPAGE
 * operations (like memory) and hence can block the pageout
 * thread, but the scanner thread can still operate. There is still
 * no gaurentee that memory deadlocks cannot occur.
 *
 * For now, this thing is in very rough form.
 */
void
pageout()
{
	struct async_reqs *arg;
	pri_t pageout_pri;
	int i;
	pgcnt_t max_pushes;
	callb_cpr_t cprinfo;

	proc_pageout = ttoproc(curthread);
	proc_pageout->p_cstime = 0;
	proc_pageout->p_stime =  0;
	proc_pageout->p_cutime =  0;
	proc_pageout->p_utime = 0;
	bcopy("pageout", PTOU(curproc)->u_psargs, 8);
	bcopy("pageout", PTOU(curproc)->u_comm, 7);

	/*
	 * Create pageout scanner thread
	 */
	mutex_init(&pageout_mutex, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&push_lock, NULL, MUTEX_DEFAULT, NULL);

	/*
	 * Allocate and initialize the async request structures
	 * for pageout.
	 */
	push_req = (struct async_reqs *)
	    kmem_zalloc(async_list_size * sizeof (struct async_reqs), KM_SLEEP);

	req_freelist = push_req;
	for (i = 0; i < async_list_size - 1; i++)
		push_req[i].a_next = &push_req[i + 1];

	pageout_pri = curthread->t_pri;
	pageout_init(pageout_scanner, proc_pageout, pageout_pri - 1);

	/*
	 * kick off pageout scheduler.
	 */
	schedpaging(NULL);

	/*
	 * Create kernel cage thread.
	 * The kernel cage thread is started under the pageout process
	 * to take advantage of the less restricted page allocation
	 * in page_create_throttle().
	 */
	kcage_cageout_init();

	/*
	 * Limit pushes to avoid saturating pageout devices.
	 */
	max_pushes = maxpgio / RATETOSCHEDPAGING;
	CALLB_CPR_INIT(&cprinfo, &push_lock, callb_generic_cpr, "pageout");

	for (;;) {
		mutex_enter(&push_lock);

		while ((arg = push_list) == NULL || pushes > max_pushes) {
			CALLB_CPR_SAFE_BEGIN(&cprinfo);
			cv_wait(&push_cv, &push_lock);
			pushes = 0;
			CALLB_CPR_SAFE_END(&cprinfo, &push_lock);
		}
		push_list = arg->a_next;
		arg->a_next = NULL;
		mutex_exit(&push_lock);

		if (VOP_PUTPAGE(arg->a_vp, (offset_t)arg->a_off,
			arg->a_len, arg->a_flags,
			    arg->a_cred) == 0) {
			pushes++;
		}

		/* vp held by checkpage() */
		VN_RELE(arg->a_vp);

		mutex_enter(&push_lock);
		arg->a_next = req_freelist;	/* back on freelist */
		req_freelist = arg;
		push_list_size--;
		mutex_exit(&push_lock);
	}
}

/*
 * Kernel thread that scans pages looking for ones to free
 */
static void
pageout_scanner(void)
{
	struct page *fronthand, *backhand;
	uint_t count;
	callb_cpr_t cprinfo;
	pgcnt_t	nscan_limit;
	pgcnt_t	pcount;

	CALLB_CPR_INIT(&cprinfo, &pageout_mutex, callb_generic_cpr, "poscan");
	mutex_enter(&pageout_mutex);

	/*
	 * The restart case does not attempt to point the hands at roughly
	 * the right point on the assumption that after one circuit things
	 * will have settled down - and restarts shouldn't be that often.
	 */

	/*
	 * Set the two clock hands to be separated by a reasonable amount,
	 * but no more than 360 degrees apart.
	 */
	backhand = page_first();
	if (handspreadpages >= total_pages)
		fronthand = page_nextn(backhand, total_pages - 1);
	else
		fronthand = page_nextn(backhand, handspreadpages);

	min_pageout_ticks = MAX(1,
	    ((hz * min_percent_cpu) / 100) / RATETOSCHEDPAGING);
	max_pageout_ticks = MAX(min_pageout_ticks,
	    ((hz * max_percent_cpu) / 100) / RATETOSCHEDPAGING);

loop:
	cv_signal_pageout();

	CALLB_CPR_SAFE_BEGIN(&cprinfo);
	cv_wait(&proc_pageout->p_cv, &pageout_mutex);
	CALLB_CPR_SAFE_END(&cprinfo, &pageout_mutex);

	if (!dopageout)
		goto loop;

	if (reset_hands) {
		reset_hands = 0;

		backhand = page_first();
		if (handspreadpages >= total_pages)
			fronthand = page_nextn(backhand, total_pages - 1);
		else
			fronthand = page_nextn(backhand, handspreadpages);
	}

	CPU_STATS_ADDQ(CPU, vm, pgrrun, 1);
	count = 0;

	TRACE_4(TR_FAC_VM, TR_PAGEOUT_START,
		"pageout_start:freemem %ld lotsfree %ld nscan %ld desscan %ld",
		freemem, lotsfree, nscan, desscan);

	/* Kernel probe */
	TNF_PROBE_2(pageout_scan_start, "vm pagedaemon", /* CSTYLED */,
		tnf_ulong, pages_free, freemem,
		tnf_ulong, pages_needed, needfree);

	pcount = 0;
	if (pageout_sample_cnt < pageout_sample_lim) {
		nscan_limit = total_pages;
	} else {
		nscan_limit = desscan;
	}
	pageout_lbolt = lbolt;
	sample_start = gethrtime();

	/*
	 * Scan the appropriate number of pages for a single duty cycle.
	 * However, stop scanning as soon as there is enough free memory.
	 * For a short while, we will be sampling the performance of the
	 * scanner and need to keep running just to get sample data, in
	 * which case we keep going and don't pay attention to whether
	 * or not there is enough free memory.
	 */

	while (nscan < nscan_limit && (freemem < lotsfree + needfree ||
	    pageout_sample_cnt < pageout_sample_lim)) {
		int rvfront, rvback;

		/*
		 * Check to see if we have exceeded our %CPU budget
		 * for this wakeup, but not on every single page visited,
		 * just every once in a while.
		 */
		if ((pcount & PAGES_POLL_MASK) == PAGES_POLL_MASK) {
			pageout_cycle_ticks = lbolt - pageout_lbolt;
			if (pageout_cycle_ticks >= pageout_ticks) {
				++pageout_timeouts;
				break;
			}
		}

		/*
		 * If checkpage manages to add a page to the free list,
		 * we give ourselves another couple of trips around the loop.
		 */
		if ((rvfront = checkpage(fronthand, FRONT)) == 1)
			count = 0;
		if ((rvback = checkpage(backhand, BACK)) == 1)
			count = 0;

		++pcount;

		/*
		 * protected by pageout_mutex instead of cpu_stat_lock
		 */
		CPU_STATS_ADDQ(CPU, vm, scan, 1);

		/*
		 * Don't include ineligible pages in the number scanned.
		 */
		if (rvfront != -1 || rvback != -1)
			nscan++;

		backhand = page_next(backhand);

		/*
		 * backhand update and wraparound check are done separately
		 * because lint barks when it finds an empty "if" body
		 */

		if ((fronthand = page_next(fronthand)) == page_first())	{
			TRACE_2(TR_FAC_VM, TR_PAGEOUT_HAND_WRAP,
				"pageout_hand_wrap:freemem %ld whichhand %d",
				freemem, FRONT);

			/*
			 * protected by pageout_mutex instead of cpu_stat_lock
			 */
			CPU_STATS_ADDQ(CPU, vm, rev, 1);
			if (++count > 1) {
				/*
				 * Extremely unlikely, but it happens.
				 * We went around the loop at least once
				 * and didn't get far enough.
				 * If we are still skipping `highly shared'
				 * pages, skip fewer of them.  Otherwise,
				 * give up till the next clock tick.
				 */
				if (po_share < MAX_PO_SHARE) {
					po_share <<= 1;
				} else {
					/*
					 * Really a "goto loop", but
					 * if someone is TRACing or
					 * TNF_PROBE_ing, at least
					 * make records to show
					 * where we are.
					 */
					break;
				}
			}
		}
	}

	sample_end = gethrtime();

	TRACE_5(TR_FAC_VM, TR_PAGEOUT_END,
		"pageout_end:freemem %ld lots %ld nscan %ld des %ld count %u",
		freemem, lotsfree, nscan, desscan, count);

	/* Kernel probe */
	TNF_PROBE_2(pageout_scan_end, "vm pagedaemon", /* CSTYLED */,
		tnf_ulong, pages_scanned, nscan,
		tnf_ulong, pages_free, freemem);

	if (pageout_sample_cnt < pageout_sample_lim) {
		pageout_sample_pages += pcount;
		pageout_sample_etime += sample_end - sample_start;
		++pageout_sample_cnt;
	}
	if (pageout_sample_cnt >= pageout_sample_lim &&
	    pageout_new_spread == 0) {
		pageout_rate = (hrrate_t)pageout_sample_pages *
		    (hrrate_t)(NANOSEC) / pageout_sample_etime;
		pageout_new_spread = pageout_rate / 10;
		setupclock(1);
	}

	goto loop;
}

/*
 * Look at the page at hand.  If it is locked (e.g., for physical i/o),
 * system (u., page table) or free, then leave it alone.  Otherwise,
 * if we are running the front hand, turn off the page's reference bit.
 * If the proc is over maxrss, we take it.  If running the back hand,
 * check whether the page has been reclaimed.  If not, free the page,
 * pushing it to disk first if necessary.
 *
 * Return values:
 *	-1 if the page is not a candidate at all,
 *	 0 if not freed, or
 *	 1 if we freed it.
 */
static int
checkpage(struct page *pp, int whichhand)
{
	int ppattr;
	int isfs = 0;
	int isexec = 0;
	int pagesync_flag;

	/*
	 * Skip pages:
	 * 	- associated with the kernel vnode since
	 *	    they are always "exclusively" locked.
	 *	- that are free
	 *	- that are shared more than po_share'd times
	 *	- its already locked
	 *
	 * NOTE:  These optimizations assume that reads are atomic.
	 */
top:
	if ((PP_ISKAS(pp)) || (PP_ISFREE(pp)) ||
	    (hat_page_getshare(pp) > po_share) || PAGE_LOCKED(pp)) {
		return (-1);
	}

	if (!page_trylock(pp, SE_EXCL)) {
		/*
		 * Skip the page if we can't acquire the "exclusive" lock.
		 */
		return (-1);
	} else if (PP_ISFREE(pp)) {
		/*
		 * It became free between the above check and our actually
		 * locking the page.  Oh, well there will be other pages.
		 */
		page_unlock(pp);
		return (-1);
	}

	/*
	 * Reject pages that cannot be freed. The page_struct_lock
	 * need not be acquired to examine these
	 * fields since the page has an "exclusive" lock.
	 */
	if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
		page_unlock(pp);
		return (-1);
	}

	/*
	 * Maintain statistics for what we are freeing
	 */

	if (pp->p_vnode != NULL) {
		if (pp->p_vnode->v_flag & VVMEXEC)
			isexec = 1;

		if (!IS_SWAPFSVP(pp->p_vnode))
			isfs = 1;
	}

	/*
	 * Turn off REF and MOD bits with the front hand.
	 * The back hand examines the REF bit and always considers
	 * SHARED pages as referenced.
	 */
	if (whichhand == FRONT)
		pagesync_flag = HAT_SYNC_ZERORM;
	else
		pagesync_flag = HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_REF |
		    HAT_SYNC_STOPON_SHARED;

	ppattr = hat_pagesync(pp, pagesync_flag);

recheck:
	/*
	 * If page is referenced; make unreferenced but reclaimable.
	 * If this page is not referenced, then it must be reclaimable
	 * and we can add it to the free list.
	 */
	if (ppattr & P_REF) {
		TRACE_2(TR_FAC_VM, TR_PAGEOUT_ISREF,
		    "pageout_isref:pp %p whichhand %d", pp, whichhand);
		if (whichhand == FRONT) {
			/*
			 * Checking of rss or madvise flags needed here...
			 *
			 * If not "well-behaved", fall through into the code
			 * for not referenced.
			 */
			hat_clrref(pp);
		}
		/*
		 * Somebody referenced the page since the front
		 * hand went by, so it's not a candidate for
		 * freeing up.
		 */
		page_unlock(pp);
		return (0);
	}

	VM_STAT_ADD(pageoutvmstats.checkpage[0]);

	/*
	 * If large page, attempt to demote it. If successfully demoted,
	 * retry the checkpage.
	 */
	if (pp->p_szc != 0) {
		if (!page_try_demote_pages(pp)) {
			VM_STAT_ADD(pageoutvmstats.checkpage[1]);
			page_unlock(pp);
			return (-1);
		}
		ASSERT(pp->p_szc == 0);
		VM_STAT_ADD(pageoutvmstats.checkpage[2]);
		/*
		 * since page_try_demote_pages() could have unloaded some
		 * mappings it makes sense to reload ppattr.
		 */
		ppattr = hat_page_getattr(pp, P_MOD | P_REF);
	}

	/*
	 * If the page is currently dirty, we have to arrange
	 * to have it cleaned before it can be freed.
	 *
	 * XXX - ASSERT(pp->p_vnode != NULL);
	 */
	if ((ppattr & P_MOD) && pp->p_vnode) {
		struct vnode *vp = pp->p_vnode;
		u_offset_t offset = pp->p_offset;

		/*
		 * XXX - Test for process being swapped out or about to exit?
		 * [Can't get back to process(es) using the page.]
		 */

		/*
		 * Hold the vnode before releasing the page lock to
		 * prevent it from being freed and re-used by some
		 * other thread.
		 */
		VN_HOLD(vp);
		page_unlock(pp);

		/*
		 * Queue i/o request for the pageout thread.
		 */
		if (!queue_io_request(vp, offset)) {
			VN_RELE(vp);
			return (0);
		}
		return (1);
	}

	/*
	 * Now we unload all the translations,
	 * and put the page back on to the free list.
	 * If the page was used (referenced or modified) after
	 * the pagesync but before it was unloaded we catch it
	 * and handle the page properly.
	 */
	TRACE_2(TR_FAC_VM, TR_PAGEOUT_FREE,
		"pageout_free:pp %p whichhand %d", pp, whichhand);
	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
	ppattr = hat_page_getattr(pp, P_MOD | P_REF);
	if ((ppattr & P_REF) || ((ppattr & P_MOD) && pp->p_vnode))
		goto recheck;

	/*LINTED: constant in conditional context*/
	VN_DISPOSE(pp, B_FREE, 0, kcred);

	CPU_STATS_ADD_K(vm, dfree, 1);

	if (isfs) {
		if (isexec) {
			CPU_STATS_ADD_K(vm, execfree, 1);
		} else {
			CPU_STATS_ADD_K(vm, fsfree, 1);
		}
	} else {
		CPU_STATS_ADD_K(vm, anonfree, 1);
	}

	return (1);		/* freed a page! */
}

/*
 * Queue async i/o request from pageout_scanner and segment swapout
 * routines on one common list.  This ensures that pageout devices (swap)
 * are not saturated by pageout_scanner or swapout requests.
 * The pageout thread empties this list by initiating i/o operations.
 */
int
queue_io_request(vnode_t *vp, u_offset_t off)
{
	struct async_reqs *arg;

	/*
	 * If we cannot allocate an async request struct,
	 * skip this page.
	 */
	mutex_enter(&push_lock);
	if ((arg = req_freelist) == NULL) {
		mutex_exit(&push_lock);
		return (0);
	}
	req_freelist = arg->a_next;		/* adjust freelist */
	push_list_size++;

	arg->a_vp = vp;
	arg->a_off = off;
	arg->a_len = PAGESIZE;
	arg->a_flags = B_ASYNC | B_FREE;
	arg->a_cred = kcred;		/* always held */

	/*
	 * Add to list of pending write requests.
	 */
	arg->a_next = push_list;
	push_list = arg;

	if (req_freelist == NULL) {
		/*
		 * No free async requests left. The lock is held so we
		 * might as well signal the pusher thread now.
		 */
		cv_signal(&push_cv);
	}
	mutex_exit(&push_lock);
	return (1);
}

/*
 * Wakeup pageout to initiate i/o if push_list is not empty.
 */
void
cv_signal_pageout()
{
	if (push_list != NULL) {
		mutex_enter(&push_lock);
		cv_signal(&push_cv);
		mutex_exit(&push_lock);
	}
}