diff options
author | Robert Mustacchi <rm@joyent.com> | 2013-06-28 23:58:16 +0000 |
---|---|---|
committer | Robert Mustacchi <rm@joyent.com> | 2013-09-27 13:33:36 -0700 |
commit | 75eba5b6d79ed4d2ce3daf7b2806306b6b69a938 (patch) | |
tree | a0738ab8ef47726501c5d488fa0e0eb593a0175c | |
parent | 80c94ecd7a524eb933a4bb221a9618b9dc490e76 (diff) | |
download | illumos-joyent-75eba5b6d79ed4d2ce3daf7b2806306b6b69a938.tar.gz |
4091 e1000g I217/I218 support
4092 Intel 1GBe NIC common code should be shared
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
88 files changed, 30958 insertions, 34322 deletions
diff --git a/exception_lists/cstyle b/exception_lists/cstyle index ba251bfe53..1c17c99383 100644 --- a/exception_lists/cstyle +++ b/exception_lists/cstyle @@ -655,9 +655,39 @@ usr/src/uts/common/gssapi/mechs/krb5/mech/util_validate.c usr/src/uts/common/gssapi/mechs/krb5/mech/val_cred.c usr/src/uts/common/gssapi/mechs/krb5/mech/verify.c usr/src/uts/common/gssapi/mechs/krb5/mech/wrap_size_limit.c -usr/src/uts/common/io/igb/igb_api.c -usr/src/uts/common/io/igb/igb_nvm.c -usr/src/uts/common/io/igb/igb_defines.h +usr/src/uts/common/io/e1000api/e1000_80003es2lan.c +usr/src/uts/common/io/e1000api/e1000_80003es2lan.h +usr/src/uts/common/io/e1000api/e1000_82540.c +usr/src/uts/common/io/e1000api/e1000_82541.c +usr/src/uts/common/io/e1000api/e1000_82541.h +usr/src/uts/common/io/e1000api/e1000_82542.c +usr/src/uts/common/io/e1000api/e1000_82543.c +usr/src/uts/common/io/e1000api/e1000_82543.h +usr/src/uts/common/io/e1000api/e1000_82571.c +usr/src/uts/common/io/e1000api/e1000_82571.h +usr/src/uts/common/io/e1000api/e1000_82575.c +usr/src/uts/common/io/e1000api/e1000_82575.h +usr/src/uts/common/io/e1000api/e1000_api.c +usr/src/uts/common/io/e1000api/e1000_api.h +usr/src/uts/common/io/e1000api/e1000_defines.h +usr/src/uts/common/io/e1000api/e1000_hw.h +usr/src/uts/common/io/e1000api/e1000_i210.c +usr/src/uts/common/io/e1000api/e1000_i210.h +usr/src/uts/common/io/e1000api/e1000_ich8lan.c +usr/src/uts/common/io/e1000api/e1000_ich8lan.h +usr/src/uts/common/io/e1000api/e1000_mac.c +usr/src/uts/common/io/e1000api/e1000_mac.h +usr/src/uts/common/io/e1000api/e1000_manage.c +usr/src/uts/common/io/e1000api/e1000_manage.h +usr/src/uts/common/io/e1000api/e1000_mbx.c +usr/src/uts/common/io/e1000api/e1000_mbx.h +usr/src/uts/common/io/e1000api/e1000_nvm.c +usr/src/uts/common/io/e1000api/e1000_nvm.h +usr/src/uts/common/io/e1000api/e1000_phy.c +usr/src/uts/common/io/e1000api/e1000_phy.h +usr/src/uts/common/io/e1000api/e1000_regs.h +usr/src/uts/common/io/e1000api/e1000_vf.c +usr/src/uts/common/io/e1000api/e1000_vf.h usr/src/uts/common/io/ixgbe/ixgbe_82598.c usr/src/uts/common/io/ixgbe/ixgbe_82598.h usr/src/uts/common/io/ixgbe/ixgbe_82599.c diff --git a/usr/src/pkg/manifests/driver-network-e1000g.mf b/usr/src/pkg/manifests/driver-network-e1000g.mf index 32e710f6c7..1690b9af07 100644 --- a/usr/src/pkg/manifests/driver-network-e1000g.mf +++ b/usr/src/pkg/manifests/driver-network-e1000g.mf @@ -134,6 +134,10 @@ driver name=e1000g clone_perms="e1000g 0666 root sys" perms="* 0666 root sys" \ alias=pci8086,1502 \ alias=pci8086,1503 \ alias=pci8086,150c \ + alias=pci8086,153a \ + alias=pci8086,153b \ + alias=pci8086,1559 \ + alias=pci8086,155a \ alias=pci8086,294c \ alias=pci8086,f0fe \ alias=pciex8086,1049 \ @@ -185,6 +189,10 @@ driver name=e1000g clone_perms="e1000g 0666 root sys" perms="* 0666 root sys" \ alias=pciex8086,1502 \ alias=pciex8086,1503 \ alias=pciex8086,150c \ + alias=pciex8086,153a \ + alias=pciex8086,153b \ + alias=pciex8086,1559 \ + alias=pciex8086,155a \ alias=pciex8086,294c \ alias=pciex8086,f0fe file path=kernel/drv/$(ARCH64)/e1000g group=sys diff --git a/usr/src/uts/common/Makefile.files b/usr/src/uts/common/Makefile.files index eb683ffad0..a2e3642ddc 100644 --- a/usr/src/uts/common/Makefile.files +++ b/usr/src/uts/common/Makefile.files @@ -1923,21 +1923,31 @@ XGE_HAL_OBJS = xgehal-channel.o xgehal-fifo.o xgehal-ring.o xgehal-config.o \ xge-queue.o xgehal-mgmt.o xgehal-mgmtaux.o # -# e1000g module +# e1000/igb common objs +# +# Historically e1000g and igb had separate copies of all of the common +# code. At this time while they are now sharing the same copy of it, they +# are building it into their own modules which is due to the differences +# in the osdep and debug portions of their code. # -E1000G_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \ +E1000API_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \ e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \ - e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \ - e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \ - e1000g_tx.o e1000g_rx.o e1000g_stat.o + e1000_mac.o e1000_manage.o e1000_nvm.o e1000_phy.o \ + e1000_82575.o e1000_i210.o e1000_mbx.o e1000_vf.o + +# +# e1000g module +# +E1000G_OBJS += e1000g_debug.o e1000g_main.o e1000g_alloc.o \ + e1000g_tx.o e1000g_rx.o e1000g_stat.o \ + e1000g_osdep.o e1000g_workarounds.o + # # Intel 82575 1G NIC driver module # -IGB_OBJS = igb_82575.o igb_api.o igb_mac.o igb_manage.o \ - igb_nvm.o igb_osdep.o igb_phy.o igb_buf.o \ - igb_debug.o igb_gld.o igb_log.o igb_main.o \ - igb_rx.o igb_stat.o igb_tx.o +IGB_OBJS = igb_buf.o igb_debug.o igb_gld.o igb_log.o igb_main.o \ + igb_rx.o igb_stat.o igb_tx.o igb_osdep.o # # Intel Pro/100 NIC driver module diff --git a/usr/src/uts/common/Makefile.rules b/usr/src/uts/common/Makefile.rules index 7ac0b9328e..ed81764ae2 100644 --- a/usr/src/uts/common/Makefile.rules +++ b/usr/src/uts/common/Makefile.rules @@ -1328,6 +1328,10 @@ $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/xge/hal/xgehal/%.c $(COMPILE.c) -o $@ $< $(CTFCONVERT_O) +$(OBJS_DIR)/%.o: $(UTSBASE)/common/io/e1000api/%.c + $(COMPILE.c) -o $@ $< + $(CTFCONVERT_O) + $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/e1000g/%.c $(COMPILE.c) -o $@ $< $(CTFCONVERT_O) @@ -2537,6 +2541,9 @@ $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/hal/xgehal/%.c $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/e1000g/%.c @($(LHEAD) $(LINT.c) $< $(LTAIL)) +$(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/e1000api/%.c + @($(LHEAD) $(LINT.c) $< $(LTAIL)) + $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/igb/%.c @($(LHEAD) $(LINT.c) $< $(LTAIL)) diff --git a/usr/src/uts/common/io/e1000api/LICENSE.new b/usr/src/uts/common/io/e1000api/LICENSE.new new file mode 100644 index 0000000000..f70a7cbd4a --- /dev/null +++ b/usr/src/uts/common/io/e1000api/LICENSE.new @@ -0,0 +1,31 @@ +$FreeBSD$ + + Copyright (c) 2001-2010, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + diff --git a/usr/src/uts/common/io/e1000api/README b/usr/src/uts/common/io/e1000api/README new file mode 100644 index 0000000000..a3c4102c60 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/README @@ -0,0 +1,769 @@ +# +# This file is provided under a CDDLv1 license. When using or +# redistributing this file, you may do so under this license. +# In redistributing this file this license must be included +# and no other modification of this header file is permitted. +# +# CDDL LICENSE SUMMARY +# +# Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. +# +# The contents of this file are subject to the terms of Version +# 1.0 of the Common Development and Distribution License (the "License"). +# +# You should have received a copy of the License with this software. +# You can obtain a copy of the License at +# http://www.opensolaris.org/os/licensing. +# See the License for the specific language governing permissions +# and limitations under the License. +# +# Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. +# +# + + + +4.0.4 code drop from Intel on 1/30/2003 +======================================= + This version is used as the base for putback into both s10 and + s9u4. + + Following changes were done to this code base before putting + back into solaris trees (S10 & S9U4): + + 1) Changes to e1000_hw.c to remove build warnings + + + diff /home/naroori/grizzly/sources/e1000g/1_4.0.4/e1000_hw.c . + 2616c2616 + < phy_info->downshift = hw->speed_downgraded; + --- + > phy_info->downshift = (int)hw->speed_downgraded; + 2684c2684 + < phy_info->downshift = hw->speed_downgraded; + --- + > phy_info->downshift = (int)hw->speed_downgraded; + + 2) Changes to e1000g_dlpi.c for ipv6 plumbing problem and + problem with default MTU size of 2024. + + + diff /home/naroori/grizzly/sources/e1000g/1_4.0.4/e1000g_dlpi.c . + 313a314 + > /* the following causes problem with ipv6 plumbing... + 314a316 + > */ + 628c630,632 + < if (Adapter->Shared.max_frame_size == FRAME_SIZE_UPTO_16K) + --- + > if (Adapter->Shared.max_frame_size == ETHERMTU) { + > } + > else if (Adapter->Shared.max_frame_size == FRAME_SIZE_UPTO_16K) { + 630c634,635 + < else + --- + > } + > else { + 631a637 + > } + + 3) Changes to e1000g_main.c for version string modification, + removing console messages on bootup and problems with default + MTU size of 2024. + + + diff /home/naroori/grizzly/sources/e1000g/1_4.0.4/e1000g_main.c . + 59c59 + < static char e1000g_version[]="Driver Ver. 4.0.4-beta"; + --- + > static char e1000g_version[]="Driver Ver. 4.0.4"; + 937c937 + < e1000g_log(Adapter,CE_CONT,"\n%s, %s\n",AdapterName,e1000g_version); + --- + > cmn_err(CE_CONT,"!%s, %s\n",AdapterName,e1000g_version); + 3000c3000 + < Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_2K; + --- + > Adapter->Shared.max_frame_size = ETHERMTU; + 3013c3013 + < Adapter->Shared.max_frame_size = FRAME_SIZE_UPTO_2K; + --- + > Adapter->Shared.max_frame_size = ETHERMTU; + + + +Bug fixes to 4.0.4: +=================== + 1) bug#4829398 code cleanup for ethernet bootup messages + + +4.0.12 code drop from Intel on 3/18/2003 +======================================== + + This drop had extensive changes from 4.0.4. Many changes after + 4.0.4 were realted to new hardware (a.k.a. BayCity chipset), + not relevant to Grizzly.After looking at the changelog from Intel, + we decided not to do a putback but rather take only high priority + fixes from this drop and generate a new version 4.0.4.1. + + Here is the changelog supplied by Intel for this drop: + + ________________________________________________________________________ + Component Name: Unix-Solaris_8254x_BayCity_Intel + Description: Bay City software component for gigabit products + ________________________________________________________________________ + + + ---Version: 4.0.13 Date: 3/14/2003 5:00:00 PM--- + Added transmit mutex locking to the 82547 workaround code. + + ---Version: 4.0.12 Date: 3/10/2003 8:01:00 PM--- + Added new shared code with LED link speed fix + + ---Version: 4.0.11 Date: 3/7/2003 5:57:00 PM--- + Updated the Tanacross FIFO hang workaround to reset FIFO pointers instead of sending autonomous packets. + + ---Version: 4.0.10 Date: 3/4/2003 2:39:00 PM--- + Removed an extra sdu adjustment that was left in by accident + + ---Version: 4.0.9 Date: 3/4/2003 11:13:00 AM--- + Removed the first call to adapter_stop. This was called before the HW struct was properly initialized, and could cause hangs. + + Changed reported ethernet sdu from 2024 to 1500, as driver could be configured for invalid frame MTU sizes in Solaris 9. + + Added Tanacross workaround for FIFO hang. + + ---Version: 4.0.8 Date: 2/25/2003 2:27:00 PM--- + Shared code update including Phy init script. + Smartspeed workaround added. e1000g_smartspeed called from LocalTimer function every two seconds when link is down. + + ---Version: 4.0.7 Date: 2/18/2003 11:41:00 AM--- + Updated to include bug fixes from the shared code. + + ---Version: 4.0.5 Date: 1/31/2003 10:13:00 AM--- + Support for new hardware changes + Removed the extra ack sent at the end of the attach_req routine. This extra ack previously made IPv6 plumbing on Solaris 9 fail. + + +4.0.4.1 +======= + This version is not an Intel drop but 4.0.4 merged with two + high priority fixes from 4.0.12. We will give back the 4.0.4.1 + driver back to Intel, per their request, so they have the exact + code that we are releasing through Solaris. + + The following are the two fixes selected for inclusion from + 4.0.12 codebase: + + 1) Removing the first call to adapter_stop as discussed in + 4.0.12 changelog. + + 2) Corrections to MTU size calculations first introduced + in our 4.0.4 putback to bring them into sync with 4.0.12 + MTU size calculations. + + We also added README file (current file you are reading) during + this putback. + +4.0.4.2 +======= + This version has the following fixes: + + 1) bug#4857098: e1000g driver assumes another intel card as its own. + The fix involved eliminating 1009, 1012, 1015, 1016, 1017 + device-ids from e1000g nodelist so that they do not conflict + with iprb's subsystem-ids. + + This fix has to be reverted later once we have a proper fix for + bug#4859426. + + 2) bug#4853683: e1000g lacks a large number of expected kstats + The fix involved three steps: a) Renaming some of the existing + kstats to comply with WDD documentation b) Computing some of + those which are not being tracked c) Supplying zero for the rest + the error stats which are not being tracked. + + This fix has to be revisited to improvise the statistics in + future. + + 3) bug#4862529: System panics during configuring devices on a Dell 4-way + servers. The fix involved removing all the devic-ids from nodelist + except for 1010. This means that we support now only the grizzly + on-board gigabit chipset and "Intel Pro/1000 MT Dual Server Adapter". + + This fix has to be reverted later once we have a proper fix for + bug#4859426. + +4.0.4.3 +======= + This version has the following fixes: + + 1) bug#4874857: ipv6 ping fails on bootup for e1000g. + The fix involved implementing multicast tables both at per stream + level and per device level. + + 2) bug#4875743: null pointer dereference in ddi_dma_addr_bind_handle. + The fix involved adding LastTxDescriptorBuf to struct e1000g and + handling consequent proper calculations for LastTxDescriptor. + + 3) bug#4882541: setting up ethernet address causes machine to panic. + The fix involved removing a spurious log message which was causing + the panic. + + 4) bug#4883302: Reinstate the removed device-ids - phase 2. + The fix involved some chip initializations to handle 1000 id. + + 5) bug#4919285: device id 8086,100e needs to be added + The fix needed for the Intel Precision 350 workstation + +4.2.11 +====== + +We need to sync up with the latest Intel code base for e1000g driver. + +Intel is currently at version 4.2.11 while we are on 4.0.4 branch. +The exact version under 4.0.4 branch is 4.0.4.3. Since we are on +the branch while Intel is working on the main trunk, we have had +lot of friction in getting timely fixes from Intel. The current +syncing up with their main trunk lets us a smooth migration path. + +The new code base also would provide us with support for additional +cards including Quad port cards (See bugs: 4921433, 4914460). +In our old 4.0.4 branch, we had to drop support for a lot of cards +for various problems; with the current syncing up, we would be able +to support so many various cards except for the cards clashing with +iprb driver. + +The new code base also has support for additional new chipsets. The code +base also benefits from any fixes to the shared code base with other +operating system drivers. + +The new codebase also has lot of cleanups in terms of various #ifdefs +and should be much simpler to maintain. + +So the list of actual ids take out are: +1009 +1012 +1013 +1015 +1016 +1017 + +4.2.15 +====== +This intel code drop addresses the following bug: + + 4909863: Bad trap panic in e1000g_rtn_buf + +4.2.16 +====== + This version has the following fix: + 4932422 interconnect remains faulted after adapter disconnected and then reconnected + +Notes on packaging: +=================== + Intel names the package as INTCGigaE while we chose to rename + it as SUNWintgige as per Sun packaging conventions. + +4.2.17 +====== + This version has the following fixes: + 4971416 e1000g seems to hang system when no network connected + 4997067 e1000gattach panicks when the going gets tough + 4990064 e1000g leaks memory when it runs out of transmit descriptors + +4.2.17.1 +====== + This version has the following fix: + 5014625 e1000g driver panicked when snoop(1M) exited + +4.2.17.2 +====== + This version has the following fix: + 4940870 e1000g: Dependence on instance initialization order disables .conf properties + 5033616 e1000g panicked after rem_drv while some service still binds to the driver + 5037062 strings have crept back in e1000g/adpu320 related mutex_init()s + 5050268 Some e1000g flag operations are not correct. + +4.2.17.3 +====== + This version has the following fix: + 5067162 e1000g cannot transmit heavy UDP + +4.2.17.4 +====== + This version has the following fix: + 5010052 The stress load/unload test of Intel PWLA8494MT Quad Port NIC causes system hung + 5050265 E1000g does not support IPV6 fast path. This will impact IPV6 performance. + 5050369 E1000g locks the system if plumb/unplumb under heavy workload and snoop. + 5050415 E1000g will accepts ethernet packets which are not addressed to it. + 5055132 E1000g crashes when injected with Jumbo Frame packets. + +4.2.17.5 +====== + This version has the following fix: + 6175307 system crash with memory size of 11GB + 6176031 the sequence of releasing resource error in e1000gattach + 6180180 PktAlloc - Could not bind rbuf packet as single frag. Count - 2 + 6185022 Port hang when unplumb interface under heavy traffic + +4.2.17.6 +====== + This version has the following fix: + 6196426 e1000g should support NICs that use the internal serdes for external connectivity + +4.2.17.7 +====== + This version has the following fix: + 4921433 e1000g: Should not probe by using VID/DID table to identify adapters + +4.2.17.8 +====== + This version has the following fix: + 6213101 64bit DMA max address space should be supported by e1000g driver + 6215261 e1000g driver 211% slower in AMD64 than 32 bit e1000g driver (S10_73, Single CPU V20z) + +4.2.17.9 +====== + This version has the following fix: + 6256212 fix for 6213101 breaks e1000g for 32-bit kernels on machines with >4GB of physical memory + +4.2.17.10 +====== + This version has the following fix: + 6203602 e1000g needs to support the Intel PCI-E card + 6217046 we need to merge the Intel code (version 4.2.28) into e1000g + +5.0.0 +====== + This version has the following fix: + PSARC/2005/470 E1000g Nemo Migration + 6221079 e1000g driver interface conversion from DLPI to GLD3.0(nemo) + 6224901 e1000g fails to configure VLANs on a Sun v65x + 6286414 snmp: ifOperStatus for e1000g driver doesn't change when cable is unplugged. + 6238486 e1000g: poor performance in web server benchmark, high CPU utilization noted + 6293265 e1000g_intr doesn't use mutex at all + 6304657 e1000g_PktAlloc_buffers() causes a panic when ddi_dma_addr_bind_handle() fails. + 4913292 e1000g: does not support PSARC 2003/264 Extended IP cksum_offload + 5071610 e1000g can't send any packets after a jumbo-packet forwarding test. + 5082975 in Jumbo enable mode, netperf indicates a lower throughput, compared to Jumbo of + 5085394 e1000g driver hangs system during 64byte stress testing + 6174349 netlb support needed for Solaris e1000g driver + 6207682 e1000g needs link up/down support + 6211068 e1000g has some input error packets during stress test + 6212810 e1000g caught sending unsolicited M_PROTO/M_PCPROTO messages + 6219298 warnings about "inconsistent getinfo(9E) implementation" + 6226217 e1000g should support trunking + 6239279 Network stess test fail on 82545GM chip on IBM Blade HS40 + 6242612 e1000g needs to support SPARC + 6247936 In e1000g transmission, ddi_dma_addr_bind_handle() returns more cookies than speficied + 6273730 e1000g causes memory leaks within Freelist_alloc and PktAlloc_buffers + 5073739 find some memory leaks after load_unload test + 6287250 e1000g may need to use new Intel-recommended semaphore mechanism + +5.0.1 +====== + This version has the following fix: + 6313609 2-port Intel NIC (part# 370-6687) performs poorly compared to 1-port Intel NIC (part# 370-6685) + 6315002 gcc and e1000g don't get along + +5.0.2 +====== + This version has the following fix: + 6319100 Tier0 Ontario machine does not boot net with sparc e1000g driver substitution for sparc ipge driver + +5.0.3 +====== + This version has the following fix: + 6327693 e1000g should use MSIs when possible + 6333461 panic[cpu0]/thread=d63f4de0: assertion failed: !dma->dp_inuse, file: ../../i86pc/io/rootnex.c + +5.0.4 +====== + This version has the following fix: + 6351378 e1000g panic seen after bfu'ing latest onnv nightly + +5.0.5 +====== + This version has the following fix: + 6303973 System hard hangs when sharing interrupts (in PIC) mode + 6323732 e1000g reports incorrect packet statistics + 6333880 Customer is requesting driver for a newIntel 82573 NIC + 6336163 netlb support needed for Solaris (sparc) e1000g driver + 6339377 e1000g.conf needs to be simplified + 6350407 e1000 card in Gateway E2300 does not actually send packets in S10U1 + 6364052 e1000g driver should provide interface to ndd utility + 6367490 e1000g has problem in deliver UDP fragment with addin card + +5.0.6 +====== + This version has the following fix: + 4967732 e1000g: high mutex contention in e1000g_start + 6316907 e1000g: bcopy() brings better performance in transmitting and receiving small packet + 6371753 aggregation of e1000g NICs fails to provide connectivity unless snoop is running + 6397163 Jumbo frame statistics always counts zero with e1000g driver + 6401903 Memory leak in e1000g driver + +5.0.7 +====== + This version has the following fix: + 6337450 e1000g interfaces take much much longer to plumb than bge interfaces on the V40. + 6392401 Intel Ophir (82571) e1000g driver fails to attach on sun4u Boston with snv_33 + 6401659 vlan header getting corrupted due to memmove in e1000g sendPacket + 6407374 e1000g still uses some old ddi interrupt routines that need to be changed + 6411339 BAD TRAP: e1000g_fill_tx_ring NULL pointer dereference + +5.0.8 +====== + This version has the following fix: + 6399084 ipmp doesn't work with e1000g + 6412153 ndd force speed is not consistent with e1000g.conf and e1000g(7D) + 6415019 system panic when plumb e1000g interface up on SPARC + 6415416 netlbtest does not run on Intel(R) PRO/1000 Network controller + +5.0.9 +====== + This version has the following fix: + 6337987 Serial Over Lan issue when e1000g driver is used + +5.1.0 +====== + This version has the following fix: + PSARC/2006/248 Nemo MAC-Type Plugin Architecture + PSARC/2006/249 Nemo Changes for Binary Compatibility + 6384371 GLDv3 only supports Ethernet + 6242059 nemo drivers must not know the size of the mac_t structure + 6226635 MAC stats interface could cause problems with binary compatibility + +5.1.1 +====== + This version has the following fix: + 6384266 e1000g driver should provide external loopback support + 6428883 NEM e1000g drive netlbtest intermittent failed when running Sunvts FUNC test with cputest,vmemtest.. + 6430731 e1000g.conf file removed on upgrade + 6431317 add support for intel Pro/1000 PT Adapter + 6433236 Update the e1000g driver with the latest shared code from Intel + 6439589 e1000g: whines about checksum capability, unclear what user should do + 6441386 The default value of some e1000g parameters may impact rx performance + 6445239 assertion failed: cookie_count == 1, file: ../../common/io/e1000g/e1000g_alloc.c, line: 422 + 6447914 e1000g should support setting of multiple unicast addresses + 6449595 Ophir LAA driver workaround is not working for e1000g Driver + +5.1.2 +====== + This version has the following fix: + 6450683 Boston panics with e1000g under stress + 6463536 BAD TRAP panic for removing aggregation + 6463756 e1000g - link_speed / kstat output + 6464426 e1000g driver needs a workaround to solve an ESB2 hardware issue + +5.1.3 +====== + This version has the following fix: + 6436387 e1000g panic while using cfgadm to unconfigure the pcie slot + 6460403 disconnect of pcieX that has ophir with network if plumbed crashes the system + 6466962 S10u2 e1000g 5.0.9 adv_autoneg_cap is not reflected on the kstat -p + 6470233 e1000g_fill_tx_ring doesn't always update TDT properly + +5.1.4 +====== + This version has the following fix: + 6462893 HCTS network test failed on thumper machine due to e1000g issue + 6467860 e1000g configured/used as cluster interconnect goes up and down when connected back to back + +5.1.5 +====== + This version has the following fix: + 6479912 Interrupt throttling tunable needed + 6492025 northstar MMF e1000g external loopback fail. + +5.1.6 +====== + This version has the following fix: + 6482530 Need Ethernet driver for Intel G965 chipset + 6491179 link aggregation with e1000g does not work unless snoop is running + 6494743 e1000g 5.1.4 driver does not work with s11_52 + 6502458 e1000g is open source, move the source from usr/closed to use/src + 6505360 e1000g Makefile should not include "-N drv/dld" in the LDFLAGS + +5.1.7 +====== + This version has the following fix: + 6454375 e1000g link flaps at initialization, triggering failovers + 6472255 e1000g can't restore to 1000M with ndd setting + 6496763 e1000g should free packets when link is down + 6501294 "eeprom checksum failed" with pci8086,108c device + 6504688 e1000g.conf settings are inconsistent with ndd output + 6505445 e1000g : when all advertised capabilities are set to 0, ndd puts all of them 1 + 6519690 e1000g should not print the link up/down messages to console + 6531474 Fatal PCIe Fabric Error panics on T2000 when using jumbo frames on e1000g interfaces + 6535712 e1000g: the processing of the checksum flags should be protected by tx_lock + +5.1.8 +====== + This version has the following fix: + 6548711 e1000g: recursive mutex_enter in e1000g_link_check() on ESB2 platforms + 6550086 e1000g: detaching driver immediately after attach induces panic + +5.1.9 +====== + This version has the following fix: + 6507422 Dynamic Reconfiguration detach fails for e1000g + +5.1.10 +====== + This version has the following fix: + 6490623 Some networking problems with Solaris_b44_64 domU(using solaris_b44_64 dom0) + 6510396 system panicked in e1000g_82547_timeout + 6554976 e1000g driver does not support 10D5 device - Sun Pentwater PEM quad port + +5.1.11 +====== + This version has the following fix: + 6552853 system panics in e1000g_alloc_dvma_buffer during hotplug testing + +5.2.0 +====== + This version has the following fix: + 6535620 e1000g needs to support ICH9 devices + 6572330 e1000g: integrate the latest Intel refactored shared code + 6573381 e1000g receiving VLAN tagged frames does not do hardware checksumming + +5.2.1 +====== + This version has the following fix: + 6594676 e1000g should free private dips while no rx buffers are held by upper layer + +5.2.2 +====== + This version has the following fix: + 6480448 Sunvts netlbtest external loopback failed on 82546 chipset + 6521984 Sunvts netlbtest failed on Northstar QGE cards + 6531842 e1000g link goes down and up frequently on T2000 systems + 6540535 Sunvts netlbtest internal loopback failed on ophir devices + 6579605 Sunvts netlbtest internal loopback failed on Northstar fiber card + 6595668 e1000g postinstall script missed 5 device ids which had been supported by shared code + +5.2.3 +====== + This version has the following fix: + 6335851 e1000g needs to support FMA + 6605171 WARNING: pciex8086,105e - e1000g[0] : Initialize hw failed + +5.2.4 +====== + This version has the following fix: + 6619929 Sunvts test on Northstar QGC EM failed for "Not received any packets in loopback mode". + 6541233 e1000g driver performs 33X Slower for Tibco RV when running Multiple RVDs + 6572343 e1000g: needs to improve the ip forwarding performance + 6637039 e1000g_recycle() missed a mutex_exit() + +5.2.5 +====== + This version has the following fix: + 6648775 e1000g: pci8086,10be - e1000g[0]: Identify hardware failed + +5.2.6 +====== + This version has the following fix: + 6633239 e1000g: link flaps observed on Galaxy(X4100) systems running 64-bit kernel + +5.2.7 +====== + This version has the following fix: + 6673650 e1000g needs to support Brussels + +5.2.8 +====== + This version has the following fix: + 6674179 SunFire X4150 panics at e1000g_receive + 6679136 E1000g with patch 128028-03 will not allow pause frames to be set + 6687947 e1000g needs to integrate the latest Intel shared code to support ICH9m + 6699622 e1000g: add support for network device in new development machine + +5.2.9 +====== + 6665738 e1000g issues with some Ethernet controllers + 6713685 e1000g:one device id macro should be renamed + +5.2.10 +====== + This version has the following fixes: + 6335837 e1000g needs to support LSO + 6637659 e1000g has problem on transmit hardware checksum support + +5.2.11 +====== + This version has the following fixes: + 6698039 e1000g tx doesn't work on the specific chipset since snv_88 + 6597545 e1000g ESB2 serdes device pciex8086,1098 hangs in network testing + 6693205 running sunvts7.0 on Generic s10u5build10 causes unix:cmi_mca_panic on thumper + 6694279 e1000g driver: internal loopback mode support needed for nic ESB-2 + 6721574 max number of segments in e1000g_tx_dma_attr need to be updated when LSO is supported + +5.2.12 +====== + This version has the following fix: + 6634746 e1000g is missing lint target in Makefile + 6705005 e1000g LINK/ACT LED behaviour is not consistent with the EEPROM default + 6738552 e1000g rx_lock is not initialized and destroyed in the code + +5.2.13 +====== + This version has the following fix: + 6666998 Add support for ICH10 in e1000g driver + 6709230 Requesting driver support in e1000g for new Intel(R) single port MAC/PHY NIC + 6727113 e1000g performance regression is observed with large connection and packet size if LSO is enabled + 6756917 LSO is not enabled on some e1000g chips + +5.2.14 +====== + This version has the following fix: + 6713032 e1000g port hang, no xmit, no recv + 6767201 e1000g default_mtu does not coincide with max_frame_size on some chipsets when set via e1000g.conf + +5.3.1 +====== + This version has the following fix: + 6779610 e1000g fails to attach post-6713032 due to memory allocation failures on some chipsets + +5.3.2 +====== + This version has the following fix: + 6779494 e1000g need to sync with sol_anvik_patch shared code from Intel + 6758857 fmadm reporting undiagnosable problems in snv_99 + 6698312 starcat panicked with "bad mutex" while running SUNWsgdr + 6759330 PIT: panic during first reboot after successful pkgadd during osinstall + 6776453 Monza(CP3260): loopback test fails on e1000g serdes ports + +5.3.3 +====== + This version has the following fix: + 6791863 sync up flow control code with Intel latest shared code + +5.3.4 +====== + This version has the following fix: + 6699662 global e1000g rwlock prevents scaling on multiple interfaces + 6781905 super slow throughput on e1000g 82541 and 82547 chips + 6786783 e1000g needs to have a new tx stall detection mechanism to cover 82546 errata No.18 + +5.3.5 +====== + This version has the following fix: + 6732858 panic in e1000g_free_dma_buffer + +5.3.6 +====== + This version has the following fixes: + 6589577 Huron does not discard and does transmit frames greater than maxFrameSize + 6809729 Panic in function 'e1000g_rxfree_func' on T2000 + 6809877 e1000g E1000G_IPALIGNROOM code can be rewritten + +5.3.7 +====== + This version has the following fix: + 6812227 e1000g(intel 82571 adapter) must support MTU size of 9216 + +5.3.8 +====== + This version has the following fixes: + 6775380 the e1000g link hung at "up" state after down and unplumb the interface + 6816786 e1000g panics on Lenovo X301 with snv_109 + +5.3.9 +==== + This version has the following fix: + 6680929 dladm should print POSSIBLE values for properties like mtu by contacting the driver. + +5.3.10 +==== + This version has the following fix: + 6841089 Customer wants to be able to set MAX_NUM_MULTICAST_ADDRESSES above 256 on e1000g driver + +5.3.11 +==== + This version has the following fix: + 6848586 rw_enter()/rw_exit() could be called on uninitialized rw lock + +5.3.12 +==== + This version has the following fixes: + 6846262 T2000 fma shows fault.io.pciex.device-interr in snv_115 + 6870404 e1000g_reset can call e1000g_start after releasing dma resources + +5.3.13 +==== + This version has the following fixes: + 6681751 e1000g minor_perm inconsistent between package postinstall script and default minor_perm file + 6855964 e1000g driver corrupting LSO packets causes chipset hang and significant performance regression + +5.3.14 +==== + This version has the following fixes: + 6820747 kstat output incorrect for MMF version of e1000g making it impossible to troubleshoot + 6847888 HW initialization updates for 82541 and 82547 chips + +5.3.15 +====== + This version has the following fixes: + 6797885 need to add support for network device (8086,10ea) in a new Intel system + 6803799 need to add network device support (8086,10ef) for a new Intel system + 6808388 e1000g inteface experience packet lost when switch between joining and leaving a multicast stream + +5.3.16 +====== + This version has the following fixes: + 6881588 e1000g functions should return when e1000g_check_dma_handle() fails + 6888320 e1000g emits scary mutex message on the console + +5.3.17 +====== + This version has the following fixes: + 6893285 e1000g 'pciex8086,105e' with PHY type igp I/O devices have been retired + 6895459 e1000g share code update v3-1-10-1 + +5.3.18 +====== + This version has the following fix: + 6894476 e1000g is not lint clean + +5.3.19 +====== + This version has the following fix: + 6877343 e1000g's default tx/rx resource consumption too high for jumbograms + +5.3.20 +====== + This version has the following fixes: + 6901523 e1000g does not return failure when setting external loopback fails + 6903712 Cannot install on DQ45EK system due to e1000g driver alias + 6909097 e1000g specifies incorrect flag when allocating tx DMA buffers + 6909553 e1000g stall reset leaves GLDv3 link state as "unknown" + +5.3.21 +====== + This version has the following fix: + 6909134 e1000g doesn't use ddi_get/ddi_put to access its IO space + +5.3.22 +====== + This version has the following fixes: + 6903292 Running flag not set on IPMP underlying e1000g interfaces + 6913835 e1000g driver passes bad messages up the stack when jumbograms received + 6919873 panic: BAD TRAP: type=e (#pf Page fault) in module "e1000g" during ifconfig plumb group ipmp0 + +5.3.23 +===== + This version has the following fixes: + 6838180 tcp corruption seen with northstar cards + 6925276 e1000g not consistent with link_lock usage + 6933844 NULL ptr deref in e1000g_rx_setup() due to inconsistency between recv_list & rx_desc_num + +5.3.24 +===== + This version has the following fixes: + 6861114 System Panics with FMA ereport.io.fire.epkt + 6876953 Memory leaks found in e1000g_alloc_rx_sw_packet on snv_111b + 6945160 netlbtest fails with Can't set loopback mode on device e1000g6 + 6960959 panic in e1000g_receive + 6965855 e1000g(intel 82571 adapter) needs to support MTU size of 9000 + 6967530 Need version in e1000g driver + 6967873 e1000g needs to clear the link-down status when being unplumbed diff --git a/usr/src/uts/common/io/e1000api/README.illumos b/usr/src/uts/common/io/e1000api/README.illumos new file mode 100644 index 0000000000..7dfcbd33b7 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/README.illumos @@ -0,0 +1,124 @@ +# +# This file and its contents are supplied under the terms of the +# Common Development and Distribution License ("CDDL"), version 1.0. +# You may only use this file in accordance with the terms of version +# 1.0 of the CDDL. +# +# A full copy of the text of the CDDL should have accompanied this +# source. A copy of the CDDL is also available via the Internet at +# http://www.illumos.org/license/CDDL. +# + +# +# Copyright (c) 2013 Joyent, Inc. All rights reserved. +# + +Historically e1000g and igb were maintained by two different teams at Sun and +thus while they used identical common code from Intel, they each only ever used +portions of it and were not kept in sync with one another. To help make +maintenance and the adding of new devices easier in illumos, we have gone +through and made it so that igb and e1000g rely on the same set of common code; +however, this code is not in its own module, each has its own copy of the code +compiled into it for various reasons which will be laid out below. + +As part of the interface with the common code, the driver is required to define +an e1000_osdep.h. Currently each version of the driver defines its *own* version +of this header file in their own driver specific directory. However, the code +that implements this is different in each directory, specifically e1000g_osdep.c +and igb_osdep.c. It's important that they have different names and not be called +the same thing due to how the uts makefiles work. + +Deviations from the common FreeBSD code: + +We have a few differences from the common version of the FreeBSD code that exist +so that we can both gather firmware information and that have workarounds for +older chipsets. While, we would like to get that to be synced up and common, it +is not currently. + +Energy Efficient Ethernet (EEE) is not enabled by default. This technology was +introduced with the I350 family of parts in the igb driver. However, there have +been issues seen with it in the wild and thus we opt to disable it by default +until tests have proven that there are no longer problems. + +To help make that easier, we've documented here what these extra definitions +are. DO NOT just blindly copy over new common code. There is more work that +needs to be done in terms of changed interfaces and expectations for the +drivers. + +# e1000_defines.h + +In e1000_defines.h we add the following three definitions which are not +currently present. These definitions allow us to attach firware revisions and +other information to the devinfo tree. + +#define NVM_VERSION 0x0005 +#define NVM_OEM_OFFSET_0 6 +#define NVM_OEM_OFFSET_1 7 + +# Workarounds for the 82541 and 82547 + +There are various workarounds in place for the 82541 and 82547 due to errata +that exist for these devices. This has traditionally been a part of the common +code. Until this can get merged into the common code completely, we've spearted +out the changes that are the actual C functions into +uts/common/io/e1000g/e1000g_workarounds.c. However, this alone is not +sufficient. You must make sure that in e1000_hw.h that the struc +e1000_dev_spec_82541 actually looks like the following: + +struct e1000_dev_spec_82541 { + enum e1000_dsp_config dsp_config; + enum e1000_ffe_config ffe_config; + u32 tx_fifo_head; + u32 tx_fifo_start; + u32 tx_fifo_size; + u16 dsp_reset_counter; + u16 spd_default; + bool phy_init_script; + bool ttl_workaround; +}; + +Similarly in e1000_82541.h you must make sure the following macros and external +function declarations are present: + +#define E1000_FIFO_MULTIPLIER 0x80 +#define E1000_FIFO_HDR_SIZE 0x10 +#define E1000_FIFO_GRANULARITY 0x10 +#define E1000_FIFO_PAD_82547 0x3E0 +#define E1000_ERR_FIFO_WRAP 8 + +#define DSP_RESET_ENABLE 0x0 +#define DSP_RESET_DISABLE 0x2 +#define E1000_MAX_DSP_RESETS 10 + +#define E1000_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1)) + +s32 e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length); +void e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length); +void e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, bool state); +bool e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw); +s32 e1000_igp_ttl_workaround_82547(struct e1000_hw *hw); + +# EEE + +By default we disable all support for EEE. To cause this to happen you must +make the following change in e1000_82575.c's init_mac_params. + +From: + 394 /* Enable EEE default settings for EEE supported devices */ + 395 if (mac->type >= e1000_i350) + 396 dev_spec->eee_disable = FALSE; +To: + 394 /* Enable EEE default settings for EEE supported devices */ + 395 if (mac->type >= e1000_i350) + 396 dev_spec->eee_disable = TRUE; + +Future work: + +The next step here is to take the osdep portions and merge them. That would +allow us to build one common misc module e1000api that both igb and e1000g +depend on rather than building separate copies of the common code into each +driver. Another potential option which may prove to have less value is to take +all of the gld and ddi logic and have one driver export that leaving e1000g and +igb as small stubs which depend on that. Note however, that the latter is not +how our upstream is currently structuring their igb and em (FreeBSD's e1000g) +drivers. diff --git a/usr/src/uts/common/io/e1000api/README.new b/usr/src/uts/common/io/e1000api/README.new new file mode 100644 index 0000000000..c0abeacccf --- /dev/null +++ b/usr/src/uts/common/io/e1000api/README.new @@ -0,0 +1,406 @@ +$FreeBSD$ +FreeBSD* Driver for Intel Network Connection +============================================= + +May 30, 2007 + + +Contents +======== + +- Overview +- Identifying Your Adapter +- Building and Installation +- Speed and Duplex Configuration +- Additional Configurations +- Known Limitations +- Support +- License + + +Overview +======== + +This file describes the FreeBSD* driver for Intel Network Connection. +This driver has been developed for use with FreeBSD, Release 7.x. + +For questions related to hardware requirements, refer to the documentation +supplied with your Gigabit adapter. All hardware requirements listed +apply to use with FreeBSD. + + +Identifying Your Adapter +======================== + +For information on how to identify your adapter, go to the Adapter & +Driver ID Guide at: + +http://support.intel.com/support/network/sb/cs-012904.htm + + +For the latest Intel network drivers for FreeBSD, see: + +http://downloadfinder.intel.com/scripts-df-external/support_intel.aspx + + +NOTE: Mobile adapters are not fully supported. +NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100 +support. + +Building and Installation +========================= + +NOTE: The driver can be installed as a dynamic loadable kernel module or + compiled into the kernel. You must have kernel sources installed in + order to compile the driver module. + +In the instructions below, x.x.x is the driver version as indicated in the +name of the driver tar file. + +1. Move the base driver tar file to the directory of your choice. For + example, use /home/username/em or /usr/local/src/em. + +2. Untar/unzip the archive: + + tar xzvf em-x.x.x.tar.gz + + This will create an em-x.x.x directory. + +3. To create a loadable module, perform the following steps. + NOTE: To compile the driver into the kernel, go directly to step 4. + + a. To compile the module + + cd em-x.x.x + make + + b. To install the compiled module to the system directory: + + make install + + c. If you want the driver to load automatically when the system is booted: + + 1. Edit /boot/loader.conf, and add the following line: + + if_em_load="YES" + +4. To compile the driver into the kernel, enter: + + cd em-x.x.x/src + cp *.[ch] /usr/src/sys/dev/em + + Edit the kernel configuration file (i.e., GENERIC or MYKERNEL) in + /usr/src/sys/i386/conf, and ensure the following line is present: + + device em + + Compile and install the kernel. The system must be rebooted for the + kernel updates to take effect. For additional information on compiling + the kernel, consult the FreeBSD operating system documentation. + +5. To assign an IP address to the interface, enter the following: + + ifconfig em<interface_num> <IP_address> + +6. Verify that the interface works. Enter the following, where <IP_address> + is the IP address for another machine on the same subnet as the interface + that is being tested: + + ping <IP_address> + +7. To configure the IP address to remain after reboot, edit /etc/rc.conf, + and create the appropriate ifconfig_em<interface_num>entry: + + ifconfig_em<interface_num>="<ifconfig_settings>" + + Example usage: + + ifconfig_em0="inet 192.168.10.1 netmask 255.255.255.0" + + NOTE: For assistance, see the ifconfig man page. + + +Speed and Duplex Configuration +============================== + +By default, the adapter auto-negotiates the speed and duplex of the +connection. If there is a specific need, the ifconfig utility can be used to +configure the speed and duplex settings on the adapter. Example usage: + + ifconfig em<interface_num> <IP_address> media 100baseTX mediaopt + full-duplex + + NOTE: Only use mediaopt to set the driver to full-duplex. If mediaopt is + not specified and you are not running at gigabit speed, the driver + defaults to half-duplex. + +If the interface is currently forced to 100 full duplex, in order to change +to half duplex you must use this command: + + ifconfig em<interface_num> <IP_address> media 100baseTX -mediaopt + full-duplex + + +This driver supports the following media type options: + + autoselect - Enables auto-negotiation for speed and duplex. + + 10baseT/UTP - Sets speed to 10 Mbps. Use the ifconfig mediaopt + option to select full-duplex mode. + + 100baseTX - Sets speed to 100 Mbps. Use the ifconfig mediaopt + option to select full-duplex mode. + + 1000baseTX - Sets speed to 1000 Mbps. In this case, the driver + supports only full-duplex mode. + + 1000baseSX - Sets speed to 1000 Mbps. In this case, the driver + supports only full-duplex mode. + +For more information on the ifconfig utility, see the ifconfig man page. + + +Additional Configurations +========================= + +The driver supports Transmit/Receive Checksum Offload and Jumbo Frames on +all but the 82542-based adapters. For specific adapters, refer to the +Identifying Your Adapter section. + + Jumbo Frames + ------------ + To enable Jumbo Frames, use the ifconfig utility to set the Maximum + Transport Unit (MTU) frame size above its default of 1500 bytes. + + The Jumbo Frames MTU range for Intel Adapters is 1500 to 16110. To modify + the setting, enter the following: + + ifconfig em<interface_num> <hostname or IP address> mtu 9000 + + To confirm the MTU used between two specific devices, use: + + route get <destination_IP_address> + + Notes: + + - Only enable Jumbo Frames if your network infrastructure supports them. + + - To enable Jumbo Frames, increase the MTU size on the interface beyond + 1500. + + - The Jumbo Frames setting on the switch must be set to at least 22 bytes + larger than that of the MTU. + + - The maximum MTU setting for Jumbo Frames is 16110. This value coincides + with the maximum Jumbo Frames size of 16128. + + - Some Intel gigabit adapters that support Jumbo Frames have a frame size + limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes. + The adapters with this limitation are based on the Intel(R) 82571EB, + 82572EI, 82573L, 82566, 82562, and 80003ES2LAN controller. These + correspond to the following product names: + Intel(R) PRO/1000 PT Server Adapter + Intel(R) PRO/1000 PT Desktop Adapter + Intel(R) PRO/1000 PT Network Connection + Intel(R) PRO/1000 PT Dual Port Server Adapter + Intel(R) PRO/1000 PT Dual Port Network Connection + Intel(R) PRO/1000 PT Quad Port Server Adapter + Intel(R) PRO/1000 PF Quad Port Server Adapter + Intel(R) PRO/1000 PF Server Adapter + Intel(R) PRO/1000 PF Network Connection + Intel(R) PRO/1000 PF Dual Port Server Adapter + Intel(R) PRO/1000 PB Server Connection + Intel(R) PRO/1000 PL Network Connection + Intel(R) PRO/1000 EB Network Connection with I/O Acceleration + Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration + Intel(R) 82566DM-2 Gigabit Network Connection + + - Adapters based on the Intel(R) 82542 and 82573V/E controller do not + support Jumbo Frames. These correspond to the following product names: + Intel(R) PRO/1000 Gigabit Server Adapter + Intel(R) PRO/1000 PM Network Connection + + - Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or + loss of link. + + - The following adapters do not support Jumbo Frames: + Intel(R) 82562V 10/100 Network Connection + Intel(R) 82566DM Gigabit Network Connection + Intel(R) 82566DC Gigabit Network Connection + Intel(R) 82566MM Gigabit Network Connection + Intel(R) 82566MC Gigabit Network Connection + Intel(R) 82562GT 10/100 Network Connection + Intel(R) 82562G 10/100 Network Connection + Intel(R) 82566DC-2 Gigabit Network Connection + Intel(R) 82562V-2 10/100 Network Connection + Intel(R) 82562G-2 10/100 Network Connection + Intel(R) 82562GT-2 10/100 Network Connection + + VLANs + ----- + To create a new VLAN interface: + + ifconfig <vlan_name> create + + To associate the VLAN interface with a physical interface and + assign a VLAN ID, IP address, and netmask: + + ifconfig <vlan_name> <ip_address> netmask <subnet_mask> vlan + <vlan_id> vlandev <physical_interface> + + Example: + + ifconfig vlan10 10.0.0.1 netmask 255.255.255.0 vlan 10 vlandev em0 + + In this example, all packets will be marked on egress with 802.1Q VLAN + tags, specifying a VLAN ID of 10. + + To remove a VLAN interface: + + Intel Network Connection ifconfig <vlan_name> destroy + + + Polling + ------- + + To enable polling in the driver, add the following options to the kernel + configuration, and then recompile the kernel: + + options DEVICE_POLLING + options HZ=1000 + + At runtime use: + ifconfig emX polling (to turn polling on) + and: + ifconfig emX -polling (to turn it off) + + + Checksum Offload + ---------------- + Checksum offloading is not supported on 82542 Gigabit adapters. + + Checksum offloading supports both TCP and UDP packets and is + supported for both transmit and receive. + + Checksum offloading can be enabled or disabled using ifconfig. + Both transmit and receive offloading will be either enabled or + disabled together. You cannot enable/disable one without the other. + + To enable checksum offloading: + + ifconfig <interface_num> rxcsum + + To disable checksum offloading: + + ifconfig <interface_num> -rxcsum + + To confirm the current setting: + + ifconfig <interface_num> + + Look for the presence or absence of the following line: + + options=3 <RXCSUM,TXCSUM> + + See the ifconfig man page for further information. + + + TSO + --- + The FreeBSD driver offers support for TSO (TCP Segmentation Offload). + + You can enable/disable it in two ways/places: + + - sysctl net.inet.tcp.tso=0 (or 1 to enable it) + + Doing this disables TSO in the stack and will affect all adapters. + + - ifconfig emX -tso + + Doing this will disable TSO only for this adapter. + + To enable: + + - ifconfig emX tso + + NOTES: By default only PCI-Express adapters are ENABLED to do TSO. Others + can be enabled by the user at their own risk + TSO is not supported on 82547 and 82544-based adapters, as well as older adapters. + + +Known Limitations +================= + + Detected Tx Unit Hang in Quad Port Adapters + ------------------------------------------- + + In some cases ports 3 and 4 wont pass traffic. Ports 1 and 2 don't show + any errors and will pass traffic. + + This issue MAY be resolved by updating to the latest BIOS. You can + check your system's BIOS by downloading the Linux Firmware Developer Kit + that can be obtained at http://www.linuxfirmwarekit.org/ + + + There are known performance issues with this driver when running UDP traffic + with Jumbo Frames. + ---------------------------------------------------------------------------- + + 82541/82547 can't link or is slow to link with some link partners + ----------------------------------------------------------------- + + There is a known compatibility issue where time to link is slow or link is not + established between 82541/82547 controllers and some switches. Known switches + include: + Planex FXG-08TE + I-O Data ETG-SH8 + Netgear GS105v3 + + The driver can be compiled with the following changes: + + Edit ./em.x.x.x/src/if_em.h to change the #define EM_MASTER_SLAVE + For example, change from: + + #define EM_MASTER_SLAVE e1000_ms_hw_default + to: + #define EM_MASTER_SLAVE 2 + + Use one of the following options: + 1 = Master mode + 2 = Slave mode + 3 = Auto master/slave + Setting 2 is recommended. + + Recompile the module: + a. To compile the module + cd em-x.x.x + make clean + make + + b. To install the compiled module in system directory: + make install + + +Support +======= + +For general information and support, go to the Intel support website at: + + http://support.intel.com + +If an issue is identified, support is through email only at: +freebsd@intel.com + + +License +======= + +This software program is released under the terms of a license agreement +between you ('Licensee') and Intel. Do not use or load this software or any +associated materials (collectively, the 'Software') until you have carefully +read the full terms and conditions of the LICENSE located in this software +package. By loading or using the Software, you agree to the terms of this +Agreement. If you do not agree with the terms of this Agreement, do not +install or use the Software. + +* Other names and brands may be claimed as the property of others. diff --git a/usr/src/uts/common/io/e1000api/THIRDPARTYLICENSE b/usr/src/uts/common/io/e1000api/THIRDPARTYLICENSE new file mode 100644 index 0000000000..45da860697 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/THIRDPARTYLICENSE @@ -0,0 +1,21 @@ +# +# This file is provided under a CDDLv1 license. When using or +# redistributing this file, you may do so under this license. +# In redistributing this file this license must be included +# and no other modification of this header file is permitted. +# +# CDDL LICENSE SUMMARY +# +# Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. +# +# The contents of this file are subject to the terms of Version +# 1.0 of the Common Development and Distribution License (the "License"). +# +# You should have received a copy of the License with this software. +# You can obtain a copy of the License at +# http://www.opensolaris.org/os/licensing. +# See the License for the specific language governing permissions +# and limitations under the License. +# +# Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. +# diff --git a/usr/src/uts/common/io/e1000api/THIRDPARTYLICENSE.descrip b/usr/src/uts/common/io/e1000api/THIRDPARTYLICENSE.descrip new file mode 100644 index 0000000000..960d2c5cec --- /dev/null +++ b/usr/src/uts/common/io/e1000api/THIRDPARTYLICENSE.descrip @@ -0,0 +1 @@ +INTEL E1000G DRIVER diff --git a/usr/src/uts/common/io/e1000g/e1000_80003es2lan.c b/usr/src/uts/common/io/e1000api/e1000_80003es2lan.c index 2d33c22c22..bdbb31cfdb 100644 --- a/usr/src/uts/common/io/e1000g/e1000_80003es2lan.c +++ b/usr/src/uts/common/io/e1000api/e1000_80003es2lan.c @@ -1,91 +1,98 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ +/****************************************************************************** + + Copyright (c) 2001-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ /* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.86 v3-1-10-1_2009-9-18_Release14-6 - */ -/* * 80003ES2LAN Gigabit Ethernet Controller (Copper) * 80003ES2LAN Gigabit Ethernet Controller (Serdes) */ #include "e1000_api.h" -static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw); -static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw); -static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw); +static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); static void e1000_release_phy_80003es2lan(struct e1000_hw *hw); -static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw); -static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 *data); -static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 data); -static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); -static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); -static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); -static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); -static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, + u16 *data); +static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, + u16 data); +static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); +static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); +static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); +static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); -static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); -static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); -static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); -static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); -static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 *data); +static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); +static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); +static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); +static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); +static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 *data); static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 data); -static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw); + u16 data); +static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw); static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); -static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); /* - * A table for the GG82563 cable length where the range is defined with a - * lower bound at "index" and the upper bound at "index + 5". - */ -static const u16 e1000_gg82563_cable_length_table[] = - {0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF}; - -#define GG82563_CABLE_LENGTH_TABLE_SIZE \ - (sizeof (e1000_gg82563_cable_length_table) / \ - sizeof (e1000_gg82563_cable_length_table[0])) - -/* - * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. - * @hw: pointer to the HW structure + * A table for the GG82563 cable length where the range is defined + * with a lower bound at "index" and the upper bound at + * "index + 5". */ -static s32 -e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) +static const u16 e1000_gg82563_cable_length_table[] = { + 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; +#define GG82563_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_gg82563_cable_length_table) / \ + sizeof(e1000_gg82563_cable_length_table[0])) + +/** + * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; @@ -100,25 +107,25 @@ e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; } - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - phy->type = e1000_phy_gg82563; + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + phy->type = e1000_phy_gg82563; - phy->ops.acquire = e1000_acquire_phy_80003es2lan; - phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.acquire = e1000_acquire_phy_80003es2lan; + phy->ops.check_polarity = e1000_check_polarity_m88; phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.release = e1000_release_phy_80003es2lan; - phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.release = e1000_release_phy_80003es2lan; + phy->ops.reset = e1000_phy_hw_reset_generic; phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan; phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan; - phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; - phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; + phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; + phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan; @@ -132,15 +139,14 @@ e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) } out: - return (ret_val); + return ret_val; } -/* - * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) +/** + * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); @@ -168,7 +174,7 @@ e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) nvm->type = e1000_nvm_eeprom_spi; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); + E1000_EECD_SIZE_EX_SHIFT); /* * Added to a constant, "size" becomes the left-shift value @@ -182,36 +188,40 @@ e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) nvm->word_size = 1 << size; /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; - nvm->ops.read = e1000_read_nvm_eerd; - nvm->ops.release = e1000_release_nvm_80003es2lan; - nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.release = e1000_release_nvm_80003es2lan; + nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_80003es2lan; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_80003es2lan; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) +/** + * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_init_mac_params_80003es2lan"); - /* Set media type */ + /* Set media type and media-dependent function pointers */ switch (hw->device_id) { case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: hw->phy.media_type = e1000_media_type_internal_serdes; + mac->ops.check_for_link = e1000_check_for_serdes_link_generic; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_generic; break; default: hw->phy.media_type = e1000_media_type_copper; + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + mac->ops.setup_physical_interface = + e1000_setup_copper_link_80003es2lan; break; } @@ -220,11 +230,14 @@ e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* Set if manageability features are enabled. */ - mac->arc_subsystem_valid = - (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) - ? true : false; + mac->asf_firmware_present = TRUE; + /* FWSM register */ + mac->has_fwsm = TRUE; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = (E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_MODE_MASK) ? TRUE : FALSE; + /* Adaptive IFS not supported */ + mac->adaptive_ifs = FALSE; /* Function pointers */ @@ -236,26 +249,6 @@ e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) mac->ops.init_hw = e1000_init_hw_80003es2lan; /* link setup */ mac->ops.setup_link = e1000_setup_link_generic; - /* physical interface link setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_80003es2lan - : e1000_setup_fiber_serdes_link_generic; - /* check for link */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - mac->ops.check_for_link = e1000_check_for_copper_link_generic; - break; - case e1000_media_type_fiber: - mac->ops.check_for_link = e1000_check_for_fiber_link_generic; - break; - case e1000_media_type_internal_serdes: - mac->ops.check_for_link = e1000_check_for_serdes_link_generic; - break; - default: - ret_val = -E1000_ERR_CONFIG; - goto out; - } /* check management mode */ mac->ops.check_mng_mode = e1000_check_mng_mode_generic; /* multicast address update */ @@ -264,8 +257,6 @@ e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_generic; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan; /* ID LED init */ @@ -286,18 +277,17 @@ e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) /* set lan id for port to determine which phy lock to use */ hw->mac.ops.set_lan_id(hw); -out: - return (ret_val); + + return E1000_SUCCESS; } -/* - * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. - * @hw: pointer to the HW structure +/** + * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. + * @hw: pointer to the HW structure * - * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_80003es2lan"); @@ -306,32 +296,29 @@ e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan; } -/* - * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY - * @hw: pointer to the HW structure +/** + * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY + * @hw: pointer to the HW structure * - * A wrapper to acquire access rights to the correct PHY. - */ -static s32 -e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) + * A wrapper to acquire access rights to the correct PHY. + **/ +static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) { u16 mask; DEBUGFUNC("e1000_acquire_phy_80003es2lan"); mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; - - return (e1000_acquire_swfw_sync_80003es2lan(hw, mask)); + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); } -/* - * e1000_release_phy_80003es2lan - Release rights to access PHY - * @hw: pointer to the HW structure +/** + * e1000_release_phy_80003es2lan - Release rights to access PHY + * @hw: pointer to the HW structure * - * A wrapper to release access rights to the correct PHY. - */ -static void -e1000_release_phy_80003es2lan(struct e1000_hw *hw) + * A wrapper to release access rights to the correct PHY. + **/ +static void e1000_release_phy_80003es2lan(struct e1000_hw *hw) { u16 mask; @@ -341,15 +328,14 @@ e1000_release_phy_80003es2lan(struct e1000_hw *hw) e1000_release_swfw_sync_80003es2lan(hw, mask); } -/* - * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register - * @hw: pointer to the HW structure +/** + * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register + * @hw: pointer to the HW structure * - * Acquire the semaphore to access the Kumeran interface. + * Acquire the semaphore to access the Kumeran interface. * - */ -static s32 -e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) + **/ +static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) { u16 mask; @@ -357,17 +343,16 @@ e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) mask = E1000_SWFW_CSR_SM; - return (e1000_acquire_swfw_sync_80003es2lan(hw, mask)); + return e1000_acquire_swfw_sync_80003es2lan(hw, mask); } -/* - * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register - * @hw: pointer to the HW structure +/** + * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register + * @hw: pointer to the HW structure * - * Release the semaphore used to access the Kumeran interface - */ -static void -e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) + * Release the semaphore used to access the Kumeran interface + **/ +static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) { u16 mask; @@ -378,14 +363,13 @@ e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) e1000_release_swfw_sync_80003es2lan(hw, mask); } -/* - * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM - * @hw: pointer to the HW structure +/** + * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM + * @hw: pointer to the HW structure * - * Acquire the semaphore to access the EEPROM. - */ -static s32 -e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) + * Acquire the semaphore to access the EEPROM. + **/ +static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) { s32 ret_val; @@ -401,17 +385,16 @@ e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); out: - return (ret_val); + return ret_val; } -/* - * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM - * @hw: pointer to the HW structure +/** + * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM + * @hw: pointer to the HW structure * - * Release the semaphore used to access the EEPROM. - */ -static void -e1000_release_nvm_80003es2lan(struct e1000_hw *hw) + * Release the semaphore used to access the EEPROM. + **/ +static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_80003es2lan"); @@ -419,16 +402,15 @@ e1000_release_nvm_80003es2lan(struct e1000_hw *hw) e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); } -/* - * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire +/** + * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - */ -static s32 -e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; u32 swmask = mask; @@ -469,27 +451,25 @@ e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) e1000_put_hw_semaphore_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire +/** + * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - */ -static void -e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; DEBUGFUNC("e1000_release_swfw_sync_80003es2lan"); - while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) { - /* Empty */ - } + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) + ; /* Empty */ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); swfw_sync &= ~mask; @@ -498,17 +478,16 @@ e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) e1000_put_hw_semaphore_generic(hw); } -/* - * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @data: pointer to the data returned from the operation +/** + * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: pointer to the data returned from the operation * - * Read the GG82563 PHY register. - */ -static s32 -e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 *data) + * Read the GG82563 PHY register. + **/ +static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 *data) { s32 ret_val; u32 page_select; @@ -538,7 +517,7 @@ e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, goto out; } - if (hw->dev_spec._80003es2lan.mdic_wa_enable == true) { + if (hw->dev_spec._80003es2lan.mdic_wa_enable == TRUE) { /* * The "ready" bit in the MDIC register may be incorrectly set * before the device has completed the "Page Select" MDI @@ -558,32 +537,32 @@ e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, usec_delay(200); ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); + MAX_PHY_REG_ADDRESS & offset, + data); usec_delay(200); - } else + } else { ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); + MAX_PHY_REG_ADDRESS & offset, + data); + } e1000_release_phy_80003es2lan(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @data: value to write to the register +/** + * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @data: value to write to the register * - * Write to the GG82563 PHY register. - */ -static s32 -e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 data) + * Write to the GG82563 PHY register. + **/ +static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, + u32 offset, u16 data) { s32 ret_val; u32 page_select; @@ -613,7 +592,7 @@ e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, goto out; } - if (hw->dev_spec._80003es2lan.mdic_wa_enable == true) { + if (hw->dev_spec._80003es2lan.mdic_wa_enable == TRUE) { /* * The "ready" bit in the MDIC register may be incorrectly set * before the device has completed the "Page Select" MDI @@ -633,48 +612,47 @@ e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, usec_delay(200); ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); + MAX_PHY_REG_ADDRESS & offset, + data); usec_delay(200); - } else + } else { ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); + MAX_PHY_REG_ADDRESS & offset, + data); + } e1000_release_phy_80003es2lan(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_write_nvm_80003es2lan - Write to ESB2 NVM - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @words: number of words to write - * @data: buffer of data to write to the NVM +/** + * e1000_write_nvm_80003es2lan - Write to ESB2 NVM + * @hw: pointer to the HW structure + * @offset: offset of the register to read + * @words: number of words to write + * @data: buffer of data to write to the NVM * - * Write "words" of data to the ESB2 NVM. - */ -static s32 -e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) + * Write "words" of data to the ESB2 NVM. + **/ +static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) { DEBUGFUNC("e1000_write_nvm_80003es2lan"); - return (e1000_write_nvm_spi(hw, offset, words, data)); + return e1000_write_nvm_spi(hw, offset, words, data); } -/* - * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete - * @hw: pointer to the HW structure +/** + * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete + * @hw: pointer to the HW structure * - * Wait a specific amount of time for manageability processes to complete. - * This is a function pointer entry point called by the phy module. - */ -static s32 -e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) + * Wait a specific amount of time for manageability processes to complete. + * This is a function pointer entry point called by the phy module. + **/ +static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; s32 ret_val = E1000_SUCCESS; @@ -698,18 +676,17 @@ e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) } out: - return (ret_val); + return ret_val; } -/* - * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex - * @hw: pointer to the HW structure +/** + * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex + * @hw: pointer to the HW structure * - * Force the speed and duplex settings onto the PHY. This is a - * function pointer entry point called by the phy module. - */ -static s32 -e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) + * Force the speed and duplex settings onto the PHY. This is a + * function pointer entry point called by the phy module. + **/ +static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 phy_data; @@ -751,11 +728,10 @@ e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) usec_delay(1); if (hw->phy.autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link " - "on GG82563 phy.\n"); + DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n"); ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); + 100000, &link); if (ret_val) goto out; @@ -771,13 +747,13 @@ e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) /* Try once more */ ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); + 100000, &link); if (ret_val) goto out; } - ret_val = - hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + &phy_data); if (ret_val) goto out; @@ -796,22 +772,21 @@ e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) * duplex. */ phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - ret_val = - hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, + phy_data); out: - return (ret_val); + return ret_val; } -/* - * e1000_get_cable_length_80003es2lan - Set approximate cable length - * @hw: pointer to the HW structure +/** + * e1000_get_cable_length_80003es2lan - Set approximate cable length + * @hw: pointer to the HW structure * - * Find the approximate cable length as measured by the GG82563 PHY. - * This is a function pointer entry point called by the phy module. - */ -static s32 -e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) + * Find the approximate cable length as measured by the GG82563 PHY. + * This is a function pointer entry point called by the phy module. + **/ +static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; @@ -829,7 +804,7 @@ e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) index = phy_data & GG82563_DSPD_CABLE_LENGTH; if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) { - ret_val = E1000_ERR_PHY; + ret_val = -E1000_ERR_PHY; goto out; } @@ -839,46 +814,44 @@ e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: - return (ret_val); + return ret_val; } -/* - * e1000_get_link_up_info_80003es2lan - Report speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to speed buffer - * @duplex: pointer to duplex buffer +/** + * e1000_get_link_up_info_80003es2lan - Report speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to speed buffer + * @duplex: pointer to duplex buffer * - * Retrieve the current speed and duplex configuration. - */ -static s32 -e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) + * Retrieve the current speed and duplex configuration. + **/ +static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) { s32 ret_val; DEBUGFUNC("e1000_get_link_up_info_80003es2lan"); if (hw->phy.media_type == e1000_media_type_copper) { - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, - speed, - duplex); + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); hw->phy.ops.cfg_on_link_up(hw); } else { ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw, - speed, - duplex); + speed, + duplex); } - return (ret_val); + return ret_val; } -/* - * e1000_reset_hw_80003es2lan - Reset the ESB2 controller - * @hw: pointer to the HW structure +/** + * e1000_reset_hw_80003es2lan - Reset the ESB2 controller + * @hw: pointer to the HW structure * - * Perform a global reset to the ESB2 controller. - */ -static s32 -e1000_reset_hw_80003es2lan(struct e1000_hw *hw) + * Perform a global reset to the ESB2 controller. + **/ +static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; @@ -890,10 +863,8 @@ e1000_reset_hw_80003es2lan(struct e1000_hw *hw) * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) { - /* EMPTY */ + if (ret_val) DEBUGOUT("PCI-E Master disable polling has failed.\n"); - } DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); @@ -918,26 +889,26 @@ e1000_reset_hw_80003es2lan(struct e1000_hw *hw) /* Clear any pending interrupt events. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); + E1000_READ_REG(hw, E1000_ICR); ret_val = e1000_check_alt_mac_addr_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_init_hw_80003es2lan - Initialize the ESB2 controller - * @hw: pointer to the HW structure +/** + * e1000_init_hw_80003es2lan - Initialize the ESB2 controller + * @hw: pointer to the HW structure * - * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. - */ -static s32 -e1000_init_hw_80003es2lan(struct e1000_hw *hw) + * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. + **/ +static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 reg_data; s32 ret_val; + u16 kum_reg_data; u16 i; DEBUGFUNC("e1000_init_hw_80003es2lan"); @@ -946,11 +917,9 @@ e1000_init_hw_80003es2lan(struct e1000_hw *hw) /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - /* EMPTY */ + if (ret_val) DEBUGOUT("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ - } /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); @@ -967,16 +936,23 @@ e1000_init_hw_80003es2lan(struct e1000_hw *hw) /* Setup link and flow control */ ret_val = mac->ops.setup_link(hw); + /* Disable IBIST slave mode (far-end loopback) */ + e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + &kum_reg_data); + kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; + e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, + kum_reg_data); + /* Set the transmit descriptor write-back policy */ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); /* ...for both queues. */ reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); /* Enable retransmit on late collisions */ @@ -1000,17 +976,17 @@ e1000_init_hw_80003es2lan(struct e1000_hw *hw) reg_data &= ~0x00100000; E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); - /* default to true to enable the MDIC W/A */ - hw->dev_spec._80003es2lan.mdic_wa_enable = true; + /* default to TRUE to enable the MDIC W/A */ + hw->dev_spec._80003es2lan.mdic_wa_enable = TRUE; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET >> - E1000_KMRNCTRLSTA_OFFSET_SHIFT, - &i); + E1000_KMRNCTRLSTA_OFFSET >> + E1000_KMRNCTRLSTA_OFFSET_SHIFT, + &i); if (!ret_val) { if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == - E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) - hw->dev_spec._80003es2lan.mdic_wa_enable = false; + E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) + hw->dev_spec._80003es2lan.mdic_wa_enable = FALSE; } /* @@ -1021,17 +997,16 @@ e1000_init_hw_80003es2lan(struct e1000_hw *hw) */ e1000_clear_hw_cntrs_80003es2lan(hw); - return (ret_val); + return ret_val; } -/* - * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 - * @hw: pointer to the HW structure +/** + * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 + * @hw: pointer to the HW structure * - * Initializes required hardware-dependent bits needed for normal operation. - */ -static void -e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) + * Initializes required hardware-dependent bits needed for normal operation. + **/ +static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) { u32 reg; @@ -1049,7 +1024,7 @@ e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); - reg &= ~(0xF << 27); /* 30:27 */ + reg &= ~(0xF << 27); /* 30:27 */ if (hw->phy.media_type != e1000_media_type_copper) reg &= ~(1 << 20); E1000_WRITE_REG(hw, E1000_TARC(0), reg); @@ -1061,16 +1036,17 @@ e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) else reg |= (1 << 28); E1000_WRITE_REG(hw, E1000_TARC(1), reg); + + return; } -/* - * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link - * @hw: pointer to the HW structure +/** + * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link + * @hw: pointer to the HW structure * - * Setup some GG82563 PHY registers for obtaining link - */ -static s32 -e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) + * Setup some GG82563 PHY registers for obtaining link + **/ +static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; @@ -1079,92 +1055,82 @@ e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan"); - if (!phy->reset_disable) { - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - &data); - if (ret_val) - goto out; - - data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ - data |= GG82563_MSCR_TX_CLK_1000MBPS_25; + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); + if (ret_val) + goto out; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - data); - if (ret_val) - goto out; + data |= GG82563_MSCR_ASSERT_CRS_ON_TX; + /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ + data |= GG82563_MSCR_TX_CLK_1000MBPS_25; - /* - * Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - ret_val = - hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); - if (ret_val) - goto out; + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data); + if (ret_val) + goto out; - data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; + /* + * Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); + if (ret_val) + goto out; - switch (phy->mdix) { - case 1: - data |= GG82563_PSCR_CROSSOVER_MODE_MDI; - break; - case 2: - data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; - break; - case 0: - default: - data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; - break; - } + data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; - /* - * Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if (phy->disable_polarity_correction) - data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + switch (phy->mdix) { + case 1: + data |= GG82563_PSCR_CROSSOVER_MODE_MDI; + break; + case 2: + data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; + break; + case 0: + default: + data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; + break; + } - ret_val = - hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); - if (ret_val) - goto out; + /* + * Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; + if (phy->disable_polarity_correction) + data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - /* SW Reset the PHY so all changes take effect */ - ret_val = hw->phy.ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - goto out; - } + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); + if (ret_val) + goto out; + /* SW Reset the PHY so all changes take effect */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + goto out; } /* Bypass Rx and Tx FIFO's */ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, - E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | - E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); + E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL, + E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | + E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); if (ret_val) goto out; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, - &data); + E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, &data); if (ret_val) goto out; - data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, - data); + E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE, data); if (ret_val) goto out; @@ -1194,19 +1160,18 @@ e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) /* Enable Electrical Idle on the PHY */ data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, - data); + data); if (ret_val) goto out; - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - &data); + ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + &data); if (ret_val) goto out; data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - data); - + data); if (ret_val) goto out; } @@ -1225,18 +1190,17 @@ e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) goto out; out: - return (ret_val); + return ret_val; } -/* - * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 - * @hw: pointer to the HW structure +/** + * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 + * @hw: pointer to the HW structure * - * Essentially a wrapper for setting up all things "copper" related. - * This is a function pointer entry point called by the mac module. - */ -static s32 -e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) + * Essentially a wrapper for setting up all things "copper" related. + * This is a function pointer entry point called by the mac module. + **/ +static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; @@ -1255,27 +1219,25 @@ e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) * polling the phy; this fixes erroneous timeouts at 10Mbps. */ ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), - 0xFFFF); + 0xFFFF); if (ret_val) goto out; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), - ®_data); + ®_data); if (ret_val) goto out; reg_data |= 0x3F; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), - reg_data); + reg_data); if (ret_val) goto out; ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, - ®_data); + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, ®_data); if (ret_val) goto out; reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, - reg_data); + E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, reg_data); if (ret_val) goto out; @@ -1286,19 +1248,18 @@ e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) ret_val = e1000_setup_copper_link_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up - * @hw: pointer to the HW structure - * @duplex: current duplex setting +/** + * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up + * @hw: pointer to the HW structure + * @duplex: current duplex setting * - * Configure the KMRN interface by applying last minute quirks for - * 10/100 operation. - */ -static s32 -e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 speed; @@ -1307,10 +1268,8 @@ e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) DEBUGFUNC("e1000_configure_on_link_up"); if (hw->phy.media_type == e1000_media_type_copper) { - - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, - &speed, - &duplex); + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed, + &duplex); if (ret_val) goto out; @@ -1321,19 +1280,18 @@ e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) } out: - return (ret_val); + return ret_val; } -/* - * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation - * @hw: pointer to the HW structure - * @duplex: current duplex setting +/** + * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation + * @hw: pointer to the HW structure + * @duplex: current duplex setting * - * Configure the KMRN interface by applying last minute quirks for - * 10/100 operation. - */ -static s32 -e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) + * Configure the KMRN interface by applying last minute quirks for + * 10/100 operation. + **/ +static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) { s32 ret_val = E1000_SUCCESS; u32 tipg; @@ -1344,8 +1302,8 @@ e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, - reg_data); + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, + reg_data); if (ret_val) goto out; @@ -1355,15 +1313,14 @@ e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; E1000_WRITE_REG(hw, E1000_TIPG, tipg); - do { ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data); + ®_data); if (ret_val) goto out; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data2); + ®_data2); if (ret_val) goto out; i++; @@ -1374,22 +1331,21 @@ e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) else reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = - hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + reg_data); out: - return (ret_val); + return ret_val; } -/* - * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation - * @hw: pointer to the HW structure +/** + * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation + * @hw: pointer to the HW structure * - * Configure the KMRN interface by applying last minute quirks for - * gigabit operation. - */ -static s32 -e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) + * Configure the KMRN interface by applying last minute quirks for + * gigabit operation. + **/ +static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 reg_data, reg_data2; @@ -1400,8 +1356,7 @@ e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; ret_val = e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, - reg_data); + E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, reg_data); if (ret_val) goto out; @@ -1411,40 +1366,39 @@ e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; E1000_WRITE_REG(hw, E1000_TIPG, tipg); - do { ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data); + ®_data); if (ret_val) goto out; ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data2); + ®_data2); if (ret_val) goto out; i++; } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = - hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); + ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, + reg_data); out: - return (ret_val); + return ret_val; } -/* - * e1000_read_kmrn_reg_80003es2lan - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data +/** + * e1000_read_kmrn_reg_80003es2lan - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data * - * Acquire semaphore, then read the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release the semaphore before exiting. - */ -static s32 -e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) + * Acquire semaphore, then read the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release the semaphore before exiting. + **/ +static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 *data) { u32 kmrnctrlsta; s32 ret_val = E1000_SUCCESS; @@ -1456,8 +1410,9 @@ e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) goto out; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); usec_delay(2); @@ -1467,21 +1422,21 @@ e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 *data) e1000_release_mac_csr_80003es2lan(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_write_kmrn_reg_80003es2lan - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset +/** + * e1000_write_kmrn_reg_80003es2lan - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset * - * Acquire semaphore, then write the data to PHY register - * at the offset using the kumeran interface. Release semaphore - * before exiting. - */ -static s32 -e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data) + * Acquire semaphore, then write the data to PHY register + * at the offset using the kumeran interface. Release semaphore + * before exiting. + **/ +static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, + u16 data) { u32 kmrnctrlsta; s32 ret_val = E1000_SUCCESS; @@ -1493,27 +1448,28 @@ e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, u16 data) goto out; kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_KMRNCTRLSTA_OFFSET) | data; E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); usec_delay(2); e1000_release_mac_csr_80003es2lan(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_read_mac_addr_80003es2lan - Read device MAC address - * @hw: pointer to the HW structure - */ -static s32 -e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) +/** + * e1000_read_mac_addr_80003es2lan - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_read_mac_addr_80003es2lan"); + /* * If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm @@ -1526,70 +1482,70 @@ e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) ret_val = e1000_read_mac_addr_generic(hw); out: - return (ret_val); + return ret_val; } -/* +/** * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. - */ -static void -e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) + **/ +static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(hw->mac.ops.check_mng_mode(hw) || - hw->phy.ops.check_reset_block(hw))) + hw->phy.ops.check_reset_block(hw))) e1000_power_down_phy_copper(hw); + + return; } -/* - * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters - * @hw: pointer to the HW structure +/** + * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters + * @hw: pointer to the HW structure * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan"); e1000_clear_hw_cntrs_base_generic(hw); - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); - - (void) E1000_READ_REG(hw, E1000_MGTPRC); - (void) E1000_READ_REG(hw, E1000_MGTPDC); - (void) E1000_READ_REG(hw, E1000_MGTPTC); - - (void) E1000_READ_REG(hw, E1000_IAC); - (void) E1000_READ_REG(hw, E1000_ICRXOC); - - (void) E1000_READ_REG(hw, E1000_ICRXPTC); - (void) E1000_READ_REG(hw, E1000_ICRXATC); - (void) E1000_READ_REG(hw, E1000_ICTXPTC); - (void) E1000_READ_REG(hw, E1000_ICTXATC); - (void) E1000_READ_REG(hw, E1000_ICTXQEC); - (void) E1000_READ_REG(hw, E1000_ICTXQMTC); - (void) E1000_READ_REG(hw, E1000_ICRXDMTC); + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); } diff --git a/usr/src/uts/common/io/e1000api/e1000_80003es2lan.h b/usr/src/uts/common/io/e1000api/e1000_80003es2lan.h new file mode 100644 index 0000000000..38d4cc0f38 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_80003es2lan.h @@ -0,0 +1,111 @@ +/****************************************************************************** + + Copyright (c) 2001-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_80003ES2LAN_H_ +#define _E1000_80003ES2LAN_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 +#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 +#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 +#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F + +#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 +#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 +#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 + +#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 +#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 +#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 + +#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C +#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 + +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ +#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 + +#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 +#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 + +/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ +#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */ +#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 +#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ +#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ +#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ + +/* PHY Specific Control Register 2 (Page 0, Register 26) */ +#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Nego */ + +/* MAC Specific Control Register (Page 2, Register 21) */ +/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ +#define GG82563_MSCR_TX_CLK_MASK 0x0007 +#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 +#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 +#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006 +#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 + +#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ + +/* DSP Distance Register (Page 5, Register 26) */ +/* + * 0 = <50M + * 1 = 50-80M + * 2 = 80-100M + * 3 = 110-140M + * 4 = >140M + */ +#define GG82563_DSPD_CABLE_LENGTH 0x0007 + +/* Kumeran Mode Control Register (Page 193, Register 16) */ +#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 + +/* Max number of times Kumeran read/write should be validated */ +#define GG82563_MAX_KMRN_RETRY 0x5 + +/* Power Management Control Register (Page 193, Register 20) */ +/* 1=Enable SERDES Electrical Idle */ +#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 + +/* In-Band Control Register (Page 194, Register 18) */ +#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_80003ES2LAN_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_82540.c b/usr/src/uts/common/io/e1000api/e1000_82540.c index e17c529c5b..141b92e208 100644 --- a/usr/src/uts/common/io/e1000g/e1000_82540.c +++ b/usr/src/uts/common/io/e1000api/e1000_82540.c @@ -1,31 +1,36 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.57 v3-1-10-1_2009-9-18_Release14-6 - */ +/****************************************************************************** + + Copyright (c) 2001-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ /* * 82540EM Gigabit Ethernet Controller @@ -40,47 +45,46 @@ #include "e1000_api.h" -static s32 e1000_init_phy_params_82540(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82540(struct e1000_hw *hw); -static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); +static s32 e1000_init_phy_params_82540(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82540(struct e1000_hw *hw); +static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw); -static s32 e1000_init_hw_82540(struct e1000_hw *hw); -static s32 e1000_reset_hw_82540(struct e1000_hw *hw); -static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); -static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); -static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); +static s32 e1000_init_hw_82540(struct e1000_hw *hw); +static s32 e1000_reset_hw_82540(struct e1000_hw *hw); +static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); +static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw); -static s32 e1000_read_mac_addr_82540(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82540(struct e1000_hw *hw); -/* +/** * e1000_init_phy_params_82540 - Init PHY func ptrs. * @hw: pointer to the HW structure - */ -static s32 -e1000_init_phy_params_82540(struct e1000_hw *hw) + **/ +static s32 e1000_init_phy_params_82540(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 10000; - phy->type = e1000_phy_m88; + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; /* Function Pointers */ - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.read_reg = e1000_read_phy_reg_m88; - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.write_reg = e1000_write_phy_reg_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82540; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.write_reg = e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82540; ret_val = e1000_get_phy_id(hw); if (ret_val) @@ -99,18 +103,18 @@ e1000_init_phy_params_82540(struct e1000_hw *hw) default: ret_val = -E1000_ERR_PHY; goto out; + break; } out: - return (ret_val); + return ret_val; } -/* +/** * e1000_init_nvm_params_82540 - Init NVM func ptrs. * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_82540(struct e1000_hw *hw) + **/ +static s32 e1000_init_nvm_params_82540(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = E1000_READ_REG(hw, E1000_EECD); @@ -136,23 +140,22 @@ e1000_init_nvm_params_82540(struct e1000_hw *hw) } /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_generic; - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.release = e1000_release_nvm_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* +/** * e1000_init_mac_params_82540 - Init MAC func ptrs. * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_82540(struct e1000_hw *hw) + **/ +static s32 e1000_init_mac_params_82540(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; @@ -195,9 +198,9 @@ e1000_init_mac_params_82540(struct e1000_hw *hw) mac->ops.setup_link = e1000_setup_link_generic; /* physical interface setup */ mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82540 - : e1000_setup_fiber_serdes_link_82540; + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82540 + : e1000_setup_fiber_serdes_link_82540; /* check for link */ switch (hw->phy.media_type) { case e1000_media_type_copper: @@ -212,26 +215,25 @@ e1000_init_mac_params_82540(struct e1000_hw *hw) default: ret_val = -E1000_ERR_CONFIG; goto out; + break; } /* link info */ mac->ops.get_link_up_info = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_get_speed_and_duplex_copper_generic - : e1000_get_speed_and_duplex_fiber_serdes_generic; + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82540; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* setup LED */ mac->ops.setup_led = e1000_setup_led_generic; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82540; /* cleanup LED */ mac->ops.cleanup_led = e1000_cleanup_led_generic; /* turn on/off LED */ @@ -241,17 +243,16 @@ e1000_init_mac_params_82540(struct e1000_hw *hw) mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540; out: - return (ret_val); + return ret_val; } -/* +/** * e1000_init_function_pointers_82540 - Init func ptrs. * @hw: pointer to the HW structure * * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_82540(struct e1000_hw *hw) + **/ +void e1000_init_function_pointers_82540(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82540"); @@ -260,14 +261,13 @@ e1000_init_function_pointers_82540(struct e1000_hw *hw) hw->phy.ops.init_params = e1000_init_phy_params_82540; } -/* - * e1000_reset_hw_82540 - Reset hardware - * @hw: pointer to the HW structure +/** + * e1000_reset_hw_82540 - Reset hardware + * @hw: pointer to the HW structure * - * This resets the hardware into a known state. - */ -static s32 -e1000_reset_hw_82540(struct e1000_hw *hw) + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82540(struct e1000_hw *hw) { u32 ctrl, manc; s32 ret_val = E1000_SUCCESS; @@ -314,19 +314,18 @@ e1000_reset_hw_82540(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_MANC, manc); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); + E1000_READ_REG(hw, E1000_ICR); - return (ret_val); + return ret_val; } -/* - * e1000_init_hw_82540 - Initialize hardware - * @hw: pointer to the HW structure +/** + * e1000_init_hw_82540 - Initialize hardware + * @hw: pointer to the HW structure * - * This inits the hardware readying it for operation. - */ -static s32 -e1000_init_hw_82540(struct e1000_hw *hw) + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82540(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 txdctl, ctrl_ext; @@ -338,7 +337,6 @@ e1000_init_hw_82540(struct e1000_hw *hw) /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); if (ret_val) { - /* EMPTY */ DEBUGOUT("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ } @@ -376,7 +374,7 @@ e1000_init_hw_82540(struct e1000_hw *hw) txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_TXDCTL_FULL_TX_DESC_WB; E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); /* @@ -397,20 +395,20 @@ e1000_init_hw_82540(struct e1000_hw *hw) ctrl_ext |= E1000_CTRL_EXT_RO_DIS; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); } - return (ret_val); + + return ret_val; } -/* - * e1000_setup_copper_link_82540 - Configure copper link settings - * @hw: pointer to the HW structure +/** + * e1000_setup_copper_link_82540 - Configure copper link settings + * @hw: pointer to the HW structure * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - */ -static s32 -e1000_setup_copper_link_82540(struct e1000_hw *hw) + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +static s32 e1000_setup_copper_link_82540(struct e1000_hw *hw) { u32 ctrl; s32 ret_val = E1000_SUCCESS; @@ -429,16 +427,17 @@ e1000_setup_copper_link_82540(struct e1000_hw *hw) if (hw->mac.type == e1000_82545_rev_3 || hw->mac.type == e1000_82546_rev_3) { - ret_val = - hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &data); + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, + &data); if (ret_val) goto out; data |= 0x00000008; - ret_val = - hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, data); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + data); if (ret_val) goto out; } + ret_val = e1000_copper_link_setup_m88(hw); if (ret_val) goto out; @@ -446,20 +445,19 @@ e1000_setup_copper_link_82540(struct e1000_hw *hw) ret_val = e1000_setup_copper_link_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes - * @hw: pointer to the HW structure +/** + * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes + * @hw: pointer to the HW structure * - * Set the output amplitude to the value in the EEPROM and adjust the VCO - * speed to improve Bit Error Rate (BER) performance. Configures collision - * distance and flow control for fiber and serdes links. Upon successful - * setup, poll for link. - */ -static s32 -e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) + * Set the output amplitude to the value in the EEPROM and adjust the VCO + * speed to improve Bit Error Rate (BER) performance. Configures collision + * distance and flow control for fiber and serdes links. Upon successful + * setup, poll for link. + **/ +static s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; @@ -489,17 +487,16 @@ e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) ret_val = e1000_setup_fiber_serdes_link_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM - * @hw: pointer to the HW structure +/** + * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM + * @hw: pointer to the HW structure * - * Adjust the SERDES output amplitude based on the EEPROM settings. - */ -static s32 -e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) + * Adjust the SERDES output amplitude based on the EEPROM settings. + **/ +static s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 nvm_data; @@ -513,26 +510,25 @@ e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) if (nvm_data != NVM_RESERVED_WORD) { /* Adjust serdes output amplitude only. */ nvm_data &= NVM_SERDES_AMPLITUDE_MASK; - ret_val = hw->phy.ops.write_reg(hw, - M88E1000_PHY_EXT_CTRL, - nvm_data); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL, + nvm_data); if (ret_val) goto out; } + out: - return (ret_val); + return ret_val; } -/* - * e1000_set_vco_speed_82540 - Set VCO speed for better performance - * @hw: pointer to the HW structure +/** + * e1000_set_vco_speed_82540 - Set VCO speed for better performance + * @hw: pointer to the HW structure * - * Set the VCO speed to improve Bit Error Rate (BER) performance. - */ -static s32 -e1000_set_vco_speed_82540(struct e1000_hw *hw) + * Set the VCO speed to improve Bit Error Rate (BER) performance. + **/ +static s32 e1000_set_vco_speed_82540(struct e1000_hw *hw) { - s32 ret_val = E1000_SUCCESS; + s32 ret_val = E1000_SUCCESS; u16 default_page = 0; u16 phy_data; @@ -540,9 +536,8 @@ e1000_set_vco_speed_82540(struct e1000_hw *hw) /* Set PHY register 30, page 5, bit 8 to 0 */ - ret_val = hw->phy.ops.read_reg(hw, - M88E1000_PHY_PAGE_SELECT, - &default_page); + ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT, + &default_page); if (ret_val) goto out; @@ -575,25 +570,23 @@ e1000_set_vco_speed_82540(struct e1000_hw *hw) goto out; ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, - default_page); + default_page); out: - return (ret_val); + return ret_val; } -/* - * e1000_set_phy_mode_82540 - Set PHY to class A mode - * @hw: pointer to the HW structure +/** + * e1000_set_phy_mode_82540 - Set PHY to class A mode + * @hw: pointer to the HW structure * - * Sets the PHY to class A mode and assumes the following operations will - * follow to enable the new class mode: - * 1. Do a PHY soft reset. - * 2. Restart auto-negotiation or force link. - */ -static s32 -e1000_set_phy_mode_82540(struct e1000_hw *hw) + * Sets the PHY to class A mode and assumes the following operations will + * follow to enable the new class mode: + * 1. Do a PHY soft reset. + * 2. Restart auto-negotiation or force link. + **/ +static s32 e1000_set_phy_mode_82540(struct e1000_hw *hw) { - struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; u16 nvm_data; @@ -610,95 +603,92 @@ e1000_set_phy_mode_82540(struct e1000_hw *hw) if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) { ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, - 0x000B); + 0x000B); if (ret_val) { ret_val = -E1000_ERR_PHY; goto out; } - ret_val = hw->phy.ops.write_reg(hw, - M88E1000_PHY_GEN_CONTROL, - 0x8104); + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, + 0x8104); if (ret_val) { ret_val = -E1000_ERR_PHY; goto out; } - phy->reset_disable = false; } out: - return (ret_val); + return ret_val; } -/* +/** * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. - */ -static void -e1000_power_down_phy_copper_82540(struct e1000_hw *hw) + **/ +static void e1000_power_down_phy_copper_82540(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) e1000_power_down_phy_copper(hw); + + return; } -/* - * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters - * @hw: pointer to the HW structure +/** + * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters + * @hw: pointer to the HW structure * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82540"); e1000_clear_hw_cntrs_base_generic(hw); - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); - - (void) E1000_READ_REG(hw, E1000_MGTPRC); - (void) E1000_READ_REG(hw, E1000_MGTPDC); - (void) E1000_READ_REG(hw, E1000_MGTPTC); + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); } -/* - * e1000_read_mac_addr_82540 - Read device MAC address - * @hw: pointer to the HW structure +/** + * e1000_read_mac_addr_82540 - Read device MAC address + * @hw: pointer to the HW structure * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. * - * This version is being used over generic because of customer issues - * with VmWare and Virtual Box when using generic. It seems in - * the emulated 82545, RAR[0] does NOT have a valid address after a - * reset, this older method works and using this breaks nothing for - * these legacy adapters. - */ -s32 -e1000_read_mac_addr_82540(struct e1000_hw *hw) + * This version is being used over generic because of customer issues + * with VmWare and Virtual Box when using generic. It seems in + * the emulated 82545, RAR[0] does NOT have a valid address after a + * reset, this older method works and using this breaks nothing for + * these legacy adapters. + **/ +s32 e1000_read_mac_addr_82540(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 offset, nvm_data, i; @@ -724,5 +714,5 @@ e1000_read_mac_addr_82540(struct e1000_hw *hw) hw->mac.addr[i] = hw->mac.perm_addr[i]; out: - return (ret_val); + return ret_val; } diff --git a/usr/src/uts/common/io/e1000g/e1000_82541.c b/usr/src/uts/common/io/e1000api/e1000_82541.c index 2c22aaeab5..781aa931fb 100644 --- a/usr/src/uts/common/io/e1000g/e1000_82541.c +++ b/usr/src/uts/common/io/e1000api/e1000_82541.c @@ -1,31 +1,36 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.68 v3-1-10-1_2009-9-18_Release14-6 - */ +/****************************************************************************** + + Copyright (c) 2001-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ /* * 82541EI Gigabit Ethernet Controller @@ -38,70 +43,69 @@ #include "e1000_api.h" -static s32 e1000_init_phy_params_82541(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82541(struct e1000_hw *hw); -static s32 e1000_reset_hw_82541(struct e1000_hw *hw); -static s32 e1000_init_hw_82541(struct e1000_hw *hw); -static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); -static s32 e1000_check_for_link_82541(struct e1000_hw *hw); -static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); -static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, - bool active); -static s32 e1000_setup_led_82541(struct e1000_hw *hw); -static s32 e1000_cleanup_led_82541(struct e1000_hw *hw); +static s32 e1000_init_phy_params_82541(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82541(struct e1000_hw *hw); +static s32 e1000_reset_hw_82541(struct e1000_hw *hw); +static s32 e1000_init_hw_82541(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); +static s32 e1000_check_for_link_82541(struct e1000_hw *hw); +static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); +static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_led_82541(struct e1000_hw *hw); +static s32 e1000_cleanup_led_82541(struct e1000_hw *hw); static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw); -static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, - bool link_up); -static s32 e1000_phy_init_script_82541(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw); +static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up); +static s32 e1000_phy_init_script_82541(struct e1000_hw *hw); static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw); static const u16 e1000_igp_cable_length_table[] = -{5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, -25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, -40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, -60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, -90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, -100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, -110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; - -#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ - (sizeof (e1000_igp_cable_length_table) / \ - sizeof (e1000_igp_cable_length_table[0])) - -/* - * e1000_init_phy_params_82541 - Init PHY func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_phy_params_82541(struct e1000_hw *hw) + { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; +#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_cable_length_table) / \ + sizeof(e1000_igp_cable_length_table[0])) + +/** + * e1000_init_phy_params_82541 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82541(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_init_phy_params_82541"); - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 10000; - phy->type = e1000_phy_igp; + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_igp; /* Function Pointers */ - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.reset = e1000_phy_hw_reset_82541; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; - phy->ops.write_reg = e1000_write_phy_reg_igp; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82541; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.reset = e1000_phy_hw_reset_82541; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82541; ret_val = e1000_get_phy_id(hw); if (ret_val) @@ -114,18 +118,17 @@ e1000_init_phy_params_82541(struct e1000_hw *hw) } out: - return (ret_val); + return ret_val; } -/* - * e1000_init_nvm_params_82541 - Init NVM func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_82541(struct e1000_hw *hw) +/** + * e1000_init_nvm_params_82541 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw) { - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val = E1000_SUCCESS; + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = E1000_SUCCESS; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u16 size; @@ -150,32 +153,32 @@ e1000_init_nvm_params_82541(struct e1000_hw *hw) break; default: nvm->type = eecd & E1000_EECD_TYPE - ? e1000_nvm_eeprom_spi - : e1000_nvm_eeprom_microwire; + ? e1000_nvm_eeprom_spi + : e1000_nvm_eeprom_microwire; break; } if (nvm->type == e1000_nvm_eeprom_spi) { - nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) - ? 16 : 8; - nvm->delay_usec = 1; - nvm->opcode_bits = 8; - nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) - ? 32 : 8; + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) + ? 16 : 8; + nvm->delay_usec = 1; + nvm->opcode_bits = 8; + nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) + ? 32 : 8; /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_generic; - nvm->ops.read = e1000_read_nvm_spi; - nvm->ops.release = e1000_release_nvm_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_spi; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_spi; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_spi; /* * nvm->word_size must be discovered after the pointers * are set so we can verify the size from the nvm image - * itself. Temporarily set it to a dummy value so the + * itself. Temporarily set it to a dummy value so the * read will work. */ nvm->word_size = 64; @@ -193,33 +196,32 @@ e1000_init_nvm_params_82541(struct e1000_hw *hw) nvm->word_size = 1 << size; } } else { - nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) - ? 8 : 6; - nvm->delay_usec = 50; - nvm->opcode_bits = 3; - nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) - ? 256 : 64; + nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) + ? 8 : 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) + ? 256 : 64; /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_generic; - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.release = e1000_release_nvm_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.acquire = e1000_acquire_nvm_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_release_nvm_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; } out: - return (ret_val); + return ret_val; } -/* - * e1000_init_mac_params_82541 - Init MAC func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_82541(struct e1000_hw *hw) +/** + * e1000_init_mac_params_82541 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82541(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; @@ -232,7 +234,7 @@ e1000_init_mac_params_82541(struct e1000_hw *hw) /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; + mac->asf_firmware_present = TRUE; /* Function Pointers */ @@ -258,8 +260,8 @@ e1000_init_mac_params_82541(struct e1000_hw *hw) mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_generic; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82541; /* ID LED init */ mac->ops.id_led_init = e1000_id_led_init_generic; /* setup LED */ @@ -272,17 +274,16 @@ e1000_init_mac_params_82541(struct e1000_hw *hw) /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_function_pointers_82541 - Init func ptrs. - * @hw: pointer to the HW structure +/** + * e1000_init_function_pointers_82541 - Init func ptrs. + * @hw: pointer to the HW structure * - * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_82541(struct e1000_hw *hw) + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82541(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82541"); @@ -291,17 +292,15 @@ e1000_init_function_pointers_82541(struct e1000_hw *hw) hw->phy.ops.init_params = e1000_init_phy_params_82541; } -/* - * e1000_reset_hw_82541 - Reset hardware - * @hw: pointer to the HW structure +/** + * e1000_reset_hw_82541 - Reset hardware + * @hw: pointer to the HW structure * - * This resets the hardware into a known state. - */ -static s32 -e1000_reset_hw_82541(struct e1000_hw *hw) + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82541(struct e1000_hw *hw) { - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - u32 ledctl, ctrl, manc; + u32 ledctl, ctrl, icr, manc; DEBUGFUNC("e1000_reset_hw_82541"); @@ -312,8 +311,6 @@ e1000_reset_hw_82541(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); - dev_spec->tx_fifo_head = 0; - /* * Delay to allow any outstanding PCI transactions to complete * before resetting the device. @@ -353,7 +350,7 @@ e1000_reset_hw_82541(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_MANC, manc); if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { - (void) e1000_phy_init_script_82541(hw); + e1000_phy_init_script_82541(hw); /* Configure activity LED after Phy reset */ ledctl = E1000_READ_REG(hw, E1000_LEDCTL); @@ -367,23 +364,21 @@ e1000_reset_hw_82541(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); /* Clear any pending interrupt events. */ - (void) E1000_READ_REG(hw, E1000_ICR); + icr = E1000_READ_REG(hw, E1000_ICR); - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_hw_82541 - Initialize hardware - * @hw: pointer to the HW structure +/** + * e1000_init_hw_82541 - Initialize hardware + * @hw: pointer to the HW structure * - * This inits the hardware readying it for operation. - */ -static s32 -e1000_init_hw_82541(struct e1000_hw *hw) + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82541(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - u32 pba; u32 i, txdctl; s32 ret_val; @@ -392,22 +387,17 @@ e1000_init_hw_82541(struct e1000_hw *hw) /* Initialize identification LED */ ret_val = mac->ops.id_led_init(hw); if (ret_val) { - /* EMPTY */ DEBUGOUT("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ } - + /* Storing the Speed Power Down value for later use */ ret_val = hw->phy.ops.read_reg(hw, - IGP01E1000_GMII_FIFO, - &dev_spec->spd_default); + IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); if (ret_val) goto out; - pba = E1000_READ_REG(hw, E1000_PBA); - dev_spec->tx_fifo_start = (pba & 0x0000FFFF) * E1000_FIFO_MULTIPLIER; - dev_spec->tx_fifo_size = (pba & 0xFFFF0000) >> 6; - /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); mac->ops.clear_vfta(hw); @@ -433,7 +423,7 @@ e1000_init_hw_82541(struct e1000_hw *hw) txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; + E1000_TXDCTL_FULL_TX_DESC_WB; E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); /* @@ -445,19 +435,19 @@ e1000_init_hw_82541(struct e1000_hw *hw) e1000_clear_hw_cntrs_82541(hw); out: - return (ret_val); + return ret_val; } -/* +/** * e1000_get_link_up_info_82541 - Report speed and duplex * @hw: pointer to the HW structure * @speed: pointer to speed buffer * @duplex: pointer to duplex buffer * * Retrieve the current speed and duplex configuration. - */ -static s32 -e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, u16 *duplex) + **/ +static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, + u16 *duplex) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; @@ -499,20 +489,19 @@ e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, u16 *duplex) } out: - return (ret_val); + return ret_val; } -/* - * e1000_phy_hw_reset_82541 - PHY hardware reset - * @hw: pointer to the HW structure +/** + * e1000_phy_hw_reset_82541 - PHY hardware reset + * @hw: pointer to the HW structure * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - */ -static s32 -e1000_phy_hw_reset_82541(struct e1000_hw *hw) + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw) { s32 ret_val; u32 ledctl; @@ -523,7 +512,7 @@ e1000_phy_hw_reset_82541(struct e1000_hw *hw) if (ret_val) goto out; - (void) e1000_phy_init_script_82541(hw); + e1000_phy_init_script_82541(hw); if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { /* Configure activity LED after PHY reset */ @@ -534,24 +523,23 @@ e1000_phy_hw_reset_82541(struct e1000_hw *hw) } out: - return (ret_val); + return ret_val; } -/* - * e1000_setup_copper_link_82541 - Configure copper link settings - * @hw: pointer to the HW structure +/** + * e1000_setup_copper_link_82541 - Configure copper link settings + * @hw: pointer to the HW structure * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - */ -static s32 -e1000_setup_copper_link_82541(struct e1000_hw *hw) + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - s32 ret_val; + s32 ret_val; u32 ctrl, ledctl; DEBUGFUNC("e1000_setup_copper_link_82541"); @@ -561,8 +549,6 @@ e1000_setup_copper_link_82541(struct e1000_hw *hw) ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - hw->phy.reset_disable = false; - /* Earlier revs of the IGP phy require us to force MDI. */ if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) { dev_spec->dsp_config = e1000_dsp_config_disabled; @@ -589,18 +575,17 @@ e1000_setup_copper_link_82541(struct e1000_hw *hw) ret_val = e1000_setup_copper_link_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_check_for_link_82541 - Check/Store link connection - * @hw: pointer to the HW structure +/** + * e1000_check_for_link_82541 - Check/Store link connection + * @hw: pointer to the HW structure * - * This checks the link condition of the adapter and stores the - * results in the hw->mac structure. - */ -static s32 -e1000_check_for_link_82541(struct e1000_hw *hw) + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. + **/ +static s32 e1000_check_for_link_82541(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; @@ -629,17 +614,17 @@ e1000_check_for_link_82541(struct e1000_hw *hw) goto out; if (!link) { - ret_val = e1000_config_dsp_after_link_change_82541(hw, false); - goto out; /* No link detected */ + ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE); + goto out; /* No link detected */ } - mac->get_link_status = false; + mac->get_link_status = FALSE; /* * Check if there was DownShift, must be checked * immediately after link-up */ - (void) e1000_check_downshift_generic(hw); + e1000_check_downshift_generic(hw); /* * If we are forcing speed/duplex, then we simply return since @@ -650,14 +635,14 @@ e1000_check_for_link_82541(struct e1000_hw *hw) goto out; } - ret_val = e1000_config_dsp_after_link_change_82541(hw, true); + ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE); /* * Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ - e1000_config_collision_dist_generic(hw); + mac->ops.config_collision_dist(hw); /* * Configure Flow Control now that Auto-Neg has completed. @@ -667,28 +652,26 @@ e1000_check_for_link_82541(struct e1000_hw *hw) */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) { - /* EMPTY */ DEBUGOUT("Error configuring flow control\n"); } out: - return (ret_val); + return ret_val; } -/* - * e1000_config_dsp_after_link_change_82541 - Config DSP after link - * @hw: pointer to the HW structure - * @link_up: boolean flag for link up status +/** + * e1000_config_dsp_after_link_change_82541 - Config DSP after link + * @hw: pointer to the HW structure + * @link_up: boolean flag for link up status * - * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS - * at any other case. + * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS + * at any other case. * - * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a - * gigabit link is achieved to improve link quality. - */ -static s32 -e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, - bool link_up) + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + **/ +static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, + bool link_up) { struct e1000_phy_info *phy = &hw->phy; struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; @@ -697,10 +680,10 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, u16 phy_data, phy_saved_data, speed, duplex, i; u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_PARAM_A, - IGP01E1000_PHY_AGC_PARAM_B, - IGP01E1000_PHY_AGC_PARAM_C, - IGP01E1000_PHY_AGC_PARAM_D}; + {IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D}; DEBUGFUNC("e1000_config_dsp_after_link_change_82541"); @@ -725,16 +708,16 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, - dsp_reg_array[i], - &phy_data); + dsp_reg_array[i], + &phy_data); if (ret_val) goto out; phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; ret_val = phy->ops.write_reg(hw, - dsp_reg_array[i], - phy_data); + dsp_reg_array[i], + phy_data); if (ret_val) goto out; } @@ -755,8 +738,8 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, for (i = 0; i < ffe_idle_err_timeout; i++) { usec_delay(1000); ret_val = phy->ops.read_reg(hw, - PHY_1000T_STATUS, - &phy_data); + PHY_1000T_STATUS, + &phy_data); if (ret_val) goto out; @@ -765,8 +748,8 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, dev_spec->ffe_config = e1000_ffe_config_active; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_CM_CP); + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); if (ret_val) goto out; break; @@ -774,7 +757,7 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, if (idle_errs) ffe_idle_err_timeout = - FFE_IDLE_ERR_COUNT_TIMEOUT_100; + FFE_IDLE_ERR_COUNT_TIMEOUT_100; } } else { if (dev_spec->dsp_config == e1000_dsp_config_activated) { @@ -783,8 +766,8 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, * to be restored at the end of the routines. */ ret_val = phy->ops.read_reg(hw, - 0x2F5B, - &phy_saved_data); + 0x2F5B, + &phy_saved_data); if (ret_val) goto out; @@ -796,14 +779,14 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, msec_delay_irq(20); ret_val = phy->ops.write_reg(hw, - 0x0000, - IGP01E1000_IEEE_FORCE_GIG); + 0x0000, + IGP01E1000_IEEE_FORCE_GIG); if (ret_val) goto out; for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, - dsp_reg_array[i], - &phy_data); + dsp_reg_array[i], + &phy_data); if (ret_val) goto out; @@ -811,15 +794,15 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; ret_val = phy->ops.write_reg(hw, - dsp_reg_array[i], - phy_data); + dsp_reg_array[i], + phy_data); if (ret_val) goto out; } ret_val = phy->ops.write_reg(hw, - 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); + 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) goto out; @@ -827,8 +810,8 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, /* Now enable the transmitter */ ret_val = phy->ops.write_reg(hw, - 0x2F5B, - phy_saved_data); + 0x2F5B, + phy_saved_data); if (ret_val) goto out; @@ -856,20 +839,20 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, msec_delay_irq(20); ret_val = phy->ops.write_reg(hw, - 0x0000, - IGP01E1000_IEEE_FORCE_GIG); + 0x0000, + IGP01E1000_IEEE_FORCE_GIG); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_DEFAULT); + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, - 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); + 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); if (ret_val) goto out; @@ -885,22 +868,21 @@ e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, } out: - return (ret_val); + return ret_val; } -/* - * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY - * @hw: pointer to the HW structure +/** + * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY + * @hw: pointer to the HW structure * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - */ -static s32 -e1000_get_cable_length_igp_82541(struct e1000_hw *hw) + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; @@ -908,10 +890,10 @@ e1000_get_cable_length_igp_82541(struct e1000_hw *hw) u16 cur_agc_value, agc_value = 0; u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_A, - IGP01E1000_PHY_AGC_B, - IGP01E1000_PHY_AGC_C, - IGP01E1000_PHY_AGC_D}; + {IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D}; DEBUGFUNC("e1000_get_cable_length_igp_82541"); @@ -947,35 +929,34 @@ e1000_get_cable_length_igp_82541(struct e1000_hw *hw) } phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] > - IGP01E1000_AGC_RANGE) - ? (e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) - : 0; + IGP01E1000_AGC_RANGE) + ? (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) + : 0; phy->max_cable_length = e1000_igp_cable_length_table[agc_value] + - IGP01E1000_AGC_RANGE; + IGP01E1000_AGC_RANGE; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: - return (ret_val); + return ret_val; } -/* - * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu +/** + * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu * - * Success returns 0, Failure returns 1 + * Success returns 0, Failure returns 1 * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - */ -static s32 -e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; @@ -990,6 +971,7 @@ e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) default: ret_val = e1000_set_d3_lplu_state_generic(hw, active); goto out; + break; } ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data); @@ -1010,34 +992,34 @@ e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); + IGP01E1000_PHY_PORT_CONFIG, + &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); + IGP01E1000_PHY_PORT_CONFIG, + data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); + IGP01E1000_PHY_PORT_CONFIG, + &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); + IGP01E1000_PHY_PORT_CONFIG, + data); if (ret_val) goto out; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= IGP01E1000_GMII_FLEX_SPD; ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); if (ret_val) @@ -1045,30 +1027,29 @@ e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); + IGP01E1000_PHY_PORT_CONFIG, + &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); + IGP01E1000_PHY_PORT_CONFIG, + data); } out: - return (ret_val); + return ret_val; } -/* - * e1000_setup_led_82541 - Configures SW controllable LED - * @hw: pointer to the HW structure +/** + * e1000_setup_led_82541 - Configures SW controllable LED + * @hw: pointer to the HW structure * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - */ -static s32 -e1000_setup_led_82541(struct e1000_hw *hw) + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +static s32 e1000_setup_led_82541(struct e1000_hw *hw) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; s32 ret_val; @@ -1076,33 +1057,32 @@ e1000_setup_led_82541(struct e1000_hw *hw) DEBUGFUNC("e1000_setup_led_82541"); ret_val = hw->phy.ops.read_reg(hw, - IGP01E1000_GMII_FIFO, - &dev_spec->spd_default); + IGP01E1000_GMII_FIFO, + &dev_spec->spd_default); if (ret_val) goto out; ret_val = hw->phy.ops.write_reg(hw, - IGP01E1000_GMII_FIFO, - (u16)(dev_spec->spd_default & - ~IGP01E1000_GMII_SPD)); + IGP01E1000_GMII_FIFO, + (u16)(dev_spec->spd_default & + ~IGP01E1000_GMII_SPD)); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); out: - return (ret_val); + return ret_val; } -/* - * e1000_cleanup_led_82541 - Set LED config to default operation - * @hw: pointer to the HW structure +/** + * e1000_cleanup_led_82541 - Set LED config to default operation + * @hw: pointer to the HW structure * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - */ -static s32 -e1000_cleanup_led_82541(struct e1000_hw *hw) + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +static s32 e1000_cleanup_led_82541(struct e1000_hw *hw) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; s32 ret_val; @@ -1110,25 +1090,24 @@ e1000_cleanup_led_82541(struct e1000_hw *hw) DEBUGFUNC("e1000_cleanup_led_82541"); ret_val = hw->phy.ops.write_reg(hw, - IGP01E1000_GMII_FIFO, - dev_spec->spd_default); + IGP01E1000_GMII_FIFO, + dev_spec->spd_default); if (ret_val) goto out; E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); out: - return (ret_val); + return ret_val; } -/* - * e1000_phy_init_script_82541 - Initialize GbE PHY - * @hw: pointer to the HW structure +/** + * e1000_phy_init_script_82541 - Initialize GbE PHY + * @hw: pointer to the HW structure * - * Initializes the IGP PHY. - */ -static s32 -e1000_phy_init_script_82541(struct e1000_hw *hw) + * Initializes the IGP PHY. + **/ +static s32 e1000_phy_init_script_82541(struct e1000_hw *hw) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; u32 ret_val; @@ -1200,13 +1179,13 @@ e1000_phy_init_script_82541(struct e1000_hw *hw) /* Move to analog registers page */ hw->phy.ops.read_reg(hw, - IGP01E1000_ANALOG_SPARE_FUSE_STATUS, - &fused); + IGP01E1000_ANALOG_SPARE_FUSE_STATUS, + &fused); if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { hw->phy.ops.read_reg(hw, - IGP01E1000_ANALOG_FUSE_STATUS, - &fused); + IGP01E1000_ANALOG_FUSE_STATUS, + &fused); fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; @@ -1215,36 +1194,35 @@ e1000_phy_init_script_82541(struct e1000_hw *hw) coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; fine -= IGP01E1000_ANALOG_FUSE_FINE_1; } else if (coarse == - IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) fine -= IGP01E1000_ANALOG_FUSE_FINE_10; fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); hw->phy.ops.write_reg(hw, - IGP01E1000_ANALOG_FUSE_CONTROL, - fused); + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); hw->phy.ops.write_reg(hw, - IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); } } out: - return (ret_val); + return ret_val; } -/* - * e1000_init_script_state_82541 - Enable/Disable PHY init script - * @hw: pointer to the HW structure - * @state: boolean value used to enable/disable PHY init script +/** + * e1000_init_script_state_82541 - Enable/Disable PHY init script + * @hw: pointer to the HW structure + * @state: boolean value used to enable/disable PHY init script * - * Allows the driver to enable/disable the PHY init script, if the PHY is an - * IGP PHY. - */ -void -e1000_init_script_state_82541(struct e1000_hw *hw, bool state) + * Allows the driver to enable/disable the PHY init script, if the PHY is an + * IGP PHY. + **/ +void e1000_init_script_state_82541(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; @@ -1252,296 +1230,96 @@ e1000_init_script_state_82541(struct e1000_hw *hw, bool state) if (hw->phy.type != e1000_phy_igp) { DEBUGOUT("Initialization script not necessary.\n"); - return; - } - - dev_spec->phy_init_script = state; -} - -/* - * e1000_fifo_workaround_82547 - Workaround for Tx fifo failure - * @hw: pointer to the HW structure - * @length: length of next outgoing frame - * - * Returns: E1000_ERR_FIFO_WRAP if the next packet cannot be transmitted yet - * E1000_SUCCESS if the next packet can be transmitted - * - * Workaround for the 82547 Tx fifo failure. - */ -s32 -e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length) -{ - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - u32 tctl; - s32 ret_val = E1000_SUCCESS; - u16 fifo_pkt_len; - - DEBUGFUNC("e1000_fifo_workaround_82547"); - - if (hw->mac.type != e1000_82547) - goto out; - - /* - * Get the length as seen by the FIFO of the next real - * packet to be transmitted. - */ - fifo_pkt_len = E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE, - E1000_FIFO_GRANULARITY); - - if (fifo_pkt_len <= (E1000_FIFO_PAD_82547 + E1000_FIFO_HDR_SIZE)) - goto out; - - if ((dev_spec->tx_fifo_head + fifo_pkt_len) < - (dev_spec->tx_fifo_size + E1000_FIFO_PAD_82547)) - goto out; - - if (E1000_READ_REG(hw, E1000_TDT(0)) != - E1000_READ_REG(hw, E1000_TDH(0))) { - ret_val = -E1000_ERR_FIFO_WRAP; goto out; } - if (E1000_READ_REG(hw, E1000_TDFT) != E1000_READ_REG(hw, E1000_TDFH)) { - ret_val = -E1000_ERR_FIFO_WRAP; - goto out; - } - - if (E1000_READ_REG(hw, E1000_TDFTS) != - E1000_READ_REG(hw, E1000_TDFHS)) { - ret_val = -E1000_ERR_FIFO_WRAP; - goto out; - } - - /* Disable the tx unit to avoid further pointer movement */ - tctl = E1000_READ_REG(hw, E1000_TCTL); - E1000_WRITE_REG(hw, E1000_TCTL, tctl & ~E1000_TCTL_EN); - - /* Reset the fifo pointers. */ - E1000_WRITE_REG(hw, E1000_TDFT, dev_spec->tx_fifo_start); - E1000_WRITE_REG(hw, E1000_TDFH, dev_spec->tx_fifo_start); - E1000_WRITE_REG(hw, E1000_TDFTS, dev_spec->tx_fifo_start); - E1000_WRITE_REG(hw, E1000_TDFHS, dev_spec->tx_fifo_start); - - /* Re-enabling tx unit */ - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); - - dev_spec->tx_fifo_head = 0; + dev_spec->phy_init_script = state; out: - return (ret_val); + return; } -/* - * e1000_update_tx_fifo_head - Update Tx fifo head pointer +/** + * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down * @hw: pointer to the HW structure - * @length: length of next outgoing frame * - * Updates the SW calculated Tx FIFO head pointer. - */ -void -e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length) + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw) { - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - - DEBUGFUNC("e1000_update_tx_fifo_head_82547"); - - if (hw->mac.type != e1000_82547) - return; - - dev_spec->tx_fifo_head += E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE, - E1000_FIFO_GRANULARITY); + /* If the management interface is not enabled, then power down */ + if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) + e1000_power_down_phy_copper(hw); - if (dev_spec->tx_fifo_head > dev_spec->tx_fifo_size) - dev_spec->tx_fifo_head -= dev_spec->tx_fifo_size; + return; } -/* - * e1000_set_ttl_workaround_state_82541 - Enable/Disables TTL workaround - * @hw: pointer to the HW structure - * @state: boolean to enable/disable TTL workaround +/** + * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters + * @hw: pointer to the HW structure * - * For 82541 or 82547 only silicon, allows the driver to enable/disable the - * TTL workaround. - */ -void -e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, bool state) + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) { - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - - DEBUGFUNC("e1000_set_ttl_workaround_state_82541"); + DEBUGFUNC("e1000_clear_hw_cntrs_82541"); - if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547)) - return; + e1000_clear_hw_cntrs_base_generic(hw); - dev_spec->ttl_workaround = state; + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); } -/* - * e1000_ttl_workaround_enabled_82541 - Returns current TTL workaround status - * @hw: pointer to the HW structure +/** + * e1000_read_mac_addr_82541 - Read device MAC address + * @hw: pointer to the HW structure * - * Returns the current status of the TTL workaround, as to whether the - * workaround is enabled or disabled. - */ -bool -e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw) + * Reads the device MAC address from the EEPROM and stores the value. + **/ +static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw) { - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - bool state = false; - - DEBUGFUNC("e1000_ttl_workaround_enabled_82541"); - - if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547)) - goto out; - - state = dev_spec->ttl_workaround; + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_data, i; -out: - return (state); -} - -/* - * e1000_igp_ttl_workaround_82547 - Workaround for long TTL on 100HD hubs - * @hw: pointer to the HW structure - * - * Returns: E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS in any other case - * - * This function, specific to 82547 hardware only, needs to be called every - * second. It checks if a parallel detect fault has occurred. If a fault - * occurred, disable/enable the DSP reset mechanism up to 5 times (once per - * second). If link is established, stop the workaround and ensure the DSP - * reset is enabled. - */ -s32 -e1000_igp_ttl_workaround_82547(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - s32 ret_val = E1000_SUCCESS; - u16 phy_data = 0; - u16 dsp_value = DSP_RESET_ENABLE; - bool link; + DEBUGFUNC("e1000_read_mac_addr"); - DEBUGFUNC("e1000_igp_ttl_workaround_82547"); - - /* The workaround needed only for B-0 silicon HW */ - if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547)) - goto out; - - if (!(e1000_ttl_workaround_enabled_82541(hw))) - goto out; - - /* Check for link first */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (link) { - /* - * If link is established during the workaround, - * the DSP mechanism must be enabled. - */ - if (dev_spec->dsp_reset_counter) { - dev_spec->dsp_reset_counter = 0; - dsp_value = DSP_RESET_ENABLE; - } else { - ret_val = E1000_SUCCESS; + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = i >> 1; + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); goto out; } - } else { - if (dev_spec->dsp_reset_counter == 0) { - /* - * Workaround not activated, - * check if it needs activation - */ - ret_val = hw->phy.ops.read_reg(hw, - PHY_AUTONEG_EXP, - &phy_data); - if (ret_val) - goto out; - /* - * Activate the workaround if there was a - * parallel detect fault - */ - if (phy_data & NWAY_ER_PAR_DETECT_FAULT) { - dev_spec->dsp_reset_counter++; - } else { - ret_val = E1000_SUCCESS; - goto out; - } - } - - /* After 5 times, stop the workaround */ - if (dev_spec->dsp_reset_counter > E1000_MAX_DSP_RESETS) { - dev_spec->dsp_reset_counter = 0; - dsp_value = DSP_RESET_ENABLE; - } else { - if (dev_spec->dsp_reset_counter) { - dsp_value = (dev_spec->dsp_reset_counter & 1) - ? DSP_RESET_DISABLE - : DSP_RESET_ENABLE; - dev_spec->dsp_reset_counter++; - } - } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); } - ret_val = - hw->phy.ops.write_reg(hw, IGP01E1000_PHY_DSP_RESET, dsp_value); + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; out: - return (ret_val); -} - -/* - * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - */ -static void -e1000_power_down_phy_copper_82541(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) - e1000_power_down_phy_copper(hw); + return ret_val; } -/* - * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82541"); - - e1000_clear_hw_cntrs_base_generic(hw); - - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); - - (void) E1000_READ_REG(hw, E1000_MGTPRC); - (void) E1000_READ_REG(hw, E1000_MGTPDC); - (void) E1000_READ_REG(hw, E1000_MGTPTC); -} diff --git a/usr/src/uts/common/io/e1000api/e1000_82541.h b/usr/src/uts/common/io/e1000api/e1000_82541.h new file mode 100644 index 0000000000..717f7959ba --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_82541.h @@ -0,0 +1,116 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82541_H_ +#define _E1000_82541_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1) + +#define IGP01E1000_PHY_CHANNEL_NUM 4 + +#define IGP01E1000_PHY_AGC_A 0x1172 +#define IGP01E1000_PHY_AGC_B 0x1272 +#define IGP01E1000_PHY_AGC_C 0x1472 +#define IGP01E1000_PHY_AGC_D 0x1872 + +#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 +#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 +#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 +#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 + +#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 +#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 + +#define IGP01E1000_PHY_DSP_RESET 0x1F33 + +#define IGP01E1000_PHY_DSP_FFE 0x1F35 +#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 +#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A + +#define IGP01E1000_IEEE_FORCE_GIG 0x0140 +#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 + +#define IGP01E1000_AGC_LENGTH_SHIFT 7 +#define IGP01E1000_AGC_RANGE 10 + +#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 +#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 + +#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 +#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 +#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC +#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE + +#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 +#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 +#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 +#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 +#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 +#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 +#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 +#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 +#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 + +#define IGP01E1000_MSE_CHANNEL_D 0x000F +#define IGP01E1000_MSE_CHANNEL_C 0x00F0 +#define IGP01E1000_MSE_CHANNEL_B 0x0F00 +#define IGP01E1000_MSE_CHANNEL_A 0xF000 + +#define E1000_FIFO_MULTIPLIER 0x80 +#define E1000_FIFO_HDR_SIZE 0x10 +#define E1000_FIFO_GRANULARITY 0x10 +#define E1000_FIFO_PAD_82547 0x3E0 +#define E1000_ERR_FIFO_WRAP 8 + +#define DSP_RESET_ENABLE 0x0 +#define DSP_RESET_DISABLE 0x2 +#define E1000_MAX_DSP_RESETS 10 + +#define E1000_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1)) + +void e1000_init_script_state_82541(struct e1000_hw *hw, bool state); +s32 e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length); +void e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length); +void e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, bool state); +bool e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw); +s32 e1000_igp_ttl_workaround_82547(struct e1000_hw *hw); + +#ifdef __cplusplus +} +#endif +#endif /* _E1000_82541_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_82542.c b/usr/src/uts/common/io/e1000api/e1000_82542.c index d4e8636f16..c0b4e88be9 100644 --- a/usr/src/uts/common/io/e1000g/e1000_82542.c +++ b/usr/src/uts/common/io/e1000api/e1000_82542.c @@ -1,31 +1,36 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.53 v3-1-10-1_2009-9-18_Release14-6 - */ +/****************************************************************************** + + Copyright (c) 2001-2010, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ /* * 82542 Gigabit Ethernet Controller @@ -33,69 +38,66 @@ #include "e1000_api.h" -static s32 e1000_init_phy_params_82542(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82542(struct e1000_hw *hw); -static s32 e1000_get_bus_info_82542(struct e1000_hw *hw); -static s32 e1000_reset_hw_82542(struct e1000_hw *hw); -static s32 e1000_init_hw_82542(struct e1000_hw *hw); -static s32 e1000_setup_link_82542(struct e1000_hw *hw); -static s32 e1000_led_on_82542(struct e1000_hw *hw); -static s32 e1000_led_off_82542(struct e1000_hw *hw); +static s32 e1000_init_phy_params_82542(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82542(struct e1000_hw *hw); +static s32 e1000_get_bus_info_82542(struct e1000_hw *hw); +static s32 e1000_reset_hw_82542(struct e1000_hw *hw); +static s32 e1000_init_hw_82542(struct e1000_hw *hw); +static s32 e1000_setup_link_82542(struct e1000_hw *hw); +static s32 e1000_led_on_82542(struct e1000_hw *hw); +static s32 e1000_led_off_82542(struct e1000_hw *hw); static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index); static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw); static s32 e1000_read_mac_addr_82542(struct e1000_hw *hw); -/* - * e1000_init_phy_params_82542 - Init PHY func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_phy_params_82542(struct e1000_hw *hw) +/** + * e1000_init_phy_params_82542 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82542(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_init_phy_params_82542"); - phy->type = e1000_phy_none; + phy->type = e1000_phy_none; - return (ret_val); + return ret_val; } -/* - * e1000_init_nvm_params_82542 - Init NVM func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_82542(struct e1000_hw *hw) +/** + * e1000_init_nvm_params_82542 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82542(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; DEBUGFUNC("e1000_init_nvm_params_82542"); - nvm->address_bits = 6; - nvm->delay_usec = 50; - nvm->opcode_bits = 3; - nvm->type = e1000_nvm_eeprom_microwire; - nvm->word_size = 64; + nvm->address_bits = 6; + nvm->delay_usec = 50; + nvm->opcode_bits = 3; + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; /* Function Pointers */ - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.release = e1000_stop_nvm; - nvm->ops.write = e1000_write_nvm_microwire; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.release = e1000_stop_nvm; + nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_mac_params_82542 - Init MAC func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_82542(struct e1000_hw *hw) +/** + * e1000_init_mac_params_82542 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82542(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; @@ -122,8 +124,7 @@ e1000_init_mac_params_82542(struct e1000_hw *hw) /* link setup */ mac->ops.setup_link = e1000_setup_link_82542; /* phy/fiber/serdes setup */ - mac->ops.setup_physical_interface = - e1000_setup_fiber_serdes_link_generic; + mac->ops.setup_physical_interface = e1000_setup_fiber_serdes_link_generic; /* check for link */ mac->ops.check_for_link = e1000_check_for_fiber_link_generic; /* multicast address update */ @@ -132,8 +133,6 @@ e1000_init_mac_params_82542(struct e1000_hw *hw) mac->ops.write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_generic; /* read mac address */ mac->ops.read_mac_addr = e1000_read_mac_addr_82542; /* set RAR */ @@ -144,20 +143,18 @@ e1000_init_mac_params_82542(struct e1000_hw *hw) /* clear hardware counters */ mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542; /* link info */ - mac->ops.get_link_up_info = - e1000_get_speed_and_duplex_fiber_serdes_generic; + mac->ops.get_link_up_info = e1000_get_speed_and_duplex_fiber_serdes_generic; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_function_pointers_82542 - Init func ptrs. - * @hw: pointer to the HW structure +/** + * e1000_init_function_pointers_82542 - Init func ptrs. + * @hw: pointer to the HW structure * - * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_82542(struct e1000_hw *hw) + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82542(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82542"); @@ -166,15 +163,14 @@ e1000_init_function_pointers_82542(struct e1000_hw *hw) hw->phy.ops.init_params = e1000_init_phy_params_82542; } -/* - * e1000_get_bus_info_82542 - Obtain bus information for adapter - * @hw: pointer to the HW structure +/** + * e1000_get_bus_info_82542 - Obtain bus information for adapter + * @hw: pointer to the HW structure * - * This will obtain information about the HW bus for which the - * adapter is attached and stores it in the hw structure. - */ -static s32 -e1000_get_bus_info_82542(struct e1000_hw *hw) + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. + **/ +static s32 e1000_get_bus_info_82542(struct e1000_hw *hw) { DEBUGFUNC("e1000_get_bus_info_82542"); @@ -182,17 +178,16 @@ e1000_get_bus_info_82542(struct e1000_hw *hw) hw->bus.speed = e1000_bus_speed_unknown; hw->bus.width = e1000_bus_width_unknown; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_reset_hw_82542 - Reset hardware - * @hw: pointer to the HW structure +/** + * e1000_reset_hw_82542 - Reset hardware + * @hw: pointer to the HW structure * - * This resets the hardware into a known state. - */ -static s32 -e1000_reset_hw_82542(struct e1000_hw *hw) + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82542(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; s32 ret_val = E1000_SUCCESS; @@ -227,23 +222,23 @@ e1000_reset_hw_82542(struct e1000_hw *hw) msec_delay(2); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); + E1000_READ_REG(hw, E1000_ICR); if (hw->revision_id == E1000_REVISION_2) { if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(hw); } - return (ret_val); + + return ret_val; } -/* - * e1000_init_hw_82542 - Initialize hardware - * @hw: pointer to the HW structure +/** + * e1000_init_hw_82542 - Initialize hardware + * @hw: pointer to the HW structure * - * This inits the hardware readying it for operation. - */ -static s32 -e1000_init_hw_82542(struct e1000_hw *hw) + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82542(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542; @@ -304,21 +299,20 @@ e1000_init_hw_82542(struct e1000_hw *hw) */ e1000_clear_hw_cntrs_82542(hw); - return (ret_val); + return ret_val; } -/* - * e1000_setup_link_82542 - Setup flow control and link settings - * @hw: pointer to the HW structure +/** + * e1000_setup_link_82542 - Setup flow control and link settings + * @hw: pointer to the HW structure * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - */ -static s32 -e1000_setup_link_82542(struct e1000_hw *hw) + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82542(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = E1000_SUCCESS; @@ -341,7 +335,7 @@ e1000_setup_link_82542(struct e1000_hw *hw) hw->fc.current_mode = hw->fc.requested_mode; DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); + hw->fc.current_mode); /* Call the necessary subroutine to configure the link. */ ret_val = mac->ops.setup_physical_interface(hw); @@ -365,17 +359,16 @@ e1000_setup_link_82542(struct e1000_hw *hw) ret_val = e1000_set_fc_watermarks_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_led_on_82542 - Turn on SW controllable LED - * @hw: pointer to the HW structure +/** + * e1000_led_on_82542 - Turn on SW controllable LED + * @hw: pointer to the HW structure * - * Turns the SW defined LED on. - */ -static s32 -e1000_led_on_82542(struct e1000_hw *hw) + * Turns the SW defined LED on. + **/ +static s32 e1000_led_on_82542(struct e1000_hw *hw) { u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); @@ -385,17 +378,16 @@ e1000_led_on_82542(struct e1000_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_led_off_82542 - Turn off SW controllable LED - * @hw: pointer to the HW structure +/** + * e1000_led_off_82542 - Turn off SW controllable LED + * @hw: pointer to the HW structure * - * Turns the SW defined LED off. - */ -static s32 -e1000_led_off_82542(struct e1000_hw *hw) + * Turns the SW defined LED off. + **/ +static s32 e1000_led_off_82542(struct e1000_hw *hw) { u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); @@ -405,20 +397,19 @@ e1000_led_off_82542(struct e1000_hw *hw) ctrl |= E1000_CTRL_SWDPIO0; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_rar_set_82542 - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register +/** + * e1000_rar_set_82542 - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register * - * Sets the receive address array register at index to the address passed - * in by addr. - */ -static void -e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +static void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; @@ -429,8 +420,8 @@ e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); @@ -442,17 +433,16 @@ e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); } -/* - * e1000_translate_register_82542 - Translate the proper register offset - * @reg: e1000 register to be read +/** + * e1000_translate_register_82542 - Translate the proper register offset + * @reg: e1000 register to be read * - * Registers in 82542 are located in different offsets than other adapters - * even though they function in the same manner. This function takes in - * the name of the register to read and returns the correct offset for - * 82542 silicon. - */ -u32 -e1000_translate_register_82542(u32 reg) + * Registers in 82542 are located in different offsets than other adapters + * even though they function in the same manner. This function takes in + * the name of the register to read and returns the correct offset for + * 82542 silicon. + **/ +u32 e1000_translate_register_82542(u32 reg) { /* * Some of the 82542 registers are located at different @@ -461,7 +451,7 @@ e1000_translate_register_82542(u32 reg) * function in the same manner. */ switch (reg) { - case E1000_RA: + case E1000_RA: reg = 0x00040; break; case E1000_RDTR: @@ -537,44 +527,42 @@ e1000_translate_register_82542(u32 reg) break; } - return (reg); + return reg; } -/* - * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters - * @hw: pointer to the HW structure +/** + * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters + * @hw: pointer to the HW structure * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82542"); e1000_clear_hw_cntrs_base_generic(hw); - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); } -/* - * e1000_read_mac_addr_82542 - Read device MAC address - * @hw: pointer to the HW structure +/** + * e1000_read_mac_addr_82542 - Read device MAC address + * @hw: pointer to the HW structure * - * Reads the device MAC address from the EEPROM and stores the value. - */ -s32 -e1000_read_mac_addr_82542(struct e1000_hw *hw) + * Reads the device MAC address from the EEPROM and stores the value. + **/ +static s32 e1000_read_mac_addr_82542(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 offset, nvm_data, i; @@ -595,6 +583,6 @@ e1000_read_mac_addr_82542(struct e1000_hw *hw) for (i = 0; i < ETH_ADDR_LEN; i++) hw->mac.addr[i] = hw->mac.perm_addr[i]; - out: - return (ret_val); +out: + return ret_val; } diff --git a/usr/src/uts/common/io/e1000g/e1000_82543.c b/usr/src/uts/common/io/e1000api/e1000_82543.c index 2ac92208e7..1c01658cfc 100644 --- a/usr/src/uts/common/io/e1000g/e1000_82543.c +++ b/usr/src/uts/common/io/e1000api/e1000_82543.c @@ -1,31 +1,36 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.68 v3-1-10-1_2009-9-18_Release14-6 - */ +/****************************************************************************** + + Copyright (c) 2001-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ /* * 82543GC Gigabit Ethernet Controller (Fiber) @@ -38,45 +43,45 @@ #include "e1000_api.h" -static s32 e1000_init_phy_params_82543(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82543(struct e1000_hw *hw); -static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, - u16 *data); -static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, - u16 data); -static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); -static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); -static s32 e1000_reset_hw_82543(struct e1000_hw *hw); -static s32 e1000_init_hw_82543(struct e1000_hw *hw); -static s32 e1000_setup_link_82543(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); -static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); -static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); -static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); -static s32 e1000_led_on_82543(struct e1000_hw *hw); -static s32 e1000_led_off_82543(struct e1000_hw *hw); +static s32 e1000_init_phy_params_82543(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82543(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, + u16 data); +static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); +static s32 e1000_reset_hw_82543(struct e1000_hw *hw); +static s32 e1000_init_hw_82543(struct e1000_hw *hw); +static s32 e1000_setup_link_82543(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); +static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); +static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); +static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); +static s32 e1000_led_on_82543(struct e1000_hw *hw); +static s32 e1000_led_off_82543(struct e1000_hw *hw); static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, - u32 value); -static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value); + u32 value); static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw); -static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); +static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw); static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); -static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); +static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); -static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); +static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, - u16 count); + u16 count); static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw); static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state); +static s32 e1000_read_mac_addr_82543(struct e1000_hw *hw); -/* - * e1000_init_phy_params_82543 - Init PHY func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_phy_params_82543(struct e1000_hw *hw) + +/** + * e1000_init_phy_params_82543 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82543(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; @@ -84,34 +89,34 @@ e1000_init_phy_params_82543(struct e1000_hw *hw) DEBUGFUNC("e1000_init_phy_params_82543"); if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; + phy->type = e1000_phy_none; goto out; } else { - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper; } - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 10000; - phy->type = e1000_phy_m88; + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 10000; + phy->type = e1000_phy_m88; /* Function Pointers */ - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.read_reg = (hw->mac.type == e1000_82543) - ? e1000_read_phy_reg_82543 - : e1000_read_phy_reg_m88; - phy->ops.reset = (hw->mac.type == e1000_82543) - ? e1000_phy_hw_reset_82543 - : e1000_phy_hw_reset_generic; - phy->ops.write_reg = (hw->mac.type == e1000_82543) - ? e1000_write_phy_reg_82543 - : e1000_write_phy_reg_m88; - phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.read_reg = (hw->mac.type == e1000_82543) + ? e1000_read_phy_reg_82543 + : e1000_read_phy_reg_m88; + phy->ops.reset = (hw->mac.type == e1000_82543) + ? e1000_phy_hw_reset_82543 + : e1000_phy_hw_reset_generic; + phy->ops.write_reg = (hw->mac.type == e1000_82543) + ? e1000_write_phy_reg_82543 + : e1000_write_phy_reg_m88; + phy->ops.get_info = e1000_get_phy_info_m88; /* * The external PHY of the 82543 can be in a funky state. @@ -148,45 +153,44 @@ e1000_init_phy_params_82543(struct e1000_hw *hw) default: ret_val = -E1000_ERR_PHY; goto out; + break; } out: - return (ret_val); + return ret_val; } -/* - * e1000_init_nvm_params_82543 - Init NVM func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_82543(struct e1000_hw *hw) +/** + * e1000_init_nvm_params_82543 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; DEBUGFUNC("e1000_init_nvm_params_82543"); - nvm->type = e1000_nvm_eeprom_microwire; - nvm->word_size = 64; - nvm->delay_usec = 50; - nvm->address_bits = 6; - nvm->opcode_bits = 3; + nvm->type = e1000_nvm_eeprom_microwire; + nvm->word_size = 64; + nvm->delay_usec = 50; + nvm->address_bits = 6; + nvm->opcode_bits = 3; /* Function Pointers */ - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.read = e1000_read_nvm_microwire; + nvm->ops.update = e1000_update_nvm_checksum_generic; nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_microwire; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.write = e1000_write_nvm_microwire; - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_mac_params_82543 - Init MAC func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_82543(struct e1000_hw *hw) +/** + * e1000_init_mac_params_82543 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82543(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; @@ -222,27 +226,27 @@ e1000_init_mac_params_82543(struct e1000_hw *hw) mac->ops.setup_link = e1000_setup_link_82543; /* physical interface setup */ mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82543 - : e1000_setup_fiber_link_82543; + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82543 + : e1000_setup_fiber_link_82543; /* check for link */ mac->ops.check_for_link = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_check_for_copper_link_82543 - : e1000_check_for_fiber_link_82543; + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_check_for_copper_link_82543 + : e1000_check_for_fiber_link_82543; /* link info */ mac->ops.get_link_up_info = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_get_speed_and_duplex_copper_generic - : e1000_get_speed_and_duplex_fiber_serdes_generic; + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_get_speed_and_duplex_copper_generic + : e1000_get_speed_and_duplex_fiber_serdes_generic; /* multicast address update */ mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; /* writing VFTA */ mac->ops.write_vfta = e1000_write_vfta_82543; /* clearing VFTA */ mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_82543; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82543; /* turn on/off LED */ mac->ops.led_on = e1000_led_on_82543; mac->ops.led_off = e1000_led_off_82543; @@ -252,19 +256,18 @@ e1000_init_mac_params_82543(struct e1000_hw *hw) /* Set tbi compatibility */ if ((hw->mac.type != e1000_82543) || (hw->phy.media_type == e1000_media_type_fiber)) - e1000_set_tbi_compatibility_82543(hw, false); + e1000_set_tbi_compatibility_82543(hw, FALSE); - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_init_function_pointers_82543 - Init func ptrs. - * @hw: pointer to the HW structure +/** + * e1000_init_function_pointers_82543 - Init func ptrs. + * @hw: pointer to the HW structure * - * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_82543(struct e1000_hw *hw) + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82543(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82543"); @@ -273,18 +276,17 @@ e1000_init_function_pointers_82543(struct e1000_hw *hw) hw->phy.ops.init_params = e1000_init_phy_params_82543; } -/* - * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status - * @hw: pointer to the HW structure +/** + * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status + * @hw: pointer to the HW structure * - * Returns the current status of 10-bit Interface (TBI) compatibility - * (enabled/disabled). - */ -static bool -e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) + * Returns the current status of 10-bit Interface (TBI) compatibility + * (enabled/disabled). + **/ +static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) { struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - bool state = false; + bool state = FALSE; DEBUGFUNC("e1000_tbi_compatibility_enabled_82543"); @@ -294,21 +296,20 @@ e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) } state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED) - ? true : false; + ? TRUE : FALSE; out: - return (state); + return state; } -/* - * e1000_set_tbi_compatibility_82543 - Set TBI compatibility - * @hw: pointer to the HW structure - * @state: enable/disable TBI compatibility +/** + * e1000_set_tbi_compatibility_82543 - Set TBI compatibility + * @hw: pointer to the HW structure + * @state: enable/disable TBI compatibility * - * Enables or disabled 10-bit Interface (TBI) compatibility. - */ -void -e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) + * Enables or disabled 10-bit Interface (TBI) compatibility. + **/ +void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; @@ -316,27 +317,29 @@ e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) if (hw->mac.type != e1000_82543) { DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); - return; + goto out; } if (state) dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED; else dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED; + +out: + return; } -/* - * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status - * @hw: pointer to the HW structure +/** + * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status + * @hw: pointer to the HW structure * - * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) - * (enabled/disabled). - */ -bool -e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) + * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) + * (enabled/disabled). + **/ +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) { struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - bool state = false; + bool state = FALSE; DEBUGFUNC("e1000_tbi_sbp_enabled_82543"); @@ -346,21 +349,20 @@ e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) } state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED) - ? true : false; + ? TRUE : FALSE; out: - return (state); + return state; } -/* - * e1000_set_tbi_sbp_82543 - Set TBI SBP - * @hw: pointer to the HW structure - * @state: enable/disable TBI store bad packet +/** + * e1000_set_tbi_sbp_82543 - Set TBI SBP + * @hw: pointer to the HW structure + * @state: enable/disable TBI store bad packet * - * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). - */ -static void -e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) + * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). + **/ +static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) { struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; @@ -370,17 +372,18 @@ e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) dev_spec->tbi_compatibility |= TBI_SBP_ENABLED; else dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED; + + return; } -/* - * e1000_init_phy_disabled_82543 - Returns init PHY status - * @hw: pointer to the HW structure +/** + * e1000_init_phy_disabled_82543 - Returns init PHY status + * @hw: pointer to the HW structure * - * Returns the current status of whether PHY initialization is disabled. - * True if PHY initialization is disabled else false. - */ -static bool -e1000_init_phy_disabled_82543(struct e1000_hw *hw) + * Returns the current status of whether PHY initialization is disabled. + * True if PHY initialization is disabled else FALSE. + **/ +static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw) { struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; bool ret_val; @@ -388,33 +391,32 @@ e1000_init_phy_disabled_82543(struct e1000_hw *hw) DEBUGFUNC("e1000_init_phy_disabled_82543"); if (hw->mac.type != e1000_82543) { - ret_val = false; + ret_val = FALSE; goto out; } ret_val = dev_spec->init_phy_disabled; out: - return (ret_val); + return ret_val; } -/* - * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled - * @hw: pointer to the HW structure - * @stats: Struct containing statistic register values - * @frame_len: The length of the frame in question - * @mac_addr: The Ethernet destination address of the frame in question - * @max_frame_size: The maximum frame size +/** + * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled + * @hw: pointer to the HW structure + * @stats: Struct containing statistic register values + * @frame_len: The length of the frame in question + * @mac_addr: The Ethernet destination address of the frame in question + * @max_frame_size: The maximum frame size * - * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT - */ -void -e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, - struct e1000_hw_stats *stats, u32 frame_len, - u8 *mac_addr, u32 max_frame_size) + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + **/ +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, u32 frame_len, + u8 *mac_addr, u32 max_frame_size) { if (!(e1000_tbi_sbp_enabled_82543(hw))) - return; + goto out; /* First adjust the frame length. */ frame_len--; @@ -423,18 +425,18 @@ e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, * counters overcount this packet as a CRC error and undercount * the packet as a good packet */ - /* This packet should not be counted as a CRC error. */ + /* This packet should not be counted as a CRC error. */ stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ + /* This packet does count as a Good Packet Received. */ stats->gprc++; - /* Adjust the Good Octets received counters */ + /* Adjust the Good Octets received counters */ stats->gorc += frame_len; /* - * Is this a broadcast or multicast? Check broadcast first, since - * the test for a multicast frame will test positive on a broadcast - * frame. + * Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. */ if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff)) /* Broadcast packet */ @@ -472,18 +474,20 @@ e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, } else if (frame_len == 1522) { stats->prc1522++; } + +out: + return; } -/* - * e1000_read_phy_reg_82543 - Read PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data +/** + * e1000_read_phy_reg_82543 - Read PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data * - * Reads the PHY at offset and stores the information read to data. - */ -static s32 -e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 * data) + * Reads the PHY at offset and stores the information read to data. + **/ +static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data) { u32 mdic; s32 ret_val = E1000_SUCCESS; @@ -509,14 +513,14 @@ e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 * data) * e1000_shift_out_mdi_bits routine five different times. The format * of an MII read instruction consists of a shift out of 14 bits and * is defined as follows: - * <Preamble><SOF><Op Code><Phy Addr><Offset> + * <Preamble><SOF><Op Code><Phy Addr><Offset> * followed by a shift in of 18 bits. This first two bits shifted in * are TurnAround bits used to avoid contention on the MDIO pin when a * READ operation is performed. These two bits are thrown away * followed by a shift in of 16 bits which contains the desired data. */ mdic = (offset | (hw->phy.addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); + (PHY_OP_READ << 10) | (PHY_SOF << 12)); e1000_shift_out_mdi_bits_82543(hw, mdic, 14); @@ -528,19 +532,18 @@ e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 * data) *data = e1000_shift_in_mdi_bits_82543(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_write_phy_reg_82543 - Write PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be written - * @data: pointer to the data to be written at offset +/** + * e1000_write_phy_reg_82543 - Write PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be written + * @data: pointer to the data to be written at offset * - * Writes data to the PHY at offset. - */ -static s32 -e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) + * Writes data to the PHY at offset. + **/ +static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) { u32 mdic; s32 ret_val = E1000_SUCCESS; @@ -569,26 +572,25 @@ e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. */ mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); mdic <<= 16; mdic |= (u32) data; e1000_shift_out_mdi_bits_82543(hw, mdic, 32); out: - return (ret_val); + return ret_val; } -/* - * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock - * @hw: pointer to the HW structure - * @ctrl: pointer to the control register +/** + * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register * - * Raise the management data input clock by setting the MDC bit in the control - * register. - */ -static void -e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 * ctrl) + * Raise the management data input clock by setting the MDC bit in the control + * register. + **/ +static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) { /* * Raise the clock input to the Management Data Clock (by setting the @@ -599,16 +601,15 @@ e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 * ctrl) usec_delay(10); } -/* - * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock - * @hw: pointer to the HW structure - * @ctrl: pointer to the control register +/** + * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock + * @hw: pointer to the HW structure + * @ctrl: pointer to the control register * - * Lower the management data input clock by clearing the MDC bit in the control - * register. - */ -static void -e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 * ctrl) + * Lower the management data input clock by clearing the MDC bit in the + * control register. + **/ +static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) { /* * Lower the clock input to the Management Data Clock (by clearing the @@ -619,19 +620,18 @@ e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 * ctrl) usec_delay(10); } -/* - * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY - * @hw: pointer to the HW structure - * @data: data to send to the PHY - * @count: number of bits to shift out +/** + * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY + * @hw: pointer to the HW structure + * @data: data to send to the PHY + * @count: number of bits to shift out * - * We need to shift 'count' bits out to the PHY. So, the value in the - * "data" parameter will be shifted out to the PHY one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ -static void -e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, - u16 count) + * We need to shift 'count' bits out to the PHY. So, the value in the + * "data" parameter will be shifted out to the PHY one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, + u16 count) { u32 ctrl, mask; @@ -642,7 +642,7 @@ e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, * into bits. */ mask = 0x01; - mask <<= (count - 1); + mask <<= (count -1); ctrl = E1000_READ_REG(hw, E1000_CTRL); @@ -656,10 +656,8 @@ e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, * A "0" is shifted out to the PHY by setting the MDIO bit to * "0" and then raising and lowering the clock. */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; + if (data & mask) ctrl |= E1000_CTRL_MDIO; + else ctrl &= ~E1000_CTRL_MDIO; E1000_WRITE_REG(hw, E1000_CTRL, ctrl); E1000_WRITE_FLUSH(hw); @@ -673,17 +671,16 @@ e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, } } -/* - * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY - * @hw: pointer to the HW structure +/** + * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY + * @hw: pointer to the HW structure * - * In order to read a register from the PHY, we need to shift 18 bits - * in from the PHY. Bits are "shifted in" by raising the clock input to - * the PHY (setting the MDC bit), and then reading the value of the data out - * MDIO bit. - */ -static u16 -e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) + * In order to read a register from the PHY, we need to shift 18 bits + * in from the PHY. Bits are "shifted in" by raising the clock input to + * the PHY (setting the MDC bit), and then reading the value of the data out + * MDIO bit. + **/ +static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) { u32 ctrl; u16 data = 0; @@ -731,19 +728,18 @@ e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) e1000_raise_mdi_clk_82543(hw, &ctrl); e1000_lower_mdi_clk_82543(hw, &ctrl); - return (data); + return data; } -/* - * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY - * @hw: pointer to the HW structure +/** + * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY + * @hw: pointer to the HW structure * - * Calls the function to force speed and duplex for the m88 PHY, and - * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, - * then call the function for polarity reversal workaround. - */ -static s32 -e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) + * Calls the function to force speed and duplex for the m88 PHY, and + * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, + * then call the function for polarity reversal workaround. + **/ +static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) { s32 ret_val; @@ -758,19 +754,18 @@ e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) ret_val = e1000_polarity_reversal_workaround_82543(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal - * @hw: pointer to the HW structure +/** + * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal + * @hw: pointer to the HW structure * - * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity - * inadvertently. To workaround the issue, we disable the transmitter on - * the PHY until we have established the link partner's link parameters. - */ -static s32 -e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) + * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity + * inadvertently. To workaround the issue, we disable the transmitter on + * the PHY until we have established the link partner's link parameters. + **/ +static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) { s32 ret_val = E1000_SUCCESS; u16 mii_status_reg; @@ -852,20 +847,19 @@ e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) goto out; out: - return (ret_val); + return ret_val; } -/* - * e1000_phy_hw_reset_82543 - PHY hardware reset - * @hw: pointer to the HW structure +/** + * e1000_phy_hw_reset_82543 - PHY hardware reset + * @hw: pointer to the HW structure * - * Sets the PHY_RESET_DIR bit in the extended device control register - * to put the PHY into a reset and waits for completion. Once the reset - * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out - * of reset. - */ -static s32 -e1000_phy_hw_reset_82543(struct e1000_hw *hw) + * Sets the PHY_RESET_DIR bit in the extended device control register + * to put the PHY into a reset and waits for completion. Once the reset + * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out + * of reset. + **/ +static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw) { u32 ctrl_ext; s32 ret_val; @@ -892,23 +886,22 @@ e1000_phy_hw_reset_82543(struct e1000_hw *hw) usec_delay(150); if (!(hw->phy.ops.get_cfg_done)) - return (E1000_SUCCESS); + return E1000_SUCCESS; ret_val = hw->phy.ops.get_cfg_done(hw); - return (ret_val); + return ret_val; } -/* - * e1000_reset_hw_82543 - Reset hardware - * @hw: pointer to the HW structure +/** + * e1000_reset_hw_82543 - Reset hardware + * @hw: pointer to the HW structure * - * This resets the hardware into a known state. - */ -static s32 -e1000_reset_hw_82543(struct e1000_hw *hw) + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82543(struct e1000_hw *hw) { - u32 ctrl; + u32 ctrl, icr; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_reset_hw_82543"); @@ -920,7 +913,7 @@ e1000_reset_hw_82543(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); - e1000_set_tbi_sbp_82543(hw, false); + e1000_set_tbi_sbp_82543(hw, FALSE); /* * Delay to allow any outstanding PCI transactions to complete before @@ -950,19 +943,18 @@ e1000_reset_hw_82543(struct e1000_hw *hw) /* Masking off and clearing any pending interrupts */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); + icr = E1000_READ_REG(hw, E1000_ICR); - return (ret_val); + return ret_val; } -/* - * e1000_init_hw_82543 - Initialize hardware - * @hw: pointer to the HW structure +/** + * e1000_init_hw_82543 - Initialize hardware + * @hw: pointer to the HW structure * - * This inits the hardware readying it for operation. - */ -static s32 -e1000_init_hw_82543(struct e1000_hw *hw) + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82543(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; @@ -1009,27 +1001,26 @@ e1000_init_hw_82543(struct e1000_hw *hw) */ e1000_clear_hw_cntrs_82543(hw); - return (ret_val); + return ret_val; } -/* - * e1000_setup_link_82543 - Setup flow control and link settings - * @hw: pointer to the HW structure +/** + * e1000_setup_link_82543 - Setup flow control and link settings + * @hw: pointer to the HW structure * - * Read the EEPROM to determine the initial polarity value and write the - * extended device control register with the information before calling - * the generic setup link function, which does the following: - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - */ -static s32 -e1000_setup_link_82543(struct e1000_hw *hw) + * Read the EEPROM to determine the initial polarity value and write the + * extended device control register with the information before calling + * the generic setup link function, which does the following: + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82543(struct e1000_hw *hw) { u32 ctrl_ext; - s32 ret_val; + s32 ret_val; u16 data; DEBUGFUNC("e1000_setup_link_82543"); @@ -1049,26 +1040,25 @@ e1000_setup_link_82543(struct e1000_hw *hw) goto out; } ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) << - NVM_SWDPIO_EXT_SHIFT); + NVM_SWDPIO_EXT_SHIFT); E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); } ret_val = e1000_setup_link_generic(hw); out: - return (ret_val); + return ret_val; } -/* - * e1000_setup_copper_link_82543 - Configure copper link settings - * @hw: pointer to the HW structure +/** + * e1000_setup_copper_link_82543 - Configure copper link settings + * @hw: pointer to the HW structure * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - */ -static s32 -e1000_setup_copper_link_82543(struct e1000_hw *hw) + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; @@ -1089,7 +1079,6 @@ e1000_setup_copper_link_82543(struct e1000_hw *hw) ret_val = hw->phy.ops.reset(hw); if (ret_val) goto out; - hw->phy.reset_disable = false; } else { ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); @@ -1126,9 +1115,9 @@ e1000_setup_copper_link_82543(struct e1000_hw *hw) * valid. */ ret_val = e1000_phy_has_link_generic(hw, - COPPER_LINK_UP_LIMIT, - 10, - &link); + COPPER_LINK_UP_LIMIT, + 10, + &link); if (ret_val) goto out; @@ -1137,7 +1126,7 @@ e1000_setup_copper_link_82543(struct e1000_hw *hw) DEBUGOUT("Valid link established!!!\n"); /* Config the MAC and PHY after link is up */ if (hw->mac.type == e1000_82544) { - e1000_config_collision_dist_generic(hw); + hw->mac.ops.config_collision_dist(hw); } else { ret_val = e1000_config_mac_to_phy_82543(hw); if (ret_val) @@ -1145,23 +1134,21 @@ e1000_setup_copper_link_82543(struct e1000_hw *hw) } ret_val = e1000_config_fc_after_link_up_generic(hw); } else { - /* EMPTY */ DEBUGOUT("Unable to establish link!!!\n"); } out: - return (ret_val); + return ret_val; } -/* - * e1000_setup_fiber_link_82543 - Setup link for fiber - * @hw: pointer to the HW structure +/** + * e1000_setup_fiber_link_82543 - Setup link for fiber + * @hw: pointer to the HW structure * - * Configures collision distance and flow control for fiber links. Upon - * successful setup, poll for link. - */ -static s32 -e1000_setup_fiber_link_82543(struct e1000_hw *hw) + * Configures collision distance and flow control for fiber links. Upon + * successful setup, poll for link. + **/ +static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; @@ -1173,7 +1160,7 @@ e1000_setup_fiber_link_82543(struct e1000_hw *hw) /* Take the link out of reset */ ctrl &= ~E1000_CTRL_LRST; - e1000_config_collision_dist_generic(hw); + hw->mac.ops.config_collision_dist(hw); ret_val = e1000_commit_fc_settings_generic(hw); if (ret_val) @@ -1193,27 +1180,25 @@ e1000_setup_fiber_link_82543(struct e1000_hw *hw) if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { ret_val = e1000_poll_fiber_serdes_link_generic(hw); } else { - /* EMPTY */ DEBUGOUT("No signal detected\n"); } out: - return (ret_val); + return ret_val; } -/* - * e1000_check_for_copper_link_82543 - Check for link (Copper) - * @hw: pointer to the HW structure +/** + * e1000_check_for_copper_link_82543 - Check for link (Copper) + * @hw: pointer to the HW structure * - * Checks the phy for link, if link exists, do the following: - * - check for downshift - * - do polarity workaround (if necessary) - * - configure collision distance - * - configure flow control after link up - * - configure tbi compatibility - */ -static s32 -e1000_check_for_copper_link_82543(struct e1000_hw *hw) + * Checks the phy for link, if link exists, do the following: + * - check for downshift + * - do polarity workaround (if necessary) + * - configure collision distance + * - configure flow control after link up + * - configure tbi compatibility + **/ +static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 icr, rctl; @@ -1233,11 +1218,11 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) goto out; if (!link) - goto out; /* No link detected */ + goto out; /* No link detected */ - mac->get_link_status = false; + mac->get_link_status = FALSE; - (void) e1000_check_downshift_generic(hw); + e1000_check_downshift_generic(hw); /* * If we are forcing speed/duplex, then we can return since @@ -1274,7 +1259,7 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) * settings. */ if (mac->type == e1000_82544) - e1000_config_collision_dist_generic(hw); + hw->mac.ops.config_collision_dist(hw); else { ret_val = e1000_config_mac_to_phy_82543(hw); if (ret_val) { @@ -1291,7 +1276,6 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) */ ret_val = e1000_config_fc_after_link_up_generic(hw); if (ret_val) { - /* EMPTY */ DEBUGOUT("Error configuring flow control\n"); } @@ -1307,7 +1291,7 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); if (ret_val) { DEBUGOUT("Error getting link speed and duplex\n"); - return (ret_val); + return ret_val; } if (speed != SPEED_1000) { /* @@ -1319,7 +1303,7 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) * If we previously were in the mode, * turn it off. */ - e1000_set_tbi_sbp_82543(hw, false); + e1000_set_tbi_sbp_82543(hw, FALSE); rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= ~E1000_RCTL_SBP; E1000_WRITE_REG(hw, E1000_RCTL, rctl); @@ -1333,7 +1317,7 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) * will look like CRC errors to to the hardware. */ if (!e1000_tbi_sbp_enabled_82543(hw)) { - e1000_set_tbi_sbp_82543(hw, true); + e1000_set_tbi_sbp_82543(hw, TRUE); rctl = E1000_READ_REG(hw, E1000_RCTL); rctl |= E1000_RCTL_SBP; E1000_WRITE_REG(hw, E1000_RCTL, rctl); @@ -1341,18 +1325,17 @@ e1000_check_for_copper_link_82543(struct e1000_hw *hw) } } out: - return (ret_val); + return ret_val; } -/* - * e1000_check_for_fiber_link_82543 - Check for link (Fiber) - * @hw: pointer to the HW structure +/** + * e1000_check_for_fiber_link_82543 - Check for link (Fiber) + * @hw: pointer to the HW structure * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - */ -static s32 -e1000_check_for_fiber_link_82543(struct e1000_hw *hw) + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw, ctrl, status; @@ -1408,22 +1391,21 @@ e1000_check_for_fiber_link_82543(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - mac->serdes_has_link = true; + mac->serdes_has_link = TRUE; } out: - return (ret_val); + return ret_val; } -/* - * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings - * @hw: pointer to the HW structure +/** + * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings + * @hw: pointer to the HW structure * - * For the 82543 silicon, we need to set the MAC to match the settings - * of the PHY, even if the PHY is auto-negotiating. - */ -static s32 -e1000_config_mac_to_phy_82543(struct e1000_hw *hw) + * For the 82543 silicon, we need to set the MAC to match the settings + * of the PHY, even if the PHY is auto-negotiating. + **/ +static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw) { u32 ctrl; s32 ret_val = E1000_SUCCESS; @@ -1451,7 +1433,7 @@ e1000_config_mac_to_phy_82543(struct e1000_hw *hw) if (phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; - e1000_config_collision_dist_generic(hw); + hw->mac.ops.config_collision_dist(hw); /* * Set up speed in the Device Control register depending on @@ -1465,20 +1447,19 @@ e1000_config_mac_to_phy_82543(struct e1000_hw *hw) E1000_WRITE_REG(hw, E1000_CTRL, ctrl); out: - return (ret_val); + return ret_val; } -/* - * e1000_write_vfta_82543 - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: the 32-bit offset in which to write the value to. - * @value: the 32-bit value to write at location offset. +/** + * e1000_write_vfta_82543 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. * - * This writes a 32-bit value to a 32-bit offset in the VLAN filter - * table. - */ -static void -e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. + **/ +static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) { u32 temp; @@ -1495,54 +1476,13 @@ e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) } } -/* - * e1000_mta_set_82543 - Set multicast filter table address - * @hw: pointer to the HW structure - * @hash_value: determines the MTA register and bit to set - * - * The multicast table address is a register array of 32-bit registers. - * The hash_value is used to determine what register the bit is in, the - * current value is read, the new bit is OR'd in and the new value is - * written back into the register. - */ -static void -e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value) -{ - u32 hash_bit, hash_reg, mta, temp; - - DEBUGFUNC("e1000_mta_set_82543"); - - hash_reg = (hash_value >> 5); - - /* - * If we are on an 82544 and we are trying to write an odd offset - * in the MTA, save off the previous entry before writing and - * restore the old value after writing. - */ - if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) { - hash_reg &= (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); - mta |= (1 << hash_bit); - temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1); - - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp); - E1000_WRITE_FLUSH(hw); - } else { - e1000_mta_set_generic(hw, hash_value); - } -} - -/* - * e1000_led_on_82543 - Turn on SW controllable LED - * @hw: pointer to the HW structure +/** + * e1000_led_on_82543 - Turn on SW controllable LED + * @hw: pointer to the HW structure * - * Turns the SW defined LED on. - */ -static s32 -e1000_led_on_82543(struct e1000_hw *hw) + * Turns the SW defined LED on. + **/ +static s32 e1000_led_on_82543(struct e1000_hw *hw) { u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); @@ -1560,17 +1500,16 @@ e1000_led_on_82543(struct e1000_hw *hw) } E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_led_off_82543 - Turn off SW controllable LED - * @hw: pointer to the HW structure +/** + * e1000_led_off_82543 - Turn off SW controllable LED + * @hw: pointer to the HW structure * - * Turns the SW defined LED off. - */ -static s32 -e1000_led_off_82543(struct e1000_hw *hw) + * Turns the SW defined LED off. + **/ +static s32 e1000_led_off_82543(struct e1000_hw *hw) { u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); @@ -1587,39 +1526,76 @@ e1000_led_off_82543(struct e1000_hw *hw) } E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - return (E1000_SUCCESS); + return E1000_SUCCESS; } -/* - * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters - * @hw: pointer to the HW structure +/** + * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters + * @hw: pointer to the HW structure * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) { DEBUGFUNC("e1000_clear_hw_cntrs_82543"); e1000_clear_hw_cntrs_base_generic(hw); - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); +} + +/** + * e1000_read_mac_addr_82543 - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + * + **/ +s32 e1000_read_mac_addr_82543(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 offset, nvm_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = i >> 1; + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); + } + + /* Flip last bit of mac address if we're on second port */ + if (hw->bus.func == E1000_FUNC_1) + hw->mac.perm_addr[5] ^= 1; + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + +out: + return ret_val; } diff --git a/usr/src/uts/common/io/e1000api/e1000_82543.h b/usr/src/uts/common/io/e1000api/e1000_82543.h new file mode 100644 index 0000000000..45a34e4d86 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_82543.h @@ -0,0 +1,65 @@ +/****************************************************************************** + + Copyright (c) 2001-2008, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82543_H_ +#define _E1000_82543_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define PHY_PREAMBLE 0xFFFFFFFF +#define PHY_PREAMBLE_SIZE 32 +#define PHY_SOF 0x1 +#define PHY_OP_READ 0x2 +#define PHY_OP_WRITE 0x1 +#define PHY_TURNAROUND 0x2 + +#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */ +/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */ +#define TBI_SBP_ENABLED 0x2 + +void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, + struct e1000_hw_stats *stats, + u32 frame_len, u8 *mac_addr, + u32 max_frame_size); +void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, + bool state); +bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_82543_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_82571.c b/usr/src/uts/common/io/e1000api/e1000_82571.c new file mode 100644 index 0000000000..ca7a1d021f --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_82571.c @@ -0,0 +1,2022 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* 82571EB Gigabit Ethernet Controller + * 82571EB Gigabit Ethernet Controller (Copper) + * 82571EB Gigabit Ethernet Controller (Fiber) + * 82571EB Dual Port Gigabit Mezzanine Adapter + * 82571EB Quad Port Gigabit Mezzanine Adapter + * 82571PT Gigabit PT Quad Port Server ExpressModule + * 82572EI Gigabit Ethernet Controller (Copper) + * 82572EI Gigabit Ethernet Controller (Fiber) + * 82572EI Gigabit Ethernet Controller + * 82573V Gigabit Ethernet Controller (Copper) + * 82573E Gigabit Ethernet Controller (Copper) + * 82573L Gigabit Ethernet Controller + * 82574L Gigabit Network Connection + * 82583V Gigabit Network Connection + */ + +#include "e1000_api.h" + +static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); +static void e1000_release_nvm_82571(struct e1000_hw *hw); +static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); +static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, + bool active); +static s32 e1000_reset_hw_82571(struct e1000_hw *hw); +static s32 e1000_init_hw_82571(struct e1000_hw *hw); +static void e1000_clear_vfta_82571(struct e1000_hw *hw); +static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); +static s32 e1000_led_on_82574(struct e1000_hw *hw); +static s32 e1000_setup_link_82571(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); +static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); +static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); +static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); +static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw); +static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); +static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); +static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); +static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); +static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, + bool active); +static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); +static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); + +/** + * e1000_init_phy_params_82571 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_params_82571"); + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + return E1000_SUCCESS; + } + + phy->addr = 1; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.reset = e1000_phy_hw_reset_generic; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82571; + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + phy->type = e1000_phy_igp_2; + phy->ops.get_cfg_done = e1000_get_cfg_done_82571; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.acquire = e1000_get_hw_semaphore_82571; + phy->ops.release = e1000_put_hw_semaphore_82571; + break; + case e1000_82573: + phy->type = e1000_phy_m88; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.read_reg = e1000_read_phy_reg_m88; + phy->ops.write_reg = e1000_write_phy_reg_m88; + phy->ops.acquire = e1000_get_hw_semaphore_82571; + phy->ops.release = e1000_put_hw_semaphore_82571; + break; + case e1000_82574: + case e1000_82583: + E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex); + + phy->type = e1000_phy_bm; + phy->ops.get_cfg_done = e1000_get_cfg_done_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.read_reg = e1000_read_phy_reg_bm2; + phy->ops.write_reg = e1000_write_phy_reg_bm2; + phy->ops.acquire = e1000_get_hw_semaphore_82574; + phy->ops.release = e1000_put_hw_semaphore_82574; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; + break; + default: + return -E1000_ERR_PHY; + break; + } + + /* This can only be done after all function pointers are setup. */ + ret_val = e1000_get_phy_id_82571(hw); + if (ret_val) { + DEBUGOUT("Error getting PHY ID\n"); + return ret_val; + } + + /* Verify phy id */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + if (phy->id != IGP01E1000_I_PHY_ID) + ret_val = -E1000_ERR_PHY; + break; + case e1000_82573: + if (phy->id != M88E1111_I_PHY_ID) + ret_val = -E1000_ERR_PHY; + break; + case e1000_82574: + case e1000_82583: + if (phy->id != BME1000_E_PHY_ID_R2) + ret_val = -E1000_ERR_PHY; + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); + + return ret_val; +} + +/** + * e1000_init_nvm_params_82571 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82571"); + + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; + break; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (((eecd >> 15) & 0x3) == 0x3) { + nvm->type = e1000_nvm_flash_hw; + nvm->word_size = 2048; + /* Autonomous Flash update bit must be cleared due + * to Flash update issue. + */ + eecd &= ~E1000_EECD_AUPDEN; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + break; + } + /* Fall Through */ + default: + nvm->type = e1000_nvm_eeprom_spi; + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* EEPROM access above 16k is unsupported */ + if (size > 14) + size = 14; + nvm->word_size = 1 << size; + break; + } + + /* Function Pointers */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + nvm->ops.acquire = e1000_get_hw_semaphore_82574; + nvm->ops.release = e1000_put_hw_semaphore_82574; + break; + default: + nvm->ops.acquire = e1000_acquire_nvm_82571; + nvm->ops.release = e1000_release_nvm_82571; + break; + } + nvm->ops.read = e1000_read_nvm_eerd; + nvm->ops.update = e1000_update_nvm_checksum_82571; + nvm->ops.validate = e1000_validate_nvm_checksum_82571; + nvm->ops.valid_led_default = e1000_valid_led_default_82571; + nvm->ops.write = e1000_write_nvm_82571; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82571 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 swsm = 0; + u32 swsm2 = 0; + bool force_clear_smbi = FALSE; + + DEBUGFUNC("e1000_init_mac_params_82571"); + + /* Set media type and media-dependent function pointers */ + switch (hw->device_id) { + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + hw->phy.media_type = e1000_media_type_fiber; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_82571; + mac->ops.check_for_link = e1000_check_for_fiber_link_generic; + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_fiber_serdes_generic; + break; + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82572EI_SERDES: + hw->phy.media_type = e1000_media_type_internal_serdes; + mac->ops.setup_physical_interface = + e1000_setup_fiber_serdes_link_82571; + mac->ops.check_for_link = e1000_check_for_serdes_link_82571; + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_fiber_serdes_generic; + break; + default: + hw->phy.media_type = e1000_media_type_copper; + mac->ops.setup_physical_interface = + e1000_setup_copper_link_82571; + mac->ops.check_for_link = e1000_check_for_copper_link_generic; + mac->ops.get_link_up_info = + e1000_get_speed_and_duplex_copper_generic; + break; + } + + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* Adaptive IFS supported */ + mac->adaptive_ifs = TRUE; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_82571; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82571; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_82571; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_82571; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82571; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn off LED */ + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571; + + /* MAC-specific function pointers */ + switch (hw->mac.type) { + case e1000_82573: + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + mac->ops.led_on = e1000_led_on_generic; + mac->ops.blink_led = e1000_blink_led_generic; + + /* FWSM register */ + mac->has_fwsm = TRUE; + /* ARC supported; valid only if manageability features are + * enabled. + */ + mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_MODE_MASK); + break; + case e1000_82574: + case e1000_82583: + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + mac->ops.check_mng_mode = e1000_check_mng_mode_82574; + mac->ops.led_on = e1000_led_on_82574; + break; + default: + mac->ops.check_mng_mode = e1000_check_mng_mode_generic; + mac->ops.led_on = e1000_led_on_generic; + mac->ops.blink_led = e1000_blink_led_generic; + + /* FWSM register */ + mac->has_fwsm = TRUE; + break; + } + + /* Ensure that the inter-port SWSM.SMBI lock bit is clear before + * first NVM or PHY acess. This should be done for single-port + * devices, and for one port only on dual-port devices so that + * for those devices we can still use the SMBI lock to synchronize + * inter-port accesses to the PHY & NVM. + */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + swsm2 = E1000_READ_REG(hw, E1000_SWSM2); + + if (!(swsm2 & E1000_SWSM2_LOCK)) { + /* Only do this for the first interface on this card */ + E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 | + E1000_SWSM2_LOCK); + force_clear_smbi = TRUE; + } else { + force_clear_smbi = FALSE; + } + break; + default: + force_clear_smbi = TRUE; + break; + } + + if (force_clear_smbi) { + /* Make sure SWSM.SMBI is clear */ + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (swsm & E1000_SWSM_SMBI) { + /* This bit should not be set on a first interface, and + * indicates that the bootagent or EFI code has + * improperly left this bit enabled + */ + DEBUGOUT("Please update your 82571 Bootagent\n"); + } + E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI); + } + + /* Initialze device specific counter of SMBI acquisition timeouts. */ + hw->dev_spec._82571.smb_counter = 0; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82571 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82571"); + + hw->mac.ops.init_params = e1000_init_mac_params_82571; + hw->nvm.ops.init_params = e1000_init_nvm_params_82571; + hw->phy.ops.init_params = e1000_init_phy_params_82571; +} + +/** + * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_id = 0; + + DEBUGFUNC("e1000_get_phy_id_82571"); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* The 82571 firmware may still be configuring the PHY. + * In this case, we cannot access the PHY until the + * configuration is done. So we explicitly set the + * PHY ID. + */ + phy->id = IGP01E1000_I_PHY_ID; + break; + case e1000_82573: + return e1000_get_phy_id(hw); + break; + case e1000_82574: + case e1000_82583: + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + break; + default: + return -E1000_ERR_PHY; + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + s32 sw_timeout = hw->nvm.word_size + 1; + s32 fw_timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_82571"); + + /* If we have timedout 3 times on trying to acquire + * the inter-port SMBI semaphore, there is old code + * operating on the other port, and it is not + * releasing SMBI. Modify the number of times that + * we try for the semaphore to interwork with this + * older code. + */ + if (hw->dev_spec._82571.smb_counter > 2) + sw_timeout = 1; + + /* Get the SW semaphore */ + while (i < sw_timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == sw_timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + hw->dev_spec._82571.smb_counter++; + } + /* Get the FW semaphore. */ + for (i = 0; i < fw_timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == fw_timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_82571(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_put_hw_semaphore_82571 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) +{ + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +} + +/** + * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore during reset. + * + **/ +static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_82573"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + do { + extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) + break; + + msec_delay(2); + i++; + } while (i < MDIO_OWNERSHIP_TIMEOUT); + + if (i == MDIO_OWNERSHIP_TIMEOUT) { + /* Release semaphores */ + e1000_put_hw_semaphore_82573(hw); + DEBUGOUT("Driver can't access the PHY\n"); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/** + * e1000_put_hw_semaphore_82573 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used during reset. + * + **/ +static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_put_hw_semaphore_82573"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); +} + +/** + * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM. + * + **/ +static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_hw_semaphore_82574"); + + E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex); + ret_val = e1000_get_hw_semaphore_82573(hw); + if (ret_val) + E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex); + return ret_val; +} + +/** + * e1000_put_hw_semaphore_82574 - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + * + **/ +static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_put_hw_semaphore_82574"); + + e1000_put_hw_semaphore_82573(hw); + E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex); +} + +/** + * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. + * LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) +{ + u32 data = E1000_READ_REG(hw, E1000_POEMB); + + DEBUGFUNC("e1000_set_d0_lplu_state_82574"); + + if (active) + data |= E1000_PHY_CTRL_D0A_LPLU; + else + data &= ~E1000_PHY_CTRL_D0A_LPLU; + + E1000_WRITE_REG(hw, E1000_POEMB, data); + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * The low power link up (lplu) state is set to the power management level D3 + * when active is TRUE, else clear lplu for D3. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) +{ + u32 data = E1000_READ_REG(hw, E1000_POEMB); + + DEBUGFUNC("e1000_set_d3_lplu_state_82574"); + + if (!active) { + data &= ~E1000_PHY_CTRL_NOND0A_LPLU; + } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || + (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= E1000_PHY_CTRL_NOND0A_LPLU; + } + + E1000_WRITE_REG(hw, E1000_POEMB, data); + return E1000_SUCCESS; +} + +/** + * e1000_acquire_nvm_82571 - Request for access to the EEPROM + * @hw: pointer to the HW structure + * + * To gain access to the EEPROM, first we must obtain a hardware semaphore. + * Then for non-82573 hardware, set the EEPROM access request bit and wait + * for EEPROM access grant bit. If the access grant bit is not set, release + * hardware semaphore. + **/ +static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_82571"); + + ret_val = e1000_get_hw_semaphore_82571(hw); + if (ret_val) + return ret_val; + + switch (hw->mac.type) { + case e1000_82573: + break; + default: + ret_val = e1000_acquire_nvm_generic(hw); + break; + } + + if (ret_val) + e1000_put_hw_semaphore_82571(hw); + + return ret_val; +} + +/** + * e1000_release_nvm_82571 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +static void e1000_release_nvm_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82571"); + + e1000_release_nvm_generic(hw); + e1000_put_hw_semaphore_82571(hw); +} + +/** + * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * For non-82573 silicon, write data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_nvm_82571"); + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); + break; + case e1000_82571: + case e1000_82572: + ret_val = e1000_write_nvm_spi(hw, offset, words, data); + break; + default: + ret_val = -E1000_ERR_NVM; + break; + } + + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82571 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) +{ + u32 eecd; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_update_nvm_checksum_82571"); + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + return ret_val; + + /* If our nvm is an EEPROM, then we're done + * otherwise, commit the checksum to the flash NVM. + */ + if (hw->nvm.type != e1000_nvm_flash_hw) + return E1000_SUCCESS; + + /* Check for pending operations. */ + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + msec_delay(1); + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) + break; + } + + if (i == E1000_FLASH_UPDATES) + return -E1000_ERR_NVM; + + /* Reset the firmware if using STM opcode. */ + if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { + /* The enabling of and the actual reset must be done + * in two write cycles. + */ + E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); + } + + /* Commit the write to flash */ + eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + + for (i = 0; i < E1000_FLASH_UPDATES; i++) { + msec_delay(1); + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) + break; + } + + if (i == E1000_FLASH_UPDATES) + return -E1000_ERR_NVM; + + return E1000_SUCCESS; +} + +/** + * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_nvm_checksum_82571"); + + if (hw->nvm.type == e1000_nvm_flash_hw) + e1000_fix_nvm_checksum_82571(hw); + + return e1000_validate_nvm_checksum_generic(hw); +} + +/** + * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * After checking for invalid values, poll the EEPROM to ensure the previous + * command has completed before trying to write the next word. After write + * poll for completion. + * + * If e1000_update_nvm_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eewr = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_nvm_eewr_82571"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eewr = (data[i] << E1000_NVM_RW_REG_DATA) | + ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | + E1000_NVM_RW_REG_START; + + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + + E1000_WRITE_REG(hw, E1000_EEWR, eewr); + + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); + if (ret_val) + break; + } + + return ret_val; +} + +/** + * e1000_get_cfg_done_82571 - Poll for configuration done + * @hw: pointer to the HW structure + * + * Reads the management control register for the config done bit to be set. + **/ +static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + + DEBUGFUNC("e1000_get_cfg_done_82571"); + + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & + E1000_NVM_CFG_DONE_PORT_0) + break; + msec_delay(1); + timeout--; + } + if (!timeout) { + DEBUGOUT("MNG configuration cycle has not completed.\n"); + return -E1000_ERR_RESET; + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When activating LPLU + * this function also disables smart speed and vice versa. LPLU will not be + * activated unless the device autonegotiation advertisement meets standards + * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function + * pointer entry point only called by PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82571"); + + if (!(phy->ops.read_reg)) + return E1000_SUCCESS; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_82571 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82571(struct e1000_hw *hw) +{ + u32 ctrl, ctrl_ext, eecd, tctl; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_82571"); + + /* Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + tctl = E1000_READ_REG(hw, E1000_TCTL); + tctl &= ~E1000_TCTL_EN; + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Must acquire the MDIO ownership before MAC reset. + * Ownership defaults to firmware after a reset. + */ + switch (hw->mac.type) { + case e1000_82573: + ret_val = e1000_get_hw_semaphore_82573(hw); + break; + case e1000_82574: + case e1000_82583: + ret_val = e1000_get_hw_semaphore_82574(hw); + break; + default: + break; + } + if (ret_val) + DEBUGOUT("Cannot acquire MDIO ownership\n"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + /* Must release MDIO ownership and mutex after MAC reset. */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + e1000_put_hw_semaphore_82574(hw); + break; + default: + break; + } + + if (hw->nvm.type == e1000_nvm_flash_hw) { + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + } + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) + /* We don't want to continue accessing MAC registers. */ + return ret_val; + + /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. + * Need to wait for Phy configuration completion before accessing + * NVM and Phy. + */ + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* REQ and GNT bits need to be cleared when using AUTO_RD + * to access the EEPROM. + */ + eecd = E1000_READ_REG(hw, E1000_EECD); + eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + break; + case e1000_82573: + case e1000_82574: + case e1000_82583: + msec_delay(25); + break; + default: + break; + } + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + if (hw->mac.type == e1000_82571) { + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + + e1000_set_laa_state_82571(hw, TRUE); + } + + /* Reinitialize the 82571 serdes link state machine */ + if (hw->phy.media_type == e1000_media_type_internal_serdes) + hw->mac.serdes_link_state = e1000_serdes_link_down; + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_82571 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 reg_data; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82571"); + + e1000_initialize_hw_bits_82571(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + /* An error is not fatal and we should not stop init due to this */ + if (ret_val) + DEBUGOUT("Error initializing identification LED\n"); + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address. + * If, however, a locally administered address was assigned to the + * 82571, we must reserve a RAR for it to work around an issue where + * resetting one port will reload the MAC on the other port. + */ + if (e1000_get_laa_state_82571(hw)) + rar_count--; + e1000_init_rx_addrs_generic(hw, rar_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); + + /* ...for both queues. */ + switch (mac->type) { + case e1000_82573: + e1000_enable_tx_pkt_filtering_generic(hw); + /* fall through */ + case e1000_82574: + case e1000_82583: + reg_data = E1000_READ_REG(hw, E1000_GCR); + reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; + E1000_WRITE_REG(hw, E1000_GCR, reg_data); + break; + default: + reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB | + E1000_TXDCTL_COUNT_DESC; + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); + break; + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82571(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits + * @hw: pointer to the HW structure + * + * Initializes required hardware-dependent bits needed for normal operation. + **/ +static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_82571"); + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + reg &= ~(0xF << 27); /* 30:27 */ + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); + break; + case e1000_82574: + case e1000_82583: + reg |= (1 << 26); + break; + default: + break; + } + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + reg &= ~((1 << 29) | (1 << 30)); + reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + break; + default: + break; + } + + /* Device Control */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + reg = E1000_READ_REG(hw, E1000_CTRL); + reg &= ~(1 << 29); + E1000_WRITE_REG(hw, E1000_CTRL, reg); + break; + default: + break; + } + + /* Extended Device Control */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~(1 << 23); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + break; + default: + break; + } + + if (hw->mac.type == e1000_82571) { + reg = E1000_READ_REG(hw, E1000_PBA_ECC); + reg |= E1000_PBA_ECC_CORR_EN; + E1000_WRITE_REG(hw, E1000_PBA_ECC, reg); + } + + /* Workaround for hardware errata. + * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 + */ + if ((hw->mac.type == e1000_82571) || + (hw->mac.type == e1000_82572)) { + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + } + + /* Disable IPv6 extension header parsing because some malformed + * IPv6 headers can hang the Rx. + */ + if (hw->mac.type <= e1000_82573) { + reg = E1000_READ_REG(hw, E1000_RFCTL); + reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); + E1000_WRITE_REG(hw, E1000_RFCTL, reg); + } + + /* PCI-Ex Control Registers */ + switch (hw->mac.type) { + case e1000_82574: + case e1000_82583: + reg = E1000_READ_REG(hw, E1000_GCR); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_GCR, reg); + + /* Workaround for hardware errata. + * apply workaround for hardware errata documented in errata + * docs Fixes issue where some error prone or unreliable PCIe + * completions are occurring, particularly with ASPM enabled. + * Without fix, issue can cause Tx timeouts. + */ + reg = E1000_READ_REG(hw, E1000_GCR2); + reg |= 1; + E1000_WRITE_REG(hw, E1000_GCR2, reg); + break; + default: + break; + } + + return; +} + +/** + * e1000_clear_vfta_82571 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +static void e1000_clear_vfta_82571(struct e1000_hw *hw) +{ + u32 offset; + u32 vfta_value = 0; + u32 vfta_offset = 0; + u32 vfta_bit_in_reg = 0; + + DEBUGFUNC("e1000_clear_vfta_82571"); + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (hw->mng_cookie.vlan_id != 0) { + /* The VFTA is a 4096b bit-field, each identifying + * a single VLAN ID. The following operations + * determine which 32b entry (i.e. offset) into the + * array we want to set the VLAN ID (i.e. bit) of + * the manageability unit. + */ + vfta_offset = (hw->mng_cookie.vlan_id >> + E1000_VFTA_ENTRY_SHIFT) & + E1000_VFTA_ENTRY_MASK; + vfta_bit_in_reg = + 1 << (hw->mng_cookie.vlan_id & + E1000_VFTA_ENTRY_BIT_SHIFT_MASK); + } + break; + default: + break; + } + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of + * the manageability unit. + */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_check_mng_mode_82574 - Check manageability is enabled + * @hw: pointer to the HW structure + * + * Reads the NVM Initialization Control Word 2 and returns TRUE + * (>0) if any manageability is enabled, else FALSE (0). + **/ +static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) +{ + u16 data; + + DEBUGFUNC("e1000_check_mng_mode_82574"); + + hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); + return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; +} + +/** + * e1000_led_on_82574 - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +static s32 e1000_led_on_82574(struct e1000_hw *hw) +{ + u32 ctrl; + u32 i; + + DEBUGFUNC("e1000_led_on_82574"); + + ctrl = hw->mac.ledctl_mode2; + if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) { + /* If no link, then turn LED on by setting the invert bit + * for each LED that's "on" (0x0E) in ledctl_mode2. + */ + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); + } + E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_check_phy_82574 - check 82574 phy hung state + * @hw: pointer to the HW structure + * + * Returns whether phy is hung or not + **/ +bool e1000_check_phy_82574(struct e1000_hw *hw) +{ + u16 status_1kbt = 0; + u16 receive_errors = 0; + s32 ret_val; + + DEBUGFUNC("e1000_check_phy_82574"); + + /* Read PHY Receive Error counter first, if its is max - all F's then + * read the Base1000T status register If both are max then PHY is hung. + */ + ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER, + &receive_errors); + if (ret_val) + return FALSE; + if (receive_errors == E1000_RECEIVE_ERROR_MAX) { + ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS, + &status_1kbt); + if (ret_val) + return FALSE; + if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == + E1000_IDLE_ERROR_COUNT_MASK) + return TRUE; + } + + return FALSE; +} + + +/** + * e1000_setup_link_82571 - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_link_82571"); + + /* 82573 does not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (hw->fc.requested_mode == e1000_fc_default) + hw->fc.requested_mode = e1000_fc_full; + break; + default: + break; + } + + return e1000_setup_link_generic(hw); +} + +/** + * e1000_setup_copper_link_82571 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_copper_link_82571"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + switch (hw->phy.type) { + case e1000_phy_m88: + case e1000_phy_bm: + ret_val = e1000_copper_link_setup_m88(hw); + break; + case e1000_phy_igp_2: + ret_val = e1000_copper_link_setup_igp(hw); + break; + default: + return -E1000_ERR_PHY; + break; + } + + if (ret_val) + return ret_val; + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes links. + * Upon successful setup, poll for link. + **/ +static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); + + switch (hw->mac.type) { + case e1000_82571: + case e1000_82572: + /* If SerDes loopback mode is entered, there is no form + * of reset to take the adapter out of that mode. So we + * have to explicitly take the adapter out of loopback + * mode. This prevents drivers from twiddling their thumbs + * if another tool failed to take it out of loopback mode. + */ + E1000_WRITE_REG(hw, E1000_SCTL, + E1000_SCTL_DISABLE_SERDES_LOOPBACK); + break; + default: + break; + } + + return e1000_setup_fiber_serdes_link_generic(hw); +} + +/** + * e1000_check_for_serdes_link_82571 - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Reports the link state as up or down. + * + * If autonegotiation is supported by the link partner, the link state is + * determined by the result of autonegotiation. This is the most likely case. + * If autonegotiation is not supported by the link partner, and the link + * has a valid signal, force the link up. + * + * The link state is represented internally here by 4 states: + * + * 1) down + * 2) autoneg_progress + * 3) autoneg_complete (the link successfully autonegotiated) + * 4) forced_up (the link has been forced up, it did not autonegotiate) + * + **/ +static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + u32 txcw; + u32 i; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_check_for_serdes_link_82571"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + E1000_READ_REG(hw, E1000_RXCW); + /* SYNCH bit and IV bit are sticky */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { + /* Receiver is synchronized with no invalid bits. */ + switch (mac->serdes_link_state) { + case e1000_serdes_link_autoneg_complete: + if (!(status & E1000_STATUS_LU)) { + /* We have lost link, retry autoneg before + * reporting link failure + */ + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = FALSE; + DEBUGOUT("AN_UP -> AN_PROG\n"); + } else { + mac->serdes_has_link = TRUE; + } + break; + + case e1000_serdes_link_forced_up: + /* If we are receiving /C/ ordered sets, re-enable + * auto-negotiation in the TXCW register and disable + * forced link in the Device Control register in an + * attempt to auto-negotiate with our link partner. + */ + if (rxcw & E1000_RXCW_C) { + /* Enable autoneg, and unforce link up */ + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, + (ctrl & ~E1000_CTRL_SLU)); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = FALSE; + DEBUGOUT("FORCED_UP -> AN_PROG\n"); + } else { + mac->serdes_has_link = TRUE; + } + break; + + case e1000_serdes_link_autoneg_progress: + if (rxcw & E1000_RXCW_C) { + /* We received /C/ ordered sets, meaning the + * link partner has autonegotiated, and we can + * trust the Link Up (LU) status bit. + */ + if (status & E1000_STATUS_LU) { + mac->serdes_link_state = + e1000_serdes_link_autoneg_complete; + DEBUGOUT("AN_PROG -> AN_UP\n"); + mac->serdes_has_link = TRUE; + } else { + /* Autoneg completed, but failed. */ + mac->serdes_link_state = + e1000_serdes_link_down; + DEBUGOUT("AN_PROG -> DOWN\n"); + } + } else { + /* The link partner did not autoneg. + * Force link up and full duplex, and change + * state to forced. + */ + E1000_WRITE_REG(hw, E1000_TXCW, + (mac->txcw & ~E1000_TXCW_ANE)); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after link up. */ + ret_val = + e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error config flow control\n"); + break; + } + mac->serdes_link_state = + e1000_serdes_link_forced_up; + mac->serdes_has_link = TRUE; + DEBUGOUT("AN_PROG -> FORCED_UP\n"); + } + break; + + case e1000_serdes_link_down: + default: + /* The link was down but the receiver has now gained + * valid sync, so lets see if we can bring the link + * up. + */ + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & + ~E1000_CTRL_SLU)); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = FALSE; + DEBUGOUT("DOWN -> AN_PROG\n"); + break; + } + } else { + if (!(rxcw & E1000_RXCW_SYNCH)) { + mac->serdes_has_link = FALSE; + mac->serdes_link_state = e1000_serdes_link_down; + DEBUGOUT("ANYSTATE -> DOWN\n"); + } else { + /* Check several times, if SYNCH bit and CONFIG + * bit both are consistently 1 then simply ignore + * the IV bit and restart Autoneg + */ + for (i = 0; i < AN_RETRY_COUNT; i++) { + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if ((rxcw & E1000_RXCW_SYNCH) && + (rxcw & E1000_RXCW_C)) + continue; + + if (rxcw & E1000_RXCW_IV) { + mac->serdes_has_link = FALSE; + mac->serdes_link_state = + e1000_serdes_link_down; + DEBUGOUT("ANYSTATE -> DOWN\n"); + break; + } + } + + if (i == AN_RETRY_COUNT) { + txcw = E1000_READ_REG(hw, E1000_TXCW); + txcw |= E1000_TXCW_ANE; + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->serdes_link_state = + e1000_serdes_link_autoneg_progress; + mac->serdes_has_link = FALSE; + DEBUGOUT("ANYSTATE -> AN_PROG\n"); + } + } + } + + return ret_val; +} + +/** + * e1000_valid_led_default_82571 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82571"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + switch (hw->mac.type) { + case e1000_82573: + case e1000_82574: + case e1000_82583: + if (*data == ID_LED_RESERVED_F746) + *data = ID_LED_DEFAULT_82573; + break; + default: + if (*data == ID_LED_RESERVED_0000 || + *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_laa_state_82571 - Get locally administered address state + * @hw: pointer to the HW structure + * + * Retrieve and return the current locally administered address state. + **/ +bool e1000_get_laa_state_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_laa_state_82571"); + + if (hw->mac.type != e1000_82571) + return FALSE; + + return hw->dev_spec._82571.laa_is_present; +} + +/** + * e1000_set_laa_state_82571 - Set locally administered address state + * @hw: pointer to the HW structure + * @state: enable/disable locally administered address + * + * Enable/Disable the current locally administered address state. + **/ +void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state) +{ + DEBUGFUNC("e1000_set_laa_state_82571"); + + if (hw->mac.type != e1000_82571) + return; + + hw->dev_spec._82571.laa_is_present = state; + + /* If workaround is activated... */ + if (state) + /* Hold a copy of the LAA in RAR[14] This is done so that + * between the time RAR[0] gets clobbered and the time it + * gets fixed, the actual LAA is in one of the RARs and no + * incoming packets directed to this port are dropped. + * Eventually the LAA will be in RAR[0] and RAR[14]. + */ + hw->mac.ops.rar_set(hw, hw->mac.addr, + hw->mac.rar_entry_count - 1); + return; +} + +/** + * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum + * @hw: pointer to the HW structure + * + * Verifies that the EEPROM has completed the update. After updating the + * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If + * the checksum fix is not implemented, we need to set the bit and update + * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, + * we need to return bad checksum. + **/ +static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_fix_nvm_checksum_82571"); + + if (nvm->type != e1000_nvm_flash_hw) + return E1000_SUCCESS; + + /* Check bit 4 of word 10h. If it is 0, firmware is done updating + * 10h-12h. Checksum may need to be fixed. + */ + ret_val = nvm->ops.read(hw, 0x10, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & 0x10)) { + /* Read 0x23 and check bit 15. This bit is a 1 + * when the checksum has already been fixed. If + * the checksum is still wrong and this bit is a + * 1, we need to return bad checksum. Otherwise, + * we need to set this bit to a 1 and update the + * checksum. + */ + ret_val = nvm->ops.read(hw, 0x23, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & 0x8000)) { + data |= 0x8000; + ret_val = nvm->ops.write(hw, 0x23, 1, &data); + if (ret_val) + return ret_val; + ret_val = nvm->ops.update(hw); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + + +/** + * e1000_read_mac_addr_82571 - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_read_mac_addr_82571"); + + if (hw->mac.type == e1000_82571) { + s32 ret_val; + + /* If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + return ret_val; + } + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_power_down_phy_copper_82571 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + struct e1000_mac_info *mac = &hw->mac; + + if (!phy->ops.check_reset_block) + return; + + /* If the management interface is not enabled, then power down */ + if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82571"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); +} diff --git a/usr/src/uts/common/io/e1000api/e1000_82571.h b/usr/src/uts/common/io/e1000api/e1000_82571.h new file mode 100644 index 0000000000..1911048a7f --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_82571.h @@ -0,0 +1,73 @@ +/****************************************************************************** + + Copyright (c) 2001-2010, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82571_H_ +#define _E1000_82571_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define ID_LED_RESERVED_F746 0xF746 +#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_OFF1_ON2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 +#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ + +/* Intr Throttling - RW */ +#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n))) + +#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAC_MASK_82574 0x01F00000 + +#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ + +#define E1000_RXCFGL 0x0B634 /* TimeSync Rx EtherType & Msg Type Reg - RW */ + +#define E1000_BASE1000T_STATUS 10 +#define E1000_IDLE_ERROR_COUNT_MASK 0xFF +#define E1000_RECEIVE_ERROR_COUNTER 21 +#define E1000_RECEIVE_ERROR_MAX 0xFFFF +bool e1000_check_phy_82574(struct e1000_hw *hw); +bool e1000_get_laa_state_82571(struct e1000_hw *hw); +void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_82571_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_82575.c b/usr/src/uts/common/io/e1000api/e1000_82575.c new file mode 100644 index 0000000000..f8b47f9c12 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_82575.c @@ -0,0 +1,3289 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* + * 82575EB Gigabit Network Connection + * 82575EB Gigabit Backplane Connection + * 82575GB Gigabit Network Connection + * 82576 Gigabit Network Connection + * 82576 Quad Port Gigabit Mezzanine Adapter + * 82580 Gigabit Network Connection + * I350 Gigabit Network Connection + */ + +#include "e1000_api.h" +#include "e1000_i210.h" + +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); +static void e1000_release_phy_82575(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); +static void e1000_release_nvm_82575(struct e1000_hw *hw); +static s32 e1000_check_for_link_82575(struct e1000_hw *hw); +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_init_hw_82575(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data); +static s32 e1000_reset_hw_82575(struct e1000_hw *hw); +static s32 e1000_reset_hw_82580(struct e1000_hw *hw); +static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 *data); +static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, + u32 offset, u16 data); +static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, + bool active); +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); +static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_get_media_type_82575(struct e1000_hw *hw); +static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, + u32 offset, u16 data); +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); +static bool e1000_sgmii_active_82575(struct e1000_hw *hw); +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); +static void e1000_config_collision_dist_82575(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); +static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); +static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); +static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); +static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); +static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, + u16 offset); +static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); +static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); +static void e1000_clear_vfta_i350(struct e1000_hw *hw); + +static void e1000_i2c_start(struct e1000_hw *hw); +static void e1000_i2c_stop(struct e1000_hw *hw); +static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); +static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); +static s32 e1000_get_i2c_ack(struct e1000_hw *hw); +static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); +static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); +static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); +static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); +static bool e1000_get_i2c_data(u32 *i2cctl); + +static const u16 e1000_82580_rxpbs_table[] = { + 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; +#define E1000_82580_RXPBS_TABLE_SIZE \ + (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) + + +/** + * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO + * @hw: pointer to the HW structure + * + * Called to determine if the I2C pins are being used for I2C or as an + * external MDIO interface since the two options are mutually exclusive. + **/ +static bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) +{ + u32 reg = 0; + bool ext_mdio = FALSE; + + DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); + + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + reg = E1000_READ_REG(hw, E1000_MDIC); + ext_mdio = !!(reg & E1000_MDIC_DEST); + break; + case e1000_82580: + case e1000_i350: + case e1000_i210: + case e1000_i211: + reg = E1000_READ_REG(hw, E1000_MDICNFG); + ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); + break; + default: + break; + } + return ext_mdio; +} + +/** + * e1000_init_phy_params_82575 - Init PHY func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_phy_params_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext; + + DEBUGFUNC("e1000_init_phy_params_82575"); + + phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; + + if (hw->phy.media_type != e1000_media_type_copper) { + phy->type = e1000_phy_none; + goto out; + } + + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_82575; + + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_phy_82575; + phy->ops.check_reset_block = e1000_check_reset_block_generic; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_cfg_done = e1000_get_cfg_done_82575; + phy->ops.release = e1000_release_phy_82575; + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + if (e1000_sgmii_active_82575(hw)) { + phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; + ctrl_ext |= E1000_CTRL_I2C_ENA; + } else { + phy->ops.reset = e1000_phy_hw_reset_generic; + ctrl_ext &= ~E1000_CTRL_I2C_ENA; + } + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + e1000_reset_mdicnfg_82580(hw); + + if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { + phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; + phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; + } else { + switch (hw->mac.type) { + case e1000_82580: + case e1000_i350: + phy->ops.read_reg = e1000_read_phy_reg_82580; + phy->ops.write_reg = e1000_write_phy_reg_82580; + break; + case e1000_i210: + case e1000_i211: + phy->ops.read_reg = e1000_read_phy_reg_gs40g; + phy->ops.write_reg = e1000_write_phy_reg_gs40g; + break; + default: + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.write_reg = e1000_write_phy_reg_igp; + } + } + + /* Set phy->phy_addr and phy->id. */ + ret_val = e1000_get_phy_id_82575(hw); + + /* Verify phy id and set remaining function pointers */ + switch (phy->id) { + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1111_I_PHY_ID: + phy->type = e1000_phy_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + if (phy->id == I347AT4_E_PHY_ID || + phy->id == M88E1112_E_PHY_ID || + phy->id == M88E1340M_E_PHY_ID) + phy->ops.get_cable_length = + e1000_get_cable_length_m88_gen2; + else + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + case IGP03E1000_E_PHY_ID: + case IGP04E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; + break; + case I82580_I_PHY_ID: + case I350_I_PHY_ID: + phy->type = e1000_phy_82580; + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + break; + case I210_I_PHY_ID: + phy->type = e1000_phy_i210; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params_82575 - Init NVM func ptrs. + * @hw: pointer to the HW structure + **/ +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u16 size; + + DEBUGFUNC("e1000_init_nvm_params_82575"); + + size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> + E1000_EECD_SIZE_EX_SHIFT); + /* + * Added to a constant, "size" becomes the left-shift value + * for setting word_size. + */ + size += NVM_WORD_SIZE_BASE_SHIFT; + + /* Just in case size is out of range, cap it to the largest + * EEPROM size supported + */ + if (size > 15) + size = 15; + + nvm->word_size = 1 << size; + if (hw->mac.type < e1000_i210) { + nvm->opcode_bits = 8; + nvm->delay_usec = 1; + + switch (nvm->override) { + case e1000_nvm_override_spi_large: + nvm->page_size = 32; + nvm->address_bits = 16; + break; + case e1000_nvm_override_spi_small: + nvm->page_size = 8; + nvm->address_bits = 8; + break; + default: + nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; + nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? + 16 : 8; + break; + } + if (nvm->word_size == (1 << 15)) + nvm->page_size = 128; + + nvm->type = e1000_nvm_eeprom_spi; + } else { + nvm->type = e1000_nvm_flash_hw; + } + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_82575; + nvm->ops.release = e1000_release_nvm_82575; + if (nvm->word_size < (1 << 15)) + nvm->ops.read = e1000_read_nvm_eerd; + else + nvm->ops.read = e1000_read_nvm_spi; + + nvm->ops.write = e1000_write_nvm_spi; + nvm->ops.validate = e1000_validate_nvm_checksum_generic; + nvm->ops.update = e1000_update_nvm_checksum_generic; + nvm->ops.valid_led_default = e1000_valid_led_default_82575; + + /* override generic family function pointers for specific descendants */ + switch (hw->mac.type) { + case e1000_82580: + nvm->ops.validate = e1000_validate_nvm_checksum_82580; + nvm->ops.update = e1000_update_nvm_checksum_82580; + break; + case e1000_i350: + nvm->ops.validate = e1000_validate_nvm_checksum_i350; + nvm->ops.update = e1000_update_nvm_checksum_i350; + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_82575 - Init MAC func ptrs. + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + + DEBUGFUNC("e1000_init_mac_params_82575"); + + /* Derives media type */ + e1000_get_media_type_82575(hw); + /* Set mta register count */ + mac->mta_reg_count = 128; + /* Set uta register count */ + mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; + /* Set rar entry count */ + mac->rar_entry_count = E1000_RAR_ENTRIES_82575; + if (mac->type == e1000_82576) + mac->rar_entry_count = E1000_RAR_ENTRIES_82576; + if (mac->type == e1000_82580) + mac->rar_entry_count = E1000_RAR_ENTRIES_82580; + if (mac->type == e1000_i350) + mac->rar_entry_count = E1000_RAR_ENTRIES_I350; + + /* Enable EEE default settings for EEE supported devices */ + if (mac->type >= e1000_i350) + dev_spec->eee_disable = TRUE; + + /* Allow a single clear of the SW semaphore on I210 and newer */ + if (mac->type >= e1000_i210) + dev_spec->clear_semaphore_once = TRUE; + + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* FWSM register */ + mac->has_fwsm = TRUE; + /* ARC supported; valid only if manageability features are enabled. */ + mac->arc_subsystem_valid = + !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; + /* reset */ + if (mac->type >= e1000_82580) + mac->ops.reset_hw = e1000_reset_hw_82580; + else + mac->ops.reset_hw = e1000_reset_hw_82575; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_82575; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_generic; + /* physical interface link setup */ + mac->ops.setup_physical_interface = + (hw->phy.media_type == e1000_media_type_copper) + ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; + /* physical interface shutdown */ + mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; + /* physical interface power up */ + mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_82575; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_82575; + /* configure collision distance */ + mac->ops.config_collision_dist = e1000_config_collision_dist_82575; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + if (mac->type == e1000_i350) { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_i350; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_i350; + } else { + /* writing VFTA */ + mac->ops.write_vfta = e1000_write_vfta_generic; + /* clearing VFTA */ + mac->ops.clear_vfta = e1000_clear_vfta_generic; + } + if (hw->mac.type >= e1000_82580) + mac->ops.validate_mdi_setting = + e1000_validate_mdi_setting_crossover_generic; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_generic; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_generic; + mac->ops.led_off = e1000_led_off_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_82575; + /* acquire SW_FW sync */ + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; + if (mac->type >= e1000_i210) { + mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; + mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; + } + + /* set lan id for port to determine which phy lock to use */ + hw->mac.ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_82575 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_82575"); + + hw->mac.ops.init_params = e1000_init_mac_params_82575; + hw->nvm.ops.init_params = e1000_init_nvm_params_82575; + hw->phy.ops.init_params = e1000_init_phy_params_82575; + hw->mbx.ops.init_params = e1000_init_mbx_params_pf; +} + +/** + * e1000_acquire_phy_82575 - Acquire rights to access PHY + * @hw: pointer to the HW structure + * + * Acquire access rights to the correct PHY. + **/ +static s32 e1000_acquire_phy_82575(struct e1000_hw *hw) +{ + u16 mask = E1000_SWFW_PHY0_SM; + + DEBUGFUNC("e1000_acquire_phy_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_SWFW_PHY1_SM; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_SWFW_PHY2_SM; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_SWFW_PHY3_SM; + + return hw->mac.ops.acquire_swfw_sync(hw, mask); +} + +/** + * e1000_release_phy_82575 - Release rights to access PHY + * @hw: pointer to the HW structure + * + * A wrapper to release access rights to the correct PHY. + **/ +static void e1000_release_phy_82575(struct e1000_hw *hw) +{ + u16 mask = E1000_SWFW_PHY0_SM; + + DEBUGFUNC("e1000_release_phy_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_SWFW_PHY1_SM; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_SWFW_PHY2_SM; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_SWFW_PHY3_SM; + + hw->mac.ops.release_swfw_sync(hw, mask); +} + +/** + * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the serial gigabit media independent + * interface and stores the retrieved information in data. + **/ +static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + s32 ret_val = -E1000_ERR_PARAM; + + DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %u is out of range\n", offset); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_i2c(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the serial gigabit + * media independent interface. + **/ +static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, + u16 data) +{ + s32 ret_val = -E1000_ERR_PARAM; + + DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); + + if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + goto out; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_i2c(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_get_phy_id_82575 - Retrieve PHY addr and id + * @hw: pointer to the HW structure + * + * Retrieves the PHY address and ID for both PHY's which do and do not use + * sgmi interface. + **/ +static s32 e1000_get_phy_id_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + u32 ctrl_ext; + u32 mdic; + + DEBUGFUNC("e1000_get_phy_id_82575"); + + /* + * For SGMII PHYs, we try the list of possible addresses until + * we find one that works. For non-SGMII PHYs + * (e.g. integrated copper PHYs), an address of 1 should + * work. The result of this function should mean phy->phy_addr + * and phy->id are set correctly. + */ + if (!e1000_sgmii_active_82575(hw)) { + phy->addr = 1; + ret_val = e1000_get_phy_id(hw); + goto out; + } + + if (e1000_sgmii_uses_mdio_82575(hw)) { + switch (hw->mac.type) { + case e1000_82575: + case e1000_82576: + mdic = E1000_READ_REG(hw, E1000_MDIC); + mdic &= E1000_MDIC_PHY_MASK; + phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; + break; + case e1000_82580: + case e1000_i350: + case e1000_i210: + case e1000_i211: + mdic = E1000_READ_REG(hw, E1000_MDICNFG); + mdic &= E1000_MDICNFG_PHY_MASK; + phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; + break; + default: + ret_val = -E1000_ERR_PHY; + goto out; + break; + } + ret_val = e1000_get_phy_id(hw); + goto out; + } + + /* Power on sgmii phy if it is disabled */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, + ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); + E1000_WRITE_FLUSH(hw); + msec_delay(300); + + /* + * The address field in the I2CCMD register is 3 bits and 0 is invalid. + * Therefore, we need to test 1-7 + */ + for (phy->addr = 1; phy->addr < 8; phy->addr++) { + ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); + if (ret_val == E1000_SUCCESS) { + DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", + phy_id, phy->addr); + /* + * At the time of this writing, The M88 part is + * the only supported SGMII PHY product. + */ + if (phy_id == M88_VENDOR) + break; + } else { + DEBUGOUT1("PHY address %u was unreadable\n", + phy->addr); + } + } + + /* A valid PHY type couldn't be found. */ + if (phy->addr == 8) { + phy->addr = 0; + ret_val = -E1000_ERR_PHY; + } else { + ret_val = e1000_get_phy_id(hw); + } + + /* restore previous sfp cage power state */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + +out: + return ret_val; +} + +/** + * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY using the serial gigabit media independent interface. + **/ +static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); + + /* + * This isn't a TRUE "hard" reset, but is the only reset + * available to us at this time. + */ + + DEBUGOUT("Soft resetting SGMII attached PHY...\n"); + + if (!(hw->phy.ops.write_reg)) + goto out; + + /* + * SFP documentation requires the following to configure the SPF module + * to work on SGMII. No further documentation is given. + */ + ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); + if (ret_val) + goto out; + + ret_val = hw->phy.ops.commit(hw); + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82575"); + + if (!(hw->phy.ops.read_reg)) + goto out; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + goto out; + + if (active) { + data |= IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + goto out; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else { + data &= ~IGP02E1000_PM_D0_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + goto out; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + goto out; + } + } + +out: + return ret_val; +} + +/** + * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + + if (active) { + data |= E1000_82580_PM_D0_LPLU; + + /* When LPLU is enabled, we should disable SmartSpeed */ + data &= ~E1000_82580_PM_SPD; + } else { + data &= ~E1000_82580_PM_D0_LPLU; + + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) + data |= E1000_82580_PM_SPD; + else if (phy->smart_speed == e1000_smart_speed_off) + data &= ~E1000_82580_PM_SPD; + } + + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); + return ret_val; +} + +/** + * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u32 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_82580"); + + data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + + if (!active) { + data &= ~E1000_82580_PM_D3_LPLU; + /* + * LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) + data |= E1000_82580_PM_SPD; + else if (phy->smart_speed == e1000_smart_speed_off) + data &= ~E1000_82580_PM_SPD; + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= E1000_82580_PM_D3_LPLU; + /* When LPLU is enabled, we should disable SmartSpeed */ + data &= ~E1000_82580_PM_SPD; + } + + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); + return ret_val; +} + +/** + * e1000_acquire_nvm_82575 - Request for access to EEPROM + * @hw: pointer to the HW structure + * + * Acquire the necessary semaphores for exclusive access to the EEPROM. + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_82575"); + + ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + if (ret_val) + goto out; + + /* + * Check if there is some access + * error this access may hook on + */ + if (hw->mac.type == e1000_i350) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | + E1000_EECD_TIMEOUT)) { + /* Clear all access error flags */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_ERROR_CLR); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + if (hw->mac.type == e1000_82580) { + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_BLOCKED) { + /* Clear access error flag */ + E1000_WRITE_REG(hw, E1000_EECD, eecd | + E1000_EECD_BLOCKED); + DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); + } + } + + + ret_val = e1000_acquire_nvm_generic(hw); + if (ret_val) + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); + +out: + return ret_val; +} + +/** + * e1000_release_nvm_82575 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit, + * then release the semaphores acquired. + **/ +static void e1000_release_nvm_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_82575"); + + e1000_release_nvm_generic(hw); + + e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + + DEBUGFUNC("e1000_acquire_swfw_sync_82575"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_generic(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_82575 - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_82575"); + + while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_get_cfg_done_82575 - Read config done bit + * @hw: pointer to the HW structure + * + * Read the management control register for the config done bit for + * completion status. NOTE: silicon which is EEPROM-less will fail trying + * to read the config done bit, so an error is *ONLY* logged and returns + * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon + * would not be able to be reset or change link. + **/ +static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) +{ + s32 timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + u32 mask = E1000_NVM_CFG_DONE_PORT_0; + + DEBUGFUNC("e1000_get_cfg_done_82575"); + + if (hw->bus.func == E1000_FUNC_1) + mask = E1000_NVM_CFG_DONE_PORT_1; + else if (hw->bus.func == E1000_FUNC_2) + mask = E1000_NVM_CFG_DONE_PORT_2; + else if (hw->bus.func == E1000_FUNC_3) + mask = E1000_NVM_CFG_DONE_PORT_3; + while (timeout) { + if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) + break; + msec_delay(1); + timeout--; + } + if (!timeout) + DEBUGOUT("MNG configuration cycle has not completed.\n"); + + /* If EEPROM is not marked present, init the PHY manually */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && + (hw->phy.type == e1000_phy_igp_3)) + e1000_phy_init_script_igp3(hw); + + return ret_val; +} + +/** + * e1000_get_link_up_info_82575 - Get link speed/duplex info + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * This is a wrapper function, if using the serial gigabit media independent + * interface, use PCS to retrieve the link speed and duplex information. + * Otherwise, use the generic function to get the link speed and duplex info. + **/ +static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, + duplex); + else + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, + duplex); + + return ret_val; +} + +/** + * e1000_check_for_link_82575 - Check for link + * @hw: pointer to the HW structure + * + * If sgmii is enabled, then use the pcs register to determine link, otherwise + * use the generic interface for determining link. + **/ +static s32 e1000_check_for_link_82575(struct e1000_hw *hw) +{ + s32 ret_val; + u16 speed, duplex; + + DEBUGFUNC("e1000_check_for_link_82575"); + + if (hw->phy.media_type != e1000_media_type_copper) { + ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, + &duplex); + /* + * Use this flag to determine if link needs to be checked or + * not. If we have link clear the flag so that we do not + * continue to check for link. + */ + hw->mac.get_link_status = !hw->mac.serdes_has_link; + + /* + * Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + } else { + ret_val = e1000_check_for_copper_link_generic(hw); + } + + return ret_val; +} + +/** + * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown + * @hw: pointer to the HW structure + **/ +static void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_power_up_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return; + + /* Enable PCS to turn on link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg |= E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* Power up the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verify completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); +} + +/** + * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Using the physical coding sub-layer (PCS), retrieve the current speed and + * duplex, then store the values in the pointers provided. + **/ +static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, + u16 *speed, u16 *duplex) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 pcs; + + DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); + + /* + * Read the PCS Status register for link state. For non-copper mode, + * the status register is not accurate. The PCS status register is + * used instead. + */ + pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + /* + * The link up bit determines when link is up on autoneg. + */ + if (pcs & E1000_PCS_LSTS_LINK_OK) { + mac->serdes_has_link = TRUE; + + /* Detect and store PCS speed */ + if (pcs & E1000_PCS_LSTS_SPEED_1000) + *speed = SPEED_1000; + else if (pcs & E1000_PCS_LSTS_SPEED_100) + *speed = SPEED_100; + else + *speed = SPEED_10; + + /* Detect and store PCS duplex */ + if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) + *duplex = FULL_DUPLEX; + else + *duplex = HALF_DUPLEX; + + } else { + mac->serdes_has_link = FALSE; + *speed = 0; + *duplex = 0; + } + + return E1000_SUCCESS; +} + +/** + * e1000_shutdown_serdes_link_82575 - Remove link during power down + * @hw: pointer to the HW structure + * + * In the case of serdes shut down sfp and PCS on driver unload + * when management pass thru is not enabled. + **/ +void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_shutdown_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return; + + if (!e1000_enable_mng_pass_thru(hw)) { + /* Disable PCS to turn off link */ + reg = E1000_READ_REG(hw, E1000_PCS_CFG0); + reg &= ~E1000_PCS_CFG_PCS_EN; + E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); + + /* shutdown the laser */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* flush the write to verify completion */ + E1000_WRITE_FLUSH(hw); + msec_delay(1); + } + + return; +} + +/** + * e1000_reset_hw_82575 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. + **/ +static s32 e1000_reset_hw_82575(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_82575"); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + /* set the completion timeout for interface */ + ret_val = e1000_set_pcie_completion_timeout(hw); + if (ret_val) + DEBUGOUT("PCI-E Set completion timeout has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + DEBUGOUT("Issuing a global reset to MAC\n"); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* If EEPROM is not present, run manual init scripts */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) + e1000_reset_init_script_82575(hw); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + + return ret_val; +} + +/** + * e1000_init_hw_82575 - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. + **/ +static s32 e1000_init_hw_82575(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + u16 i, rar_count = mac->rar_entry_count; + + DEBUGFUNC("e1000_init_hw_82575"); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error initializing identification LED\n"); + /* This is not fatal and we should not stop init due to this */ + } + + /* Disabling VLAN filtering */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + mac->ops.clear_vfta(hw); + + /* Setup the receive address */ + e1000_init_rx_addrs_generic(hw, rar_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* Zero out the Unicast HASH table */ + DEBUGOUT("Zeroing the UTA\n"); + for (i = 0; i < mac->uta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the default MTU size */ + hw->dev_spec._82575.mtu = 1500; + + /* + * Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_82575(hw); + + return ret_val; +} + +/** + * e1000_setup_copper_link_82575 - Configure copper link settings + * @hw: pointer to the HW structure + * + * Configures the link for auto-neg or forced speed and duplex. Then we check + * for link, once link is established calls to configure collision distance + * and flow control are called. + **/ +static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u32 phpm_reg; + + DEBUGFUNC("e1000_setup_copper_link_82575"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Clear Go Link Disconnect bit */ + if (hw->mac.type >= e1000_82580) { + phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); + phpm_reg &= ~E1000_82580_PM_GO_LINKD; + E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); + } + + ret_val = e1000_setup_serdes_link_82575(hw); + if (ret_val) + goto out; + + if (e1000_sgmii_active_82575(hw)) { + /* allow time for SFP cage time to power up phy */ + msec_delay(300); + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + goto out; + } + } + switch (hw->phy.type) { + case e1000_phy_i210: + case e1000_phy_m88: + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case I210_I_PHY_ID: + ret_val = e1000_copper_link_setup_m88_gen2(hw); + break; + default: + ret_val = e1000_copper_link_setup_m88(hw); + break; + } + break; + case e1000_phy_igp_3: + ret_val = e1000_copper_link_setup_igp(hw); + break; + case e1000_phy_82580: + ret_val = e1000_copper_link_setup_82577(hw); + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + if (ret_val) + goto out; + + ret_val = e1000_setup_copper_link_generic(hw); +out: + return ret_val; +} + +/** + * e1000_setup_serdes_link_82575 - Setup link for serdes + * @hw: pointer to the HW structure + * + * Configure the physical coding sub-layer (PCS) link. The PCS link is + * used on copper connections where the serialized gigabit media independent + * interface (sgmii), or serdes fiber is being used. Configures the link + * for auto-negotiation or forces speed/duplex. + **/ +static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) +{ + u32 ctrl_ext, ctrl_reg, reg, anadv_reg; + bool pcs_autoneg; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_setup_serdes_link_82575"); + + if ((hw->phy.media_type != e1000_media_type_internal_serdes) && + !e1000_sgmii_active_82575(hw)) + return ret_val; + + /* + * On the 82575, SerDes loopback mode persists until it is + * explicitly turned off or a power cycle is performed. A read to + * the register does not indicate its status. Therefore, we ensure + * loopback mode is disabled during initialization. + */ + E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); + + /* power on the sfp cage if present */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); + ctrl_reg |= E1000_CTRL_SLU; + + /* set both sw defined pins on 82575/82576*/ + if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) + ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; + + reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + + /* default pcs_autoneg to the same setting as mac autoneg */ + pcs_autoneg = hw->mac.autoneg; + + switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* sgmii mode lets the phy handle forcing speed/duplex */ + pcs_autoneg = TRUE; + /* autoneg time out should be disabled for SGMII mode */ + reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); + break; + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + /* disable PCS autoneg and support parallel detect only */ + pcs_autoneg = FALSE; + /* fall through to default case */ + default: + if (hw->mac.type == e1000_82575 || + hw->mac.type == e1000_82576) { + ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) + pcs_autoneg = FALSE; + } + + /* + * non-SGMII modes only supports a speed of 1000/Full for the + * link so it is best to just force the MAC and let the pcs + * link either autoneg or be forced to 1000/Full + */ + ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | + E1000_CTRL_FD | E1000_CTRL_FRCDPX; + + /* set speed of 1000/Full if speed/duplex is forced */ + reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; + break; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); + + /* + * New SerDes mode allows for forcing speed or autonegotiating speed + * at 1gb. Autoneg should be default set by most drivers. This is the + * mode that will be compatible with older link partners and switches. + * However, both are supported by the hardware and some drivers/tools. + */ + reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | + E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); + + if (pcs_autoneg) { + /* Set PCS register for autoneg */ + reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ + E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ + + /* Disable force flow control for autoneg */ + reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; + + /* Configure flow control advertisement for autoneg */ + anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); + + switch (hw->fc.requested_mode) { + case e1000_fc_full: + case e1000_fc_rx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + anadv_reg |= E1000_TXCW_PAUSE; + break; + case e1000_fc_tx_pause: + anadv_reg |= E1000_TXCW_ASM_DIR; + break; + default: + break; + } + + E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); + + DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); + } else { + /* Set PCS register for forced link */ + reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ + + /* Force flow control for forced link */ + reg |= E1000_PCS_LCTL_FORCE_FCTRL; + + DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); + } + + E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); + + if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) + e1000_force_mac_fc_generic(hw); + + return ret_val; +} + +/** + * e1000_get_media_type_82575 - derives current media type. + * @hw: pointer to the HW structure + * + * The media type is chosen reflecting few settings. + * The following are taken into account: + * - link mode set in the current port Init Control Word #3 + * - current link mode settings in CSR register + * - MDIO vs. I2C PHY control interface chosen + * - SFP module media type + **/ +static s32 e1000_get_media_type_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext = 0; + u32 link_mode = 0; + + /* Set internal phy as default */ + dev_spec->sgmii_active = FALSE; + dev_spec->module_plugged = FALSE; + + /* Get CSR setting */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + + /* extract link mode setting */ + link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; + + switch (link_mode) { + case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: + hw->phy.media_type = e1000_media_type_internal_serdes; + break; + case E1000_CTRL_EXT_LINK_MODE_GMII: + hw->phy.media_type = e1000_media_type_copper; + break; + case E1000_CTRL_EXT_LINK_MODE_SGMII: + /* Get phy control interface type set (MDIO vs. I2C)*/ + if (e1000_sgmii_uses_mdio_82575(hw)) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = TRUE; + break; + } + /* fall through for I2C based SGMII */ + case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: + /* read media type from SFP EEPROM */ + ret_val = e1000_set_sfp_media_type_82575(hw); + if ((ret_val != E1000_SUCCESS) || + (hw->phy.media_type == e1000_media_type_unknown)) { + /* + * If media type was not identified then return media + * type defined by the CTRL_EXT settings. + */ + hw->phy.media_type = e1000_media_type_internal_serdes; + + if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { + hw->phy.media_type = e1000_media_type_copper; + dev_spec->sgmii_active = TRUE; + } + + break; + } + + /* do not change link mode for 100BaseFX */ + if (dev_spec->eth_flags.e100_base_fx) + break; + + /* change current link mode setting */ + ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; + + if (hw->phy.media_type == e1000_media_type_copper) + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; + else + ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + break; + } + + return ret_val; +} + +/** + * e1000_set_sfp_media_type_82575 - derives SFP module media type. + * @hw: pointer to the HW structure + * + * The media type is chosen based on SFP module. + * compatibility flags retrieved from SFP ID EEPROM. + **/ +static s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_ERR_CONFIG; + u32 ctrl_ext = 0; + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; + u8 tranceiver_type = 0; + s32 timeout = 3; + + /* Turn I2C interface ON and power on sfp cage */ + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); + + E1000_WRITE_FLUSH(hw); + + /* Read SFP module data */ + while (timeout) { + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), + &tranceiver_type); + if (ret_val == E1000_SUCCESS) + break; + msec_delay(100); + timeout--; + } + if (ret_val != E1000_SUCCESS) + goto out; + + ret_val = e1000_read_sfp_data_byte(hw, + E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), + (u8 *)eth_flags); + if (ret_val != E1000_SUCCESS) + goto out; + + /* Check if there is some SFP module plugged and powered */ + if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || + (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { + dev_spec->module_plugged = TRUE; + if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e100_base_fx) { + dev_spec->sgmii_active = TRUE; + hw->phy.media_type = e1000_media_type_internal_serdes; + } else if (eth_flags->e1000_base_t) { + dev_spec->sgmii_active = TRUE; + hw->phy.media_type = e1000_media_type_copper; + } else { + hw->phy.media_type = e1000_media_type_unknown; + DEBUGOUT("PHY module has not been recognized\n"); + goto out; + } + } else { + hw->phy.media_type = e1000_media_type_unknown; + } + ret_val = E1000_SUCCESS; +out: + /* Restore I2C interface setting */ + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + return ret_val; +} + +/** + * e1000_valid_led_default_82575 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_82575"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch (hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_82575_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT; + break; + } + } +out: + return ret_val; +} + +/** + * e1000_sgmii_active_82575 - Return sgmii state + * @hw: pointer to the HW structure + * + * 82575 silicon has a serialized gigabit media independent interface (sgmii) + * which can be enabled for use in the embedded applications. Simply + * return the current state of the sgmii interface. + **/ +static bool e1000_sgmii_active_82575(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; + return dev_spec->sgmii_active; +} + +/** + * e1000_reset_init_script_82575 - Inits HW defaults after reset + * @hw: pointer to the HW structure + * + * Inits recommended HW defaults after a reset when there is no EEPROM + * detected. This is only for the 82575. + **/ +static s32 e1000_reset_init_script_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_reset_init_script_82575"); + + if (hw->mac.type == e1000_82575) { + DEBUGOUT("Running reset init script for 82575\n"); + /* SerDes configuration via SERDESCTRL */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); + + /* CCM configuration via CCMCTL register */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); + + /* PCIe lanes configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); + + /* PCIe PLL Configuration */ + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); + e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr_82575 - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_mac_addr_82575"); + + /* + * If there's an alternate MAC address place it in RAR0 + * so that it will override the Si installed default perm + * address. + */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_mac_addr_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_config_collision_dist_82575 - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +static void e1000_config_collision_dist_82575(struct e1000_hw *hw) +{ + u32 tctl_ext; + + DEBUGFUNC("e1000_config_collision_dist_82575"); + + tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); + + tctl_ext &= ~E1000_TCTL_EXT_COLD; + tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_power_down_phy_copper_82575 - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + + if (!(phy->ops.check_reset_block)) + return; + + /* If the management interface is not enabled, then power down */ + if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters + * @hw: pointer to the HW structure + * + * Clears the hardware counters by reading the counter registers. + **/ +static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_82575"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_PRC64); + E1000_READ_REG(hw, E1000_PRC127); + E1000_READ_REG(hw, E1000_PRC255); + E1000_READ_REG(hw, E1000_PRC511); + E1000_READ_REG(hw, E1000_PRC1023); + E1000_READ_REG(hw, E1000_PRC1522); + E1000_READ_REG(hw, E1000_PTC64); + E1000_READ_REG(hw, E1000_PTC127); + E1000_READ_REG(hw, E1000_PTC255); + E1000_READ_REG(hw, E1000_PTC511); + E1000_READ_REG(hw, E1000_PTC1023); + E1000_READ_REG(hw, E1000_PTC1522); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + E1000_READ_REG(hw, E1000_ICRXPTC); + E1000_READ_REG(hw, E1000_ICRXATC); + E1000_READ_REG(hw, E1000_ICTXPTC); + E1000_READ_REG(hw, E1000_ICTXATC); + E1000_READ_REG(hw, E1000_ICTXQEC); + E1000_READ_REG(hw, E1000_ICTXQMTC); + E1000_READ_REG(hw, E1000_ICRXDMTC); + + E1000_READ_REG(hw, E1000_CBTMPC); + E1000_READ_REG(hw, E1000_HTDPMC); + E1000_READ_REG(hw, E1000_CBRMPC); + E1000_READ_REG(hw, E1000_RPTHC); + E1000_READ_REG(hw, E1000_HGPTC); + E1000_READ_REG(hw, E1000_HTCBDPC); + E1000_READ_REG(hw, E1000_HGORCL); + E1000_READ_REG(hw, E1000_HGORCH); + E1000_READ_REG(hw, E1000_HGOTCL); + E1000_READ_REG(hw, E1000_HGOTCH); + E1000_READ_REG(hw, E1000_LENERRS); + + /* This register should not be read in copper configurations */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) || + e1000_sgmii_active_82575(hw)) + E1000_READ_REG(hw, E1000_SCVPC); +} + +/** + * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable + * @hw: pointer to the HW structure + * + * After rx enable if managability is enabled then there is likely some + * bad data at the start of the fifo and possibly in the DMA fifo. This + * function clears the fifos and flushes any packets that came in as rx was + * being enabled. + **/ +void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) +{ + u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; + int i, ms_wait; + + DEBUGFUNC("e1000_rx_fifo_workaround_82575"); + if (hw->mac.type != e1000_82575 || + !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) + return; + + /* Disable all Rx queues */ + for (i = 0; i < 4; i++) { + rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); + E1000_WRITE_REG(hw, E1000_RXDCTL(i), + rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); + } + /* Poll all queues to verify they have shut down */ + for (ms_wait = 0; ms_wait < 10; ms_wait++) { + msec_delay(1); + rx_enabled = 0; + for (i = 0; i < 4; i++) + rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); + if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) + break; + } + + if (ms_wait == 10) + DEBUGOUT("Queue disable timed out after 10ms\n"); + + /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all + * incoming packets are rejected. Set enable and wait 2ms so that + * any packet that was coming in as RCTL.EN was set is flushed + */ + rfctl = E1000_READ_REG(hw, E1000_RFCTL); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); + + rlpml = E1000_READ_REG(hw, E1000_RLPML); + E1000_WRITE_REG(hw, E1000_RLPML, 0); + + rctl = E1000_READ_REG(hw, E1000_RCTL); + temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); + temp_rctl |= E1000_RCTL_LPE; + + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); + E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); + E1000_WRITE_FLUSH(hw); + msec_delay(2); + + /* Enable Rx queues that were previously enabled and restore our + * previous state + */ + for (i = 0; i < 4; i++) + E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); + E1000_WRITE_REG(hw, E1000_RCTL, rctl); + E1000_WRITE_FLUSH(hw); + + E1000_WRITE_REG(hw, E1000_RLPML, rlpml); + E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); + + /* Flush receive errors generated by workaround */ + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_MPC); +} + +/** + * e1000_set_pcie_completion_timeout - set pci-e completion timeout + * @hw: pointer to the HW structure + * + * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, + * however the hardware default for these parts is 500us to 1ms which is less + * than the 10ms recommended by the pci-e spec. To address this we need to + * increase the value to either 10ms to 200ms for capability version 1 config, + * or 16ms to 55ms for version 2. + **/ +static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) +{ + u32 gcr = E1000_READ_REG(hw, E1000_GCR); + s32 ret_val = E1000_SUCCESS; + u16 pcie_devctl2; + + /* only take action if timeout value is defaulted to 0 */ + if (gcr & E1000_GCR_CMPL_TMOUT_MASK) + goto out; + + /* + * if capababilities version is type 1 we can write the + * timeout of 10ms to 200ms through the GCR register + */ + if (!(gcr & E1000_GCR_CAP_VER2)) { + gcr |= E1000_GCR_CMPL_TMOUT_10ms; + goto out; + } + + /* + * for version 2 capabilities we need to write the config space + * directly in order to set the completion timeout value for + * 16ms to 55ms + */ + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); + if (ret_val) + goto out; + + pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; + + ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, + &pcie_devctl2); +out: + /* disable completion timeout resend */ + gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; + + E1000_WRITE_REG(hw, E1000_GCR, gcr); + return ret_val; +} + +/** + * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * @pf: Physical Function pool - do not set anti-spoofing for the PF + * + * enables/disables L2 switch anti-spoofing functionality. + **/ +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) +{ + u32 dtxswc; + + switch (hw->mac.type) { + case e1000_82576: + dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); + if (enable) { + dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + /* The PF can spoof - it has to in order to + * support emulation mode NICs */ + dtxswc ^= (1 << pf | 1 << (pf + + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); + } else { + dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + } + E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); + break; + case e1000_i350: + dtxswc = E1000_READ_REG(hw, E1000_TXSWC); + if (enable) { + dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + /* The PF can spoof - it has to in order to + * support emulation mode NICs + */ + dtxswc ^= (1 << pf | 1 << (pf + + E1000_DTXSWC_VLAN_SPOOF_SHIFT)); + } else { + dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | + E1000_DTXSWC_VLAN_SPOOF_MASK); + } + E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); + default: + break; + } +} + +/** + * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * + * enables/disables L2 switch loopback functionality. + **/ +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) +{ + u32 dtxswc; + + switch (hw->mac.type) { + case e1000_82576: + dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); + break; + case e1000_i350: + dtxswc = E1000_READ_REG(hw, E1000_TXSWC); + if (enable) + dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; + else + dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; + E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); + break; + default: + /* Currently no other hardware supports loopback */ + break; + } + + +} + +/** + * e1000_vmdq_set_replication_pf - enable or disable vmdq replication + * @hw: pointer to the hardware struct + * @enable: state to enter, either enabled or disabled + * + * enables/disables replication of packets across multiple pools. + **/ +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) +{ + u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); + + if (enable) + vt_ctl |= E1000_VT_CTL_VM_REPL_EN; + else + vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; + + E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); +} + +/** + * e1000_read_phy_reg_82580 - Read 82580 MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_82580"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_write_phy_reg_82580 - Write 82580 MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_82580"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); + + hw->phy.ops.release(hw); + +out: + return ret_val; +} + +/** + * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits + * @hw: pointer to the HW structure + * + * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on + * the values found in the EEPROM. This addresses an issue in which these + * bits are not restored from EEPROM after reset. + **/ +static s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 mdicnfg; + u16 nvm_data = 0; + + DEBUGFUNC("e1000_reset_mdicnfg_82580"); + + if (hw->mac.type != e1000_82580) + goto out; + if (!e1000_sgmii_active_82575(hw)) + goto out; + + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, + &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); + if (nvm_data & NVM_WORD24_EXT_MDIO) + mdicnfg |= E1000_MDICNFG_EXT_MDIO; + if (nvm_data & NVM_WORD24_COM_MDIO) + mdicnfg |= E1000_MDICNFG_COM_MDIO; + E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); +out: + return ret_val; +} + +/** + * e1000_reset_hw_82580 - Reset hardware + * @hw: pointer to the HW structure + * + * This resets function or entire device (all ports, etc.) + * to a known state. + **/ +static s32 e1000_reset_hw_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + /* BH SW mailbox bit in SW_FW_SYNC */ + u16 swmbsw_mask = E1000_SW_SYNCH_MB; + u32 ctrl; + bool global_device_reset = hw->dev_spec._82575.global_device_reset; + + DEBUGFUNC("e1000_reset_hw_82580"); + + hw->dev_spec._82575.global_device_reset = FALSE; + + /* 82580 does not reliably do global_device_reset due to hw errata */ + if (hw->mac.type == e1000_82580) + global_device_reset = FALSE; + + /* Get current control state. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* + * Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Determine whether or not a global dev reset is requested */ + if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, + swmbsw_mask)) + global_device_reset = FALSE; + + if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STAT_DEV_RST_SET)) + ctrl |= E1000_CTRL_DEV_RST; + else + ctrl |= E1000_CTRL_RST; + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + /* Add delay to insure DEV_RST has time to complete */ + if (global_device_reset) + msec_delay(5); + + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* + * When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + } + + /* If EEPROM is not present, run manual init scripts */ + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) + e1000_reset_init_script_82575(hw); + + /* clear global device reset status bit */ + E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); + + /* Clear any pending interrupt events. */ + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + ret_val = e1000_reset_mdicnfg_82580(hw); + if (ret_val) + DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); + + /* Install any alternate MAC address into RAR0 */ + ret_val = e1000_check_alt_mac_addr_generic(hw); + + /* Release semaphore */ + if (global_device_reset) + hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); + + return ret_val; +} + +/** + * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size + * @data: data received by reading RXPBS register + * + * The 82580 uses a table based approach for packet buffer allocation sizes. + * This function converts the retrieved value into the correct table value + * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 + * 0x0 36 72 144 1 2 4 8 16 + * 0x8 35 70 140 rsv rsv rsv rsv rsv + */ +u16 e1000_rxpbs_adjust_82580(u32 data) +{ + u16 ret_val = 0; + + if (data < E1000_82580_RXPBS_TABLE_SIZE) + ret_val = e1000_82580_rxpbs_table[data]; + + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_with_offset - Validate EEPROM + * checksum + * @hw: pointer to the HW structure + * @offset: offset in words of the checksum protected region + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +{ + s32 ret_val = E1000_SUCCESS; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); + + for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_with_offset - Update EEPROM + * checksum + * @hw: pointer to the HW structure + * @offset: offset in words of the checksum protected region + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); + + for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, + &checksum); + if (ret_val) + DEBUGOUT("NVM Write Error while updating checksum.\n"); + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM section checksum by reading/adding each word of + * the EEPROM and then verifies that the sum of the EEPROM is + * equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 eeprom_regions_count = 1; + u16 j, nvm_data; + u16 nvm_offset; + + DEBUGFUNC("e1000_validate_nvm_checksum_82580"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { + /* if chekcsums compatibility bit is set validate checksums + * for all 4 ports. */ + eeprom_regions_count = 4; + } + + for (j = 0; j < eeprom_regions_count; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_82580 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM section checksums for all 4 ports by reading/adding + * each word of the EEPROM up to the checksum. Then calculates the EEPROM + * checksum and writes the value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) +{ + s32 ret_val; + u16 j, nvm_data; + u16 nvm_offset; + + DEBUGFUNC("e1000_update_nvm_checksum_82580"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); + goto out; + } + + if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { + /* set compatibility bit to validate checksums appropriately */ + nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; + ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, + &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); + goto out; + } + } + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM section checksum by reading/adding each word of + * the EEPROM and then verifies that the sum of the EEPROM is + * equal to 0xBABA. + **/ +static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 j; + u16 nvm_offset; + + DEBUGFUNC("e1000_validate_nvm_checksum_i350"); + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_validate_nvm_checksum_with_offset(hw, + nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_update_nvm_checksum_i350 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM section checksums for all 4 ports by reading/adding + * each word of the EEPROM up to the checksum. Then calculates the EEPROM + * checksum and writes the value to the EEPROM. + **/ +static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 j; + u16 nvm_offset; + + DEBUGFUNC("e1000_update_nvm_checksum_i350"); + + for (j = 0; j < 4; j++) { + nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); + ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); + if (ret_val != E1000_SUCCESS) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_set_eee_i350 - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE based on setting in dev_spec structure. + * + **/ +s32 e1000_set_eee_i350(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 ipcnfg, eeer; + + DEBUGFUNC("e1000_set_eee_i350"); + + if ((hw->mac.type < e1000_i350) || + (hw->phy.media_type != e1000_media_type_copper)) + goto out; + ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); + eeer = E1000_READ_REG(hw, E1000_EEER); + + /* enable or disable per user setting */ + if (!(hw->dev_spec._82575.eee_disable)) { + u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); + + ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + + /* This bit should not be set in normal operation. */ + if (eee_su & E1000_EEE_SU_LPI_CLK_STP) + DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); + } else { + ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); + eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | + E1000_EEER_LPI_FC); + } + E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); + E1000_WRITE_REG(hw, E1000_EEER, eeer); + E1000_READ_REG(hw, E1000_IPCNFG); + E1000_READ_REG(hw, E1000_EEER); +out: + + return ret_val; +} + +/* Due to a hw errata, if the host tries to configure the VFTA register + * while performing queries from the BMC or DMA, then the VFTA in some + * cases won't be written. + */ + +/** + * e1000_clear_vfta_i350 - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_i350(struct e1000_hw *hw) +{ + u32 offset; + int i; + + DEBUGFUNC("e1000_clear_vfta_350"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_i350 - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) +{ + int i; + + DEBUGFUNC("e1000_write_vfta_350"); + + for (i = 0; i < 10; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + + E1000_WRITE_FLUSH(hw); +} + + +/** + * e1000_set_i2c_bb - Enable I2C bit-bang + * @hw: pointer to the HW structure + * + * Enable I2C bit-bang interface + * + **/ +s32 e1000_set_i2c_bb(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 ctrl_ext, i2cparams; + + DEBUGFUNC("e1000_set_i2c_bb"); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_I2C_ENA; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + + i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); + i2cparams |= E1000_I2CBB_EN; + i2cparams |= E1000_I2C_DATA_OE_N; + i2cparams |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); + E1000_WRITE_FLUSH(hw); + + return ret_val; +} + +/** + * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to read + * @dev_addr: device address + * @data: value read + * + * Performs byte read operation over I2C interface at + * a specified device address. + **/ +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 10; + u32 retry = 1; + u16 swfw_mask = 0; + + bool nack = TRUE; + + DEBUGFUNC("e1000_read_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + do { + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) + != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto read_byte_out; + } + + e1000_i2c_start(hw); + + /* Device Address and write indication */ + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_start(hw); + + /* Device Address and read indication */ + status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_in_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_bit(hw, nack); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + msec_delay(100); + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte read error - Retrying.\n"); + else + DEBUGOUT("I2C byte read error.\n"); + + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +read_byte_out: + + return status; +} + +/** + * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: value to write + * + * Performs byte write operation over I2C interface at + * a specified device address. + **/ +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data) +{ + s32 status = E1000_SUCCESS; + u32 max_retry = 1; + u32 retry = 0; + u16 swfw_mask = 0; + + DEBUGFUNC("e1000_write_i2c_byte_generic"); + + swfw_mask = E1000_SWFW_PHY0_SM; + + if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { + status = E1000_ERR_SWFW_SYNC; + goto write_byte_out; + } + + do { + e1000_i2c_start(hw); + + status = e1000_clock_out_i2c_byte(hw, dev_addr); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, byte_offset); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_clock_out_i2c_byte(hw, data); + if (status != E1000_SUCCESS) + goto fail; + + status = e1000_get_i2c_ack(hw); + if (status != E1000_SUCCESS) + goto fail; + + e1000_i2c_stop(hw); + break; + +fail: + e1000_i2c_bus_clear(hw); + retry++; + if (retry < max_retry) + DEBUGOUT("I2C byte write error - Retrying.\n"); + else + DEBUGOUT("I2C byte write error.\n"); + } while (retry < max_retry); + + hw->mac.ops.release_swfw_sync(hw, swfw_mask); + +write_byte_out: + + return status; +} + +/** + * e1000_i2c_start - Sets I2C start condition + * @hw: pointer to hardware structure + * + * Sets I2C start condition (High -> Low on SDA while SCL is High) + **/ +static void e1000_i2c_start(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_start"); + + /* Start condition must begin with data and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 1); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for start condition (4.7us) */ + usec_delay(E1000_I2C_T_SU_STA); + + e1000_set_i2c_data(hw, &i2cctl, 0); + + /* Hold time for start condition (4us) */ + usec_delay(E1000_I2C_T_HD_STA); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + +} + +/** + * e1000_i2c_stop - Sets I2C stop condition + * @hw: pointer to hardware structure + * + * Sets I2C stop condition (Low -> High on SDA while SCL is High) + **/ +static void e1000_i2c_stop(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_i2c_stop"); + + /* Stop condition must begin with data low and clock high */ + e1000_set_i2c_data(hw, &i2cctl, 0); + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Setup time for stop condition (4us) */ + usec_delay(E1000_I2C_T_SU_STO); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + /* bus free time between stop and start (4.7us)*/ + usec_delay(E1000_I2C_T_BUF); +} + +/** + * e1000_clock_in_i2c_byte - Clocks in one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte to clock in + * + * Clocks in one byte data via I2C data/clock + **/ +static s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) +{ + s32 i; + bool bit = 0; + + DEBUGFUNC("e1000_clock_in_i2c_byte"); + + *data = 0; + for (i = 7; i >= 0; i--) { + e1000_clock_in_i2c_bit(hw, &bit); + *data |= bit << i; + } + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_byte - Clocks out one byte via I2C + * @hw: pointer to hardware structure + * @data: data byte clocked out + * + * Clocks out one byte data via I2C data/clock + **/ +static s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) +{ + s32 status = E1000_SUCCESS; + s32 i; + u32 i2cctl; + bool bit = 0; + + DEBUGFUNC("e1000_clock_out_i2c_byte"); + + for (i = 7; i >= 0; i--) { + bit = (data >> i) & 0x1; + status = e1000_clock_out_i2c_bit(hw, bit); + + if (status != E1000_SUCCESS) + break; + } + + /* Release SDA line (set high) */ + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + i2cctl |= E1000_I2C_DATA_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); + E1000_WRITE_FLUSH(hw); + + return status; +} + +/** + * e1000_get_i2c_ack - Polls for I2C ACK + * @hw: pointer to hardware structure + * + * Clocks in/out one bit via I2C data/clock + **/ +static s32 e1000_get_i2c_ack(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + u32 i = 0; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 timeout = 10; + bool ack = TRUE; + + DEBUGFUNC("e1000_get_i2c_ack"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + /* Wait until SCL returns high */ + for (i = 0; i < timeout; i++) { + usec_delay(1); + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (i2cctl & E1000_I2C_CLK_IN) + break; + } + if (!(i2cctl & E1000_I2C_CLK_IN)) + return E1000_ERR_I2C; + + ack = e1000_get_i2c_data(&i2cctl); + if (ack) { + DEBUGOUT("I2C ack was not received.\n"); + status = E1000_ERR_I2C; + } + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return status; +} + +/** + * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: read data value + * + * Clocks in one bit via I2C data/clock + **/ +static s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_in_i2c_bit"); + + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + *data = e1000_get_i2c_data(&i2cctl); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us */ + usec_delay(E1000_I2C_T_LOW); + + return E1000_SUCCESS; +} + +/** + * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock + * @hw: pointer to hardware structure + * @data: data value to write + * + * Clocks out one bit via I2C data/clock + **/ +static s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) +{ + s32 status; + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + + DEBUGFUNC("e1000_clock_out_i2c_bit"); + + status = e1000_set_i2c_data(hw, &i2cctl, data); + if (status == E1000_SUCCESS) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Minimum high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Minimum low period of clock is 4.7 us. + * This also takes care of the data hold time. + */ + usec_delay(E1000_I2C_T_LOW); + } else { + status = E1000_ERR_I2C; + DEBUGOUT1("I2C data was not set to %X\n", data); + } + + return status; +} +/** + * e1000_raise_i2c_clk - Raises the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Raises the I2C clock line '0'->'1' + **/ +static void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + DEBUGFUNC("e1000_raise_i2c_clk"); + + *i2cctl |= E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL rise time (1000ns) */ + usec_delay(E1000_I2C_T_RISE); +} + +/** + * e1000_lower_i2c_clk - Lowers the I2C SCL clock + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Lowers the I2C clock line '1'->'0' + **/ +static void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) +{ + + DEBUGFUNC("e1000_lower_i2c_clk"); + + *i2cctl &= ~E1000_I2C_CLK_OUT; + *i2cctl &= ~E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* SCL fall time (300ns) */ + usec_delay(E1000_I2C_T_FALL); +} + +/** + * e1000_set_i2c_data - Sets the I2C data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * @data: I2C data value (0 or 1) to set + * + * Sets the I2C data bit + **/ +static s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) +{ + s32 status = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_i2c_data"); + + if (data) + *i2cctl |= E1000_I2C_DATA_OUT; + else + *i2cctl &= ~E1000_I2C_DATA_OUT; + + *i2cctl &= ~E1000_I2C_DATA_OE_N; + *i2cctl |= E1000_I2C_CLK_OE_N; + E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); + E1000_WRITE_FLUSH(hw); + + /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ + usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); + + *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + if (data != e1000_get_i2c_data(i2cctl)) { + status = E1000_ERR_I2C; + DEBUGOUT1("Error - I2C data was not set to %X.\n", data); + } + + return status; +} + +/** + * e1000_get_i2c_data - Reads the I2C SDA data bit + * @hw: pointer to hardware structure + * @i2cctl: Current value of I2CCTL register + * + * Returns the I2C data bit value + **/ +static bool e1000_get_i2c_data(u32 *i2cctl) +{ + bool data; + + DEBUGFUNC("e1000_get_i2c_data"); + + if (*i2cctl & E1000_I2C_DATA_IN) + data = 1; + else + data = 0; + + return data; +} + +/** + * e1000_i2c_bus_clear - Clears the I2C bus + * @hw: pointer to hardware structure + * + * Clears the I2C bus by sending nine clock pulses. + * Used when data line is stuck low. + **/ +void e1000_i2c_bus_clear(struct e1000_hw *hw) +{ + u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); + u32 i; + + DEBUGFUNC("e1000_i2c_bus_clear"); + + e1000_i2c_start(hw); + + e1000_set_i2c_data(hw, &i2cctl, 1); + + for (i = 0; i < 9; i++) { + e1000_raise_i2c_clk(hw, &i2cctl); + + /* Min high period of clock is 4us */ + usec_delay(E1000_I2C_T_HIGH); + + e1000_lower_i2c_clk(hw, &i2cctl); + + /* Min low period of clock is 4.7us*/ + usec_delay(E1000_I2C_T_LOW); + } + + e1000_i2c_start(hw); + + /* Put the i2c bus back to default state */ + e1000_i2c_stop(hw); +} + + diff --git a/usr/src/uts/common/io/e1000api/e1000_82575.h b/usr/src/uts/common/io/e1000api/e1000_82575.h new file mode 100644 index 0000000000..c7e2743e57 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_82575.h @@ -0,0 +1,523 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_82575_H_ +#define _E1000_82575_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_DEF1_DEF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_ON2)) +/* + * Receive Address Register Count + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * These entries are also used for MAC-based filtering. + */ +/* + * For 82576, there are an additional set of RARs that begin at an offset + * separate from the first set of RARs. + */ +#define E1000_RAR_ENTRIES_82575 16 +#define E1000_RAR_ENTRIES_82576 24 +#define E1000_RAR_ENTRIES_82580 24 +#define E1000_RAR_ENTRIES_I350 32 +#define E1000_SW_SYNCH_MB 0x00000100 +#define E1000_STAT_DEV_RST_SET 0x00100000 +#define E1000_CTRL_DEV_RST 0x20000000 + +#ifdef E1000_BIT_FIELDS +struct e1000_adv_data_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + u32 data; + struct { + u32 datalen:16; /* Data buffer length */ + u32 rsvd:4; + u32 dtyp:4; /* Descriptor type */ + u32 dcmd:8; /* Descriptor command */ + } config; + } lower; + union { + u32 data; + struct { + u32 status:4; /* Descriptor status */ + u32 idx:4; + u32 popts:6; /* Packet Options */ + u32 paylen:18; /* Payload length */ + } options; + } upper; +}; + +#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ +#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ +#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ +#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ +#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ +#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ +#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ +#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ +#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ +#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ +/* Extended Device Control */ +#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ + +struct e1000_adv_context_desc { + union { + u32 ip_config; + struct { + u32 iplen:9; + u32 maclen:7; + u32 vlan_tag:16; + } fields; + } ip_setup; + u32 seq_num; + union { + u64 l4_config; + struct { + u32 mkrloc:9; + u32 tucmd:11; + u32 dtyp:4; + u32 adv:8; + u32 rsvd:4; + u32 idx:4; + u32 l4len:8; + u32 mss:16; + } fields; + } l4_setup; +}; +#endif + +/* SRRCTL bit definitions */ +#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ +#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 +#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ +#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 +#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 +#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 +#define E1000_SRRCTL_TIMESTAMP 0x40000000 +#define E1000_SRRCTL_DROP_EN 0x80000000 + +#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F +#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 + +#define E1000_TX_HEAD_WB_ENABLE 0x1 +#define E1000_TX_SEQNUM_WB_ENABLE 0x2 + +#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 +#define E1000_MRQC_ENABLE_VMDQ 0x00000003 +#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 +#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 +#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 +#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 + +#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 +#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \ + E1000_VMRCTL_MIRROR_PORT_SHIFT) +#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) +#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) +#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) + +#define E1000_EICR_TX_QUEUE ( \ + E1000_EICR_TX_QUEUE0 | \ + E1000_EICR_TX_QUEUE1 | \ + E1000_EICR_TX_QUEUE2 | \ + E1000_EICR_TX_QUEUE3) + +#define E1000_EICR_RX_QUEUE ( \ + E1000_EICR_RX_QUEUE0 | \ + E1000_EICR_RX_QUEUE1 | \ + E1000_EICR_RX_QUEUE2 | \ + E1000_EICR_RX_QUEUE3) + +#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE +#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE + +#define EIMS_ENABLE_MASK ( \ + E1000_EIMS_RX_QUEUE | \ + E1000_EIMS_TX_QUEUE | \ + E1000_EIMS_TCP_TIMER | \ + E1000_EIMS_OTHER) + +/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ +#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ +#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ +#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ +#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ +#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ +#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ +#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ +#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ +#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ +#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ + +/* Receive Descriptor - Advanced */ +union e1000_adv_rx_desc { + struct { + __le64 pkt_addr; /* Packet buffer address */ + __le64 hdr_addr; /* Header buffer address */ + } read; + struct { + struct { + union { + __le32 data; + struct { + __le16 pkt_info; /*RSS type, Pkt type*/ + /* Split Header, header buffer len */ + __le16 hdr_info; + } hs_rss; + } lo_dword; + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; /* Packet length */ + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F +#define E1000_RXDADV_RSSTYPE_SHIFT 12 +#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 +#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 +#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 +#define E1000_RXDADV_SPH 0x8000 +#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ +#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ +#define E1000_RXDADV_ERR_HBO 0x00800000 + +/* RSS Hash results */ +#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 +#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 +#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 +#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 +#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 +#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 +#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 +#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 + +/* RSS Packet Types as indicated in the receive descriptor */ +#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 +#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ +#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ +#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ +#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ +#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ +#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ + +#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ +#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ +#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ +#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ +#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ +#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ + +/* LinkSec results */ +/* Security Processing bit Indication */ +#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 +#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 +#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 + +#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 +#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 +#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 +#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 + +/* Transmit Descriptor - Advanced */ +union e1000_adv_tx_desc { + struct { + __le64 buffer_addr; /* Address of descriptor's data buf */ + __le32 cmd_type_len; + __le32 olinfo_status; + } read; + struct { + __le64 rsvd; /* Reserved */ + __le32 nxtseq_seed; + __le32 status; + } wb; +}; + +/* Adv Transmit Descriptor Config Masks */ +#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ +#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ +#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ +#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ +#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ +#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ +#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ +#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ +#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */ +#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */ +#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */ +#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ +#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ +#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ +/* 1st & Last TSO-full iSCSI PDU*/ +#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 +#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ +#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ + +/* Context descriptors */ +struct e1000_adv_tx_context_desc { + __le32 vlan_macip_lens; + __le32 seqnum_seed; + __le32 type_tucmd_mlhl; + __le32 mss_l4len_idx; +}; + +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ +#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ +#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ +#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ +#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ +#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ +#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ +/* IPSec Encrypt Enable for ESP */ +#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 +/* Req requires Markers and CRC */ +#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 +#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ +#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ +/* Adv ctxt IPSec SA IDX mask */ +#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF +/* Adv ctxt IPSec ESP len mask */ +#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF + +/* Additional Transmit Descriptor Control definitions */ +#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ +#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */ +/* Tx Queue Arbitration Priority 0=low, 1=high */ +#define E1000_TXDCTL_PRIORITY 0x08000000 + +/* Additional Receive Descriptor Control definitions */ +#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ +#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */ + +/* Direct Cache Access (DCA) definitions */ +#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ +#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ + +#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ +#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ + +#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ +#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ +#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */ +#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */ +#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */ + +#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ +#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ +#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */ +#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ +#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */ + +#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ +#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ +#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ +#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ + +/* Additional interrupt register bit definitions */ +#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ +#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ +#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ + +/* ETQF register bit definitions */ +#define E1000_ETQF_FILTER_ENABLE (1 << 26) +#define E1000_ETQF_IMM_INT (1 << 29) +#define E1000_ETQF_1588 (1 << 30) +#define E1000_ETQF_QUEUE_ENABLE (1 << 31) +/* + * ETQF filter list: one static filter per filter consumer. This is + * to avoid filter collisions later. Add new filters + * here!! + * + * Current filters: + * EAPOL 802.1x (0x888e): Filter 0 + */ +#define E1000_ETQF_FILTER_EAPOL 0 + +#define E1000_FTQF_VF_BP 0x00008000 +#define E1000_FTQF_1588_TIME_STAMP 0x08000000 +#define E1000_FTQF_MASK 0xF0000000 +#define E1000_FTQF_MASK_PROTO_BP 0x10000000 +#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 +#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 +#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 + +#define E1000_NVM_APME_82575 0x0400 +#define MAX_NUM_VFS 7 + +#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */ +#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */ +#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ +#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 +#define E1000_DTXSWC_LLE_SHIFT 16 +#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1UL << 31) /* global VF LB enable */ + +/* Easy defines for setting default pool, would normally be left a zero */ +#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 +#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) + +/* Other useful VMD_CTL register defines */ +#define E1000_VT_CTL_IGNORE_MAC (1 << 28) +#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) +#define E1000_VT_CTL_VM_REPL_EN (1 << 30) + +/* Per VM Offload register setup */ +#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ +#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ +#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ +#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ +#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ +#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ +#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ +#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ +#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ +#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ + +#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */ +#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */ +#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */ +#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ +#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */ + +#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */ +#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */ + +#define E1000_VLVF_ARRAY_SIZE 32 +#define E1000_VLVF_VLANID_MASK 0x00000FFF +#define E1000_VLVF_POOLSEL_SHIFT 12 +#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) +#define E1000_VLVF_LVLAN 0x00100000 +#define E1000_VLVF_VLANID_ENABLE 0x80000000 + +#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ +#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ + +#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ + +#define E1000_IOVCTL 0x05BBC +#define E1000_IOVCTL_REUSE_VFQ 0x00000001 + +#define E1000_RPLOLR_STRVLAN 0x40000000 +#define E1000_RPLOLR_STRCRC 0x80000000 + +#define E1000_TCTL_EXT_COLD 0x000FFC00 +#define E1000_TCTL_EXT_COLD_SHIFT 10 + +#define E1000_DTXCTL_8023LL 0x0004 +#define E1000_DTXCTL_VLAN_ADDED 0x0008 +#define E1000_DTXCTL_OOS_ENABLE 0x0010 +#define E1000_DTXCTL_MDP_EN 0x0020 +#define E1000_DTXCTL_SPOOF_INT 0x0040 + +#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) + +#define ALL_QUEUES 0xFFFF + +/* Rx packet buffer size defines */ +#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F +void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); +void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf); +void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); +s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); + +enum e1000_promisc_type { + e1000_promisc_disabled = 0, /* all promisc modes disabled */ + e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ + e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ + e1000_promisc_enabled = 3, /* both uni and multicast promisc */ + e1000_num_promisc_types +}; + +void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); +void e1000_rlpml_set_vf(struct e1000_hw *, u16); +s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type); +u16 e1000_rxpbs_adjust_82580(u32 data); +s32 e1000_set_eee_i350(struct e1000_hw *); + +/* I2C SDA and SCL timing parameters for standard mode */ +#define E1000_I2C_T_HD_STA 4 +#define E1000_I2C_T_LOW 5 +#define E1000_I2C_T_HIGH 4 +#define E1000_I2C_T_SU_STA 5 +#define E1000_I2C_T_HD_DATA 5 +#define E1000_I2C_T_SU_DATA 1 +#define E1000_I2C_T_RISE 1 +#define E1000_I2C_T_FALL 1 +#define E1000_I2C_T_SU_STO 4 +#define E1000_I2C_T_BUF 5 + +s32 e1000_set_i2c_bb(struct e1000_hw *hw); +s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data); +s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data); +void e1000_i2c_bus_clear(struct e1000_hw *hw); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_82575_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_api.c b/usr/src/uts/common/io/e1000api/e1000_api.c new file mode 100644 index 0000000000..158191304b --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_api.c @@ -0,0 +1,1353 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/** + * e1000_init_mac_params - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the MAC + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mac_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mac.ops.init_params) { + ret_val = hw->mac.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("MAC Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mac.init_mac_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_nvm_params - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the NVM + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_nvm_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->nvm.ops.init_params) { + ret_val = hw->nvm.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("NVM Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("nvm.init_nvm_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_phy_params - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_phy_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->phy.ops.init_params) { + ret_val = hw->phy.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("PHY Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("phy.init_phy_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_init_mbx_params - Initialize mailbox function pointers + * @hw: pointer to the HW structure + * + * This function initializes the function pointers for the PHY + * set of functions. Called by drivers or by e1000_setup_init_funcs. + **/ +s32 e1000_init_mbx_params(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + if (hw->mbx.ops.init_params) { + ret_val = hw->mbx.ops.init_params(hw); + if (ret_val) { + DEBUGOUT("Mailbox Initialization Error\n"); + goto out; + } + } else { + DEBUGOUT("mbx.init_mbx_params was NULL\n"); + ret_val = -E1000_ERR_CONFIG; + } + +out: + return ret_val; +} + +/** + * e1000_set_mac_type - Sets MAC type + * @hw: pointer to the HW structure + * + * This function sets the mac type of the adapter based on the + * device ID stored in the hw structure. + * MUST BE FIRST FUNCTION CALLED (explicitly or through + * e1000_setup_init_funcs()). + **/ +s32 e1000_set_mac_type(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + mac->type = e1000_82542; + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + mac->type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + mac->type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + mac->type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + mac->type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + mac->type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + mac->type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + mac->type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + mac->type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + mac->type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + mac->type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + mac->type = e1000_82547_rev_2; + break; + case E1000_DEV_ID_82571EB_COPPER: + case E1000_DEV_ID_82571EB_FIBER: + case E1000_DEV_ID_82571EB_SERDES: + case E1000_DEV_ID_82571EB_SERDES_DUAL: + case E1000_DEV_ID_82571EB_SERDES_QUAD: + case E1000_DEV_ID_82571EB_QUAD_COPPER: + case E1000_DEV_ID_82571PT_QUAD_COPPER: + case E1000_DEV_ID_82571EB_QUAD_FIBER: + case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: + mac->type = e1000_82571; + break; + case E1000_DEV_ID_82572EI: + case E1000_DEV_ID_82572EI_COPPER: + case E1000_DEV_ID_82572EI_FIBER: + case E1000_DEV_ID_82572EI_SERDES: + mac->type = e1000_82572; + break; + case E1000_DEV_ID_82573E: + case E1000_DEV_ID_82573E_IAMT: + case E1000_DEV_ID_82573L: + mac->type = e1000_82573; + break; + case E1000_DEV_ID_82574L: + case E1000_DEV_ID_82574LA: + mac->type = e1000_82574; + break; + case E1000_DEV_ID_82583V: + mac->type = e1000_82583; + break; + case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: + case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: + case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: + mac->type = e1000_80003es2lan; + break; + case E1000_DEV_ID_ICH8_IFE: + case E1000_DEV_ID_ICH8_IFE_GT: + case E1000_DEV_ID_ICH8_IFE_G: + case E1000_DEV_ID_ICH8_IGP_M: + case E1000_DEV_ID_ICH8_IGP_M_AMT: + case E1000_DEV_ID_ICH8_IGP_AMT: + case E1000_DEV_ID_ICH8_IGP_C: + case E1000_DEV_ID_ICH8_82567V_3: + mac->type = e1000_ich8lan; + break; + case E1000_DEV_ID_ICH9_IFE: + case E1000_DEV_ID_ICH9_IFE_GT: + case E1000_DEV_ID_ICH9_IFE_G: + case E1000_DEV_ID_ICH9_IGP_M: + case E1000_DEV_ID_ICH9_IGP_M_AMT: + case E1000_DEV_ID_ICH9_IGP_M_V: + case E1000_DEV_ID_ICH9_IGP_AMT: + case E1000_DEV_ID_ICH9_BM: + case E1000_DEV_ID_ICH9_IGP_C: + case E1000_DEV_ID_ICH10_R_BM_LM: + case E1000_DEV_ID_ICH10_R_BM_LF: + case E1000_DEV_ID_ICH10_R_BM_V: + mac->type = e1000_ich9lan; + break; + case E1000_DEV_ID_ICH10_D_BM_LM: + case E1000_DEV_ID_ICH10_D_BM_LF: + case E1000_DEV_ID_ICH10_D_BM_V: + mac->type = e1000_ich10lan; + break; + case E1000_DEV_ID_PCH_D_HV_DM: + case E1000_DEV_ID_PCH_D_HV_DC: + case E1000_DEV_ID_PCH_M_HV_LM: + case E1000_DEV_ID_PCH_M_HV_LC: + mac->type = e1000_pchlan; + break; + case E1000_DEV_ID_PCH2_LV_LM: + case E1000_DEV_ID_PCH2_LV_V: + mac->type = e1000_pch2lan; + break; + case E1000_DEV_ID_PCH_LPT_I217_LM: + case E1000_DEV_ID_PCH_LPT_I217_V: + case E1000_DEV_ID_PCH_LPTLP_I218_LM: + case E1000_DEV_ID_PCH_LPTLP_I218_V: + mac->type = e1000_pch_lpt; + break; + case E1000_DEV_ID_82575EB_COPPER: + case E1000_DEV_ID_82575EB_FIBER_SERDES: + case E1000_DEV_ID_82575GB_QUAD_COPPER: + mac->type = e1000_82575; + break; + case E1000_DEV_ID_82576: + case E1000_DEV_ID_82576_FIBER: + case E1000_DEV_ID_82576_SERDES: + case E1000_DEV_ID_82576_QUAD_COPPER: + case E1000_DEV_ID_82576_QUAD_COPPER_ET2: + case E1000_DEV_ID_82576_NS: + case E1000_DEV_ID_82576_NS_SERDES: + case E1000_DEV_ID_82576_SERDES_QUAD: + mac->type = e1000_82576; + break; + case E1000_DEV_ID_82580_COPPER: + case E1000_DEV_ID_82580_FIBER: + case E1000_DEV_ID_82580_SERDES: + case E1000_DEV_ID_82580_SGMII: + case E1000_DEV_ID_82580_COPPER_DUAL: + case E1000_DEV_ID_82580_QUAD_FIBER: + case E1000_DEV_ID_DH89XXCC_SGMII: + case E1000_DEV_ID_DH89XXCC_SERDES: + case E1000_DEV_ID_DH89XXCC_BACKPLANE: + case E1000_DEV_ID_DH89XXCC_SFP: + mac->type = e1000_82580; + break; + case E1000_DEV_ID_I350_COPPER: + case E1000_DEV_ID_I350_FIBER: + case E1000_DEV_ID_I350_SERDES: + case E1000_DEV_ID_I350_SGMII: + case E1000_DEV_ID_I350_DA4: + mac->type = e1000_i350; + break; +#if defined(QV_RELEASE) && defined(SPRINGVILLE_FLASHLESS_HW) + case E1000_DEV_ID_I210_NVMLESS: +#endif /* QV_RELEASE && SPRINGVILLE_FLASHLESS_HW */ + case E1000_DEV_ID_I210_COPPER: + case E1000_DEV_ID_I210_COPPER_OEM1: + case E1000_DEV_ID_I210_COPPER_IT: + case E1000_DEV_ID_I210_FIBER: + case E1000_DEV_ID_I210_SERDES: + case E1000_DEV_ID_I210_SGMII: + mac->type = e1000_i210; + break; + case E1000_DEV_ID_I211_COPPER: + mac->type = e1000_i211; + break; + case E1000_DEV_ID_82576_VF: + case E1000_DEV_ID_82576_VF_HV: + mac->type = e1000_vfadapt; + break; + case E1000_DEV_ID_I350_VF: + case E1000_DEV_ID_I350_VF_HV: + mac->type = e1000_vfadapt_i350; + break; + + default: + /* Should never have loaded on this device */ + ret_val = -E1000_ERR_MAC_INIT; + break; + } + + return ret_val; +} + +/** + * e1000_setup_init_funcs - Initializes function pointers + * @hw: pointer to the HW structure + * @init_device: TRUE will initialize the rest of the function pointers + * getting the device ready for use. FALSE will only set + * MAC type and the function pointers for the other init + * functions. Passing FALSE will not generate any hardware + * reads or writes. + * + * This function must be called by a driver in order to use the rest + * of the 'shared' code files. Called by drivers only. + **/ +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) +{ + s32 ret_val; + + /* Can't do much good without knowing the MAC type. */ + ret_val = e1000_set_mac_type(hw); + if (ret_val) { + DEBUGOUT("ERROR: MAC type could not be set properly.\n"); + goto out; + } + + if (!hw->hw_addr) { + DEBUGOUT("ERROR: Registers not mapped\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + /* + * Init function pointers to generic implementations. We do this first + * allowing a driver module to override it afterward. + */ + e1000_init_mac_ops_generic(hw); + e1000_init_phy_ops_generic(hw); + e1000_init_nvm_ops_generic(hw); + e1000_init_mbx_ops_generic(hw); + + /* + * Set up the init function pointers. These are functions within the + * adapter family file that sets up function pointers for the rest of + * the functions in that family. + */ + switch (hw->mac.type) { + case e1000_82542: + e1000_init_function_pointers_82542(hw); + break; + case e1000_82543: + case e1000_82544: + e1000_init_function_pointers_82543(hw); + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + e1000_init_function_pointers_82540(hw); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + e1000_init_function_pointers_82541(hw); + break; + case e1000_82571: + case e1000_82572: + case e1000_82573: + case e1000_82574: + case e1000_82583: + e1000_init_function_pointers_82571(hw); + break; + case e1000_80003es2lan: + e1000_init_function_pointers_80003es2lan(hw); + break; + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + e1000_init_function_pointers_ich8lan(hw); + break; + case e1000_82575: + case e1000_82576: + case e1000_82580: + case e1000_i350: + e1000_init_function_pointers_82575(hw); + break; + case e1000_i210: + case e1000_i211: + e1000_init_function_pointers_i210(hw); + break; + case e1000_vfadapt: + e1000_init_function_pointers_vf(hw); + break; + case e1000_vfadapt_i350: + e1000_init_function_pointers_vf(hw); + break; + default: + DEBUGOUT("Hardware not supported\n"); + ret_val = -E1000_ERR_CONFIG; + break; + } + + /* + * Initialize the rest of the function pointers. These require some + * register reads/writes in some cases. + */ + if (!(ret_val) && init_device) { + ret_val = e1000_init_mac_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_nvm_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_phy_params(hw); + if (ret_val) + goto out; + + ret_val = e1000_init_mbx_params(hw); + if (ret_val) + goto out; + } + +out: + return ret_val; +} + +/** + * e1000_get_bus_info - Obtain bus information for adapter + * @hw: pointer to the HW structure + * + * This will obtain information about the HW bus for which the + * adapter is attached and stores it in the hw structure. This is a + * function pointer entry point called by drivers. + **/ +s32 e1000_get_bus_info(struct e1000_hw *hw) +{ + if (hw->mac.ops.get_bus_info) + return hw->mac.ops.get_bus_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_vfta - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * This clears the VLAN filter table on the adapter. This is a function + * pointer entry point called by drivers. + **/ +void e1000_clear_vfta(struct e1000_hw *hw) +{ + if (hw->mac.ops.clear_vfta) + hw->mac.ops.clear_vfta(hw); +} + +/** + * e1000_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: the 32-bit offset in which to write the value to. + * @value: the 32-bit value to write at location offset. + * + * This writes a 32-bit value to a 32-bit offset in the VLAN filter + * table. This is a function pointer entry point called by drivers. + **/ +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + if (hw->mac.ops.write_vfta) + hw->mac.ops.write_vfta(hw, offset, value); +} + +/** + * e1000_update_mc_addr_list - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates the Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count) +{ + if (hw->mac.ops.update_mc_addr_list) + hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, + mc_addr_count); +} + +/** + * e1000_force_mac_fc - Force MAC flow control + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Currently no func pointer exists + * and all implementations are handled in the generic version of this + * function. + **/ +s32 e1000_force_mac_fc(struct e1000_hw *hw) +{ + return e1000_force_mac_fc_generic(hw); +} + +/** + * e1000_check_for_link - Check/Store link connection + * @hw: pointer to the HW structure + * + * This checks the link condition of the adapter and stores the + * results in the hw->mac structure. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_check_for_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_for_link) + return hw->mac.ops.check_for_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_check_mng_mode - Check management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has manageability enabled. + * This is a function pointer entry point called by drivers. + **/ +bool e1000_check_mng_mode(struct e1000_hw *hw) +{ + if (hw->mac.ops.check_mng_mode) + return hw->mac.ops.check_mng_mode(hw); + + return FALSE; +} + +/** + * e1000_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + return e1000_mng_write_dhcp_info_generic(hw, buffer, length); +} + +/** + * e1000_reset_hw - Reset hardware + * @hw: pointer to the HW structure + * + * This resets the hardware into a known state. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_reset_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.reset_hw) + return hw->mac.ops.reset_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_init_hw - Initialize hardware + * @hw: pointer to the HW structure + * + * This inits the hardware readying it for operation. This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_init_hw(struct e1000_hw *hw) +{ + if (hw->mac.ops.init_hw) + return hw->mac.ops.init_hw(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_link - Configures link and flow control + * @hw: pointer to the HW structure + * + * This configures link and flow control settings for the adapter. This + * is a function pointer entry point called by drivers. While modules can + * also call this, they probably call their own version of this function. + **/ +s32 e1000_setup_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_link) + return hw->mac.ops.setup_link(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_get_speed_and_duplex - Returns current speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to a 16-bit value to store the speed + * @duplex: pointer to a 16-bit value to store the duplex. + * + * This returns the speed and duplex of the adapter in the two 'out' + * variables passed in. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + if (hw->mac.ops.get_link_up_info) + return hw->mac.ops.get_link_up_info(hw, speed, duplex); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_setup_led - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_setup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.setup_led) + return hw->mac.ops.setup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led - Restores SW controllable LED + * @hw: pointer to the HW structure + * + * This restores the SW controllable LED to the value saved off by + * e1000_setup_led. This is a function pointer entry point called by drivers. + **/ +s32 e1000_cleanup_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.cleanup_led) + return hw->mac.ops.cleanup_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_blink_led - Blink SW controllable LED + * @hw: pointer to the HW structure + * + * This starts the adapter LED blinking. Request the LED to be setup first + * and cleaned up after. This is a function pointer entry point called by + * drivers. + **/ +s32 e1000_blink_led(struct e1000_hw *hw) +{ + if (hw->mac.ops.blink_led) + return hw->mac.ops.blink_led(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init - store LED configurations in SW + * @hw: pointer to the HW structure + * + * Initializes the LED config in SW. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_id_led_init(struct e1000_hw *hw) +{ + if (hw->mac.ops.id_led_init) + return hw->mac.ops.id_led_init(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on - Turn on SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED on. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_on(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_on) + return hw->mac.ops.led_on(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off - Turn off SW controllable LED + * @hw: pointer to the HW structure + * + * Turns the SW defined LED off. This is a function pointer entry point + * called by drivers. + **/ +s32 e1000_led_off(struct e1000_hw *hw) +{ + if (hw->mac.ops.led_off) + return hw->mac.ops.led_off(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive - Reset adaptive IFS + * @hw: pointer to the HW structure + * + * Resets the adaptive IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_reset_adaptive(struct e1000_hw *hw) +{ + e1000_reset_adaptive_generic(hw); +} + +/** + * e1000_update_adaptive - Update adaptive IFS + * @hw: pointer to the HW structure + * + * Updates adapter IFS. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000_update_adaptive(struct e1000_hw *hw) +{ + e1000_update_adaptive_generic(hw); +} + +/** + * e1000_disable_pcie_master - Disable PCI-Express master access + * @hw: pointer to the HW structure + * + * Disables PCI-Express master access and verifies there are no pending + * requests. Currently no func pointer exists and all implementations are + * handled in the generic version of this function. + **/ +s32 e1000_disable_pcie_master(struct e1000_hw *hw) +{ + return e1000_disable_pcie_master_generic(hw); +} + +/** + * e1000_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +void e1000_config_collision_dist(struct e1000_hw *hw) +{ + if (hw->mac.ops.config_collision_dist) + hw->mac.ops.config_collision_dist(hw); +} + +/** + * e1000_rar_set - Sets a receive address register + * @hw: pointer to the HW structure + * @addr: address to set the RAR to + * @index: the RAR to set + * + * Sets a Receive Address Register (RAR) to the specified address. + **/ +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + if (hw->mac.ops.rar_set) + hw->mac.ops.rar_set(hw, addr, index); +} + +/** + * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state + * @hw: pointer to the HW structure + * + * Ensures that the MDI/MDIX SW state is valid. + **/ +s32 e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + if (hw->mac.ops.validate_mdi_setting) + return hw->mac.ops.validate_mdi_setting(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_hash_mc_addr - Determines address location in multicast table + * @hw: pointer to the HW structure + * @mc_addr: Multicast address to hash. + * + * This hashes an address to determine its location in the multicast + * table. Currently no func pointer exists and all implementations + * are handled in the generic version of this function. + **/ +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + return e1000_hash_mc_addr_generic(hw, mc_addr); +} + +/** + * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + return e1000_enable_tx_pkt_filtering_generic(hw); +} + +/** + * e1000_mng_host_if_write - Writes to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, + u16 offset, u8 *sum) +{ + return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + return e1000_mng_write_cmd_header_generic(hw, hdr); +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if(struct e1000_hw *hw) +{ + return e1000_mng_enable_host_if_generic(hw); +} + +/** + * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer + * @hw: pointer to the HW structure + * @itr: u32 indicating itr value + * + * Set the OBFF timer based on the given interrupt rate. + **/ +s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr) +{ + if (hw->mac.ops.set_obff_timer) + return hw->mac.ops.set_obff_timer(hw, itr); + + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block - Verifies PHY can be reset + * @hw: pointer to the HW structure + * + * Checks if the PHY is in a state that can be reset or if manageability + * has it tied up. This is a function pointer entry point called by drivers. + **/ +s32 e1000_check_reset_block(struct e1000_hw *hw) +{ + if (hw->phy.ops.check_reset_block) + return hw->phy.ops.check_reset_block(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg - Reads PHY register + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the buffer to store the 16-bit read. + * + * Reads the PHY register and returns the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + if (hw->phy.ops.read_reg) + return hw->phy.ops.read_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg - Writes PHY register + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + if (hw->phy.ops.write_reg) + return hw->phy.ops.write_reg(hw, offset, data); + + return E1000_SUCCESS; +} + +/** + * e1000_release_phy - Generic release PHY + * @hw: pointer to the HW structure + * + * Return if silicon family does not require a semaphore when accessing the + * PHY. + **/ +void e1000_release_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.release) + hw->phy.ops.release(hw); +} + +/** + * e1000_acquire_phy - Generic acquire PHY + * @hw: pointer to the HW structure + * + * Return success if silicon family does not require a semaphore when + * accessing the PHY. + **/ +s32 e1000_acquire_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.acquire) + return hw->phy.ops.acquire(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_cfg_on_link_up - Configure PHY upon link up + * @hw: pointer to the HW structure + **/ +s32 e1000_cfg_on_link_up(struct e1000_hw *hw) +{ + if (hw->phy.ops.cfg_on_link_up) + return hw->phy.ops.cfg_on_link_up(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg - Reads register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to read + * @data: the location to store the 16-bit value read. + * + * Reads a register out of the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return e1000_read_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_write_kmrn_reg - Writes register using Kumeran interface + * @hw: pointer to the HW structure + * @offset: the register to write + * @data: the value to write. + * + * Writes a register to the Kumeran interface. Currently no func pointer + * exists and all implementations are handled in the generic version of + * this function. + **/ +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + return e1000_write_kmrn_reg_generic(hw, offset, data); +} + +/** + * e1000_get_cable_length - Retrieves cable length estimation + * @hw: pointer to the HW structure + * + * This function estimates the cable length and stores them in + * hw->phy.min_length and hw->phy.max_length. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_get_cable_length(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_cable_length) + return hw->phy.ops.get_cable_length(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info - Retrieves PHY information from registers + * @hw: pointer to the HW structure + * + * This function gets some information from various PHY registers and + * populates hw->phy values with it. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_get_phy_info(struct e1000_hw *hw) +{ + if (hw->phy.ops.get_info) + return hw->phy.ops.get_info(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_hw_reset - Hard PHY reset + * @hw: pointer to the HW structure + * + * Performs a hard PHY reset. This is a function pointer entry point called + * by drivers. + **/ +s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + if (hw->phy.ops.reset) + return hw->phy.ops.reset(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_commit - Soft PHY reset + * @hw: pointer to the HW structure + * + * Performs a soft PHY reset on those that apply. This is a function pointer + * entry point called by drivers. + **/ +s32 e1000_phy_commit(struct e1000_hw *hw) +{ + if (hw->phy.ops.commit) + return hw->phy.ops.commit(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d0_lplu_state - Sets low power link up state for D0 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D0 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d0_lplu_state) + return hw->phy.ops.set_d0_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. This is a function pointer entry point called by drivers. + **/ +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + if (hw->phy.ops.set_d3_lplu_state) + return hw->phy.ops.set_d3_lplu_state(hw, active); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr - Reads MAC address + * @hw: pointer to the HW structure + * + * Reads the MAC address out of the adapter and stores it in the HW structure. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_mac_addr(struct e1000_hw *hw) +{ + if (hw->mac.ops.read_mac_addr) + return hw->mac.ops.read_mac_addr(hw); + + return e1000_read_mac_addr_generic(hw); +} + +/** + * e1000_read_pba_string - Read device part number string + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) +{ + return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); +} + +/** + * e1000_read_pba_length - Read device part number string length + * @hw: pointer to the HW structure + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number length from the EEPROM and + * stores the value in pba_num. + * Currently no func pointer exists and all implementations are handled in the + * generic version of this function. + **/ +s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) +{ + return e1000_read_pba_length_generic(hw, pba_num_size); +} + +/** + * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Validates the NVM checksum is correct. This is a function pointer entry + * point called by drivers. + **/ +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.validate) + return hw->nvm.ops.validate(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum + * @hw: pointer to the HW structure + * + * Updates the NVM checksum. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +s32 e1000_update_nvm_checksum(struct e1000_hw *hw) +{ + if (hw->nvm.ops.update) + return hw->nvm.ops.update(hw); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_reload_nvm - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000_reload_nvm(struct e1000_hw *hw) +{ + if (hw->nvm.ops.reload) + hw->nvm.ops.reload(hw); +} + +/** + * e1000_read_nvm - Reads NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to read + * @data: pointer to the properly sized buffer for the data. + * + * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.read) + return hw->nvm.ops.read(hw, offset, words, data); + + return -E1000_ERR_CONFIG; +} + +/** + * e1000_write_nvm - Writes to NVM (EEPROM) + * @hw: pointer to the HW structure + * @offset: the word offset to read + * @words: number of 16-bit words to write + * @data: pointer to the properly sized buffer for the data. + * + * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function + * pointer entry point called by drivers. + **/ +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + if (hw->nvm.ops.write) + return hw->nvm.ops.write(hw, offset, words, data); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg - Writes 8bit Control register + * @hw: pointer to the HW structure + * @reg: 32bit register offset + * @offset: the register to write + * @data: the value to write. + * + * Writes the PHY register at offset with the value in data. + * This is a function pointer entry point called by drivers. + **/ +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data) +{ + return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); +} + +/** + * e1000_power_up_phy - Restores link in case of PHY power down + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_up_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_up) + hw->phy.ops.power_up(hw); + + e1000_setup_link(hw); +} + +/** + * e1000_power_down_phy - Power down PHY + * @hw: pointer to the HW structure + * + * The phy may be powered down to save power, to turn off link when the + * driver is unloaded, or wake on lan is not enabled (among others). + **/ +void e1000_power_down_phy(struct e1000_hw *hw) +{ + if (hw->phy.ops.power_down) + hw->phy.ops.power_down(hw); +} + +/** + * e1000_power_up_fiber_serdes_link - Power up serdes link + * @hw: pointer to the HW structure + * + * Power on the optics and PCS. + **/ +void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.power_up_serdes) + hw->mac.ops.power_up_serdes(hw); +} + +/** + * e1000_shutdown_fiber_serdes_link - Remove link during power down + * @hw: pointer to the HW structure + * + * Shutdown the optics and PCS on driver unload. + **/ +void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) +{ + if (hw->mac.ops.shutdown_serdes) + hw->mac.ops.shutdown_serdes(hw); +} + diff --git a/usr/src/uts/common/io/e1000api/e1000_api.h b/usr/src/uts/common/io/e1000api/e1000_api.h new file mode 100644 index 0000000000..0898b811b7 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_api.h @@ -0,0 +1,176 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_API_H_ +#define _E1000_API_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "e1000_hw.h" + +extern void e1000_init_function_pointers_82542(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82543(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82540(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82571(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82541(struct e1000_hw *hw); +extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw); +extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw); +extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); +extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); +extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); +extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw); +extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); +extern void e1000_init_function_pointers_i210(struct e1000_hw *hw); + +s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr); +s32 e1000_set_mac_type(struct e1000_hw *hw); +s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); +s32 e1000_init_mac_params(struct e1000_hw *hw); +s32 e1000_init_nvm_params(struct e1000_hw *hw); +s32 e1000_init_phy_params(struct e1000_hw *hw); +s32 e1000_init_mbx_params(struct e1000_hw *hw); +s32 e1000_get_bus_info(struct e1000_hw *hw); +void e1000_clear_vfta(struct e1000_hw *hw); +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); +s32 e1000_force_mac_fc(struct e1000_hw *hw); +s32 e1000_check_for_link(struct e1000_hw *hw); +s32 e1000_reset_hw(struct e1000_hw *hw); +s32 e1000_init_hw(struct e1000_hw *hw); +s32 e1000_setup_link(struct e1000_hw *hw); +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); +s32 e1000_disable_pcie_master(struct e1000_hw *hw); +void e1000_config_collision_dist(struct e1000_hw *hw); +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); +void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, + u32 mc_addr_count); +s32 e1000_setup_led(struct e1000_hw *hw); +s32 e1000_cleanup_led(struct e1000_hw *hw); +s32 e1000_check_reset_block(struct e1000_hw *hw); +s32 e1000_blink_led(struct e1000_hw *hw); +s32 e1000_led_on(struct e1000_hw *hw); +s32 e1000_led_off(struct e1000_hw *hw); +s32 e1000_id_led_init(struct e1000_hw *hw); +void e1000_reset_adaptive(struct e1000_hw *hw); +void e1000_update_adaptive(struct e1000_hw *hw); +s32 e1000_get_cable_length(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting(struct e1000_hw *hw); +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, + u8 data); +s32 e1000_get_phy_info(struct e1000_hw *hw); +void e1000_release_phy(struct e1000_hw *hw); +s32 e1000_acquire_phy(struct e1000_hw *hw); +s32 e1000_cfg_on_link_up(struct e1000_hw *hw); +s32 e1000_phy_hw_reset(struct e1000_hw *hw); +s32 e1000_phy_commit(struct e1000_hw *hw); +void e1000_power_up_phy(struct e1000_hw *hw); +void e1000_power_down_phy(struct e1000_hw *hw); +s32 e1000_read_mac_addr(struct e1000_hw *hw); +s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); +s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size); +void e1000_reload_nvm(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); +s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); +bool e1000_check_mng_mode(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if(struct e1000_hw *hw); +s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, + u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); +u32 e1000_translate_register_82542(u32 reg); + + + +/* + * TBI_ACCEPT macro definition: + * + * This macro requires: + * adapter = a pointer to struct e1000_hw + * status = the 8 bit status field of the Rx descriptor with EOP set + * error = the 8 bit error field of the Rx descriptor with EOP set + * length = the sum of all the length fields of the Rx descriptors that + * make up the current frame + * last_byte = the last byte of the frame DMAed by the hardware + * max_frame_length = the maximum frame length we want to accept. + * min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + * ... + * if (TBI_ACCEPT) { + * accept_frame = TRUE; + * e1000_tbi_adjust_stats(adapter, MacAddress); + * frame_length--; + * } else { + * accept_frame = FALSE; + * } + * ... + */ + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION 0x0F + +#define TBI_ACCEPT(a, status, errors, length, last_byte, \ + min_frame_size, max_frame_size) \ + (e1000_tbi_sbp_enabled_82543(a) && \ + (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ + ((last_byte) == CARRIER_EXTENSION) && \ + (((status) & E1000_RXD_STAT_VP) ? \ + (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ + ((length) <= (max_frame_size + 1))) : \ + (((length) > min_frame_size) && \ + ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) + +#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b)) +#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */ + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_API_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_defines.h b/usr/src/uts/common/io/e1000api/e1000_defines.h new file mode 100644 index 0000000000..61eb36cac8 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_defines.h @@ -0,0 +1,1424 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_DEFINES_H_ +#define _E1000_DEFINES_H_ + +/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE 8 +#define REQ_RX_DESCRIPTOR_MULTIPLE 8 + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC E1000_WUFC_LNKC +#define E1000_WUS_MAG E1000_WUFC_MAG +#define E1000_WUS_EX E1000_WUFC_EX +#define E1000_WUS_MC E1000_WUFC_MC +#define E1000_WUS_BC E1000_WUFC_BC + +/* Extended Device Control */ +#define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */ +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */ +#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */ +/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ +#define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +/* Physical Func Reset Done Indication */ +#define E1000_CTRL_EXT_PFRSTD 0x00004000 +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +/* Offset of the link mode field in Ctrl Ext register */ +#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22 +#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 +#define E1000_CTRL_EXT_EIAME 0x01000000 +#define E1000_CTRL_EXT_IRCA 0x00000001 +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */ +#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ +#define E1000_CTRL_EXT_LSECCK 0x00001000 +#define E1000_CTRL_EXT_PHYPDEN 0x00100000 +#define E1000_I2CCMD_REG_ADDR_SHIFT 16 +#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 +#define E1000_I2CCMD_OPCODE_READ 0x08000000 +#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 +#define E1000_I2CCMD_READY 0x20000000 +#define E1000_I2CCMD_ERROR 0x80000000 +#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a)) +#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a)) +#define E1000_MAX_SGMII_PHY_REG_ADDR 255 +#define E1000_I2CCMD_PHY_TIMEOUT 200 +#define E1000_IVAR_VALID 0x80 +#define E1000_GPIE_NSICR 0x00000001 +#define E1000_GPIE_MSIX_MODE 0x00000010 +#define E1000_GPIE_EIAME 0x40000000 +#define E1000_GPIE_PBA 0x80000000 + +/* Receive Descriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ + +#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */ +#define E1000_RXDEXT_STATERR_LB 0x00040000 +#define E1000_RXDEXT_STATERR_CE 0x01000000 +#define E1000_RXDEXT_STATERR_SE 0x02000000 +#define E1000_RXDEXT_STATERR_SEQ 0x04000000 +#define E1000_RXDEXT_STATERR_CXE 0x10000000 +#define E1000_RXDEXT_STATERR_TCPE 0x20000000 +#define E1000_RXDEXT_STATERR_IPE 0x40000000 +#define E1000_RXDEXT_STATERR_RXE 0x80000000 + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ + E1000_RXD_ERR_CE | \ + E1000_RXD_ERR_SE | \ + E1000_RXD_ERR_SEQ | \ + E1000_RXD_ERR_CXE | \ + E1000_RXD_ERR_RXE) + +/* Same mask, but for extended and packet split descriptors */ +#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ + E1000_RXDEXT_STATERR_CE | \ + E1000_RXDEXT_STATERR_SE | \ + E1000_RXDEXT_STATERR_SEQ | \ + E1000_RXDEXT_STATERR_CXE | \ + E1000_RXDEXT_STATERR_RXE) + +#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 +#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 +#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 +#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 +#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 + +#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 + +/* Management Control */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +/* Enable MAC address filtering */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 +/* Enable MNG packets to host memory */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 + +#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ +#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ +#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ +#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ + +/* Receive Control */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ + +/* Use byte values for the following shift parameters + * Usage: + * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & + * E1000_PSRCTL_BSIZE0_MASK) | + * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & + * E1000_PSRCTL_BSIZE1_MASK) | + * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & + * E1000_PSRCTL_BSIZE2_MASK) | + * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; + * E1000_PSRCTL_BSIZE3_MASK)) + * where value0 = [128..16256], default=256 + * value1 = [1024..64512], default=4096 + * value2 = [0..64512], default=4096 + * value3 = [0..64512], default=0 + */ + +#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F +#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 +#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 +#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 + +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ + +/* SWFW_SYNC Definitions */ +#define E1000_SWFW_EEP_SM 0x01 +#define E1000_SWFW_PHY0_SM 0x02 +#define E1000_SWFW_PHY1_SM 0x04 +#define E1000_SWFW_CSR_SM 0x08 +#define E1000_SWFW_PHY2_SM 0x20 +#define E1000_SWFW_PHY3_SM 0x40 +#define E1000_SWFW_SW_MNG_SM 0x400 + +/* Device Control */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ +#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ +#define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ +#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ + +#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 + +#define E1000_CONNSW_ENRGSRC 0x4 +#define E1000_CONNSW_PHYSD 0x400 +#define E1000_CONNSW_SERDESD 0x200 +#define E1000_PCS_CFG_PCS_EN 8 +#define E1000_PCS_LCTL_FLV_LINK_UP 1 +#define E1000_PCS_LCTL_FSV_10 0 +#define E1000_PCS_LCTL_FSV_100 2 +#define E1000_PCS_LCTL_FSV_1000 4 +#define E1000_PCS_LCTL_FDV_FULL 8 +#define E1000_PCS_LCTL_FSD 0x10 +#define E1000_PCS_LCTL_FORCE_LINK 0x20 +#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 +#define E1000_PCS_LCTL_AN_ENABLE 0x10000 +#define E1000_PCS_LCTL_AN_RESTART 0x20000 +#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 +#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 + +#define E1000_PCS_LSTS_LINK_OK 1 +#define E1000_PCS_LSTS_SPEED_100 2 +#define E1000_PCS_LSTS_SPEED_1000 4 +#define E1000_PCS_LSTS_DUPLEX_FULL 8 +#define E1000_PCS_LSTS_SYNK_OK 0x10 +#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 + +/* Device Status */ +#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FUNC_SHIFT 2 +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */ +#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ + +/* Constants used to interpret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/ + +#define SPEED_10 10 +#define SPEED_100 100 +#define SPEED_1000 1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +#define PHY_FORCE_TIME 20 + +#define ADVERTISE_10_HALF 0x0001 +#define ADVERTISE_10_FULL 0x0002 +#define ADVERTISE_100_HALF 0x0004 +#define ADVERTISE_100_FULL 0x0008 +#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ +#define ADVERTISE_1000_FULL 0x0020 + +/* 1000/H is not supported, nor spec-compliant. */ +#define E1000_ALL_SPEED_DUPLEX ( \ + ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL | ADVERTISE_1000_FULL) +#define E1000_ALL_NOT_GIG ( \ + ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ + ADVERTISE_100_FULL) +#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) +#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) +#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) + +#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX + +/* LED Control */ +#define E1000_PHY_LED0_MODE_MASK 0x00000007 +#define E1000_PHY_LED0_IVRT 0x00000008 +#define E1000_PHY_LED0_MASK 0x0000001F + +#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT 0x00000040 +#define E1000_LEDCTL_LED0_BLINK 0x00000080 + +#define E1000_LEDCTL_MODE_LINK_UP 0x2 +#define E1000_LEDCTL_MODE_LED_ON 0xE +#define E1000_LEDCTL_MODE_LED_OFF 0xF + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ +#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ + +/* Transmit Control */ +#define E1000_TCTL_EN 0x00000002 /* enable Tx */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ + +/* Transmit Arbitration Count */ +#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ + +/* SerDes Control */ +#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 +#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410 + +/* Receive Checksum Control */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ + +/* Header split receive */ +#define E1000_RFCTL_NFSW_DIS 0x00000040 +#define E1000_RFCTL_NFSR_DIS 0x00000080 +#define E1000_RFCTL_ACK_DIS 0x00001000 +#define E1000_RFCTL_EXTEN 0x00008000 +#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 +#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 +#define E1000_RFCTL_LEF 0x00040000 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD 15 +#define E1000_CT_SHIFT 4 +#define E1000_COLLISION_DISTANCE 63 +#define E1000_COLD_SHIFT 12 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT 10 +#define DEFAULT_82543_TIPG_IPGT_FIBER 9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK 0x000003FF + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT 10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 +#define E1000_TIPG_IPGR2_SHIFT 20 + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ + +#define ETHERNET_FCS_SIZE 4 +#define MAX_JUMBO_FRAME_SIZE 0x3F00 + +/* Extended Configuration Control and Size */ +#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 +#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 +#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 +#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 +#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 +#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 +#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 + +#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 +#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 +#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 +#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 + +#define E1000_KABGTXD_BGSQLBIAS 0x00050000 + +/* Low Power IDLE Control */ +#define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */ + +/* PBA constants */ +#define E1000_PBA_8K 0x0008 /* 8KB */ +#define E1000_PBA_10K 0x000A /* 10KB */ +#define E1000_PBA_12K 0x000C /* 12KB */ +#define E1000_PBA_14K 0x000E /* 14KB */ +#define E1000_PBA_16K 0x0010 /* 16KB */ +#define E1000_PBA_18K 0x0012 +#define E1000_PBA_20K 0x0014 +#define E1000_PBA_22K 0x0016 +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_26K 0x001A +#define E1000_PBA_30K 0x001E +#define E1000_PBA_32K 0x0020 +#define E1000_PBA_34K 0x0022 +#define E1000_PBA_35K 0x0023 +#define E1000_PBA_38K 0x0026 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030 /* 48KB */ +#define E1000_PBA_64K 0x0040 /* 64KB */ + +#define E1000_PBA_RXA_MASK 0xFFFF + +#define E1000_PBS_16K E1000_PBA_16K + +/* Uncorrectable/correctable ECC Error counts and enable bits */ +#define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF +#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00 +#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8 +#define E1000_PBECCSTS_ECC_ENABLE 0x00010000 + +#define IFS_MAX 80 +#define IFS_MIN 40 +#define IFS_RATIO 4 +#define IFS_STEP 10 +#define MIN_NUM_XMITS 1000 + +/* SW Semaphore Register */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ + +#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* Rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ +#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ +#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */ +#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */ +#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ +/* If this bit asserted, the driver should claim the interrupt */ +#define E1000_ICR_INT_ASSERTED 0x80000000 +#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ +#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ +#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ +#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ +#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ +#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ +#define E1000_ICR_FER 0x00400000 /* Fatal Error */ + +#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/ +#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */ + +#define E1000_ITR_MASK 0x000FFFFF /* ITR value bitfield */ +#define E1000_ITR_MULT 256 /* ITR mulitplier in nsec */ + +/* PBA ECC Register */ +#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ +#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ +#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */ +#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ +#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */ + +/* Extended Interrupt Cause Read */ +#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ +#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ +#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ +#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ +#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ +#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ +#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ +#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ +#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ +#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ +/* TCP Timer */ +#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ +#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ +#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ +#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register. Each bit is documented below: + * o RXT0 = Receiver Timer Interrupt (ring 0) + * o TXDW = Transmit Descriptor Written Back + * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + * o RXSEQ = Receive Sequence Error + * o LSC = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ + E1000_IMS_RXT0 | \ + E1000_IMS_TXDW | \ + E1000_IMS_RXDMT0 | \ + E1000_IMS_RXSEQ | \ + E1000_IMS_LSC) + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */ +#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */ +#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ +#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ +#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ +#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ +#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ +#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ +#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ +#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ + +#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/ +#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */ +/* Extended Interrupt Mask Set */ +#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +/* Interrupt Cause Set */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ + +/* Extended Interrupt Cause Set */ +#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ +#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ +#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ +#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ +#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ +#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ +#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ +#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ +#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ +#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ + +#define E1000_EITR_ITR_INT_MASK 0x0000FFFF +/* E1000_EITR_CNT_IGNR is only for 82576 and newer */ +#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ +/* Enable the counting of descriptors still to be processed. */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE 0x8808 + +/* 802.1q VLAN Packet Size */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ + +/* Receive Address + * Number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. + * Technically, we have 16 spots. However, we reserve one of these spots + * (RAR[15]) for our directed address used by controllers with + * manageability enabled, allowing us room for 15 multicast addresses. + */ +#define E1000_RAR_ENTRIES 15 +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ +#define E1000_RAL_MAC_ADDR_LEN 4 +#define E1000_RAH_MAC_ADDR_LEN 2 +#define E1000_RAH_QUEUE_MASK_82575 0x000C0000 +#define E1000_RAH_POOL_1 0x00040000 + +/* Error Codes */ +#define E1000_SUCCESS 0 +#define E1000_ERR_NVM 1 +#define E1000_ERR_PHY 2 +#define E1000_ERR_CONFIG 3 +#define E1000_ERR_PARAM 4 +#define E1000_ERR_MAC_INIT 5 +#define E1000_ERR_PHY_TYPE 6 +#define E1000_ERR_RESET 9 +#define E1000_ERR_MASTER_REQUESTS_PENDING 10 +#define E1000_ERR_HOST_INTERFACE_COMMAND 11 +#define E1000_BLK_PHY_RESET 12 +#define E1000_ERR_SWFW_SYNC 13 +#define E1000_NOT_IMPLEMENTED 14 +#define E1000_ERR_MBX 15 +#define E1000_ERR_INVALID_ARGUMENT 16 +#define E1000_ERR_NO_SPACE 17 +#define E1000_ERR_NVM_PBA_SECTION 18 +#define E1000_ERR_I2C 19 +#define E1000_ERR_INVM_VALUE_NOT_FOUND 20 + +/* Loop limit on how long we wait for auto-negotiation to complete */ +#define FIBER_LINK_UP_LIMIT 50 +#define COPPER_LINK_UP_LIMIT 10 +#define PHY_AUTO_NEG_LIMIT 45 +#define PHY_FORCE_LIMIT 20 +/* Number of 100 microseconds we wait for PCI Express master disable */ +#define MASTER_DISABLE_TIMEOUT 800 +/* Number of milliseconds we wait for PHY configuration done after MAC reset */ +#define PHY_CFG_TIMEOUT 100 +/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ +#define MDIO_OWNERSHIP_TIMEOUT 10 +/* Number of milliseconds for NVM auto read done after MAC reset. */ +#define AUTO_READ_DONE_TIMEOUT 10 + +/* Flow Control */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ + +#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */ +#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */ + +#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */ +#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */ +#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 +#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 +#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 +#define E1000_TSYNCRXCTL_TYPE_ALL 0x08 +#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A +#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */ +#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */ + +#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000 +#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000 + +#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000 +#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000 + +#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF +#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 +#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 +#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 +#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 +#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 + +#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 +#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 +#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 +#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 +#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 +#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 +#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 +#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 +#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 + +#define E1000_TIMINCA_16NS_SHIFT 24 +#define E1000_TIMINCA_INCPERIOD_SHIFT 24 +#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF + +#define E1000_TSICR_TXTS 0x00000002 +#define E1000_TSIM_TXTS 0x00000002 +/* TUPLE Filtering Configuration */ +#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ +#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ +#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ +/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ +#define E1000_TTQF_PROTOCOL_TCP 0x0 +/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ +#define E1000_TTQF_PROTOCOL_UDP 0x1 +/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ +#define E1000_TTQF_PROTOCOL_SCTP 0x2 +#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ +#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ +#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ +#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ +#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ +#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ +#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ +#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ + +#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ +#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ +#define E1000_MDICNFG_PHY_MASK 0x03E00000 +#define E1000_MDICNFG_PHY_SHIFT 21 + +#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */ +#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */ +#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */ +#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ +#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */ + +/* I350 EEE defines */ +#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ +#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ +#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ +#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ +#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ +/* EEE status */ +#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */ +#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */ +#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */ +#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */ +/* PCI Express Control */ +#define E1000_GCR_RXD_NO_SNOOP 0x00000001 +#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 +#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 +#define E1000_GCR_TXD_NO_SNOOP 0x00000008 +#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 +#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 +#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 +#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 +#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 +#define E1000_GCR_CAP_VER2 0x00040000 + +#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ + E1000_GCR_RXDSCW_NO_SNOOP | \ + E1000_GCR_RXDSCR_NO_SNOOP | \ + E1000_GCR_TXD_NO_SNOOP | \ + E1000_GCR_TXDSCW_NO_SNOOP | \ + E1000_GCR_TXDSCR_NO_SNOOP) + +/* mPHY address control and data registers */ +#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */ +#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 +#define E1000_MPHY_DATA 0x0E10 /* Data Register */ + +/* AFE CSR Offset for PCS CLK */ +#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 +/* Override for near end digital loopback. */ +#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_1000 0x0040 +#define MII_CR_SPEED_100 0x2000 +#define MII_CR_SPEED_10 0x0000 + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +/* 1=Repeater/switch device port 0=DTE device */ +#define CR_1000T_REPEATER_DTE 0x0400 +/* 1=Configure PHY as Master 0=Configure PHY as Slave */ +#define CR_1000T_MS_VALUE 0x0800 +/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */ +#define CR_1000T_MS_ENABLE 0x1000 +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ + +#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CONTROL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ + +/* NVM Control */ +#define E1000_EECD_SK 0x00000001 /* NVM Clock */ +#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* NVM Data In */ +#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ +#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* NVM Present */ +#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ +#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ +#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ +#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ +#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ +/* NVM Addressing bits based on type 0=small, 1=large */ +#define E1000_EECD_ADDR_BITS 0x00000400 +#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ +#ifndef E1000_NVM_GRANT_ATTEMPTS +#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ +#endif +#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ +#define E1000_EECD_SIZE_EX_SHIFT 11 +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) +#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ +#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */ +#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */ +#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */ +#define E1000_FLUDONE_ATTEMPTS 20000 +#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ +#define E1000_I210_FIFO_SEL_RX 0x00 +#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i)) +#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0) +#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 +#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 + +#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */ +/* Secure FLASH mode requires removing MSb */ +#define E1000_I210_FW_PTR_MASK 0x7FFF +/* Firmware code revision field word offset*/ +#define E1000_I210_FW_VER_OFFSET 328 + +#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ +#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_NVM_RW_REG_START 1 /* Start operation */ +#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_FLASH_UPDATES 2000 + +/* NVM Word Offsets */ +#define NVM_COMPAT 0x0003 +#define NVM_ID_LED_SETTINGS 0x0004 +#define NVM_VERSION 0x0005 +#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */ +#define NVM_PHY_CLASS_WORD 0x0007 +#define E1000_I210_NVM_FW_MODULE_PTR 0x0010 +#define E1000_I350_NVM_FW_MODULE_PTR 0x0051 +#define NVM_FUTURE_INIT_WORD1 0x0019 +#define NVM_MAC_ADDR 0x0000 +#define NVM_SUB_DEV_ID 0x000B +#define NVM_SUB_VEN_ID 0x000C +#define NVM_DEV_ID 0x000D +#define NVM_VEN_ID 0x000E +#define NVM_INIT_CTRL_2 0x000F +#define NVM_INIT_CTRL_4 0x0013 +#define NVM_LED_1_CFG 0x001C +#define NVM_LED_0_2_CFG 0x001F + +#define NVM_COMPAT_VALID_CSUM 0x0001 +#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040 + +#define NVM_INIT_CONTROL2_REG 0x000F +#define NVM_INIT_CONTROL3_PORT_B 0x0014 +#define NVM_INIT_3GIO_3 0x001A +#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 +#define NVM_INIT_CONTROL3_PORT_A 0x0024 +#define NVM_CFG 0x0012 +#define NVM_ALT_MAC_ADDR_PTR 0x0037 +#define NVM_CHECKSUM_REG 0x003F +#define NVM_COMPATIBILITY_REG_3 0x0003 +#define NVM_COMPATIBILITY_BIT_MASK 0x8000 + +#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ +#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ +#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ +#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ + +#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0) + +/* Mask bits for fields in Word 0x24 of the NVM */ +#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ +#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */ +/* Offset of Link Mode bits for 82575/82576 */ +#define NVM_WORD24_LNK_MODE_OFFSET 8 +/* Offset of Link Mode bits for 82580 up */ +#define NVM_WORD24_82580_LNK_MODE_OFFSET 4 + + +/* Mask bits for fields in Word 0x0f of the NVM */ +#define NVM_WORD0F_PAUSE_MASK 0x3000 +#define NVM_WORD0F_PAUSE 0x1000 +#define NVM_WORD0F_ASM_DIR 0x2000 +#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 + +/* Mask bits for fields in Word 0x1a of the NVM */ +#define NVM_WORD1A_ASPM_MASK 0x000C + +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define NVM_COMPAT_LOM 0x0800 + +/* length of string needed to store PBA number */ +#define E1000_PBANUM_LENGTH 11 + +/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ +#define NVM_SUM 0xBABA + +/* OEM NVM Offsets */ +#define NVM_OEM_OFFSET_0 6 +#define NVM_OEM_OFFSET_1 7 + +/* PBA (printed board assembly) number words */ +#define NVM_PBA_OFFSET_0 8 +#define NVM_PBA_OFFSET_1 9 +#define NVM_PBA_PTR_GUARD 0xFAFA +#define NVM_RESERVED_WORD 0xFFFF +#define NVM_PHY_CLASS_A 0x8000 +#define NVM_SERDES_AMPLITUDE_MASK 0x000F +#define NVM_SIZE_MASK 0x1C00 +#define NVM_SIZE_SHIFT 10 +#define NVM_WORD_SIZE_BASE_SHIFT 6 +#define NVM_SWDPIO_EXT_SHIFT 4 + +/* NVM Commands - Microwire */ +#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ +#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ +#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ +#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ + +/* NVM Commands - SPI */ +#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ +#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ +#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ +#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ + +/* SPI NVM Status Register */ +#define NVM_STATUS_RDY_SPI 0x01 + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2 0x1 +#define ID_LED_DEF1_ON2 0x2 +#define ID_LED_DEF1_OFF2 0x3 +#define ID_LED_ON1_DEF2 0x4 +#define ID_LED_ON1_ON2 0x5 +#define ID_LED_ON1_OFF2 0x6 +#define ID_LED_OFF1_DEF2 0x7 +#define ID_LED_OFF1_ON2 0x8 +#define ID_LED_OFF1_OFF2 0x9 + +#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF +#define IGP_ACTIVITY_LED_ENABLE 0x0300 +#define IGP_LED3_MODE 0x07000000 + +/* PCI/PCI-X/PCI-EX Config space */ +#define PCIX_COMMAND_REGISTER 0xE6 +#define PCIX_STATUS_REGISTER_LO 0xE8 +#define PCIX_STATUS_REGISTER_HI 0xEA +#define PCI_HEADER_TYPE_REGISTER 0x0E +#define PCIE_LINK_STATUS 0x12 +#define PCIE_DEVICE_CONTROL2 0x28 + +#define PCIX_COMMAND_MMRBC_MASK 0x000C +#define PCIX_COMMAND_MMRBC_SHIFT 0x2 +#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 +#define PCIX_STATUS_HI_MMRBC_4K 0x3 +#define PCIX_STATUS_HI_MMRBC_2K 0x2 +#define PCIX_STATUS_LO_FUNC_MASK 0x7 +#define PCI_HEADER_TYPE_MULTIFUNC 0x80 +#define PCIE_LINK_WIDTH_MASK 0x3F0 +#define PCIE_LINK_WIDTH_SHIFT 4 +#define PCIE_LINK_SPEED_MASK 0x0F +#define PCIE_LINK_SPEED_2500 0x01 +#define PCIE_LINK_SPEED_5000 0x02 +#define PCIE_DEVICE_CONTROL2_16ms 0x0005 + +#ifndef ETH_ADDR_LEN +#define ETH_ADDR_LEN 6 +#endif + +#define PHY_REVISION_MASK 0xFFFFFFF0 +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF + +/* Bit definitions for valid PHY IDs. + * I = Integrated + * E = External + */ +#define M88E1000_E_PHY_ID 0x01410C50 +#define M88E1000_I_PHY_ID 0x01410C30 +#define M88E1011_I_PHY_ID 0x01410C20 +#define IGP01E1000_I_PHY_ID 0x02A80380 +#define M88E1111_I_PHY_ID 0x01410CC0 +#define M88E1112_E_PHY_ID 0x01410C90 +#define I347AT4_E_PHY_ID 0x01410DC0 +#define M88E1340M_E_PHY_ID 0x01410DF0 +#define GG82563_E_PHY_ID 0x01410CA0 +#define IGP03E1000_E_PHY_ID 0x02A80390 +#define IFE_E_PHY_ID 0x02A80330 +#define IFE_PLUS_E_PHY_ID 0x02A80320 +#define IFE_C_E_PHY_ID 0x02A80310 +#define BME1000_E_PHY_ID 0x01410CB0 +#define BME1000_E_PHY_ID_R2 0x01410CB1 +#define I82577_E_PHY_ID 0x01540050 +#define I82578_E_PHY_ID 0x004DD040 +#define I82579_E_PHY_ID 0x01540090 +#define I217_E_PHY_ID 0x015400A0 +#define I82580_I_PHY_ID 0x015403A0 +#define I350_I_PHY_ID 0x015403B0 +#define I210_I_PHY_ID 0x01410C00 +#define IGP04E1000_E_PHY_ID 0x02A80391 +#define M88_VENDOR 0x0141 + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ +/* MDI Crossover Mode bits 6:5 Manual MDI configuration */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 +/* Auto crossover enabled all speeds */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +/* 0 = <50M + * 1 = 50-80M + * 2 = 80-110M + * 3 = 110-140M + * 4 = >140M + */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ + +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave + */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ + +/* Intel I347AT4 Registers */ +#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ +#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ +#define I347AT4_PAGE_SELECT 0x16 + +/* I347AT4 Extended PHY Specific Control Register */ + +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master + */ +#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 +#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 +#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 +#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 +#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 +#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 +#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 +#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 +#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 +#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 + +/* I347AT4 PHY Cable Diagnostics Control */ +#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ + +/* M88E1112 only registers */ +#define M88E1112_VCT_DSP_DISTANCE 0x001A + +/* M88EC018 Rev 2 specific DownShift settings */ +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 +#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 + +#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 +#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C + +/* BME1000 PHY Specific Control Register */ +#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ + +/* Bits... + * 15-5: page + * 4-0: register offset + */ +#define GG82563_PAGE_SHIFT 5 +#define GG82563_REG(page, reg) \ + (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) +#define GG82563_MIN_ALT_REG 30 + +/* GG82563 Specific Registers */ +#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */ +#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */ +#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */ +#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */ + +/* MAC Specific Control Register */ +#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21) + +#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */ + +/* Page 193 - Port Control Registers */ +/* Kumeran Mode Control */ +#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16) +#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */ + +/* Page 194 - KMRN Registers */ +#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */ + +/* MDI Control */ +#define E1000_MDIC_REG_MASK 0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK 0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE 0x04000000 +#define E1000_MDIC_OP_READ 0x08000000 +#define E1000_MDIC_READY 0x10000000 +#define E1000_MDIC_ERROR 0x40000000 +#define E1000_MDIC_DEST 0x80000000 + +/* SerDes Control */ +#define E1000_GEN_CTL_READY 0x80000000 +#define E1000_GEN_CTL_ADDRESS_SHIFT 8 +#define E1000_GEN_POLL_TIMEOUT 640 + +/* LinkSec register fields */ +#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECTXCAP_SUM_SHIFT 16 +#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 +#define E1000_LSECRXCAP_SUM_SHIFT 16 + +#define E1000_LSECTXCTRL_EN_MASK 0x00000003 +#define E1000_LSECTXCTRL_DISABLE 0x0 +#define E1000_LSECTXCTRL_AUTH 0x1 +#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 +#define E1000_LSECTXCTRL_AISCI 0x00000020 +#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 +#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 + +#define E1000_LSECRXCTRL_EN_MASK 0x0000000C +#define E1000_LSECRXCTRL_EN_SHIFT 2 +#define E1000_LSECRXCTRL_DISABLE 0x0 +#define E1000_LSECRXCTRL_CHECK 0x1 +#define E1000_LSECRXCTRL_STRICT 0x2 +#define E1000_LSECRXCTRL_DROP 0x3 +#define E1000_LSECRXCTRL_PLSH 0x00000040 +#define E1000_LSECRXCTRL_RP 0x00000080 +#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 + +/* Tx Rate-Scheduler Config fields */ +#define E1000_RTTBCNRC_RS_ENA 0x80000000 +#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF +#define E1000_RTTBCNRC_RF_INT_SHIFT 14 +#define E1000_RTTBCNRC_RF_INT_MASK \ + (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) + +/* DMA Coalescing register fields */ +/* DMA Coalescing Watchdog Timer */ +#define E1000_DMACR_DMACWT_MASK 0x00003FFF +/* DMA Coalescing Rx Threshold */ +#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 +#define E1000_DMACR_DMACTHR_SHIFT 16 +/* Lx when no PCIe transactions */ +#define E1000_DMACR_DMAC_LX_MASK 0x30000000 +#define E1000_DMACR_DMAC_LX_SHIFT 28 +#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ +/* DMA Coalescing BMC-to-OS Watchdog Enable */ +#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000 + +/* DMA Coalescing Transmit Threshold */ +#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF + +#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ + +/* Rx Traffic Rate Threshold */ +#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF +/* Rx packet rate in current window */ +#define E1000_DMCRTRH_LRPRCW 0x80000000 + +/* DMA Coal Rx Traffic Current Count */ +#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF + +/* Flow ctrl Rx Threshold High val */ +#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 +#define E1000_FCRTC_RTH_COAL_SHIFT 4 +/* Lx power decision based on DMA coal */ +#define E1000_PCIEMISC_LX_DECISION 0x00000080 + +#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */ +#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */ +#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */ +#define E1000_DOBFFCTL_OBFFTHR_MASK 0x000000FF /* OBFF threshold */ +#define E1000_DOBFFCTL_EXIT_ACT_MASK 0x01000000 /* Exit active CB */ + +/* Proxy Filter Control */ +#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */ +#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */ +#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */ +#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */ +#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */ +#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */ +#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */ +#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */ +#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */ +/* Proxy Status */ +#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */ + +/* Firmware Status */ +#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */ +/* VF Control */ +#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */ + +#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */ +/* Lan ID bit field offset in status register */ +#define E1000_STATUS_LAN_ID_OFFSET 2 +#define E1000_VFTA_ENTRIES 128 +#endif /* _E1000_DEFINES_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_hw.h b/usr/src/uts/common/io/e1000api/e1000_hw.h new file mode 100644 index 0000000000..0c2a225a25 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_hw.h @@ -0,0 +1,1010 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "e1000_osdep.h" +#include "e1000_regs.h" +#include "e1000_defines.h" + +struct e1000_hw; + +#define E1000_DEV_ID_82542 0x1000 +#define E1000_DEV_ID_82543GC_FIBER 0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER 0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM 0x100D +#define E1000_DEV_ID_82540EM 0x100E +#define E1000_DEV_ID_82540EM_LOM 0x1015 +#define E1000_DEV_ID_82540EP_LOM 0x1016 +#define E1000_DEV_ID_82540EP 0x1017 +#define E1000_DEV_ID_82540EP_LP 0x101E +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER 0x1011 +#define E1000_DEV_ID_82545GM_COPPER 0x1026 +#define E1000_DEV_ID_82545GM_FIBER 0x1027 +#define E1000_DEV_ID_82545GM_SERDES 0x1028 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER 0x1012 +#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D +#define E1000_DEV_ID_82546GB_COPPER 0x1079 +#define E1000_DEV_ID_82546GB_FIBER 0x107A +#define E1000_DEV_ID_82546GB_SERDES 0x107B +#define E1000_DEV_ID_82546GB_PCIE 0x108A +#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 +#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 +#define E1000_DEV_ID_82541EI 0x1013 +#define E1000_DEV_ID_82541EI_MOBILE 0x1018 +#define E1000_DEV_ID_82541ER_LOM 0x1014 +#define E1000_DEV_ID_82541ER 0x1078 +#define E1000_DEV_ID_82541GI 0x1076 +#define E1000_DEV_ID_82541GI_LF 0x107C +#define E1000_DEV_ID_82541GI_MOBILE 0x1077 +#define E1000_DEV_ID_82547EI 0x1019 +#define E1000_DEV_ID_82547EI_MOBILE 0x101A +#define E1000_DEV_ID_82547GI 0x1075 +#define E1000_DEV_ID_82571EB_COPPER 0x105E +#define E1000_DEV_ID_82571EB_FIBER 0x105F +#define E1000_DEV_ID_82571EB_SERDES 0x1060 +#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 +#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA +#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 +#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 +#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 +#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC +#define E1000_DEV_ID_82572EI_COPPER 0x107D +#define E1000_DEV_ID_82572EI_FIBER 0x107E +#define E1000_DEV_ID_82572EI_SERDES 0x107F +#define E1000_DEV_ID_82572EI 0x10B9 +#define E1000_DEV_ID_82573E 0x108B +#define E1000_DEV_ID_82573E_IAMT 0x108C +#define E1000_DEV_ID_82573L 0x109A +#define E1000_DEV_ID_82574L 0x10D3 +#define E1000_DEV_ID_82574LA 0x10F6 +#define E1000_DEV_ID_82583V 0x150C +#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 +#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 +#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA +#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB +#define E1000_DEV_ID_ICH8_82567V_3 0x1501 +#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 +#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A +#define E1000_DEV_ID_ICH8_IGP_C 0x104B +#define E1000_DEV_ID_ICH8_IFE 0x104C +#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 +#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 +#define E1000_DEV_ID_ICH8_IGP_M 0x104D +#define E1000_DEV_ID_ICH9_IGP_M 0x10BF +#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 +#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB +#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD +#define E1000_DEV_ID_ICH9_BM 0x10E5 +#define E1000_DEV_ID_ICH9_IGP_C 0x294C +#define E1000_DEV_ID_ICH9_IFE 0x10C0 +#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 +#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 +#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC +#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD +#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE +#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE +#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF +#define E1000_DEV_ID_ICH10_D_BM_V 0x1525 +#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA +#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB +#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF +#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 +#define E1000_DEV_ID_PCH2_LV_LM 0x1502 +#define E1000_DEV_ID_PCH2_LV_V 0x1503 +#define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A +#define E1000_DEV_ID_PCH_LPT_I217_V 0x153B +#define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A +#define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559 +#define E1000_DEV_ID_82576 0x10C9 +#define E1000_DEV_ID_82576_FIBER 0x10E6 +#define E1000_DEV_ID_82576_SERDES 0x10E7 +#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 +#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 +#define E1000_DEV_ID_82576_NS 0x150A +#define E1000_DEV_ID_82576_NS_SERDES 0x1518 +#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D +#define E1000_DEV_ID_82576_VF 0x10CA +#define E1000_DEV_ID_82576_VF_HV 0x152D +#define E1000_DEV_ID_I350_VF 0x1520 +#define E1000_DEV_ID_I350_VF_HV 0x152F +#define E1000_DEV_ID_82575EB_COPPER 0x10A7 +#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 +#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 +#define E1000_DEV_ID_82580_COPPER 0x150E +#define E1000_DEV_ID_82580_FIBER 0x150F +#define E1000_DEV_ID_82580_SERDES 0x1510 +#define E1000_DEV_ID_82580_SGMII 0x1511 +#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 +#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 +#define E1000_DEV_ID_I350_COPPER 0x1521 +#define E1000_DEV_ID_I350_FIBER 0x1522 +#define E1000_DEV_ID_I350_SERDES 0x1523 +#define E1000_DEV_ID_I350_SGMII 0x1524 +#define E1000_DEV_ID_I350_DA4 0x1546 +#define E1000_DEV_ID_I210_COPPER 0x1533 +#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534 +#define E1000_DEV_ID_I210_COPPER_IT 0x1535 +#define E1000_DEV_ID_I210_FIBER 0x1536 +#define E1000_DEV_ID_I210_SERDES 0x1537 +#define E1000_DEV_ID_I210_SGMII 0x1538 +#define E1000_DEV_ID_I211_COPPER 0x1539 +#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 +#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A +#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C +#define E1000_DEV_ID_DH89XXCC_SFP 0x0440 + +#define E1000_REVISION_0 0 +#define E1000_REVISION_1 1 +#define E1000_REVISION_2 2 +#define E1000_REVISION_3 3 +#define E1000_REVISION_4 4 + +#define E1000_FUNC_0 0 +#define E1000_FUNC_1 1 +#define E1000_FUNC_2 2 +#define E1000_FUNC_3 3 + +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 +#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 + +enum e1000_mac_type { + e1000_undefined = 0, + e1000_82542, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_82571, + e1000_82572, + e1000_82573, + e1000_82574, + e1000_82583, + e1000_80003es2lan, + e1000_ich8lan, + e1000_ich9lan, + e1000_ich10lan, + e1000_pchlan, + e1000_pch2lan, + e1000_pch_lpt, + e1000_82575, + e1000_82576, + e1000_82580, + e1000_i350, + e1000_i210, + e1000_i211, + e1000_vfadapt, + e1000_vfadapt_i350, + e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */ +}; + +enum e1000_media_type { + e1000_media_type_unknown = 0, + e1000_media_type_copper = 1, + e1000_media_type_fiber = 2, + e1000_media_type_internal_serdes = 3, + e1000_num_media_types +}; + +enum e1000_nvm_type { + e1000_nvm_unknown = 0, + e1000_nvm_none, + e1000_nvm_eeprom_spi, + e1000_nvm_eeprom_microwire, + e1000_nvm_flash_hw, + e1000_nvm_flash_sw +}; + +enum e1000_nvm_override { + e1000_nvm_override_none = 0, + e1000_nvm_override_spi_small, + e1000_nvm_override_spi_large, + e1000_nvm_override_microwire_small, + e1000_nvm_override_microwire_large +}; + +enum e1000_phy_type { + e1000_phy_unknown = 0, + e1000_phy_none, + e1000_phy_m88, + e1000_phy_igp, + e1000_phy_igp_2, + e1000_phy_gg82563, + e1000_phy_igp_3, + e1000_phy_ife, + e1000_phy_bm, + e1000_phy_82578, + e1000_phy_82577, + e1000_phy_82579, + e1000_phy_i217, + e1000_phy_82580, + e1000_phy_vf, + e1000_phy_i210, +}; + +enum e1000_bus_type { + e1000_bus_type_unknown = 0, + e1000_bus_type_pci, + e1000_bus_type_pcix, + e1000_bus_type_pci_express, + e1000_bus_type_reserved +}; + +enum e1000_bus_speed { + e1000_bus_speed_unknown = 0, + e1000_bus_speed_33, + e1000_bus_speed_66, + e1000_bus_speed_100, + e1000_bus_speed_120, + e1000_bus_speed_133, + e1000_bus_speed_2500, + e1000_bus_speed_5000, + e1000_bus_speed_reserved +}; + +enum e1000_bus_width { + e1000_bus_width_unknown = 0, + e1000_bus_width_pcie_x1, + e1000_bus_width_pcie_x2, + e1000_bus_width_pcie_x4 = 4, + e1000_bus_width_pcie_x8 = 8, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved +}; + +enum e1000_1000t_rx_status { + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF +}; + +enum e1000_rev_polarity { + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF +}; + +enum e1000_fc_mode { + e1000_fc_none = 0, + e1000_fc_rx_pause, + e1000_fc_tx_pause, + e1000_fc_full, + e1000_fc_default = 0xFF +}; + +enum e1000_ffe_config { + e1000_ffe_config_enabled = 0, + e1000_ffe_config_active, + e1000_ffe_config_blocked +}; + +enum e1000_dsp_config { + e1000_dsp_config_disabled = 0, + e1000_dsp_config_enabled, + e1000_dsp_config_activated, + e1000_dsp_config_undefined = 0xFF +}; + +enum e1000_ms_type { + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto +}; + +enum e1000_smart_speed { + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off +}; + +enum e1000_serdes_link_state { + e1000_serdes_link_down = 0, + e1000_serdes_link_autoneg_progress, + e1000_serdes_link_autoneg_complete, + e1000_serdes_link_forced_up +}; + +/* Receive Descriptor */ +struct e1000_rx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + __le16 length; /* Length of data DMAed into data buffer */ + __le16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + __le16 special; +}; + +/* Receive Descriptor - Extended */ +union e1000_rx_desc_extended { + struct { + __le64 buffer_addr; + __le64 reserved; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define MAX_PS_BUFFERS 4 +/* Receive Descriptor - Packet Split */ +union e1000_rx_desc_packet_split { + struct { + /* one buffer for protocol header(s), three data buffers */ + __le64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length0; /* length of buffer 0 */ + __le16 vlan; /* VLAN tag */ + } middle; + struct { + __le16 header_status; + __le16 length[3]; /* length of buffers 1-3 */ + } upper; + __le64 reserved; + } wb; /* writeback */ +}; + +/* Transmit Descriptor */ +struct e1000_tx_desc { + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + __le16 special; + } fields; + } upper; +}; + +/* Offload Context Descriptor */ +struct e1000_context_desc { + union { + __le32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + __le16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + __le32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + __le16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + __le32 cmd_and_length; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + __le16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { + __le64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 typ_len_ext; + u8 cmd; + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + __le16 special; + } fields; + } upper; +}; + +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { + u64 crcerrs; + u64 algnerrc; + u64 symerrs; + u64 rxerrc; + u64 mpc; + u64 scc; + u64 ecol; + u64 mcc; + u64 latecol; + u64 colc; + u64 dc; + u64 tncrs; + u64 sec; + u64 cexterr; + u64 rlec; + u64 xonrxc; + u64 xontxc; + u64 xoffrxc; + u64 xofftxc; + u64 fcruc; + u64 prc64; + u64 prc127; + u64 prc255; + u64 prc511; + u64 prc1023; + u64 prc1522; + u64 gprc; + u64 bprc; + u64 mprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 rnbc; + u64 ruc; + u64 rfc; + u64 roc; + u64 rjc; + u64 mgprc; + u64 mgpdc; + u64 mgptc; + u64 tor; + u64 tot; + u64 tpr; + u64 tpt; + u64 ptc64; + u64 ptc127; + u64 ptc255; + u64 ptc511; + u64 ptc1023; + u64 ptc1522; + u64 mptc; + u64 bptc; + u64 tsctc; + u64 tsctfc; + u64 iac; + u64 icrxptc; + u64 icrxatc; + u64 ictxptc; + u64 ictxatc; + u64 ictxqec; + u64 ictxqmtc; + u64 icrxdmtc; + u64 icrxoc; + u64 cbtmpc; + u64 htdpmc; + u64 cbrdpc; + u64 cbrmpc; + u64 rpthc; + u64 hgptc; + u64 htcbdpc; + u64 hgorc; + u64 hgotc; + u64 lenerrs; + u64 scvpc; + u64 hrmpc; + u64 doosync; + u64 o2bgptc; + u64 o2bspc; + u64 b2ospc; + u64 b2ogprc; +}; + +struct e1000_vf_stats { + u64 base_gprc; + u64 base_gptc; + u64 base_gorc; + u64 base_gotc; + u64 base_mprc; + u64 base_gotlbc; + u64 base_gptlbc; + u64 base_gorlbc; + u64 base_gprlbc; + + u32 last_gprc; + u32 last_gptc; + u32 last_gorc; + u32 last_gotc; + u32 last_mprc; + u32 last_gotlbc; + u32 last_gptlbc; + u32 last_gorlbc; + u32 last_gprlbc; + + u64 gprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 mprc; + u64 gotlbc; + u64 gptlbc; + u64 gorlbc; + u64 gprlbc; +}; + +struct e1000_phy_stats { + u32 idle_errors; + u32 receive_errors; +}; + +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u8 status; + u8 reserved0; + u16 vlan_id; + u32 reserved1; + u16 reserved2; + u8 reserved3; + u8 checksum; +}; + +/* Host Interface "Rev 1" */ +struct e1000_host_command_header { + u8 command_id; + u8 command_length; + u8 command_options; + u8 checksum; +}; + +#define E1000_HI_MAX_DATA_LENGTH 252 +struct e1000_host_command_info { + struct e1000_host_command_header command_header; + u8 command_data[E1000_HI_MAX_DATA_LENGTH]; +}; + +/* Host Interface "Rev 2" */ +struct e1000_host_mng_command_header { + u8 command_id; + u8 checksum; + u16 reserved1; + u16 reserved2; + u16 command_length; +}; + +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 +struct e1000_host_mng_command_info { + struct e1000_host_mng_command_header command_header; + u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; +}; + +#include "e1000_mac.h" +#include "e1000_phy.h" +#include "e1000_nvm.h" +#include "e1000_manage.h" +#include "e1000_mbx.h" + +/* Function pointers for the MAC. */ +struct e1000_mac_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*id_led_init)(struct e1000_hw *); + s32 (*blink_led)(struct e1000_hw *); + bool (*check_mng_mode)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + s32 (*cleanup_led)(struct e1000_hw *); + void (*clear_hw_cntrs)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + void (*set_lan_id)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + s32 (*led_on)(struct e1000_hw *); + s32 (*led_off)(struct e1000_hw *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + void (*shutdown_serdes)(struct e1000_hw *); + void (*power_up_serdes)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + s32 (*setup_physical_interface)(struct e1000_hw *); + s32 (*setup_led)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*config_collision_dist)(struct e1000_hw *); + void (*rar_set)(struct e1000_hw *, u8*, u32); + s32 (*read_mac_addr)(struct e1000_hw *); + s32 (*validate_mdi_setting)(struct e1000_hw *); + s32 (*set_obff_timer)(struct e1000_hw *, u32); + s32 (*acquire_swfw_sync)(struct e1000_hw *, u16); + void (*release_swfw_sync)(struct e1000_hw *, u16); +}; + +/* When to use various PHY register access functions: + * + * Func Caller + * Function Does Does When to use + * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * X_reg L,P,A n/a for simple PHY reg accesses + * X_reg_locked P,A L for multiple accesses of different regs + * on different pages + * X_reg_page A L,P for multiple accesses of different regs + * on the same page + * + * Where X=[read|write], L=locking, P=sets page, A=register access + * + */ +struct e1000_phy_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*cfg_on_link_up)(struct e1000_hw *); + s32 (*check_polarity)(struct e1000_hw *); + s32 (*check_reset_block)(struct e1000_hw *); + s32 (*commit)(struct e1000_hw *); + s32 (*force_speed_duplex)(struct e1000_hw *); + s32 (*get_cfg_done)(struct e1000_hw *hw); + s32 (*get_cable_length)(struct e1000_hw *); + s32 (*get_info)(struct e1000_hw *); + s32 (*set_page)(struct e1000_hw *, u16); + s32 (*read_reg)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); + s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); + void (*release)(struct e1000_hw *); + s32 (*reset)(struct e1000_hw *); + s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); + s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); + s32 (*write_reg)(struct e1000_hw *, u32, u16); + s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); + s32 (*write_reg_page)(struct e1000_hw *, u32, u16); + void (*power_up)(struct e1000_hw *); + void (*power_down)(struct e1000_hw *); + s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *); + s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8); +}; + +/* Function pointers for the NVM. */ +struct e1000_nvm_operations { + s32 (*init_params)(struct e1000_hw *); + s32 (*acquire)(struct e1000_hw *); + s32 (*read)(struct e1000_hw *, u16, u16, u16 *); + void (*release)(struct e1000_hw *); + void (*reload)(struct e1000_hw *); + s32 (*update)(struct e1000_hw *); + s32 (*valid_led_default)(struct e1000_hw *, u16 *); + s32 (*validate)(struct e1000_hw *); + s32 (*write)(struct e1000_hw *, u16, u16, u16 *); +}; + +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[ETH_ADDR_LEN]; + u8 perm_addr[ETH_ADDR_LEN]; + + enum e1000_mac_type type; + + u32 collision_delta; + u32 ledctl_default; + u32 ledctl_mode1; + u32 ledctl_mode2; + u32 mc_filter_type; + u32 tx_packet_delta; + u32 txcw; + + u16 current_ifs_val; + u16 ifs_max_val; + u16 ifs_min_val; + u16 ifs_ratio; + u16 ifs_step_size; + u16 mta_reg_count; + u16 uta_reg_count; + + /* Maximum size of the MTA register table in all supported adapters */ + #define MAX_MTA_REG 128 + u32 mta_shadow[MAX_MTA_REG]; + u16 rar_entry_count; + + u8 forced_speed_duplex; + + bool adaptive_ifs; + bool has_fwsm; + bool arc_subsystem_valid; + bool asf_firmware_present; + bool autoneg; + bool autoneg_failed; + bool get_link_status; + bool in_ifs_mode; + bool report_tx_early; + enum e1000_serdes_link_state serdes_link_state; + bool serdes_has_link; + bool tx_pkt_filtering; + u32 max_frame_size; +}; + +struct e1000_phy_info { + struct e1000_phy_operations ops; + enum e1000_phy_type type; + + enum e1000_1000t_rx_status local_rx; + enum e1000_1000t_rx_status remote_rx; + enum e1000_ms_type ms_type; + enum e1000_ms_type original_ms_type; + enum e1000_rev_polarity cable_polarity; + enum e1000_smart_speed smart_speed; + + u32 addr; + u32 id; + u32 reset_delay_us; /* in usec */ + u32 revision; + + enum e1000_media_type media_type; + + u16 autoneg_advertised; + u16 autoneg_mask; + u16 cable_length; + u16 max_cable_length; + u16 min_cable_length; + + u8 mdix; + + bool disable_polarity_correction; + bool is_mdix; + bool polarity_correction; + bool speed_downgraded; + bool autoneg_wait_to_complete; +}; + +struct e1000_nvm_info { + struct e1000_nvm_operations ops; + enum e1000_nvm_type type; + enum e1000_nvm_override override; + + u32 flash_bank_size; + u32 flash_base_addr; + + u16 word_size; + u16 delay_usec; + u16 address_bits; + u16 opcode_bits; + u16 page_size; +}; + +struct e1000_bus_info { + enum e1000_bus_type type; + enum e1000_bus_speed speed; + enum e1000_bus_width width; + + u16 func; + u16 pci_cmd_word; +}; + +struct e1000_fc_info { + u32 high_water; /* Flow control high-water mark */ + u32 low_water; /* Flow control low-water mark */ + u16 pause_time; /* Flow control pause timer */ + u16 refresh_time; /* Flow control refresh timer */ + bool send_xon; /* Flow control send XON */ + bool strict_ieee; /* Strict IEEE mode */ + enum e1000_fc_mode current_mode; /* FC mode in effect */ + enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ +}; + +struct e1000_mbx_operations { + s32 (*init_params)(struct e1000_hw *hw); + s32 (*read)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write)(struct e1000_hw *, u32 *, u16, u16); + s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*check_for_msg)(struct e1000_hw *, u16); + s32 (*check_for_ack)(struct e1000_hw *, u16); + s32 (*check_for_rst)(struct e1000_hw *, u16); +}; + +struct e1000_mbx_stats { + u32 msgs_tx; + u32 msgs_rx; + + u32 acks; + u32 reqs; + u32 rsts; +}; + +struct e1000_mbx_info { + struct e1000_mbx_operations ops; + struct e1000_mbx_stats stats; + u32 timeout; + u32 usec_delay; + u16 size; +}; + +struct e1000_dev_spec_82541 { + enum e1000_dsp_config dsp_config; + enum e1000_ffe_config ffe_config; + u32 tx_fifo_head; + u32 tx_fifo_start; + u32 tx_fifo_size; + u16 dsp_reset_counter; + u16 spd_default; + bool phy_init_script; + bool ttl_workaround; +}; + +struct e1000_dev_spec_82542 { + bool dma_fairness; +}; + +struct e1000_dev_spec_82543 { + u32 tbi_compatibility; + bool dma_fairness; + bool init_phy_disabled; +}; + +struct e1000_dev_spec_82571 { + bool laa_is_present; + u32 smb_counter; + E1000_MUTEX swflag_mutex; +}; + +struct e1000_dev_spec_80003es2lan { + bool mdic_wa_enable; +}; + +struct e1000_shadow_ram { + u16 value; + bool modified; +}; + +#define E1000_SHADOW_RAM_WORDS 2048 + +struct e1000_dev_spec_ich8lan { + bool kmrn_lock_loss_workaround_enabled; + struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS]; + E1000_MUTEX nvm_mutex; + E1000_MUTEX swflag_mutex; + bool nvm_k1_enabled; + bool eee_disable; + u16 eee_lp_ability; +}; + +struct e1000_dev_spec_82575 { + bool sgmii_active; + bool global_device_reset; + bool eee_disable; + bool module_plugged; + bool clear_semaphore_once; + u32 mtu; + struct sfp_e1000_flags eth_flags; +}; + +struct e1000_dev_spec_vf { + u32 vf_number; + u32 v2p_mailbox; +}; + +struct e1000_hw { + void *back; + + u8 *hw_addr; + u8 *flash_address; + unsigned long io_base; + + struct e1000_mac_info mac; + struct e1000_fc_info fc; + struct e1000_phy_info phy; + struct e1000_nvm_info nvm; + struct e1000_bus_info bus; + struct e1000_mbx_info mbx; + struct e1000_host_mng_dhcp_cookie mng_cookie; + + union { + struct e1000_dev_spec_82541 _82541; + struct e1000_dev_spec_82542 _82542; + struct e1000_dev_spec_82543 _82543; + struct e1000_dev_spec_82571 _82571; + struct e1000_dev_spec_80003es2lan _80003es2lan; + struct e1000_dev_spec_ich8lan ich8lan; + struct e1000_dev_spec_82575 _82575; + struct e1000_dev_spec_vf vf; + } dev_spec; + + u16 device_id; + u16 subsystem_vendor_id; + u16 subsystem_device_id; + u16 vendor_id; + + u8 revision_id; +}; + +#include "e1000_82541.h" +#include "e1000_82543.h" +#include "e1000_82571.h" +#include "e1000_80003es2lan.h" +#include "e1000_ich8lan.h" +#include "e1000_82575.h" +#include "e1000_i210.h" + +/* These functions must be implemented by drivers */ +void e1000_pci_clear_mwi(struct e1000_hw *hw); +void e1000_pci_set_mwi(struct e1000_hw *hw); +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_HW_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_i210.c b/usr/src/uts/common/io/e1000api/e1000_i210.c new file mode 100644 index 0000000000..63302c0d37 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_i210.c @@ -0,0 +1,754 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + + +static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); +static void e1000_release_nvm_i210(struct e1000_hw *hw); +static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw); +static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +static s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); +static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); +static s32 e1000_read_nvm_i211(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); + +/** + * e1000_acquire_nvm_i210 - Request for access to EEPROM + * @hw: pointer to the HW structure + * + * Acquire the necessary semaphores for exclusive access to the EEPROM. + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +static s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_acquire_nvm_i210"); + + ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); + + return ret_val; +} + +/** + * e1000_release_nvm_i210 - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit, + * then release the semaphores acquired. + **/ +static void e1000_release_nvm_i210(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_i210"); + + e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); +} + +/** + * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Acquire the SW/FW semaphore to access the PHY or NVM. The mask + * will also specify which port we're acquiring the lock for. + **/ +s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + u32 swmask = mask; + u32 fwmask = mask << 16; + s32 ret_val = E1000_SUCCESS; + s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ + + DEBUGFUNC("e1000_acquire_swfw_sync_i210"); + + while (i < timeout) { + if (e1000_get_hw_semaphore_i210(hw)) { + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + if (!(swfw_sync & (fwmask | swmask))) + break; + + /* + * Firmware currently using resource (fwmask) + * or other software thread using resource (swmask) + */ + e1000_put_hw_semaphore_generic(hw); + msec_delay_irq(5); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); + ret_val = -E1000_ERR_SWFW_SYNC; + goto out; + } + + swfw_sync |= swmask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); + +out: + return ret_val; +} + +/** + * e1000_release_swfw_sync_i210 - Release SW/FW semaphore + * @hw: pointer to the HW structure + * @mask: specifies which semaphore to acquire + * + * Release the SW/FW semaphore used to access the PHY or NVM. The mask + * will also specify which port we're releasing the lock for. + **/ +void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) +{ + u32 swfw_sync; + + DEBUGFUNC("e1000_release_swfw_sync_i210"); + + while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS) + ; /* Empty */ + + swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); + swfw_sync &= ~mask; + E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); + + e1000_put_hw_semaphore_generic(hw); +} + +/** + * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +static s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_i210"); + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == timeout) { + /* + * In rare circumstances, the driver may not have released the + * SW semaphore. Clear the semaphore once before giving up. + */ + if (hw->dev_spec._82575.clear_semaphore_once) { + hw->dev_spec._82575.clear_semaphore_once = FALSE; + e1000_put_hw_semaphore_generic(hw); + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + } + } + + /* If we do not have the semaphore here, we have to give up. */ + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the Shadow Ram to read + * @words: number of words to read + * @data: word read from the Shadow Ram + * + * Reads a 16 bit word from the Shadow Ram using the EERD register. + * Uses necessary synchronization semaphores. + **/ +s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 status = E1000_SUCCESS; + u16 i, count; + + DEBUGFUNC("e1000_read_nvm_srrd_i210"); + + /* We cannot hold synchronization semaphores for too long, + * because of forceful takeover procedure. However it is more efficient + * to read in bursts than synchronizing access for each word. */ + for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { + count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? + E1000_EERD_EEWR_MAX_COUNT : (words - i); + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + status = e1000_read_nvm_eerd(hw, offset, count, + data + i); + hw->nvm.ops.release(hw); + } else { + status = E1000_ERR_SWFW_SYNC; + } + + if (status != E1000_SUCCESS) + break; + } + + return status; +} + +/** + * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR + * @hw: pointer to the HW structure + * @offset: offset within the Shadow RAM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the Shadow RAM + * + * Writes data to Shadow RAM at offset using EEWR register. + * + * If e1000_update_nvm_checksum is not called after this function , the + * data will not be committed to FLASH and also Shadow RAM will most likely + * contain an invalid checksum. + * + * If error code is returned, data and Shadow RAM may be inconsistent - buffer + * partially written. + **/ +s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + s32 status = E1000_SUCCESS; + u16 i, count; + + DEBUGFUNC("e1000_write_nvm_srwr_i210"); + + /* We cannot hold synchronization semaphores for too long, + * because of forceful takeover procedure. However it is more efficient + * to write in bursts than synchronizing access for each word. */ + for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { + count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? + E1000_EERD_EEWR_MAX_COUNT : (words - i); + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + status = e1000_write_nvm_srwr(hw, offset, count, + data + i); + hw->nvm.ops.release(hw); + } else { + status = E1000_ERR_SWFW_SYNC; + } + + if (status != E1000_SUCCESS) + break; + } + + return status; +} + +/** + * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR + * @hw: pointer to the HW structure + * @offset: offset within the Shadow Ram to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the Shadow Ram + * + * Writes data to Shadow Ram at offset using EEWR register. + * + * If e1000_update_nvm_checksum is not called after this function , the + * Shadow Ram will most likely contain an invalid checksum. + **/ +static s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, k, eewr = 0; + u32 attempts = 100000; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_nvm_srwr"); + + /* + * A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + for (i = 0; i < words; i++) { + eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | + (data[i] << E1000_NVM_RW_REG_DATA) | + E1000_NVM_RW_REG_START; + + E1000_WRITE_REG(hw, E1000_SRWR, eewr); + + for (k = 0; k < attempts; k++) { + if (E1000_NVM_RW_REG_DONE & + E1000_READ_REG(hw, E1000_SRWR)) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(5); + } + + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Shadow RAM write EEWR timed out\n"); + break; + } + } + +out: + return ret_val; +} + +/** + * e1000_read_nvm_i211 - Read NVM wrapper function for I211 + * @hw: pointer to the HW structure + * @address: the word address (aka eeprom offset) to read + * @data: pointer to the data read + * + * Wrapper function to return data formerly found in the NVM. + **/ +static s32 e1000_read_nvm_i211(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_nvm_i211"); + + /* Only the MAC addr is required to be present in the iNVM */ + switch (offset) { + case NVM_MAC_ADDR: + ret_val = e1000_read_invm_i211(hw, (u8)offset, &data[0]); + ret_val |= e1000_read_invm_i211(hw, (u8)offset+1, &data[1]); + ret_val |= e1000_read_invm_i211(hw, (u8)offset+2, &data[2]); + if (ret_val != E1000_SUCCESS) + DEBUGOUT("MAC Addr not found in iNVM\n"); + break; + case NVM_INIT_CTRL_2: + ret_val = e1000_read_invm_i211(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_INIT_CTRL_2_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_INIT_CTRL_4: + ret_val = e1000_read_invm_i211(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_INIT_CTRL_4_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_LED_1_CFG: + ret_val = e1000_read_invm_i211(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_LED_1_CFG_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_LED_0_2_CFG: + ret_val = e1000_read_invm_i211(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = NVM_LED_0_2_CFG_DEFAULT_I211; + ret_val = E1000_SUCCESS; + } + break; + case NVM_ID_LED_SETTINGS: + ret_val = e1000_read_invm_i211(hw, (u8)offset, data); + if (ret_val != E1000_SUCCESS) { + *data = ID_LED_RESERVED_FFFF; + ret_val = E1000_SUCCESS; + } + break; + case NVM_SUB_DEV_ID: + *data = hw->subsystem_device_id; + break; + case NVM_SUB_VEN_ID: + *data = hw->subsystem_vendor_id; + break; + case NVM_DEV_ID: + *data = hw->device_id; + break; + case NVM_VEN_ID: + *data = hw->vendor_id; + break; + default: + DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); + *data = NVM_RESERVED_WORD; + break; + } + return ret_val; +} + +/** + * e1000_read_invm_i211 - Reads OTP + * @hw: pointer to the HW structure + * @address: the word address (aka eeprom offset) to read + * @data: pointer to the data read + * + * Reads 16-bit words from the OTP. Return error when the word is not + * stored in OTP. + **/ +s32 e1000_read_invm_i211(struct e1000_hw *hw, u8 address, u16 *data) +{ + s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; + u32 invm_dword; + u16 i; + u8 record_type, word_address; + + DEBUGFUNC("e1000_read_invm_i211"); + + for (i = 0; i < E1000_INVM_SIZE; i++) { + invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); + /* Get record type */ + record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); + if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) + break; + if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) + i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; + if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) + i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; + if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { + word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); + if (word_address == address) { + *data = INVM_DWORD_TO_WORD_DATA(invm_dword); + DEBUGOUT2("Read INVM Word 0x%02x = %x", + address, *data); + status = E1000_SUCCESS; + break; + } + } + } + if (status != E1000_SUCCESS) + DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); + return status; +} + +/** + * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) +{ + s32 status = E1000_SUCCESS; + s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); + + DEBUGFUNC("e1000_validate_nvm_checksum_i210"); + + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + + /* + * Replace the read function with semaphore grabbing with + * the one that skips this for a while. + * We have semaphore taken already here. + */ + read_op_ptr = hw->nvm.ops.read; + hw->nvm.ops.read = e1000_read_nvm_eerd; + + status = e1000_validate_nvm_checksum_generic(hw); + + /* Revert original read operation. */ + hw->nvm.ops.read = read_op_ptr; + + hw->nvm.ops.release(hw); + } else { + status = E1000_ERR_SWFW_SYNC; + } + + return status; +} + + +/** + * e1000_update_nvm_checksum_i210 - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. Next commit EEPROM data onto the Flash. + **/ +s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum_i210"); + + /* + * Read the first word from the EEPROM. If this times out or fails, do + * not continue or we could be in for a very long wait while every + * EEPROM read fails + */ + ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("EEPROM read failed\n"); + goto out; + } + + if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { + /* + * Do not use hw->nvm.ops.write, hw->nvm.ops.read + * because we do not want to take the synchronization + * semaphores twice here. + */ + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); + if (ret_val) { + hw->nvm.ops.release(hw); + DEBUGOUT("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, + &checksum); + if (ret_val != E1000_SUCCESS) { + hw->nvm.ops.release(hw); + DEBUGOUT("NVM Write Error while updating checksum.\n"); + goto out; + } + + hw->nvm.ops.release(hw); + + ret_val = e1000_update_flash_i210(hw); + } else { + ret_val = E1000_ERR_SWFW_SYNC; + } +out: + return ret_val; +} + +/** + * e1000_update_flash_i210 - Commit EEPROM to the flash + * @hw: pointer to the HW structure + * + **/ +s32 e1000_update_flash_i210(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 flup; + + DEBUGFUNC("e1000_update_flash_i210"); + + ret_val = e1000_pool_flash_update_done_i210(hw); + if (ret_val == -E1000_ERR_NVM) { + DEBUGOUT("Flash update time out\n"); + goto out; + } + + flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; + E1000_WRITE_REG(hw, E1000_EECD, flup); + + ret_val = e1000_pool_flash_update_done_i210(hw); + if (ret_val == E1000_SUCCESS) + DEBUGOUT("Flash update complete\n"); + else + DEBUGOUT("Flash update time out\n"); + +out: + return ret_val; +} + +/** + * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. + * @hw: pointer to the HW structure + * + **/ +s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) +{ + s32 ret_val = -E1000_ERR_NVM; + u32 i, reg; + + DEBUGFUNC("e1000_pool_flash_update_done_i210"); + + for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { + reg = E1000_READ_REG(hw, E1000_EECD); + if (reg & E1000_EECD_FLUDONE_I210) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(5); + } + + return ret_val; +} + +/** + * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize the i210 NVM parameters and function pointers. + **/ +static s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_i210"); + + ret_val = e1000_init_nvm_params_82575(hw); + + nvm->ops.acquire = e1000_acquire_nvm_i210; + nvm->ops.release = e1000_release_nvm_i210; + nvm->ops.read = e1000_read_nvm_srrd_i210; + nvm->ops.write = e1000_write_nvm_srwr_i210; + nvm->ops.valid_led_default = e1000_valid_led_default_i210; + nvm->ops.validate = e1000_validate_nvm_checksum_i210; + nvm->ops.update = e1000_update_nvm_checksum_i210; + + return ret_val; +} + +/** + * e1000_init_nvm_params_i211 - Initialize i211 NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize the NVM parameters and function pointers for i211. + **/ +static s32 e1000_init_nvm_params_i211(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + + DEBUGFUNC("e1000_init_nvm_params_i211"); + + nvm->ops.acquire = e1000_acquire_nvm_i210; + nvm->ops.release = e1000_release_nvm_i210; + nvm->ops.read = e1000_read_nvm_i211; + nvm->ops.valid_led_default = e1000_valid_led_default_i210; + nvm->ops.write = e1000_null_write_nvm; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.update = e1000_null_ops_generic; + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_i210 - Init func ptrs. + * @hw: pointer to the HW structure + * + * Called to initialize all function pointers and parameters. + **/ +void e1000_init_function_pointers_i210(struct e1000_hw *hw) +{ + e1000_init_function_pointers_82575(hw); + + switch (hw->mac.type) { + case e1000_i210: + hw->nvm.ops.init_params = e1000_init_nvm_params_i210; + break; + case e1000_i211: + hw->nvm.ops.init_params = e1000_init_nvm_params_i211; + break; + default: + break; + } + return; +} + +/** + * e1000_valid_led_default_i210 - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +static s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_i210"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + goto out; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { + switch (hw->phy.media_type) { + case e1000_media_type_internal_serdes: + *data = ID_LED_DEFAULT_I210_SERDES; + break; + case e1000_media_type_copper: + default: + *data = ID_LED_DEFAULT_I210; + break; + } + } +out: + return ret_val; +} diff --git a/usr/src/uts/common/io/e1000api/e1000_i210.h b/usr/src/uts/common/io/e1000api/e1000_i210.h new file mode 100644 index 0000000000..9d51e048ae --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_i210.h @@ -0,0 +1,101 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_I210_H_ +#define _E1000_I210_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +s32 e1000_update_flash_i210(struct e1000_hw *hw); +s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw); +s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw); +s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_invm_i211(struct e1000_hw *hw, u8 address, u16 *data); +s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask); +void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask); + +#define E1000_STM_OPCODE 0xDB00 +#define E1000_EEPROM_FLASH_SIZE_WORD 0x11 + +#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \ + (u8)((invm_dword) & 0x7) +#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \ + (u8)(((invm_dword) & 0x0000FE00) >> 9) +#define INVM_DWORD_TO_WORD_DATA(invm_dword) \ + (u16)(((invm_dword) & 0xFFFF0000) >> 16) + +enum E1000_INVM_STRUCTURE_TYPE { + E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00, + E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01, + E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02, + E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03, + E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04, + E1000_INVM_INVALIDATED_STRUCTURE = 0x0F, +}; + +#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8 +#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1 +#define E1000_INVM_ULT_BYTES_SIZE 8 +#define E1000_INVM_RECORD_SIZE_IN_BYTES 4 +#define E1000_INVM_VER_FIELD_ONE 0x1FF8 +#define E1000_INVM_VER_FIELD_TWO 0x7FE000 +#define E1000_INVM_IMGTYPE_FIELD 0x1F800000 + +#define E1000_INVM_MAJOR_MASK 0x3F0 +#define E1000_INVM_MINOR_MASK 0xF +#define E1000_INVM_MAJOR_SHIFT 4 + +#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_OFF1_OFF2)) +#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \ + (ID_LED_DEF1_DEF2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +/* NVM offset defaults for I211 devices */ +#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243 +#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1 +#define NVM_LED_1_CFG_DEFAULT_I211 0x0184 +#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_I210_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_ich8lan.c b/usr/src/uts/common/io/e1000api/e1000_ich8lan.c new file mode 100644 index 0000000000..1c9f93f544 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_ich8lan.c @@ -0,0 +1,4930 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +/* 82562G 10/100 Network Connection + * 82562G-2 10/100 Network Connection + * 82562GT 10/100 Network Connection + * 82562GT-2 10/100 Network Connection + * 82562V 10/100 Network Connection + * 82562V-2 10/100 Network Connection + * 82566DC-2 Gigabit Network Connection + * 82566DC Gigabit Network Connection + * 82566DM-2 Gigabit Network Connection + * 82566DM Gigabit Network Connection + * 82566MC Gigabit Network Connection + * 82566MM Gigabit Network Connection + * 82567LM Gigabit Network Connection + * 82567LF Gigabit Network Connection + * 82567V Gigabit Network Connection + * 82567LM-2 Gigabit Network Connection + * 82567LF-2 Gigabit Network Connection + * 82567V-2 Gigabit Network Connection + * 82567LF-3 Gigabit Network Connection + * 82567LM-3 Gigabit Network Connection + * 82567LM-4 Gigabit Network Connection + * 82577LM Gigabit Network Connection + * 82577LC Gigabit Network Connection + * 82578DM Gigabit Network Connection + * 82578DC Gigabit Network Connection + * 82579LM Gigabit Network Connection + * 82579V Gigabit Network Connection + */ + +#include "e1000_api.h" + +static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); +static void e1000_release_swflag_ich8lan(struct e1000_hw *hw); +static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); +static void e1000_release_nvm_ich8lan(struct e1000_hw *hw); +static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); +static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); +static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); +static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); +static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, + u8 *mc_addr_list, + u32 mc_addr_count); +static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); +static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); +static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); +static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, + bool active); +static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, + bool active); +static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); +static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); +static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, + u16 *data); +static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); +static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); +static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); +static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); +static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); +static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, + u16 *speed, u16 *duplex); +static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); +static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); +static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); +static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); +static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); +static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); +static s32 e1000_led_on_pchlan(struct e1000_hw *hw); +static s32 e1000_led_off_pchlan(struct e1000_hw *hw); +static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); +static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); +static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); +static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); +static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 *data); +static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 *data); +static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, + u32 offset, u16 *data); +static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte); +static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); +static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); +static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); +static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); +static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); +static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); +static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr); + +/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ +/* Offset 04h HSFSTS */ +union ich8_hws_flash_status { + struct ich8_hsfsts { + u16 flcdone:1; /* bit 0 Flash Cycle Done */ + u16 flcerr:1; /* bit 1 Flash Cycle Error */ + u16 dael:1; /* bit 2 Direct Access error Log */ + u16 berasesz:2; /* bit 4:3 Sector Erase Size */ + u16 flcinprog:1; /* bit 5 flash cycle in Progress */ + u16 reserved1:2; /* bit 13:6 Reserved */ + u16 reserved2:6; /* bit 13:6 Reserved */ + u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ + u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ + } hsf_status; + u16 regval; +}; + +/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ +/* Offset 06h FLCTL */ +union ich8_hws_flash_ctrl { + struct ich8_hsflctl { + u16 flcgo:1; /* 0 Flash Cycle Go */ + u16 flcycle:2; /* 2:1 Flash Cycle */ + u16 reserved:5; /* 7:3 Reserved */ + u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ + u16 flockdn:6; /* 15:10 Reserved */ + } hsf_ctrl; + u16 regval; +}; + +/* ICH Flash Region Access Permissions */ +union ich8_hws_flash_regacc { + struct ich8_flracc { + u32 grra:8; /* 0:7 GbE region Read Access */ + u32 grwa:8; /* 8:15 GbE region Write Access */ + u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ + u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ + } hsf_flregacc; + u16 regval; +}; + +/** + * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers + * @hw: pointer to the HW structure + * + * Test access to the PHY registers by reading the PHY ID registers. If + * the PHY ID is already known (e.g. resume path) compare it with known ID, + * otherwise assume the read PHY ID is correct if it is valid. + * + * Assumes the sw/fw/hw semaphore is already acquired. + **/ +static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) +{ + u16 phy_reg = 0; + u32 phy_id = 0; + s32 ret_val; + u16 retry_count; + + for (retry_count = 0; retry_count < 2; retry_count++) { + ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); + if (ret_val || (phy_reg == 0xFFFF)) + continue; + phy_id = (u32)(phy_reg << 16); + + ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); + if (ret_val || (phy_reg == 0xFFFF)) { + phy_id = 0; + continue; + } + phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); + break; + } + + if (hw->phy.id) { + if (hw->phy.id == phy_id) + return TRUE; + } else if (phy_id) { + hw->phy.id = phy_id; + hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); + return TRUE; + } + + /* In case the PHY needs to be in mdio slow mode, + * set slow mode and try to get the PHY id again. + */ + hw->phy.ops.release(hw); + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (!ret_val) + ret_val = e1000_get_phy_id(hw); + hw->phy.ops.acquire(hw); + + return !ret_val; +} + +/** + * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds + * @hw: pointer to the HW structure + * + * Workarounds/flow necessary for PHY initialization during driver load + * and resume paths. + **/ +static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) +{ + u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); + s32 ret_val; + u16 phy_reg; + + DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); + + /* Gate automatic PHY configuration by hardware on managed and + * non-managed 82579 and newer adapters. + */ + e1000_gate_hw_phy_config_ich8lan(hw, TRUE); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + DEBUGOUT("Failed to initialize PHY flow\n"); + goto out; + } + + /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is + * inaccessible and resetting the PHY is not blocked, toggle the + * LANPHYPC Value bit to force the interconnect to PCIe mode. + */ + switch (hw->mac.type) { + case e1000_pch_lpt: + if (e1000_phy_is_accessible_pchlan(hw)) + break; + + /* Before toggling LANPHYPC, see if PHY is accessible by + * forcing MAC to SMBus mode first. + */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + + /* fall-through */ + case e1000_pch2lan: + if (e1000_phy_is_accessible_pchlan(hw)) { + if (hw->mac.type == e1000_pch_lpt) { + /* Unforce SMBus mode in PHY */ + hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, + &phy_reg); + phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; + hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, + phy_reg); + + /* Unforce SMBus mode in MAC */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + } + break; + } + + /* fall-through */ + case e1000_pchlan: + if ((hw->mac.type == e1000_pchlan) && + (fwsm & E1000_ICH_FWSM_FW_VALID)) + break; + + if (hw->phy.ops.check_reset_block(hw)) { + DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); + break; + } + + DEBUGOUT("Toggling LANPHYPC\n"); + + /* Set Phy Config Counter to 50msec */ + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); + mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; + mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; + E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); + + if (hw->mac.type == e1000_pch_lpt) { + /* Toggling LANPHYPC brings the PHY out of SMBus mode + * So ensure that the MAC is also out of SMBus mode + */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); + } + + /* Toggle LANPHYPC Value bit */ + mac_reg = E1000_READ_REG(hw, E1000_CTRL); + mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; + mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; + E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); + E1000_WRITE_FLUSH(hw); + usec_delay(10); + mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; + E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); + E1000_WRITE_FLUSH(hw); + if (hw->mac.type < e1000_pch_lpt) { + msec_delay(50); + } else { + u16 count = 20; + do { + msec_delay(5); + } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & + E1000_CTRL_EXT_LPCD) && count--); + } + break; + default: + break; + } + + hw->phy.ops.release(hw); + + /* Reset the PHY before any access to it. Doing so, ensures + * that the PHY is in a known good state before we read/write + * PHY registers. The generic reset is sufficient here, + * because we haven't determined the PHY type yet. + */ + ret_val = e1000_phy_hw_reset_generic(hw); + +out: + /* Ungate automatic PHY configuration on non-managed 82579 */ + if ((hw->mac.type == e1000_pch2lan) && + !(fwsm & E1000_ICH_FWSM_FW_VALID)) { + msec_delay(10); + e1000_gate_hw_phy_config_ich8lan(hw, FALSE); + } + + return ret_val; +} + +/** + * e1000_init_phy_params_pchlan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + + DEBUGFUNC("e1000_init_phy_params_pchlan"); + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_swflag_ich8lan; + phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; + phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; + phy->ops.set_page = e1000_set_page_igp; + phy->ops.read_reg = e1000_read_phy_reg_hv; + phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; + phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; + phy->ops.release = e1000_release_swflag_ich8lan; + phy->ops.reset = e1000_phy_hw_reset_ich8lan; + phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; + phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; + phy->ops.write_reg = e1000_write_phy_reg_hv; + phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; + phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + phy->id = e1000_phy_unknown; + + ret_val = e1000_init_phy_workarounds_pchlan(hw); + if (ret_val) + return ret_val; + + if (phy->id == e1000_phy_unknown) + switch (hw->mac.type) { + default: + ret_val = e1000_get_phy_id(hw); + if (ret_val) + return ret_val; + if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) + break; + /* fall-through */ + case e1000_pch2lan: + case e1000_pch_lpt: + /* In case the PHY needs to be in mdio slow mode, + * set slow mode and try to get the PHY id again. + */ + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + ret_val = e1000_get_phy_id(hw); + if (ret_val) + return ret_val; + break; + } + phy->type = e1000_get_phy_type_from_id(phy->id); + + switch (phy->type) { + case e1000_phy_82577: + case e1000_phy_82579: + case e1000_phy_i217: + phy->ops.check_polarity = e1000_check_polarity_82577; + phy->ops.force_speed_duplex = + e1000_phy_force_speed_duplex_82577; + phy->ops.get_cable_length = e1000_get_cable_length_82577; + phy->ops.get_info = e1000_get_phy_info_82577; + phy->ops.commit = e1000_phy_sw_reset_generic; + break; + case e1000_phy_82578: + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + phy->ops.get_cable_length = e1000_get_cable_length_m88; + phy->ops.get_info = e1000_get_phy_info_m88; + break; + default: + ret_val = -E1000_ERR_PHY; + break; + } + + return ret_val; +} + +/** + * e1000_init_phy_params_ich8lan - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific PHY parameters and function pointers. + **/ +static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 i = 0; + + DEBUGFUNC("e1000_init_phy_params_ich8lan"); + + phy->addr = 1; + phy->reset_delay_us = 100; + + phy->ops.acquire = e1000_acquire_swflag_ich8lan; + phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; + phy->ops.get_cable_length = e1000_get_cable_length_igp_2; + phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; + phy->ops.read_reg = e1000_read_phy_reg_igp; + phy->ops.release = e1000_release_swflag_ich8lan; + phy->ops.reset = e1000_phy_hw_reset_ich8lan; + phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; + phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; + phy->ops.write_reg = e1000_write_phy_reg_igp; + phy->ops.power_up = e1000_power_up_phy_copper; + phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; + + /* We may need to do this twice - once for IGP and if that fails, + * we'll set BM func pointers and try again + */ + ret_val = e1000_determine_phy_address(hw); + if (ret_val) { + phy->ops.write_reg = e1000_write_phy_reg_bm; + phy->ops.read_reg = e1000_read_phy_reg_bm; + ret_val = e1000_determine_phy_address(hw); + if (ret_val) { + DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); + return ret_val; + } + } + + phy->id = 0; + while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && + (i++ < 100)) { + msec_delay(1); + ret_val = e1000_get_phy_id(hw); + if (ret_val) + return ret_val; + } + + /* Verify phy id */ + switch (phy->id) { + case IGP03E1000_E_PHY_ID: + phy->type = e1000_phy_igp_3; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; + phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; + phy->ops.get_info = e1000_get_phy_info_igp; + phy->ops.check_polarity = e1000_check_polarity_igp; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy->type = e1000_phy_ife; + phy->autoneg_mask = E1000_ALL_NOT_GIG; + phy->ops.get_info = e1000_get_phy_info_ife; + phy->ops.check_polarity = e1000_check_polarity_ife; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; + break; + case BME1000_E_PHY_ID: + phy->type = e1000_phy_bm; + phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; + phy->ops.read_reg = e1000_read_phy_reg_bm; + phy->ops.write_reg = e1000_write_phy_reg_bm; + phy->ops.commit = e1000_phy_sw_reset_generic; + phy->ops.get_info = e1000_get_phy_info_m88; + phy->ops.check_polarity = e1000_check_polarity_m88; + phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; + break; + default: + return -E1000_ERR_PHY; + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific NVM parameters and function + * pointers. + **/ +static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 gfpreg, sector_base_addr, sector_end_addr; + u16 i; + + DEBUGFUNC("e1000_init_nvm_params_ich8lan"); + + /* Can't read flash registers if the register set isn't mapped. */ + if (!hw->flash_address) { + DEBUGOUT("ERROR: Flash registers not mapped\n"); + return -E1000_ERR_CONFIG; + } + + nvm->type = e1000_nvm_flash_sw; + + gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); + + /* sector_X_addr is a "sector"-aligned address (4096 bytes) + * Add 1 to sector_end_addr since this sector is included in + * the overall size. + */ + sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; + sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; + + /* flash_base_addr is byte-aligned */ + nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; + + /* find total size of the NVM, then cut in half since the total + * size represents two separate NVM banks. + */ + nvm->flash_bank_size = (sector_end_addr - sector_base_addr) + << FLASH_SECTOR_ADDR_SHIFT; + nvm->flash_bank_size /= 2; + /* Adjust to word count */ + nvm->flash_bank_size /= sizeof(u16); + + nvm->word_size = E1000_SHADOW_RAM_WORDS; + + /* Clear shadow ram */ + for (i = 0; i < nvm->word_size; i++) { + dev_spec->shadow_ram[i].modified = FALSE; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + + E1000_MUTEX_INIT(&dev_spec->nvm_mutex); + E1000_MUTEX_INIT(&dev_spec->swflag_mutex); + + /* Function Pointers */ + nvm->ops.acquire = e1000_acquire_nvm_ich8lan; + nvm->ops.release = e1000_release_nvm_ich8lan; + nvm->ops.read = e1000_read_nvm_ich8lan; + nvm->ops.update = e1000_update_nvm_checksum_ich8lan; + nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; + nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; + nvm->ops.write = e1000_write_nvm_ich8lan; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_ich8lan - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific MAC parameters and function + * pointers. + **/ +static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_ich8lan"); + + /* Set media type function pointer */ + hw->phy.media_type = e1000_media_type_copper; + + /* Set mta register count */ + mac->mta_reg_count = 32; + /* Set rar entry count */ + mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; + if (mac->type == e1000_ich8lan) + mac->rar_entry_count--; + /* Set if part includes ASF firmware */ + mac->asf_firmware_present = TRUE; + /* FWSM register */ + mac->has_fwsm = TRUE; + /* ARC subsystem not supported */ + mac->arc_subsystem_valid = FALSE; + /* Adaptive IFS supported */ + mac->adaptive_ifs = TRUE; + + /* Function pointers */ + + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; + /* function id */ + mac->ops.set_lan_id = e1000_set_lan_id_single_port; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_ich8lan; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_ich8lan; + /* link setup */ + mac->ops.setup_link = e1000_setup_link_ich8lan; + /* physical interface setup */ + mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; + /* clear hardware counters */ + mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; + + /* LED and other operations */ + switch (mac->type) { + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_generic; + /* blink LED */ + mac->ops.blink_led = e1000_blink_led_generic; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_generic; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_ich8lan; + mac->ops.led_off = e1000_led_off_ich8lan; + break; + case e1000_pch2lan: + mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; + mac->ops.rar_set = e1000_rar_set_pch2lan; + /* fall-through */ + case e1000_pch_lpt: + /* multicast address update for pch2 */ + mac->ops.update_mc_addr_list = + e1000_update_mc_addr_list_pch2lan; + case e1000_pchlan: + /* check management mode */ + mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; + /* ID LED init */ + mac->ops.id_led_init = e1000_id_led_init_pchlan; + /* setup LED */ + mac->ops.setup_led = e1000_setup_led_pchlan; + /* cleanup LED */ + mac->ops.cleanup_led = e1000_cleanup_led_pchlan; + /* turn on/off LED */ + mac->ops.led_on = e1000_led_on_pchlan; + mac->ops.led_off = e1000_led_off_pchlan; + break; + default: + break; + } + + if (mac->type == e1000_pch_lpt) { + mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; + mac->ops.rar_set = e1000_rar_set_pch_lpt; + mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; + mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt; + } + + /* Enable PCS Lock-loss workaround for ICH8 */ + if (mac->type == e1000_ich8lan) + e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE); + + return E1000_SUCCESS; +} + +/** + * __e1000_access_emi_reg_locked - Read/write EMI register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: pointer to value to read/write from/to the EMI address + * @read: boolean flag to indicate read or write + * + * This helper function assumes the SW/FW/HW Semaphore is already acquired. + **/ +static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, + u16 *data, bool read) +{ + s32 ret_val; + + DEBUGFUNC("__e1000_access_emi_reg_locked"); + + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); + if (ret_val) + return ret_val; + + if (read) + ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, + data); + else + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, + *data); + + return ret_val; +} + +/** + * e1000_read_emi_reg_locked - Read Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be read from the EMI address + * + * Assumes the SW/FW/HW Semaphore is already acquired. + **/ +s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) +{ + DEBUGFUNC("e1000_read_emi_reg_locked"); + + return __e1000_access_emi_reg_locked(hw, addr, data, TRUE); +} + +/** + * e1000_write_emi_reg_locked - Write Extended Management Interface register + * @hw: pointer to the HW structure + * @addr: EMI address to program + * @data: value to be written to the EMI address + * + * Assumes the SW/FW/HW Semaphore is already acquired. + **/ +static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) +{ + DEBUGFUNC("e1000_read_emi_reg_locked"); + + return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE); +} + +/** + * e1000_set_eee_pchlan - Enable/disable EEE support + * @hw: pointer to the HW structure + * + * Enable/disable EEE based on setting in dev_spec structure, the duplex of + * the link and the EEE capabilities of the link partner. The LPI Control + * register bits will remain set only if/when link is up. + **/ +static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + s32 ret_val; + u16 lpi_ctrl; + + DEBUGFUNC("e1000_set_eee_pchlan"); + + if ((hw->phy.type != e1000_phy_82579) && + (hw->phy.type != e1000_phy_i217)) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); + if (ret_val) + goto release; + + /* Clear bits that enable EEE in various speeds */ + lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; + + /* Enable EEE if not disabled by user */ + if (!dev_spec->eee_disable) { + u16 lpa, pcs_status, data; + + /* Save off link partner's EEE ability */ + switch (hw->phy.type) { + case e1000_phy_82579: + lpa = I82579_EEE_LP_ABILITY; + pcs_status = I82579_EEE_PCS_STATUS; + break; + case e1000_phy_i217: + lpa = I217_EEE_LP_ABILITY; + pcs_status = I217_EEE_PCS_STATUS; + break; + default: + ret_val = -E1000_ERR_PHY; + goto release; + } + ret_val = e1000_read_emi_reg_locked(hw, lpa, + &dev_spec->eee_lp_ability); + if (ret_val) + goto release; + + /* Enable EEE only for speeds in which the link partner is + * EEE capable. + */ + if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) + lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; + + if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { + hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); + if (data & NWAY_LPAR_100TX_FD_CAPS) + lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; + else + /* EEE is not supported in 100Half, so ignore + * partner's EEE in 100 ability if full-duplex + * is not advertised. + */ + dev_spec->eee_lp_ability &= + ~I82579_EEE_100_SUPPORTED; + } + + /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ + ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); + if (ret_val) + goto release; + } + + ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP + * @hw: pointer to the HW structure + * @link: link up bool flag + * + * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications + * preventing further DMA write requests. Workaround the issue by disabling + * the de-assertion of the clock request when in 1Gpbs mode. + **/ +static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) +{ + u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); + s32 ret_val = E1000_SUCCESS; + + if (link && (E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_SPEED_1000)) { + u16 kmrn_reg; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = + e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + &kmrn_reg); + if (ret_val) + goto release; + + ret_val = + e1000_write_kmrn_reg_locked(hw, + E1000_KMRNCTRLSTA_K1_CONFIG, + kmrn_reg & + ~E1000_KMRNCTRLSTA_K1_ENABLE); + if (ret_val) + goto release; + + usec_delay(10); + + E1000_WRITE_REG(hw, E1000_FEXTNVM6, + fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); + + ret_val = + e1000_write_kmrn_reg_locked(hw, + E1000_KMRNCTRLSTA_K1_CONFIG, + kmrn_reg); +release: + hw->phy.ops.release(hw); + } else { + /* clear FEXTNVM6 bit 8 on link down or 10/100 */ + E1000_WRITE_REG(hw, E1000_FEXTNVM6, + fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); + } + + return ret_val; +} + +static u64 e1000_ltr2ns(u16 ltr) +{ + u32 value, scale; + + /* Determine the latency in nsec based on the LTR value & scale */ + value = ltr & E1000_LTRV_VALUE_MASK; + scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT; + + return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR)); +} + +/** + * e1000_platform_pm_pch_lpt - Set platform power management values + * @hw: pointer to the HW structure + * @link: bool indicating link status + * + * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" + * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed + * when link is up (which must not exceed the maximum latency supported + * by the platform), otherwise specify there is no LTR requirement. + * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop + * latencies in the LTR Extended Capability Structure in the PCIe Extended + * Capability register set, on this device LTR is set by writing the + * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and + * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) + * message to the PMC. + * + * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF) + * high-water mark. + **/ +static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) +{ + u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | + link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; + u16 lat_enc = 0; /* latency encoded */ + s32 obff_hwm = 0; + + DEBUGFUNC("e1000_platform_pm_pch_lpt"); + + if (link) { + u16 speed, duplex, scale = 0; + u16 max_snoop, max_nosnoop; + u16 max_ltr_enc; /* max LTR latency encoded */ + s64 lat_ns; /* latency (ns) */ + s64 value; + u32 rxa; + + if (!hw->mac.max_frame_size) { + DEBUGOUT("max_frame_size not set.\n"); + return -E1000_ERR_CONFIG; + } + + hw->mac.ops.get_link_up_info(hw, &speed, &duplex); + if (!speed) { + DEBUGOUT("Speed not set.\n"); + return -E1000_ERR_CONFIG; + } + + /* Rx Packet Buffer Allocation size (KB) */ + rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK; + + /* Determine the maximum latency tolerated by the device. + * + * Per the PCIe spec, the tolerated latencies are encoded as + * a 3-bit encoded scale (only 0-5 are valid) multiplied by + * a 10-bit value (0-1023) to provide a range from 1 ns to + * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, + * 1=2^5ns, 2=2^10ns,...5=2^25ns. + */ + lat_ns = ((s64)rxa * 1024 - + (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000; + if (lat_ns < 0) + lat_ns = 0; + else + lat_ns /= speed; + + value = lat_ns; + while (value > E1000_LTRV_VALUE_MASK) { + scale++; + value = E1000_DIVIDE_ROUND_UP(value, (1 << 5)); + } + if (scale > E1000_LTRV_SCALE_MAX) { + DEBUGOUT1("Invalid LTR latency scale %d\n", scale); + return -E1000_ERR_CONFIG; + } + lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value); + + /* Determine the maximum latency tolerated by the platform */ + e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop); + e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); + max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop); + + if (lat_enc > max_ltr_enc) { + lat_enc = max_ltr_enc; + lat_ns = e1000_ltr2ns(max_ltr_enc); + } + + if (lat_ns) { + lat_ns *= speed * 1000; + lat_ns /= 8; + lat_ns /= 1000000000; + obff_hwm = (s32)(rxa - lat_ns); + } + + if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) { + DEBUGOUT1("Invalid high water mark %d\n", obff_hwm); + return -E1000_ERR_CONFIG; + } + } + + /* Set Snoop and No-Snoop latencies the same */ + reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); + E1000_WRITE_REG(hw, E1000_LTRV, reg); + + /* Set OBFF high water mark */ + reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK; + reg |= obff_hwm; + E1000_WRITE_REG(hw, E1000_SVT, reg); + + /* Enable OBFF */ + reg = E1000_READ_REG(hw, E1000_SVCR); + reg |= E1000_SVCR_OFF_EN; + /* Always unblock interrupts to the CPU even when the system is + * in OBFF mode. This ensures that small round-robin traffic + * (like ping) does not get dropped or experience long latency. + */ + reg |= E1000_SVCR_OFF_MASKINT; + E1000_WRITE_REG(hw, E1000_SVCR, reg); + + return E1000_SUCCESS; +} + +/** + * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer + * @hw: pointer to the HW structure + * @itr: interrupt throttling rate + * + * Configure OBFF with the updated interrupt rate. + **/ +static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr) +{ + u32 svcr; + s32 timer; + + DEBUGFUNC("e1000_set_obff_timer_pch_lpt"); + + /* Convert ITR value into microseconds for OBFF timer */ + timer = itr & E1000_ITR_MASK; + timer = (timer * E1000_ITR_MULT) / 1000; + + if ((timer < 0) || (timer > E1000_ITR_MASK)) { + DEBUGOUT1("Invalid OBFF timer %d\n", timer); + return -E1000_ERR_CONFIG; + } + + svcr = E1000_READ_REG(hw, E1000_SVCR); + svcr &= ~E1000_SVCR_OFF_TIMER_MASK; + svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT; + E1000_WRITE_REG(hw, E1000_SVCR, svcr); + + return E1000_SUCCESS; +} + +/** + * e1000_check_for_copper_link_ich8lan - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + u16 phy_reg; + + DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); + + /* We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return E1000_SUCCESS; + + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (hw->mac.type == e1000_pchlan) { + ret_val = e1000_k1_gig_workaround_hv(hw, link); + if (ret_val) + return ret_val; + } + + /* When connected at 10Mbps half-duplex, 82579 parts are excessively + * aggressive resulting in many collisions. To avoid this, increase + * the IPG and reduce Rx latency in the PHY. + */ + if ((hw->mac.type == e1000_pch2lan) && link) { + u32 reg; + reg = E1000_READ_REG(hw, E1000_STATUS); + if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) { + reg = E1000_READ_REG(hw, E1000_TIPG); + reg &= ~E1000_TIPG_IPGT_MASK; + reg |= 0xFF; + E1000_WRITE_REG(hw, E1000_TIPG, reg); + + /* Reduce Rx latency in analog PHY */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0); + + hw->phy.ops.release(hw); + + if (ret_val) + return ret_val; + } + } + + /* Work-around I218 hang issue */ + if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || + (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) { + ret_val = e1000_k1_workaround_lpt_lp(hw, link); + if (ret_val) + return ret_val; + } + + if (hw->mac.type == e1000_pch_lpt) { + /* Set platform power management values for Latency Tolerance + * Reporting (LTR) and Optimized Buffer Flush/Fill (OBFF). + */ + ret_val = e1000_platform_pm_pch_lpt(hw, link); + if (ret_val) + return ret_val; + } + + /* Clear link partner's EEE ability */ + hw->dev_spec.ich8lan.eee_lp_ability = 0; + + if (!link) + return E1000_SUCCESS; /* No link detected */ + + mac->get_link_status = FALSE; + + switch (hw->mac.type) { + case e1000_pch2lan: + ret_val = e1000_k1_workaround_lv(hw); + if (ret_val) + return ret_val; + /* fall-thru */ + case e1000_pchlan: + if (hw->phy.type == e1000_phy_82578) { + ret_val = e1000_link_stall_workaround_hv(hw); + if (ret_val) + return ret_val; + } + + /* Workaround for PCHx parts in half-duplex: + * Set the number of preambles removed from the packet + * when it is passed from the PHY to the MAC to prevent + * the MAC from misinterpreting the packet type. + */ + hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); + phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; + + if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != + E1000_STATUS_FD) + phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); + + hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); + break; + default: + break; + } + + /* Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* Enable/Disable EEE after link up */ + ret_val = e1000_set_eee_pchlan(hw); + if (ret_val) + return ret_val; + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + + return ret_val; +} + +/** + * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers + * @hw: pointer to the HW structure + * + * Initialize family-specific function pointers for PHY, MAC, and NVM. + **/ +void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_ich8lan"); + + hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; + hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; + switch (hw->mac.type) { + case e1000_ich8lan: + case e1000_ich9lan: + case e1000_ich10lan: + hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; + break; + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + hw->phy.ops.init_params = e1000_init_phy_params_pchlan; + break; + default: + break; + } +} + +/** + * e1000_acquire_nvm_ich8lan - Acquire NVM mutex + * @hw: pointer to the HW structure + * + * Acquires the mutex for performing NVM operations. + **/ +static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_acquire_nvm_ich8lan"); + + E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex); + + return E1000_SUCCESS; +} + +/** + * e1000_release_nvm_ich8lan - Release NVM mutex + * @hw: pointer to the HW structure + * + * Releases the mutex used while performing NVM operations. + **/ +static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_release_nvm_ich8lan"); + + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex); + + return; +} + +/** + * e1000_acquire_swflag_ich8lan - Acquire software control flag + * @hw: pointer to the HW structure + * + * Acquires the software control flag for performing PHY and select + * MAC CSR accesses. + **/ +static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_acquire_swflag_ich8lan"); + + E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) + break; + + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT("SW has already locked the resource.\n"); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + + timeout = SW_FLAG_TIMEOUT; + + extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + + while (timeout) { + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) + break; + + msec_delay_irq(1); + timeout--; + } + + if (!timeout) { + DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", + E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + ret_val = -E1000_ERR_CONFIG; + goto out; + } + +out: + if (ret_val) + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + return ret_val; +} + +/** + * e1000_release_swflag_ich8lan - Release software control flag + * @hw: pointer to the HW structure + * + * Releases the software control flag for performing PHY and select + * MAC CSR accesses. + **/ +static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_release_swflag_ich8lan"); + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); + } else { + DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); + } + + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + return; +} + +/** + * e1000_check_mng_mode_ich8lan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has any manageability enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_ich8lan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_ICH_FWSM_FW_VALID) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_check_mng_mode_pchlan - Checks management mode + * @hw: pointer to the HW structure + * + * This checks if the adapter has iAMT enabled. + * This is a function pointer entry point only called by read/write + * routines for the PHY and NVM parts. + **/ +static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_mng_mode_pchlan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_ICH_FWSM_FW_VALID) && + (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); +} + +/** + * e1000_rar_set_pch2lan - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. For 82579, RAR[0] is the base address register that is to + * contain the MAC address but RAR[1-6] are reserved for manageability (ME). + * Use SHRA[0-3] in place of those reserved for ME. + **/ +static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_pch2lan"); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + if (index == 0) { + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); + return; + } + + if (index < hw->mac.rar_entry_count) { + s32 ret_val; + + ret_val = e1000_acquire_swflag_ich8lan(hw); + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); + E1000_WRITE_FLUSH(hw); + + e1000_release_swflag_ich8lan(hw); + + /* verify the register updates */ + if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && + (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) + return; + + DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", + (index - 1), E1000_READ_REG(hw, E1000_FWSM)); + } + +out: + DEBUGOUT1("Failed to write receive address at index %d\n", index); +} + +/** + * e1000_rar_set_pch_lpt - Set receive address registers + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address register array at index to the address passed + * in by addr. For LPT, RAR[0] is the base address register that is to + * contain the MAC address. SHRA[0-10] are the shared receive address + * registers that are shared between the Host and manageability engine (ME). + **/ +static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + u32 wlock_mac; + + DEBUGFUNC("e1000_rar_set_pch_lpt"); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + if (index == 0) { + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); + return; + } + + /* The manageability engine (ME) can lock certain SHRAR registers that + * it is using - those registers are unavailable for use. + */ + if (index < hw->mac.rar_entry_count) { + wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & + E1000_FWSM_WLOCK_MAC_MASK; + wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; + + /* Check if all SHRAR registers are locked */ + if (wlock_mac == 1) + goto out; + + if ((wlock_mac == 0) || (index <= wlock_mac)) { + s32 ret_val; + + ret_val = e1000_acquire_swflag_ich8lan(hw); + + if (ret_val) + goto out; + + E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), + rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), + rar_high); + E1000_WRITE_FLUSH(hw); + + e1000_release_swflag_ich8lan(hw); + + /* verify the register updates */ + if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && + (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) + return; + } + } + +out: + DEBUGOUT1("Failed to write receive address at index %d\n", index); +} + +/** + * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array of the PCH2 MAC and PHY. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, + u8 *mc_addr_list, + u32 mc_addr_count) +{ + u16 phy_reg = 0; + int i; + s32 ret_val; + + DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); + + e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) + goto release; + + for (i = 0; i < hw->mac.mta_reg_count; i++) { + hw->phy.ops.write_reg_page(hw, BM_MTA(i), + (u16)(hw->mac.mta_shadow[i] & + 0xFFFF)); + hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), + (u16)((hw->mac.mta_shadow[i] >> 16) & + 0xFFFF)); + } + + e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + +release: + hw->phy.ops.release(hw); +} + +/** + * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Checks if firmware is blocking the reset of the PHY. + * This is a function pointer entry point only called by + * reset routines. + **/ +static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) +{ + u32 fwsm; + + DEBUGFUNC("e1000_check_reset_block_ich8lan"); + + fwsm = E1000_READ_REG(hw, E1000_FWSM); + + return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS + : E1000_BLK_PHY_RESET; +} + +/** + * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states + * @hw: pointer to the HW structure + * + * Assumes semaphore already acquired. + * + **/ +static s32 e1000_write_smbus_addr(struct e1000_hw *hw) +{ + u16 phy_data; + u32 strap = E1000_READ_REG(hw, E1000_STRAP); + u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> + E1000_STRAP_SMT_FREQ_SHIFT; + s32 ret_val; + + strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; + + ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~HV_SMB_ADDR_MASK; + phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); + phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; + + if (hw->phy.type == e1000_phy_i217) { + /* Restore SMBus frequency */ + if (freq--) { + phy_data &= ~HV_SMB_ADDR_FREQ_MASK; + phy_data |= (freq & (1 << 0)) << + HV_SMB_ADDR_FREQ_LOW_SHIFT; + phy_data |= (freq & (1 << 1)) << + (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); + } else { + DEBUGOUT("Unsupported SMB frequency in PHY\n"); + } + } + + return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); +} + +/** + * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration + * @hw: pointer to the HW structure + * + * SW should configure the LCD from the NVM extended configuration region + * as a workaround for certain parts. + **/ +static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; + s32 ret_val = E1000_SUCCESS; + u16 word_addr, reg_data, reg_addr, phy_page = 0; + + DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); + + /* Initialize the PHY from the NVM on ICH platforms. This + * is needed due to an issue where the NVM configuration is + * not properly autoloaded after power transitions. + * Therefore, after each PHY reset, we will load the + * configuration data out of the NVM manually. + */ + switch (hw->mac.type) { + case e1000_ich8lan: + if (phy->type != e1000_phy_igp_3) + return ret_val; + + if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || + (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; + break; + } + /* Fall-thru */ + case e1000_pchlan: + case e1000_pch2lan: + case e1000_pch_lpt: + sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; + break; + default: + return ret_val; + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + data = E1000_READ_REG(hw, E1000_FEXTNVM); + if (!(data & sw_cfg_mask)) + goto release; + + /* Make sure HW does not configure LCD from PHY + * extended configuration before SW configuration + */ + data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if ((hw->mac.type < e1000_pch2lan) && + (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) + goto release; + + cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); + cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; + cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; + if (!cnf_size) + goto release; + + cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; + cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; + + if (((hw->mac.type == e1000_pchlan) && + !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || + (hw->mac.type > e1000_pchlan)) { + /* HW configures the SMBus address and LEDs when the + * OEM and LCD Write Enable bits are set in the NVM. + * When both NVM bits are cleared, SW will configure + * them instead. + */ + ret_val = e1000_write_smbus_addr(hw); + if (ret_val) + goto release; + + data = E1000_READ_REG(hw, E1000_LEDCTL); + ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, + (u16)data); + if (ret_val) + goto release; + } + + /* Configure LCD from extended configuration region. */ + + /* cnf_base_addr is in DWORD */ + word_addr = (u16)(cnf_base_addr << 1); + + for (i = 0; i < cnf_size; i++) { + ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, + ®_data); + if (ret_val) + goto release; + + ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), + 1, ®_addr); + if (ret_val) + goto release; + + /* Save off the PHY page for future writes. */ + if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { + phy_page = reg_data; + continue; + } + + reg_addr &= PHY_REG_MASK; + reg_addr |= phy_page; + + ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, + reg_data); + if (ret_val) + goto release; + } + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_k1_gig_workaround_hv - K1 Si workaround + * @hw: pointer to the HW structure + * @link: link up bool flag + * + * If K1 is enabled for 1Gbps, the MAC might stall when transitioning + * from a lower speed. This workaround disables K1 whenever link is at 1Gig + * If link is down, the function will restore the default K1 setting located + * in the NVM. + **/ +static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) +{ + s32 ret_val = E1000_SUCCESS; + u16 status_reg = 0; + bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; + + DEBUGFUNC("e1000_k1_gig_workaround_hv"); + + if (hw->mac.type != e1000_pchlan) + return E1000_SUCCESS; + + /* Wrap the whole flow with the sw flag */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ + if (link) { + if (hw->phy.type == e1000_phy_82578) { + ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, + &status_reg); + if (ret_val) + goto release; + + status_reg &= BM_CS_STATUS_LINK_UP | + BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK; + + if (status_reg == (BM_CS_STATUS_LINK_UP | + BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + k1_enable = FALSE; + } + + if (hw->phy.type == e1000_phy_82577) { + ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, + &status_reg); + if (ret_val) + goto release; + + status_reg &= HV_M_STATUS_LINK_UP | + HV_M_STATUS_AUTONEG_COMPLETE | + HV_M_STATUS_SPEED_MASK; + + if (status_reg == (HV_M_STATUS_LINK_UP | + HV_M_STATUS_AUTONEG_COMPLETE | + HV_M_STATUS_SPEED_1000)) + k1_enable = FALSE; + } + + /* Link stall fix for link up */ + ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), + 0x0100); + if (ret_val) + goto release; + + } else { + /* Link stall fix for link down */ + ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), + 0x4100); + if (ret_val) + goto release; + } + + ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); + +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_configure_k1_ich8lan - Configure K1 power state + * @hw: pointer to the HW structure + * @enable: K1 state to configure + * + * Configure the K1 power state based on the provided parameter. + * Assumes semaphore already acquired. + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + **/ +s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) +{ + s32 ret_val; + u32 ctrl_reg = 0; + u32 ctrl_ext = 0; + u32 reg = 0; + u16 kmrn_reg = 0; + + DEBUGFUNC("e1000_configure_k1_ich8lan"); + + ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + &kmrn_reg); + if (ret_val) + return ret_val; + + if (k1_enable) + kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; + else + kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; + + ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, + kmrn_reg); + if (ret_val) + return ret_val; + + usec_delay(20); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); + + reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + reg |= E1000_CTRL_FRCSPD; + E1000_WRITE_REG(hw, E1000_CTRL, reg); + + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); + E1000_WRITE_FLUSH(hw); + usec_delay(20); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); + usec_delay(20); + + return E1000_SUCCESS; +} + +/** + * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration + * @hw: pointer to the HW structure + * @d0_state: boolean if entering d0 or d3 device state + * + * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are + * collectively called OEM bits. The OEM Write Enable bit and SW Config bit + * in NVM determines whether HW should configure LPLU and Gbe Disable. + **/ +static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) +{ + s32 ret_val = 0; + u32 mac_reg; + u16 oem_reg; + + DEBUGFUNC("e1000_oem_bits_config_ich8lan"); + + if (hw->mac.type < e1000_pchlan) + return ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + if (hw->mac.type == e1000_pchlan) { + mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) + goto release; + } + + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); + if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) + goto release; + + mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); + + ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); + if (ret_val) + goto release; + + oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); + + if (d0_state) { + if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) + oem_reg |= HV_OEM_BITS_GBE_DIS; + + if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) + oem_reg |= HV_OEM_BITS_LPLU; + } else { + if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) + oem_reg |= HV_OEM_BITS_GBE_DIS; + + if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | + E1000_PHY_CTRL_NOND0A_LPLU)) + oem_reg |= HV_OEM_BITS_LPLU; + } + + /* Set Restart auto-neg to activate the bits */ + if ((d0_state || (hw->mac.type != e1000_pchlan)) && + !hw->phy.ops.check_reset_block(hw)) + oem_reg |= HV_OEM_BITS_RESTART_AN; + + ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); + +release: + hw->phy.ops.release(hw); + + return ret_val; +} + + +/** + * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode + * @hw: pointer to the HW structure + **/ +static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) +{ + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); + + ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); + if (ret_val) + return ret_val; + + data |= HV_KMRN_MDIO_SLOW; + + ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); + + return ret_val; +} + +/** + * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be + * done after every PHY reset. + **/ +static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_data; + + DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); + + if (hw->mac.type != e1000_pchlan) + return E1000_SUCCESS; + + /* Set MDIO slow mode before any other MDIO access */ + if (hw->phy.type == e1000_phy_82577) { + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + } + + if (((hw->phy.type == e1000_phy_82577) && + ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || + ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { + /* Disable generation of early preamble */ + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); + if (ret_val) + return ret_val; + + /* Preamble tuning for SSC */ + ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, + 0xA204); + if (ret_val) + return ret_val; + } + + if (hw->phy.type == e1000_phy_82578) { + /* Return registers to default by doing a soft reset then + * writing 0x3140 to the control register. + */ + if (hw->phy.revision < 2) { + e1000_phy_sw_reset_generic(hw); + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, + 0x3140); + } + } + + /* Select page 0 */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + hw->phy.addr = 1; + ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); + hw->phy.ops.release(hw); + if (ret_val) + return ret_val; + + /* Configure the K1 Si workaround during phy reset assuming there is + * link so that it disables K1 if link is in 1Gbps. + */ + ret_val = e1000_k1_gig_workaround_hv(hw, TRUE); + if (ret_val) + return ret_val; + + /* Workaround for link disconnects on a busy hub in half duplex */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); + if (ret_val) + goto release; + ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, + phy_data & 0x00FF); + if (ret_val) + goto release; + + /* set MSE higher to enable link to stay up when noise is high */ + ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY + * @hw: pointer to the HW structure + **/ +void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) +{ + u32 mac_reg; + u16 i, phy_reg = 0; + s32 ret_val; + + DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) + goto release; + + /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ + for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { + mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); + hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), + (u16)((mac_reg >> 16) & 0xFFFF)); + + mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); + hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), + (u16)(mac_reg & 0xFFFF)); + hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), + (u16)((mac_reg & E1000_RAH_AV) + >> 16)); + } + + e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + +release: + hw->phy.ops.release(hw); +} + +static u32 e1000_calc_rx_da_crc(u8 mac[]) +{ + u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ + u32 i, j, mask, crc; + + DEBUGFUNC("e1000_calc_rx_da_crc"); + + crc = 0xffffffff; + for (i = 0; i < 6; i++) { + crc = crc ^ mac[i]; + for (j = 8; j > 0; j--) { + mask = (crc & 1) * (-1); + crc = (crc >> 1) ^ (poly & mask); + } + } + return ~crc; +} + +/** + * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation + * with 82579 PHY + * @hw: pointer to the HW structure + * @enable: flag to enable/disable workaround when enabling/disabling jumbos + **/ +s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) +{ + s32 ret_val = E1000_SUCCESS; + u16 phy_reg, data; + u32 mac_reg; + u16 i; + + DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); + + if (hw->mac.type < e1000_pch2lan) + return E1000_SUCCESS; + + /* disable Rx path while enabling/disabling workaround */ + hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), + phy_reg | (1 << 14)); + if (ret_val) + return ret_val; + + if (enable) { + /* Write Rx addresses (rar_entry_count for RAL/H, +4 for + * SHRAL/H) and initial CRC values to the MAC + */ + for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { + u8 mac_addr[ETH_ADDR_LEN] = {0}; + u32 addr_high, addr_low; + + addr_high = E1000_READ_REG(hw, E1000_RAH(i)); + if (!(addr_high & E1000_RAH_AV)) + continue; + addr_low = E1000_READ_REG(hw, E1000_RAL(i)); + mac_addr[0] = (addr_low & 0xFF); + mac_addr[1] = ((addr_low >> 8) & 0xFF); + mac_addr[2] = ((addr_low >> 16) & 0xFF); + mac_addr[3] = ((addr_low >> 24) & 0xFF); + mac_addr[4] = (addr_high & 0xFF); + mac_addr[5] = ((addr_high >> 8) & 0xFF); + + E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), + e1000_calc_rx_da_crc(mac_addr)); + } + + /* Write Rx addresses to the PHY */ + e1000_copy_rx_addrs_to_phy_ich8lan(hw); + + /* Enable jumbo frame workaround in the MAC */ + mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); + mac_reg &= ~(1 << 14); + mac_reg |= (7 << 15); + E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); + + mac_reg = E1000_READ_REG(hw, E1000_RCTL); + mac_reg |= E1000_RCTL_SECRC; + E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); + + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + &data); + if (ret_val) + return ret_val; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + data | (1 << 0)); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + &data); + if (ret_val) + return ret_val; + data &= ~(0xF << 8); + data |= (0xB << 8); + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + data); + if (ret_val) + return ret_val; + + /* Enable jumbo frame workaround in the PHY */ + hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); + data &= ~(0x7F << 5); + data |= (0x37 << 5); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); + data &= ~(1 << 13); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); + data &= ~(0x3FF << 2); + data |= (0x1A << 2); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); + ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | + (1 << 10)); + if (ret_val) + return ret_val; + } else { + /* Write MAC register values back to h/w defaults */ + mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); + mac_reg &= ~(0xF << 14); + E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); + + mac_reg = E1000_READ_REG(hw, E1000_RCTL); + mac_reg &= ~E1000_RCTL_SECRC; + E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); + + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + &data); + if (ret_val) + return ret_val; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_CTRL_OFFSET, + data & ~(1 << 0)); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + &data); + if (ret_val) + return ret_val; + data &= ~(0xF << 8); + data |= (0xB << 8); + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_HD_CTRL, + data); + if (ret_val) + return ret_val; + + /* Write PHY register values back to h/w defaults */ + hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); + data &= ~(0x7F << 5); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); + data |= (1 << 13); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); + data &= ~(0x3FF << 2); + data |= (0x8 << 2); + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); + if (ret_val) + return ret_val; + hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); + ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & + ~(1 << 10)); + if (ret_val) + return ret_val; + } + + /* re-enable Rx path after enabling/disabling workaround */ + return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & + ~(1 << 14)); +} + +/** + * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be + * done after every PHY reset. + **/ +static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); + + if (hw->mac.type != e1000_pch2lan) + return E1000_SUCCESS; + + /* Set MDIO slow mode before any other MDIO access */ + ret_val = e1000_set_mdio_slow_mode_hv(hw); + if (ret_val) + return ret_val; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + /* set MSE higher to enable link to stay up when noise is high */ + ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); + if (ret_val) + goto release; + /* drop link after 5 times MSE threshold was reached */ + ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); +release: + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_k1_gig_workaround_lv - K1 Si workaround + * @hw: pointer to the HW structure + * + * Workaround to set the K1 beacon duration for 82579 parts + **/ +static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 status_reg = 0; + u32 mac_reg; + u16 phy_reg; + + DEBUGFUNC("e1000_k1_workaround_lv"); + + if (hw->mac.type != e1000_pch2lan) + return E1000_SUCCESS; + + /* Set K1 beacon duration based on 1Gbps speed or otherwise */ + ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); + if (ret_val) + return ret_val; + + if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) + == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { + mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); + mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; + + ret_val = hw->phy.ops.read_reg(hw, I82579_LPI_CTRL, &phy_reg); + if (ret_val) + return ret_val; + + if (status_reg & HV_M_STATUS_SPEED_1000) { + u16 pm_phy_reg; + + mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; + phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; + /* LV 1G Packet drop issue wa */ + ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, + &pm_phy_reg); + if (ret_val) + return ret_val; + pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA; + ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, + pm_phy_reg); + if (ret_val) + return ret_val; + } else { + mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; + phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; + } + E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); + ret_val = hw->phy.ops.write_reg(hw, I82579_LPI_CTRL, phy_reg); + } + + return ret_val; +} + +/** + * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware + * @hw: pointer to the HW structure + * @gate: boolean set to TRUE to gate, FALSE to ungate + * + * Gate/ungate the automatic PHY configuration via hardware; perform + * the configuration via software instead. + **/ +static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) +{ + u32 extcnf_ctrl; + + DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); + + if (hw->mac.type < e1000_pch2lan) + return; + + extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); + + if (gate) + extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; + else + extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; + + E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); +} + +/** + * e1000_lan_init_done_ich8lan - Check for PHY config completion + * @hw: pointer to the HW structure + * + * Check the appropriate indication the MAC has finished configuring the + * PHY after a software reset. + **/ +static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) +{ + u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; + + DEBUGFUNC("e1000_lan_init_done_ich8lan"); + + /* Wait for basic configuration completes before proceeding */ + do { + data = E1000_READ_REG(hw, E1000_STATUS); + data &= E1000_STATUS_LAN_INIT_DONE; + usec_delay(100); + } while ((!data) && --loop); + + /* If basic configuration is incomplete before the above loop + * count reaches 0, loading the configuration from NVM will + * leave the PHY in a bad state possibly resulting in no link. + */ + if (loop == 0) + DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); + + /* Clear the Init Done bit for the next init event */ + data = E1000_READ_REG(hw, E1000_STATUS); + data &= ~E1000_STATUS_LAN_INIT_DONE; + E1000_WRITE_REG(hw, E1000_STATUS, data); +} + +/** + * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset + * @hw: pointer to the HW structure + **/ +static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 reg; + + DEBUGFUNC("e1000_post_phy_reset_ich8lan"); + + if (hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; + + /* Allow time for h/w to get to quiescent state after reset */ + msec_delay(10); + + /* Perform any necessary post-reset workarounds */ + switch (hw->mac.type) { + case e1000_pchlan: + ret_val = e1000_hv_phy_workarounds_ich8lan(hw); + if (ret_val) + return ret_val; + break; + case e1000_pch2lan: + ret_val = e1000_lv_phy_workarounds_ich8lan(hw); + if (ret_val) + return ret_val; + break; + default: + break; + } + + /* Clear the host wakeup bit after lcd reset */ + if (hw->mac.type >= e1000_pchlan) { + hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); + reg &= ~BM_WUC_HOST_WU_BIT; + hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); + } + + /* Configure the LCD with the extended configuration region in NVM */ + ret_val = e1000_sw_lcd_config_ich8lan(hw); + if (ret_val) + return ret_val; + + /* Configure the LCD with the OEM bits in NVM */ + ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE); + + if (hw->mac.type == e1000_pch2lan) { + /* Ungate automatic PHY configuration on non-managed 82579 */ + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + msec_delay(10); + e1000_gate_hw_phy_config_ich8lan(hw, FALSE); + } + + /* Set EEE LPI Update Timer to 200usec */ + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + ret_val = e1000_write_emi_reg_locked(hw, + I82579_LPI_UPDATE_TIMER, + 0x1387); + hw->phy.ops.release(hw); + } + + return ret_val; +} + +/** + * e1000_phy_hw_reset_ich8lan - Performs a PHY reset + * @hw: pointer to the HW structure + * + * Resets the PHY + * This is a function pointer entry point called by drivers + * or other shared routines. + **/ +static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); + + /* Gate automatic PHY configuration by hardware on non-managed 82579 */ + if ((hw->mac.type == e1000_pch2lan) && + !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, TRUE); + + ret_val = e1000_phy_hw_reset_generic(hw); + if (ret_val) + return ret_val; + + return e1000_post_phy_reset_ich8lan(hw); +} + +/** + * e1000_set_lplu_state_pchlan - Set Low Power Link Up state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU state according to the active flag. For PCH, if OEM write + * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set + * the phy speed. This function will manually set the LPLU bit and restart + * auto-neg as hw would do. D3 and D0 LPLU will call the same function + * since it configures the same bit. + **/ +static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) +{ + s32 ret_val; + u16 oem_reg; + + DEBUGFUNC("e1000_set_lplu_state_pchlan"); + + ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); + if (ret_val) + return ret_val; + + if (active) + oem_reg |= HV_OEM_BITS_LPLU; + else + oem_reg &= ~HV_OEM_BITS_LPLU; + + if (!hw->phy.ops.check_reset_block(hw)) + oem_reg |= HV_OEM_BITS_RESTART_AN; + + return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); +} + +/** + * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D0 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); + + if (phy->type == e1000_phy_ife) + return E1000_SUCCESS; + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + + if (active) { + phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else { + phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state + * @hw: pointer to the HW structure + * @active: TRUE to enable LPLU, FALSE to disable + * + * Sets the LPLU D3 state according to the active flag. When + * activating LPLU this function also disables smart speed + * and vice versa. LPLU will not be activated unless the + * device autonegotiation advertisement meets standards of + * either 10 or 10/100 or 10/100/1000 at all duplexes. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 phy_ctrl; + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + + if (!active) { + phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (phy->type != e1000_phy_igp_3) + return E1000_SUCCESS; + + /* Call gig speed drop workaround on LPLU before accessing + * any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + } + + return ret_val; +} + +/** + * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 + * @hw: pointer to the HW structure + * @bank: pointer to the variable that returns the active bank + * + * Reads signature byte from the NVM using the flash access registers. + * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. + **/ +static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) +{ + u32 eecd; + struct e1000_nvm_info *nvm = &hw->nvm; + u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); + u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; + u8 sig_byte = 0; + s32 ret_val; + + DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); + + switch (hw->mac.type) { + case e1000_ich8lan: + case e1000_ich9lan: + eecd = E1000_READ_REG(hw, E1000_EECD); + if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == + E1000_EECD_SEC1VAL_VALID_MASK) { + if (eecd & E1000_EECD_SEC1VAL) + *bank = 1; + else + *bank = 0; + + return E1000_SUCCESS; + } + DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); + /* fall-thru */ + default: + /* set bank to 0 in case flash read fails */ + *bank = 0; + + /* Check bank 0 */ + ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, + &sig_byte); + if (ret_val) + return ret_val; + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 0; + return E1000_SUCCESS; + } + + /* Check bank 1 */ + ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + + bank1_offset, + &sig_byte); + if (ret_val) + return ret_val; + if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == + E1000_ICH_NVM_SIG_VALUE) { + *bank = 1; + return E1000_SUCCESS; + } + + DEBUGOUT("ERROR: No valid NVM bank present\n"); + return -E1000_ERR_NVM; + } +} + +/** + * e1000_read_nvm_ich8lan - Read word(s) from the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to read. + * @words: Size of data to read in words + * @data: Pointer to the word(s) to read at offset. + * + * Reads a word(s) from the NVM using the flash access registers. + **/ +static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 act_offset; + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + u16 i, word; + + DEBUGFUNC("e1000_read_nvm_ich8lan"); + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + nvm->ops.acquire(hw); + + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + act_offset = (bank) ? nvm->flash_bank_size : 0; + act_offset += offset; + + ret_val = E1000_SUCCESS; + for (i = 0; i < words; i++) { + if (dev_spec->shadow_ram[offset+i].modified) { + data[i] = dev_spec->shadow_ram[offset+i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, + act_offset + i, + &word); + if (ret_val) + break; + data[i] = word; + } + } + + nvm->ops.release(hw); + +out: + if (ret_val) + DEBUGOUT1("NVM read error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_flash_cycle_init_ich8lan - Initialize flash + * @hw: pointer to the HW structure + * + * This function does initial flash setup so that a new read/write/erase cycle + * can be started. + **/ +static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) +{ + union ich8_hws_flash_status hsfsts; + s32 ret_val = -E1000_ERR_NVM; + + DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); + + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* Check if the flash descriptor is valid */ + if (!hsfsts.hsf_status.fldesvalid) { + DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); + return -E1000_ERR_NVM; + } + + /* Clear FCERR and DAEL in hw status by writing 1 */ + hsfsts.hsf_status.flcerr = 1; + hsfsts.hsf_status.dael = 1; + + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + + /* Either we should have a hardware SPI cycle in progress + * bit to check against, in order to start a new cycle or + * FDONE bit should be changed in the hardware so that it + * is 1 after hardware reset, which can then be used as an + * indication whether a cycle is in progress or has been + * completed. + */ + + if (!hsfsts.hsf_status.flcinprog) { + /* There is no cycle running at present, + * so we can start a cycle. + * Begin by setting Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); + ret_val = E1000_SUCCESS; + } else { + s32 i; + + /* Otherwise poll for sometime so the current + * cycle has a chance to end before giving up. + */ + for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (!hsfsts.hsf_status.flcinprog) { + ret_val = E1000_SUCCESS; + break; + } + usec_delay(1); + } + if (ret_val == E1000_SUCCESS) { + /* Successful in waiting for previous cycle to timeout, + * now set the Flash Cycle Done. + */ + hsfsts.hsf_status.flcdone = 1; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, + hsfsts.regval); + } else { + DEBUGOUT("Flash controller busy, cannot get access\n"); + } + } + + return ret_val; +} + +/** + * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) + * @hw: pointer to the HW structure + * @timeout: maximum time to wait for completion + * + * This function starts a flash cycle and waits for its completion. + **/ +static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) +{ + union ich8_hws_flash_ctrl hsflctl; + union ich8_hws_flash_status hsfsts; + u32 i = 0; + + DEBUGFUNC("e1000_flash_cycle_ich8lan"); + + /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcgo = 1; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + /* wait till FDONE bit is set to 1 */ + do { + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcdone) + break; + usec_delay(1); + } while (i++ < timeout); + + if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) + return E1000_SUCCESS; + + return -E1000_ERR_NVM; +} + +/** + * e1000_read_flash_word_ich8lan - Read word from flash + * @hw: pointer to the HW structure + * @offset: offset to data location + * @data: pointer to the location for storing the data + * + * Reads the flash word at offset into data. Offset is converted + * to bytes before read. + **/ +static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, + u16 *data) +{ + DEBUGFUNC("e1000_read_flash_word_ich8lan"); + + if (!data) + return -E1000_ERR_NVM; + + /* Must convert offset into bytes. */ + offset <<= 1; + + return e1000_read_flash_data_ich8lan(hw, offset, 2, data); +} + +/** + * e1000_read_flash_byte_ich8lan - Read byte from flash + * @hw: pointer to the HW structure + * @offset: The offset of the byte to read. + * @data: Pointer to a byte to store the value read. + * + * Reads a single byte from the NVM using the flash access registers. + **/ +static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 *data) +{ + s32 ret_val; + u16 word = 0; + + ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); + if (ret_val) + return ret_val; + + *data = (u8)word; + + return E1000_SUCCESS; +} + +/** + * e1000_read_flash_data_ich8lan - Read byte or word from NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte or word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: Pointer to the word to store the value read. + * + * Reads a byte or word from the NVM using the flash access registers. + **/ +static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 *data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val = -E1000_ERR_NVM; + u8 count = 0; + + DEBUGFUNC("e1000_read_flash_data_ich8lan"); + + if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + + flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_READ_COMMAND_TIMEOUT); + + /* Check if FCERR is set to 1, if set to 1, clear it + * and try the whole sequence a few more times, else + * read in (shift in) the Flash Data0, the order is + * least significant byte first msb to lsb + */ + if (ret_val == E1000_SUCCESS) { + flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); + if (size == 1) + *data = (u8)(flash_data & 0x000000FF); + else if (size == 2) + *data = (u16)(flash_data & 0x0000FFFF); + break; + } else { + /* If we've gotten here, then things are probably + * completely hosed, but if the error condition is + * detected, it won't hurt to give it another try... + * ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) { + /* Repeat for some time before giving up. */ + continue; + } else if (!hsfsts.hsf_status.flcdone) { + DEBUGOUT("Timeout error - flash cycle did not complete.\n"); + break; + } + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_write_nvm_ich8lan - Write word(s) to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the word(s) to write. + * @words: Size of data to write in words + * @data: Pointer to the word(s) to write at offset. + * + * Writes a byte or word to the NVM using the flash access registers. + **/ +static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u16 i; + + DEBUGFUNC("e1000_write_nvm_ich8lan"); + + if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + nvm->ops.acquire(hw); + + for (i = 0; i < words; i++) { + dev_spec->shadow_ram[offset+i].modified = TRUE; + dev_spec->shadow_ram[offset+i].value = data[i]; + } + + nvm->ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM + * @hw: pointer to the HW structure + * + * The NVM checksum is updated by calling the generic update_nvm_checksum, + * which writes the checksum to the shadow ram. The changes in the shadow + * ram are then committed to the EEPROM by processing each bank at a time + * checking for the modified bit and writing only the pending changes. + * After a successful commit, the shadow ram is cleared and is ready for + * future writes. + **/ +static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 i, act_offset, new_bank_offset, old_bank_offset, bank; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); + + ret_val = e1000_update_nvm_checksum_generic(hw); + if (ret_val) + goto out; + + if (nvm->type != e1000_nvm_flash_sw) + goto out; + + nvm->ops.acquire(hw); + + /* We're writing to the opposite bank so if we're on bank 1, + * write to bank 0 etc. We also need to erase the segment that + * is going to be written + */ + ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); + if (ret_val != E1000_SUCCESS) { + DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); + bank = 0; + } + + if (bank == 0) { + new_bank_offset = nvm->flash_bank_size; + old_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); + if (ret_val) + goto release; + } else { + old_bank_offset = nvm->flash_bank_size; + new_bank_offset = 0; + ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); + if (ret_val) + goto release; + } + + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + /* Determine whether to write the value stored + * in the other NVM bank or a modified value stored + * in the shadow RAM + */ + if (dev_spec->shadow_ram[i].modified) { + data = dev_spec->shadow_ram[i].value; + } else { + ret_val = e1000_read_flash_word_ich8lan(hw, i + + old_bank_offset, + &data); + if (ret_val) + break; + } + + /* If the word is 0x13, then make sure the signature bits + * (15:14) are 11b until the commit has completed. + * This will allow us to write 10b which indicates the + * signature is valid. We want to do this after the write + * has completed so that we don't mark the segment valid + * while the write is still in progress + */ + if (i == E1000_ICH_NVM_SIG_WORD) + data |= E1000_ICH_NVM_SIG_MASK; + + /* Convert offset to bytes. */ + act_offset = (i + new_bank_offset) << 1; + + usec_delay(100); + /* Write the bytes to the new bank. */ + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset, + (u8)data); + if (ret_val) + break; + + usec_delay(100); + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset + 1, + (u8)(data >> 8)); + if (ret_val) + break; + } + + /* Don't bother writing the segment valid bits if sector + * programming failed. + */ + if (ret_val) { + DEBUGOUT("Flash commit failed.\n"); + goto release; + } + + /* Finally validate the new segment by setting bit 15:14 + * to 10b in word 0x13 , this can be done without an + * erase as well since these bits are 11 to start with + * and we need to change bit 14 to 0b + */ + act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; + ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); + if (ret_val) + goto release; + + data &= 0xBFFF; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, + act_offset * 2 + 1, + (u8)(data >> 8)); + if (ret_val) + goto release; + + /* And invalidate the previously valid segment by setting + * its signature word (0x13) high_byte to 0b. This can be + * done without an erase because flash erase sets all bits + * to 1's. We can write 1's to 0's without an erase + */ + act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; + ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); + if (ret_val) + goto release; + + /* Great! Everything worked, we can now clear the cached entries. */ + for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { + dev_spec->shadow_ram[i].modified = FALSE; + dev_spec->shadow_ram[i].value = 0xFFFF; + } + +release: + nvm->ops.release(hw); + + /* Reload the EEPROM, or else modifications will not appear + * until after the next adapter reset. + */ + if (!ret_val) { + nvm->ops.reload(hw); + msec_delay(10); + } + +out: + if (ret_val) + DEBUGOUT1("NVM update error: %d\n", ret_val); + + return ret_val; +} + +/** + * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. + * If the bit is 0, that the EEPROM had been modified, but the checksum was not + * calculated, in which case we need to calculate the checksum and set bit 6. + **/ +static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 data; + u16 word; + u16 valid_csum_mask; + + DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); + + /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, + * the checksum needs to be fixed. This bit is an indication that + * the NVM was prepared by OEM software and did not calculate + * the checksum...a likely scenario. + */ + switch (hw->mac.type) { + case e1000_pch_lpt: + word = NVM_COMPAT; + valid_csum_mask = NVM_COMPAT_VALID_CSUM; + break; + default: + word = NVM_FUTURE_INIT_WORD1; + valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; + break; + } + + ret_val = hw->nvm.ops.read(hw, word, 1, &data); + if (ret_val) + return ret_val; + + if (!(data & valid_csum_mask)) { + data |= valid_csum_mask; + ret_val = hw->nvm.ops.write(hw, word, 1, &data); + if (ret_val) + return ret_val; + ret_val = hw->nvm.ops.update(hw); + if (ret_val) + return ret_val; + } + + return e1000_validate_nvm_checksum_generic(hw); +} + +/** + * e1000_write_flash_data_ich8lan - Writes bytes to the NVM + * @hw: pointer to the HW structure + * @offset: The offset (in bytes) of the byte/word to read. + * @size: Size of data to read, 1=byte 2=word + * @data: The byte(s) to write to the NVM. + * + * Writes one/two bytes to the NVM using the flash access registers. + **/ +static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, + u8 size, u16 data) +{ + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + u32 flash_data = 0; + s32 ret_val; + u8 count = 0; + + DEBUGFUNC("e1000_write_ich8_data"); + + if (size < 1 || size > 2 || data > size * 0xff || + offset > ICH_FLASH_LINEAR_ADDR_MASK) + return -E1000_ERR_NVM; + + flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + + hw->nvm.flash_base_addr; + + do { + usec_delay(1); + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val != E1000_SUCCESS) + break; + + hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); + /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ + hsflctl.hsf_ctrl.fldbcount = size - 1; + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); + + if (size == 1) + flash_data = (u32)data & 0x00FF; + else + flash_data = (u32)data; + + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); + + /* check if FCERR is set to 1 , if set to 1, clear it + * and try the whole sequence a few more times else done + */ + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_WRITE_COMMAND_TIMEOUT); + if (ret_val == E1000_SUCCESS) + break; + + /* If we're here, then things are most likely + * completely hosed, but if the error condition + * is detected, it won't hurt to give it another + * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) + /* Repeat for some time before giving up. */ + continue; + if (!hsfsts.hsf_status.flcdone) { + DEBUGOUT("Timeout error - flash cycle did not complete.\n"); + break; + } + } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); + + return ret_val; +} + +/** + * e1000_write_flash_byte_ich8lan - Write a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The index of the byte to read. + * @data: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + **/ +static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, + u8 data) +{ + u16 word = (u16)data; + + DEBUGFUNC("e1000_write_flash_byte_ich8lan"); + + return e1000_write_flash_data_ich8lan(hw, offset, 1, word); +} + +/** + * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM + * @hw: pointer to the HW structure + * @offset: The offset of the byte to write. + * @byte: The byte to write to the NVM. + * + * Writes a single byte to the NVM using the flash access registers. + * Goes through a retry algorithm before giving up. + **/ +static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, + u32 offset, u8 byte) +{ + s32 ret_val; + u16 program_retries; + + DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); + + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (!ret_val) + return ret_val; + + for (program_retries = 0; program_retries < 100; program_retries++) { + DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); + usec_delay(100); + ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); + if (ret_val == E1000_SUCCESS) + break; + } + if (program_retries == 100) + return -E1000_ERR_NVM; + + return E1000_SUCCESS; +} + +/** + * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM + * @hw: pointer to the HW structure + * @bank: 0 for first bank, 1 for second bank, etc. + * + * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. + * bank N is 4096 * N + flash_reg_addr. + **/ +static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + union ich8_hws_flash_status hsfsts; + union ich8_hws_flash_ctrl hsflctl; + u32 flash_linear_addr; + /* bank size is in 16bit words - adjust to bytes */ + u32 flash_bank_size = nvm->flash_bank_size * 2; + s32 ret_val; + s32 count = 0; + s32 j, iteration, sector_size; + + DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); + + hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); + + /* Determine HW Sector size: Read BERASE bits of hw flash status + * register + * 00: The Hw sector is 256 bytes, hence we need to erase 16 + * consecutive sectors. The start index for the nth Hw sector + * can be calculated as = bank * 4096 + n * 256 + * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. + * The start index for the nth Hw sector can be calculated + * as = bank * 4096 + * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 + * (ich9 only, otherwise error condition) + * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 + */ + switch (hsfsts.hsf_status.berasesz) { + case 0: + /* Hw sector size 256 */ + sector_size = ICH_FLASH_SEG_SIZE_256; + iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; + break; + case 1: + sector_size = ICH_FLASH_SEG_SIZE_4K; + iteration = 1; + break; + case 2: + sector_size = ICH_FLASH_SEG_SIZE_8K; + iteration = 1; + break; + case 3: + sector_size = ICH_FLASH_SEG_SIZE_64K; + iteration = 1; + break; + default: + return -E1000_ERR_NVM; + } + + /* Start with the base address, then add the sector offset. */ + flash_linear_addr = hw->nvm.flash_base_addr; + flash_linear_addr += (bank) ? flash_bank_size : 0; + + for (j = 0; j < iteration ; j++) { + do { + /* Steps */ + ret_val = e1000_flash_cycle_init_ich8lan(hw); + if (ret_val) + return ret_val; + + /* Write a value 11 (block Erase) in Flash + * Cycle field in hw flash control + */ + hsflctl.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFCTL); + hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; + E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, + hsflctl.regval); + + /* Write the last 24 bits of an index within the + * block into Flash Linear address field in Flash + * Address. + */ + flash_linear_addr += (j * sector_size); + E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, + flash_linear_addr); + + ret_val = e1000_flash_cycle_ich8lan(hw, + ICH_FLASH_ERASE_COMMAND_TIMEOUT); + if (ret_val == E1000_SUCCESS) + break; + + /* Check if FCERR is set to 1. If 1, + * clear it and try the whole sequence + * a few more times else Done + */ + hsfsts.regval = E1000_READ_FLASH_REG16(hw, + ICH_FLASH_HSFSTS); + if (hsfsts.hsf_status.flcerr) + /* repeat for some time before giving up */ + continue; + else if (!hsfsts.hsf_status.flcdone) + return ret_val; + } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); + } + + return E1000_SUCCESS; +} + +/** + * e1000_valid_led_default_ich8lan - Set the default LED settings + * @hw: pointer to the HW structure + * @data: Pointer to the LED settings + * + * Reads the LED default settings from the NVM to data. If the NVM LED + * settings is all 0's or F's, set the LED default to a valid LED default + * setting. + **/ +static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_ich8lan"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT_ICH8LAN; + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init_pchlan - store LED configurations + * @hw: pointer to the HW structure + * + * PCH does not control LEDs via the LEDCTL register, rather it uses + * the PHY LED configuration register. + * + * PCH also does not have an "always on" or "always off" mode which + * complicates the ID feature. Instead of using the "on" mode to indicate + * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), + * use "link_up" mode. The LEDs will still ID on request if there is no + * link based on logic in e1000_led_[on|off]_pchlan(). + **/ +static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; + const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; + u16 data, i, temp, shift; + + DEBUGFUNC("e1000_id_led_init_pchlan"); + + /* Get default ID LED modes */ + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; + shift = (i * 5); + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode1 |= (ledctl_on << shift); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode1 |= (ledctl_off << shift); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode2 |= (ledctl_on << shift); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); + mac->ledctl_mode2 |= (ledctl_off << shift); + break; + default: + /* Do nothing */ + break; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_bus_info_ich8lan - Get/Set the bus type and width + * @hw: pointer to the HW structure + * + * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability + * register, so the the bus width is hard coded. + **/ +static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + + DEBUGFUNC("e1000_get_bus_info_ich8lan"); + + ret_val = e1000_get_bus_info_pcie_generic(hw); + + /* ICH devices are "PCI Express"-ish. They have + * a configuration space, but do not contain + * PCI Express Capability registers, so bus width + * must be hardcoded. + */ + if (bus->width == e1000_bus_width_unknown) + bus->width = e1000_bus_width_pcie_x1; + + return ret_val; +} + +/** + * e1000_reset_hw_ich8lan - Reset the hardware + * @hw: pointer to the HW structure + * + * Does a full reset of the hardware which includes a reset of the PHY and + * MAC. + **/ +static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u16 kum_cfg; + u32 ctrl, reg; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw_ich8lan"); + + /* Prevent the PCI-E bus from sticking if there is no TLP connection + * on the last TLP read/write transaction when MAC is reset. + */ + ret_val = e1000_disable_pcie_master_generic(hw); + if (ret_val) + DEBUGOUT("PCI-E Master disable polling has failed.\n"); + + DEBUGOUT("Masking off all interrupts\n"); + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC + * with the global reset. + */ + E1000_WRITE_REG(hw, E1000_RCTL, 0); + E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(hw); + + msec_delay(10); + + /* Workaround for ICH8 bit corruption issue in FIFO memory */ + if (hw->mac.type == e1000_ich8lan) { + /* Set Tx and Rx buffer allocation to 8k apiece. */ + E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); + /* Set Packet Buffer Size to 16k. */ + E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); + } + + if (hw->mac.type == e1000_pchlan) { + /* Save the NVM K1 bit setting*/ + ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); + if (ret_val) + return ret_val; + + if (kum_cfg & E1000_NVM_K1_ENABLE) + dev_spec->nvm_k1_enabled = TRUE; + else + dev_spec->nvm_k1_enabled = FALSE; + } + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + if (!hw->phy.ops.check_reset_block(hw)) { + /* Full-chip reset requires MAC and PHY reset at the same + * time to make sure the interface between MAC and the + * external PHY is reset. + */ + ctrl |= E1000_CTRL_PHY_RST; + + /* Gate automatic PHY configuration by hardware on + * non-managed 82579 + */ + if ((hw->mac.type == e1000_pch2lan) && + !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) + e1000_gate_hw_phy_config_ich8lan(hw, TRUE); + } + ret_val = e1000_acquire_swflag_ich8lan(hw); + DEBUGOUT("Issuing a global reset to ich8lan\n"); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); + /* cannot issue a flush here because it hangs the hardware */ + msec_delay(20); + + /* Set Phy Config Counter to 50msec */ + if (hw->mac.type == e1000_pch2lan) { + reg = E1000_READ_REG(hw, E1000_FEXTNVM3); + reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; + reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; + E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); + } + + if (!ret_val) + E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); + + if (ctrl & E1000_CTRL_PHY_RST) { + ret_val = hw->phy.ops.get_cfg_done(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_post_phy_reset_ich8lan(hw); + if (ret_val) + return ret_val; + } + + /* For PCH, this write will make sure that any noise + * will be detected as a CRC error and be dropped rather than show up + * as a bad packet to the DMA engine. + */ + if (hw->mac.type == e1000_pchlan) + E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); + + E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); + E1000_READ_REG(hw, E1000_ICR); + + reg = E1000_READ_REG(hw, E1000_KABGTXD); + reg |= E1000_KABGTXD_BGSQLBIAS; + E1000_WRITE_REG(hw, E1000_KABGTXD, reg); + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw_ich8lan - Initialize the hardware + * @hw: pointer to the HW structure + * + * Prepares the hardware for transmit and receive by doing the following: + * - initialize hardware bits + * - initialize LED identification + * - setup receive address registers + * - setup flow control + * - setup transmit descriptors + * - clear statistics + **/ +static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl_ext, txdctl, snoop; + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_init_hw_ich8lan"); + + e1000_initialize_hw_bits_ich8lan(hw); + + /* Initialize identification LED */ + ret_val = mac->ops.id_led_init(hw); + /* An error is not fatal and we should not stop init due to this */ + if (ret_val) + DEBUGOUT("Error initializing identification LED\n"); + + /* Setup the receive address. */ + e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + for (i = 0; i < mac->mta_reg_count; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + + /* The 82578 Rx buffer will stall if wakeup is enabled in host and + * the ME. Disable wakeup by clearing the host wakeup bit. + * Reset the phy after disabling host wakeup to reset the Rx buffer. + */ + if (hw->phy.type == e1000_phy_82578) { + hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); + i &= ~BM_WUC_HOST_WU_BIT; + hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); + ret_val = e1000_phy_hw_reset_ich8lan(hw); + if (ret_val) + return ret_val; + } + + /* Setup link and flow control */ + ret_val = mac->ops.setup_link(hw); + + /* Set the transmit descriptor write-back policy for both queues */ + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH; + E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); + txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); + txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | + E1000_TXDCTL_MAX_TX_DESC_PREFETCH; + E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); + + /* ICH8 has opposite polarity of no_snoop bits. + * By default, we should use snoop behavior. + */ + if (mac->type == e1000_ich8lan) + snoop = PCIE_ICH8_SNOOP_ALL; + else + snoop = (u32) ~(PCIE_NO_SNOOP_ALL); + e1000_set_pcie_no_snoop_generic(hw, snoop); + + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs_ich8lan(hw); + + return ret_val; +} + +/** + * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits + * @hw: pointer to the HW structure + * + * Sets/Clears required hardware bits necessary for correctly setting up the + * hardware for transmit and receive. + **/ +static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + + DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); + + /* Extended Device Control */ + reg = E1000_READ_REG(hw, E1000_CTRL_EXT); + reg |= (1 << 22); + /* Enable PHY low-power state when MAC is at D3 w/o WoL */ + if (hw->mac.type >= e1000_pchlan) + reg |= E1000_CTRL_EXT_PHYPDEN; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); + + /* Transmit Descriptor Control 0 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); + + /* Transmit Descriptor Control 1 */ + reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); + reg |= (1 << 22); + E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); + + /* Transmit Arbitration Control 0 */ + reg = E1000_READ_REG(hw, E1000_TARC(0)); + if (hw->mac.type == e1000_ich8lan) + reg |= (1 << 28) | (1 << 29); + reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); + E1000_WRITE_REG(hw, E1000_TARC(0), reg); + + /* Transmit Arbitration Control 1 */ + reg = E1000_READ_REG(hw, E1000_TARC(1)); + if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) + reg &= ~(1 << 28); + else + reg |= (1 << 28); + reg |= (1 << 24) | (1 << 26) | (1 << 30); + E1000_WRITE_REG(hw, E1000_TARC(1), reg); + + /* Device Status */ + if (hw->mac.type == e1000_ich8lan) { + reg = E1000_READ_REG(hw, E1000_STATUS); + reg &= ~(1UL << 31); + E1000_WRITE_REG(hw, E1000_STATUS, reg); + } + + /* work-around descriptor data corruption issue during nfs v2 udp + * traffic, just disable the nfs filtering capability + */ + reg = E1000_READ_REG(hw, E1000_RFCTL); + reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); + /* Disable IPv6 extension header parsing because some malformed + * IPv6 headers can hang the Rx. + */ + if (hw->mac.type == e1000_ich8lan) + reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); + E1000_WRITE_REG(hw, E1000_RFCTL, reg); + + /* Enable ECC on Lynxpoint */ + if (hw->mac.type == e1000_pch_lpt) { + reg = E1000_READ_REG(hw, E1000_PBECCSTS); + reg |= E1000_PBECCSTS_ECC_ENABLE; + E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); + + reg = E1000_READ_REG(hw, E1000_CTRL); + reg |= E1000_CTRL_MEHE; + E1000_WRITE_REG(hw, E1000_CTRL, reg); + } + + return; +} + +/** + * e1000_setup_link_ich8lan - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_setup_link_ich8lan"); + + if (hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; + + /* ICH parts do not have a word in the NVM to determine + * the default flow control setting, so we explicitly + * set it to full. + */ + if (hw->fc.requested_mode == e1000_fc_default) + hw->fc.requested_mode = e1000_fc_full; + + /* Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Continue to configure the copper link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + if ((hw->phy.type == e1000_phy_82578) || + (hw->phy.type == e1000_phy_82579) || + (hw->phy.type == e1000_phy_i217) || + (hw->phy.type == e1000_phy_82577)) { + E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); + + ret_val = hw->phy.ops.write_reg(hw, + PHY_REG(BM_PORT_CTRL_PAGE, 27), + hw->fc.pause_time); + if (ret_val) + return ret_val; + } + + return e1000_set_fc_watermarks_generic(hw); +} + +/** + * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface + * @hw: pointer to the HW structure + * + * Configures the kumeran interface to the PHY to wait the appropriate time + * when polling the PHY, then call the generic setup_copper_link to finish + * configuring the copper link. + **/ +static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_setup_copper_link_ich8lan"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Set the mac to wait the maximum time between each iteration + * and increase the max iterations when polling the phy; + * this fixes erroneous timeouts at 10Mbps. + */ + ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, + 0xFFFF); + if (ret_val) + return ret_val; + ret_val = e1000_read_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, + ®_data); + if (ret_val) + return ret_val; + reg_data |= 0x3F; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_INBAND_PARAM, + reg_data); + if (ret_val) + return ret_val; + + switch (hw->phy.type) { + case e1000_phy_igp_3: + ret_val = e1000_copper_link_setup_igp(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_bm: + case e1000_phy_82578: + ret_val = e1000_copper_link_setup_m88(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_82577: + case e1000_phy_82579: + ret_val = e1000_copper_link_setup_82577(hw); + if (ret_val) + return ret_val; + break; + case e1000_phy_ife: + ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, + ®_data); + if (ret_val) + return ret_val; + + reg_data &= ~IFE_PMC_AUTO_MDIX; + + switch (hw->phy.mdix) { + case 1: + reg_data &= ~IFE_PMC_FORCE_MDIX; + break; + case 2: + reg_data |= IFE_PMC_FORCE_MDIX; + break; + case 0: + default: + reg_data |= IFE_PMC_AUTO_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, + reg_data); + if (ret_val) + return ret_val; + break; + default: + break; + } + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface + * @hw: pointer to the HW structure + * + * Calls the PHY specific link setup function and then calls the + * generic setup_copper_link to finish configuring the link for + * Lynxpoint PCH devices + **/ +static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + ret_val = e1000_copper_link_setup_82577(hw); + if (ret_val) + return ret_val; + + return e1000_setup_copper_link_generic(hw); +} + +/** + * e1000_get_link_up_info_ich8lan - Get current link speed and duplex + * @hw: pointer to the HW structure + * @speed: pointer to store current link speed + * @duplex: pointer to store the current link duplex + * + * Calls the generic get_speed_and_duplex to retrieve the current link + * information and then calls the Kumeran lock loss workaround for links at + * gigabit speeds. + **/ +static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 ret_val; + + DEBUGFUNC("e1000_get_link_up_info_ich8lan"); + + ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); + if (ret_val) + return ret_val; + + if ((hw->mac.type == e1000_ich8lan) && + (hw->phy.type == e1000_phy_igp_3) && + (*speed == SPEED_1000)) { + ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); + } + + return ret_val; +} + +/** + * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround + * @hw: pointer to the HW structure + * + * Work-around for 82566 Kumeran PCS lock loss: + * On link status change (i.e. PCI reset, speed change) and link is up and + * speed is gigabit- + * 0) if workaround is optionally disabled do nothing + * 1) wait 1ms for Kumeran link to come up + * 2) check Kumeran Diagnostic register PCS lock loss bit + * 3) if not set the link is locked (all is good), otherwise... + * 4) reset the PHY + * 5) repeat up to 10 times + * Note: this is only called for IGP3 copper when speed is 1gb. + **/ +static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 phy_ctrl; + s32 ret_val; + u16 i, data; + bool link; + + DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); + + if (!dev_spec->kmrn_lock_loss_workaround_enabled) + return E1000_SUCCESS; + + /* Make sure link is up before proceeding. If not just return. + * Attempting this while link is negotiating fouled up link + * stability + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (!link) + return E1000_SUCCESS; + + for (i = 0; i < 10; i++) { + /* read once to clear */ + ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + return ret_val; + /* and again to get new status */ + ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); + if (ret_val) + return ret_val; + + /* check for PCS lock */ + if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) + return E1000_SUCCESS; + + /* Issue PHY reset */ + hw->phy.ops.reset(hw); + msec_delay_irq(5); + } + /* Disable GigE link negotiation */ + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + /* Call gig speed drop workaround on Gig disable before accessing + * any PHY registers + */ + e1000_gig_downshift_workaround_ich8lan(hw); + + /* unable to acquire PCS lock */ + return -E1000_ERR_PHY; +} + +/** + * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state + * @hw: pointer to the HW structure + * @state: boolean value used to set the current Kumeran workaround state + * + * If ICH8, set the current Kumeran workaround state (enabled - TRUE + * /disabled - FALSE). + **/ +void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + + DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); + + if (hw->mac.type != e1000_ich8lan) { + DEBUGOUT("Workaround applies to ICH8 only.\n"); + return; + } + + dev_spec->kmrn_lock_loss_workaround_enabled = state; + + return; +} + +/** + * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 + * @hw: pointer to the HW structure + * + * Workaround for 82566 power-down on D3 entry: + * 1) disable gigabit link + * 2) write VR power-down enable + * 3) read it back + * Continue if successful, else issue LCD reset and repeat + **/ +void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) +{ + u32 reg; + u16 data; + u8 retry = 0; + + DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); + + if (hw->phy.type != e1000_phy_igp_3) + return; + + /* Try the workaround twice (if needed) */ + do { + /* Disable link */ + reg = E1000_READ_REG(hw, E1000_PHY_CTRL); + reg |= (E1000_PHY_CTRL_GBE_DISABLE | + E1000_PHY_CTRL_NOND0A_GBE_DISABLE); + E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); + + /* Call gig speed drop workaround on Gig disable before + * accessing any PHY registers + */ + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + /* Write VR power-down enable */ + hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); + data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, + data | IGP3_VR_CTRL_MODE_SHUTDOWN); + + /* Read it back and test */ + hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); + data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; + if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) + break; + + /* Issue PHY reset and repeat at most one more time */ + reg = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); + retry++; + } while (retry); +} + +/** + * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working + * @hw: pointer to the HW structure + * + * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), + * LPLU, Gig disable, MDIC PHY reset): + * 1) Set Kumeran Near-end loopback + * 2) Clear Kumeran Near-end loopback + * Should only be called for ICH8[m] devices with any 1G Phy. + **/ +void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val; + u16 reg_data; + + DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); + + if ((hw->mac.type != e1000_ich8lan) || + (hw->phy.type == e1000_phy_ife)) + return; + + ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + ®_data); + if (ret_val) + return; + reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; + ret_val = e1000_write_kmrn_reg_generic(hw, + E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); + if (ret_val) + return; + reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; + e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, + reg_data); +} + +/** + * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx + * @hw: pointer to the HW structure + * + * During S0 to Sx transition, it is possible the link remains at gig + * instead of negotiating to a lower speed. Before going to Sx, set + * 'Gig Disable' to force link speed negotiation to a lower speed based on + * the LPLU setting in the NVM or custom setting. For PCH and newer parts, + * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also + * needs to be written. + * Parts that support (and are linked to a partner which support) EEE in + * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power + * than 10Mbps w/o EEE. + **/ +void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) +{ + struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; + u32 phy_ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); + + phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); + phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; + + if (hw->phy.type == e1000_phy_i217) { + u16 phy_reg, device_id = hw->device_id; + + if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || + (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) { + u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); + + E1000_WRITE_REG(hw, E1000_FEXTNVM6, + fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); + } + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + goto out; + + if (!dev_spec->eee_disable) { + u16 eee_advert; + + ret_val = + e1000_read_emi_reg_locked(hw, + I217_EEE_ADVERTISEMENT, + &eee_advert); + if (ret_val) + goto release; + + /* Disable LPLU if both link partners support 100BaseT + * EEE and 100Full is advertised on both ends of the + * link. + */ + if ((eee_advert & I82579_EEE_100_SUPPORTED) && + (dev_spec->eee_lp_ability & + I82579_EEE_100_SUPPORTED) && + (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) + phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | + E1000_PHY_CTRL_NOND0A_LPLU); + } + + /* For i217 Intel Rapid Start Technology support, + * when the system is going into Sx and no manageability engine + * is present, the driver must configure proxy to reset only on + * power good. LPI (Low Power Idle) state must also reset only + * on power good, as well as the MTA (Multicast table array). + * The SMBus release must also be disabled on LCD reset. + */ + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + /* Enable proxy to reset only on power good. */ + hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, + &phy_reg); + phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; + hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, + phy_reg); + + /* Set bit enable LPI (EEE) to reset only on + * power good. + */ + hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); + phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; + hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); + + /* Disable the SMB release on LCD reset. */ + hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); + phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; + hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); + } + + /* Enable MTA to reset for Intel Rapid Start Technology + * Support + */ + hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); + phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; + hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); + +release: + hw->phy.ops.release(hw); + } +out: + E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); + + if (hw->mac.type == e1000_ich8lan) + e1000_gig_downshift_workaround_ich8lan(hw); + + if (hw->mac.type >= e1000_pchlan) { + e1000_oem_bits_config_ich8lan(hw, FALSE); + + /* Reset PHY to activate OEM bits on 82577/8 */ + if (hw->mac.type == e1000_pchlan) + e1000_phy_hw_reset_generic(hw); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + e1000_write_smbus_addr(hw); + hw->phy.ops.release(hw); + } + + return; +} + +/** + * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 + * @hw: pointer to the HW structure + * + * During Sx to S0 transitions on non-managed devices or managed devices + * on which PHY resets are not blocked, if the PHY registers cannot be + * accessed properly by the s/w toggle the LANPHYPC value to power cycle + * the PHY. + * On i217, setup Intel Rapid Start Technology. + **/ +void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_resume_workarounds_pchlan"); + + if (hw->mac.type < e1000_pch2lan) + return; + + ret_val = e1000_init_phy_workarounds_pchlan(hw); + if (ret_val) { + DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); + return; + } + + /* For i217 Intel Rapid Start Technology support when the system + * is transitioning from Sx and no manageability engine is present + * configure SMBus to restore on reset, disable proxy, and enable + * the reset on MTA (Multicast table array). + */ + if (hw->phy.type == e1000_phy_i217) { + u16 phy_reg; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) { + DEBUGOUT("Failed to setup iRST\n"); + return; + } + + if (!(E1000_READ_REG(hw, E1000_FWSM) & + E1000_ICH_FWSM_FW_VALID)) { + /* Restore clear on SMB if no manageability engine + * is present + */ + ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, + &phy_reg); + if (ret_val) + goto release; + phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; + hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); + + /* Disable Proxy */ + hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); + } + /* Enable reset on MTA */ + ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, + &phy_reg); + if (ret_val) + goto release; + phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; + hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); +release: + if (ret_val) + DEBUGOUT1("Error %d in resume workarounds\n", ret_val); + hw->phy.ops.release(hw); + } +} + +/** + * e1000_cleanup_led_ich8lan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_cleanup_led_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + 0); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + return E1000_SUCCESS; +} + +/** + * e1000_led_on_ich8lan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_led_on_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + return E1000_SUCCESS; +} + +/** + * e1000_led_off_ich8lan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_led_off_ich8lan"); + + if (hw->phy.type == e1000_phy_ife) + return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, + (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + return E1000_SUCCESS; +} + +/** + * e1000_setup_led_pchlan - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use. + **/ +static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_led_pchlan"); + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, + (u16)hw->mac.ledctl_mode1); +} + +/** + * e1000_cleanup_led_pchlan - Restore the default LED operation + * @hw: pointer to the HW structure + * + * Return the LED back to the default configuration. + **/ +static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_cleanup_led_pchlan"); + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, + (u16)hw->mac.ledctl_default); +} + +/** + * e1000_led_on_pchlan - Turn LEDs on + * @hw: pointer to the HW structure + * + * Turn on the LEDs. + **/ +static s32 e1000_led_on_pchlan(struct e1000_hw *hw) +{ + u16 data = (u16)hw->mac.ledctl_mode2; + u32 i, led; + + DEBUGFUNC("e1000_led_on_pchlan"); + + /* If no link, then turn LED on by setting the invert bit + * for each LED that's mode is "link_up" in ledctl_mode2. + */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + for (i = 0; i < 3; i++) { + led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; + if ((led & E1000_PHY_LED0_MODE_MASK) != + E1000_LEDCTL_MODE_LINK_UP) + continue; + if (led & E1000_PHY_LED0_IVRT) + data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); + else + data |= (E1000_PHY_LED0_IVRT << (i * 5)); + } + } + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); +} + +/** + * e1000_led_off_pchlan - Turn LEDs off + * @hw: pointer to the HW structure + * + * Turn off the LEDs. + **/ +static s32 e1000_led_off_pchlan(struct e1000_hw *hw) +{ + u16 data = (u16)hw->mac.ledctl_mode1; + u32 i, led; + + DEBUGFUNC("e1000_led_off_pchlan"); + + /* If no link, then turn LED off by clearing the invert bit + * for each LED that's mode is "link_up" in ledctl_mode1. + */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { + for (i = 0; i < 3; i++) { + led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; + if ((led & E1000_PHY_LED0_MODE_MASK) != + E1000_LEDCTL_MODE_LINK_UP) + continue; + if (led & E1000_PHY_LED0_IVRT) + data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); + else + data |= (E1000_PHY_LED0_IVRT << (i * 5)); + } + } + + return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); +} + +/** + * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset + * @hw: pointer to the HW structure + * + * Read appropriate register for the config done bit for completion status + * and configure the PHY through s/w for EEPROM-less parts. + * + * NOTE: some silicon which is EEPROM-less will fail trying to read the + * config done bit, so only an error is logged and continues. If we were + * to return with error, EEPROM-less silicon would not be able to be reset + * or change link. + **/ +static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u32 bank = 0; + u32 status; + + DEBUGFUNC("e1000_get_cfg_done_ich8lan"); + + e1000_get_cfg_done_generic(hw); + + /* Wait for indication from h/w that it has completed basic config */ + if (hw->mac.type >= e1000_ich10lan) { + e1000_lan_init_done_ich8lan(hw); + } else { + ret_val = e1000_get_auto_rd_done_generic(hw); + if (ret_val) { + /* When auto config read does not complete, do not + * return with an error. This can happen in situations + * where there is no eeprom and prevents getting link. + */ + DEBUGOUT("Auto Read Done did not complete\n"); + ret_val = E1000_SUCCESS; + } + } + + /* Clear PHY Reset Asserted bit */ + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_PHYRA) { + E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); + } else { + DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); + } + + /* If EEPROM is not marked present, init the IGP 3 PHY manually */ + if (hw->mac.type <= e1000_ich9lan) { + if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && + (hw->phy.type == e1000_phy_igp_3)) { + e1000_phy_init_script_igp3(hw); + } + } else { + if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { + /* Maybe we should do a basic PHY config */ + DEBUGOUT("EEPROM not present\n"); + ret_val = -E1000_ERR_CONFIG; + } + } + + return ret_val; +} + +/** + * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, remove the link. + **/ +static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) +{ + /* If the management interface is not enabled, then power down */ + if (!(hw->mac.ops.check_mng_mode(hw) || + hw->phy.ops.check_reset_block(hw))) + e1000_power_down_phy_copper(hw); + + return; +} + +/** + * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters + * @hw: pointer to the HW structure + * + * Clears hardware counters specific to the silicon family and calls + * clear_hw_cntrs_generic to clear all general purpose counters. + **/ +static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) +{ + u16 phy_data; + s32 ret_val; + + DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); + + e1000_clear_hw_cntrs_base_generic(hw); + + E1000_READ_REG(hw, E1000_ALGNERRC); + E1000_READ_REG(hw, E1000_RXERRC); + E1000_READ_REG(hw, E1000_TNCRS); + E1000_READ_REG(hw, E1000_CEXTERR); + E1000_READ_REG(hw, E1000_TSCTC); + E1000_READ_REG(hw, E1000_TSCTFC); + + E1000_READ_REG(hw, E1000_MGTPRC); + E1000_READ_REG(hw, E1000_MGTPDC); + E1000_READ_REG(hw, E1000_MGTPTC); + + E1000_READ_REG(hw, E1000_IAC); + E1000_READ_REG(hw, E1000_ICRXOC); + + /* Clear PHY statistics registers */ + if ((hw->phy.type == e1000_phy_82578) || + (hw->phy.type == e1000_phy_82579) || + (hw->phy.type == e1000_phy_i217) || + (hw->phy.type == e1000_phy_82577)) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return; + ret_val = hw->phy.ops.set_page(hw, + HV_STATS_PAGE << IGP_PAGE_SHIFT); + if (ret_val) + goto release; + hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); + hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); +release: + hw->phy.ops.release(hw); + } +} + diff --git a/usr/src/uts/common/io/e1000api/e1000_ich8lan.h b/usr/src/uts/common/io/e1000api/e1000_ich8lan.h new file mode 100644 index 0000000000..ceeca2e044 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_ich8lan.h @@ -0,0 +1,286 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_ICH8LAN_H_ +#define _E1000_ICH8LAN_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define ICH_FLASH_GFPREG 0x0000 +#define ICH_FLASH_HSFSTS 0x0004 +#define ICH_FLASH_HSFCTL 0x0006 +#define ICH_FLASH_FADDR 0x0008 +#define ICH_FLASH_FDATA0 0x0010 + +/* Requires up to 10 seconds when MNG might be accessing part. */ +#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000 +#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000 +#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000 +#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF +#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 + +#define ICH_CYCLE_READ 0 +#define ICH_CYCLE_WRITE 2 +#define ICH_CYCLE_ERASE 3 + +#define FLASH_GFPREG_BASE_MASK 0x1FFF +#define FLASH_SECTOR_ADDR_SHIFT 12 + +#define ICH_FLASH_SEG_SIZE_256 256 +#define ICH_FLASH_SEG_SIZE_4K 4096 +#define ICH_FLASH_SEG_SIZE_8K 8192 +#define ICH_FLASH_SEG_SIZE_64K 65536 + +#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ +/* FW established a valid mode */ +#define E1000_ICH_FWSM_FW_VALID 0x00008000 +#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */ +#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000 + +#define E1000_ICH_MNG_IAMT_MODE 0x2 + +#define E1000_FWSM_WLOCK_MAC_MASK 0x0380 +#define E1000_FWSM_WLOCK_MAC_SHIFT 7 + +/* Shared Receive Address Registers */ +#define E1000_SHRAL_PCH_LPT(_i) (0x05408 + ((_i) * 8)) +#define E1000_SHRAH_PCH_LPT(_i) (0x0540C + ((_i) * 8)) + +#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ + (ID_LED_OFF1_OFF2 << 8) | \ + (ID_LED_OFF1_ON2 << 4) | \ + (ID_LED_DEF1_DEF2)) + +#define E1000_ICH_NVM_SIG_WORD 0x13 +#define E1000_ICH_NVM_SIG_MASK 0xC000 +#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 +#define E1000_ICH_NVM_SIG_VALUE 0x80 + +#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 + +#define E1000_FEXTNVM_SW_CONFIG 1 +#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */ + +#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000 +#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000 + +#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 +#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 +#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 + +#define E1000_FEXTNVM6_REQ_PLL_CLK 0x00000100 + +#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL + +#define E1000_ICH_RAR_ENTRIES 7 +#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */ +#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */ + +#define PHY_PAGE_SHIFT 5 +#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ + ((reg) & MAX_PHY_REG_ADDRESS)) +#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ +#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ + +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 +#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 +#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 + +/* PHY Wakeup Registers and defines */ +#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17) +#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0) +#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) +#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) +#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) +#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2))) +#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2))) +#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2))) +#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2))) +#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1))) + +#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */ +#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */ +#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */ +#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */ +#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */ +#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */ +#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */ + +#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ +#define HV_MUX_DATA_CTRL PHY_REG(776, 16) +#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 +#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 +#define HV_STATS_PAGE 778 +#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */ +#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17) +#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */ +#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19) +#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */ +#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21) +#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */ +#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24) +#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */ +#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26) +#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */ +#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28) +#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */ +#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30) + +#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */ + +#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ +#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ + +/* SMBus Control Phy Register */ +#define CV_SMB_CTRL PHY_REG(769, 23) +#define CV_SMB_CTRL_FORCE_SMBUS 0x0001 + +/* SMBus Address Phy Register */ +#define HV_SMB_ADDR PHY_REG(768, 26) +#define HV_SMB_ADDR_MASK 0x007F +#define HV_SMB_ADDR_PEC_EN 0x0200 +#define HV_SMB_ADDR_VALID 0x0080 +#define HV_SMB_ADDR_FREQ_MASK 0x1100 +#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8 +#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12 + +/* Strapping Option Register - RO */ +#define E1000_STRAP 0x0000C +#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 +#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 +#define E1000_STRAP_SMT_FREQ_MASK 0x00003000 +#define E1000_STRAP_SMT_FREQ_SHIFT 12 + +/* OEM Bits Phy Register */ +#define HV_OEM_BITS PHY_REG(768, 25) +#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ +#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ +#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ + +/* KMRN Mode Control */ +#define HV_KMRN_MODE_CTRL PHY_REG(769, 16) +#define HV_KMRN_MDIO_SLOW 0x0400 + +/* KMRN FIFO Control and Status */ +#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) +#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 +#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 + +/* PHY Power Management Control */ +#define HV_PM_CTRL PHY_REG(770, 17) +#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100 + +#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in ms */ + +/* PHY Low Power Idle Control */ +#define I82579_LPI_CTRL PHY_REG(772, 20) +#define I82579_LPI_CTRL_100_ENABLE 0x2000 +#define I82579_LPI_CTRL_1000_ENABLE 0x4000 +#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 +#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80 + +/* Extended Management Interface (EMI) Registers */ +#define I82579_EMI_ADDR 0x10 +#define I82579_EMI_DATA 0x11 +#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ +#define I82579_MSE_THRESHOLD 0x084F /* 82579 Mean Square Error Threshold */ +#define I82577_MSE_THRESHOLD 0x0887 /* 82577 Mean Square Error Threshold */ +#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */ +#define I82579_RX_CONFIG 0x3412 /* Receive configuration */ +#define I82579_EEE_PCS_STATUS 0x182D /* IEEE MMD Register 3.1 >> 8 */ +#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */ +#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */ +#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */ +#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */ +#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE supported */ +#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */ +#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */ +#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */ +#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */ + +#define E1000_EEE_RX_LPI_RCVD 0x0400 /* Tx LP idle received */ +#define E1000_EEE_TX_LPI_RCVD 0x0800 /* Rx LP idle received */ + +/* Intel Rapid Start Technology Support */ +#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70) +#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080 +#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28) +#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000 +#define I217_CGFREG PHY_REG(772, 29) +#define I217_CGFREG_ENABLE_MTA_RESET 0x0002 +#define I217_MEMPWR PHY_REG(772, 26) +#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010 + +/* Receive Address Initial CRC Calculation */ +#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4)) + +/* Latency Tolerance Reporting */ +#define E1000_LTRV 0x000F8 +#define E1000_LTRV_VALUE_MASK 0x000003FF +#define E1000_LTRV_SCALE_MAX 5 +#define E1000_LTRV_SCALE_FACTOR 5 +#define E1000_LTRV_SCALE_SHIFT 10 +#define E1000_LTRV_SCALE_MASK 0x00001C00 +#define E1000_LTRV_REQ_SHIFT 15 +#define E1000_LTRV_NOSNOOP_SHIFT 16 +#define E1000_LTRV_SEND (1 << 30) + +/* Proprietary Latency Tolerance Reporting PCI Capability */ +#define E1000_PCI_LTR_CAP_LPT 0xA8 + +/* OBFF Control & Threshold Defines */ +#define E1000_SVCR_OFF_EN 0x00000001 +#define E1000_SVCR_OFF_MASKINT 0x00001000 +#define E1000_SVCR_OFF_TIMER_MASK 0xFFFF0000 +#define E1000_SVCR_OFF_TIMER_SHIFT 16 +#define E1000_SVT_OFF_HWM_MASK 0x0000001F + +void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, + bool state); +void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); +void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); +void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw); +void e1000_resume_workarounds_pchlan(struct e1000_hw *hw); +s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable); +void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw); +s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable); +s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_ICH8LAN_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_mac.c b/usr/src/uts/common/io/e1000api/e1000_mac.c new file mode 100644 index 0000000000..9e6b30c49f --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_mac.c @@ -0,0 +1,2232 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); +static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); +static void e1000_config_collision_dist_generic(struct e1000_hw *hw); +static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); + +/** + * e1000_init_mac_ops_generic - Initialize MAC function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_mac_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + DEBUGFUNC("e1000_init_mac_ops_generic"); + + /* General Setup */ + mac->ops.init_params = e1000_null_ops_generic; + mac->ops.init_hw = e1000_null_ops_generic; + mac->ops.reset_hw = e1000_null_ops_generic; + mac->ops.setup_physical_interface = e1000_null_ops_generic; + mac->ops.get_bus_info = e1000_null_ops_generic; + mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; + mac->ops.read_mac_addr = e1000_read_mac_addr_generic; + mac->ops.config_collision_dist = e1000_config_collision_dist_generic; + mac->ops.clear_hw_cntrs = e1000_null_mac_generic; + /* LED */ + mac->ops.cleanup_led = e1000_null_ops_generic; + mac->ops.setup_led = e1000_null_ops_generic; + mac->ops.blink_led = e1000_null_ops_generic; + mac->ops.led_on = e1000_null_ops_generic; + mac->ops.led_off = e1000_null_ops_generic; + /* LINK */ + mac->ops.setup_link = e1000_null_ops_generic; + mac->ops.get_link_up_info = e1000_null_link_info; + mac->ops.check_for_link = e1000_null_ops_generic; + mac->ops.set_obff_timer = e1000_null_set_obff_timer; + /* Management */ + mac->ops.check_mng_mode = e1000_null_mng_mode; + /* VLAN, MC, etc. */ + mac->ops.update_mc_addr_list = e1000_null_update_mc; + mac->ops.clear_vfta = e1000_null_mac_generic; + mac->ops.write_vfta = e1000_null_write_vfta; + mac->ops.rar_set = e1000_rar_set_generic; + mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; +} + +/** + * e1000_null_ops_generic - No-op function, returns 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_ops_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_ops_generic"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mac_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_mac_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_mac_generic"); + return; +} + +/** + * e1000_null_link_info - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d) +{ + DEBUGFUNC("e1000_null_link_info"); + return E1000_SUCCESS; +} + +/** + * e1000_null_mng_mode - No-op function, return FALSE + * @hw: pointer to the HW structure + **/ +bool e1000_null_mng_mode(struct e1000_hw *hw) { + DEBUGFUNC("e1000_null_mng_mode"); + return FALSE; +} + +/** + * e1000_null_update_mc - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a) +{ + DEBUGFUNC("e1000_null_update_mc"); + return; +} + +/** + * e1000_null_write_vfta - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b) +{ + DEBUGFUNC("e1000_null_write_vfta"); + return; +} + +/** + * e1000_null_rar_set - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a) +{ + DEBUGFUNC("e1000_null_rar_set"); + return; +} + +/** + * e1000_null_set_obff_timer - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_set_obff_timer(struct e1000_hw *hw, u32 a) +{ + DEBUGFUNC("e1000_null_set_obff_timer"); + return E1000_SUCCESS; +} + +/** + * e1000_get_bus_info_pci_generic - Get PCI(x) bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. + **/ +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + u32 status = E1000_READ_REG(hw, E1000_STATUS); + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_get_bus_info_pci_generic"); + + /* PCI or PCI-X? */ + bus->type = (status & E1000_STATUS_PCIX_MODE) + ? e1000_bus_type_pcix + : e1000_bus_type_pci; + + /* Bus speed */ + if (bus->type == e1000_bus_type_pci) { + bus->speed = (status & E1000_STATUS_PCI66) + ? e1000_bus_speed_66 + : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + bus->speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + bus->speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + bus->speed = e1000_bus_speed_133; + break; + default: + bus->speed = e1000_bus_speed_reserved; + break; + } + } + + /* Bus width */ + bus->width = (status & E1000_STATUS_BUS64) + ? e1000_bus_width_64 + : e1000_bus_width_32; + + /* Which PCI(-X) function? */ + mac->ops.set_lan_id(hw); + + return ret_val; +} + +/** + * e1000_get_bus_info_pcie_generic - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + struct e1000_bus_info *bus = &hw->bus; + s32 ret_val; + u16 pcie_link_status; + + DEBUGFUNC("e1000_get_bus_info_pcie_generic"); + + bus->type = e1000_bus_type_pci_express; + + ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, + &pcie_link_status); + if (ret_val) { + bus->width = e1000_bus_width_unknown; + bus->speed = e1000_bus_speed_unknown; + } else { + switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { + case PCIE_LINK_SPEED_2500: + bus->speed = e1000_bus_speed_2500; + break; + case PCIE_LINK_SPEED_5000: + bus->speed = e1000_bus_speed_5000; + break; + default: + bus->speed = e1000_bus_speed_unknown; + break; + } + + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); + } + + mac->ops.set_lan_id(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices + * + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading memory-mapped registers + * and swaps the port value if requested. + **/ +static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u32 reg; + + /* The status register reports the correct function number + * for the device regardless of function swap state. + */ + reg = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; +} + +/** + * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices + * @hw: pointer to the HW structure + * + * Determines the LAN function id by reading PCI config space. + **/ +void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + u16 pci_header_type; + u32 status; + + e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); + if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { + status = E1000_READ_REG(hw, E1000_STATUS); + bus->func = (status & E1000_STATUS_FUNC_MASK) + >> E1000_STATUS_FUNC_SHIFT; + } else { + bus->func = 0; + } +} + +/** + * e1000_set_lan_id_single_port - Set LAN id for a single port device + * @hw: pointer to the HW structure + * + * Sets the LAN function id to zero for a single port device. + **/ +void e1000_set_lan_id_single_port(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + bus->func = 0; +} + +/** + * e1000_clear_vfta_generic - Clear VLAN filter table + * @hw: pointer to the HW structure + * + * Clears the register array which contains the VLAN filter table by + * setting all the values to 0. + **/ +void e1000_clear_vfta_generic(struct e1000_hw *hw) +{ + u32 offset; + + DEBUGFUNC("e1000_clear_vfta_generic"); + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); + E1000_WRITE_FLUSH(hw); + } +} + +/** + * e1000_write_vfta_generic - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) +{ + DEBUGFUNC("e1000_write_vfta_generic"); + + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_init_rx_addrs_generic - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setup the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + u8 mac_addr[ETH_ADDR_LEN] = {0}; + + DEBUGFUNC("e1000_init_rx_addrs_generic"); + + /* Setup the receive address */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); + + hw->mac.ops.rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) + hw->mac.ops.rar_set(hw, mac_addr, i); +} + +/** + * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr + * @hw: pointer to the HW structure + * + * Checks the nvm for an alternate MAC address. An alternate MAC address + * can be setup by pre-boot software and must be treated like a permanent + * address and must override the actual permanent MAC address. If an + * alternate MAC address is found it is programmed into RAR0, replacing + * the permanent address that was installed into RAR0 by the Si on reset. + * This function will return SUCCESS unless it encounters an error while + * reading the EEPROM. + **/ +s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) +{ + u32 i; + s32 ret_val; + u16 offset, nvm_alt_mac_addr_offset, nvm_data; + u8 alt_mac_addr[ETH_ADDR_LEN]; + + DEBUGFUNC("e1000_check_alt_mac_addr_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); + if (ret_val) + return ret_val; + + /* not supported on older hardware or 82573 */ + if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573)) + return E1000_SUCCESS; + + /* Alternate MAC address is handled by the option ROM for 82580 + * and newer. SW support not required. + */ + if (hw->mac.type >= e1000_82580) + return E1000_SUCCESS; + + ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, + &nvm_alt_mac_addr_offset); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if ((nvm_alt_mac_addr_offset == 0xFFFF) || + (nvm_alt_mac_addr_offset == 0x0000)) + /* There is no Alternate MAC Address */ + return E1000_SUCCESS; + + if (hw->bus.func == E1000_FUNC_1) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; + if (hw->bus.func == E1000_FUNC_2) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; + + if (hw->bus.func == E1000_FUNC_3) + nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; + for (i = 0; i < ETH_ADDR_LEN; i += 2) { + offset = nvm_alt_mac_addr_offset + (i >> 1); + ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + alt_mac_addr[i] = (u8)(nvm_data & 0xFF); + alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); + } + + /* if multicast bit is set, the alternate address will not be used */ + if (alt_mac_addr[0] & 0x01) { + DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); + return E1000_SUCCESS; + } + + /* We have a valid alternate MAC address, and we want to treat it the + * same as the normal permanent MAC address stored by the HW into the + * RAR. Do this by mapping this address into RAR0. + */ + hw->mac.ops.rar_set(hw, alt_mac_addr, 0); + + return E1000_SUCCESS; +} + +/** + * e1000_rar_set_generic - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + DEBUGFUNC("e1000_rar_set_generic"); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* If MAC address zero, no need to set the AV bit */ + if (rar_low || rar_high) + rar_high |= E1000_RAH_AV; + + /* Some bridges will combine consecutive 32-bit writes into + * a single burst write, which will malfunction on some parts. + * The flushes avoid this. + */ + E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); + E1000_WRITE_FLUSH(hw); + E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_hash_mc_addr_generic - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. + **/ +u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + DEBUGFUNC("e1000_hash_mc_addr_generic"); + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + * + * For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000_update_mc_addr_list_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates entire Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 hash_value, hash_bit, hash_reg; + int i; + + DEBUGFUNC("e1000_update_mc_addr_list_generic"); + + /* clear mta_shadow */ + memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); + + /* update mta_shadow from mc_addr_list */ + for (i = 0; (u32) i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); + + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); + mc_addr_list += (ETH_ADDR_LEN); + } + + /* replace the entire MTA table */ + for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value + * @hw: pointer to the HW structure + * + * In certain situations, a system BIOS may report that the PCIx maximum + * memory read byte count (MMRBC) value is higher than than the actual + * value. We check the PCIx command register with the current PCIx status + * register. + **/ +void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) +{ + u16 cmd_mmrbc; + u16 pcix_cmd; + u16 pcix_stat_hi_word; + u16 stat_mmrbc; + + DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); + + /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ + if (hw->bus.type != e1000_bus_type_pcix) + return; + + e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); + cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> + PCIX_COMMAND_MMRBC_SHIFT; + stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> + PCIX_STATUS_HI_MMRBC_SHIFT; + if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) + stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; + if (cmd_mmrbc > stat_mmrbc) { + pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; + pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; + e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); + } +} + +/** + * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); + + E1000_READ_REG(hw, E1000_CRCERRS); + E1000_READ_REG(hw, E1000_SYMERRS); + E1000_READ_REG(hw, E1000_MPC); + E1000_READ_REG(hw, E1000_SCC); + E1000_READ_REG(hw, E1000_ECOL); + E1000_READ_REG(hw, E1000_MCC); + E1000_READ_REG(hw, E1000_LATECOL); + E1000_READ_REG(hw, E1000_COLC); + E1000_READ_REG(hw, E1000_DC); + E1000_READ_REG(hw, E1000_SEC); + E1000_READ_REG(hw, E1000_RLEC); + E1000_READ_REG(hw, E1000_XONRXC); + E1000_READ_REG(hw, E1000_XONTXC); + E1000_READ_REG(hw, E1000_XOFFRXC); + E1000_READ_REG(hw, E1000_XOFFTXC); + E1000_READ_REG(hw, E1000_FCRUC); + E1000_READ_REG(hw, E1000_GPRC); + E1000_READ_REG(hw, E1000_BPRC); + E1000_READ_REG(hw, E1000_MPRC); + E1000_READ_REG(hw, E1000_GPTC); + E1000_READ_REG(hw, E1000_GORCL); + E1000_READ_REG(hw, E1000_GORCH); + E1000_READ_REG(hw, E1000_GOTCL); + E1000_READ_REG(hw, E1000_GOTCH); + E1000_READ_REG(hw, E1000_RNBC); + E1000_READ_REG(hw, E1000_RUC); + E1000_READ_REG(hw, E1000_RFC); + E1000_READ_REG(hw, E1000_ROC); + E1000_READ_REG(hw, E1000_RJC); + E1000_READ_REG(hw, E1000_TORL); + E1000_READ_REG(hw, E1000_TORH); + E1000_READ_REG(hw, E1000_TOTL); + E1000_READ_REG(hw, E1000_TOTH); + E1000_READ_REG(hw, E1000_TPR); + E1000_READ_REG(hw, E1000_TPT); + E1000_READ_REG(hw, E1000_MPTC); + E1000_READ_REG(hw, E1000_BPTC); +} + +/** + * e1000_check_for_copper_link_generic - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_check_for_copper_link"); + + /* We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return E1000_SUCCESS; + + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) + return E1000_SUCCESS; /* No link detected */ + + mac->get_link_status = FALSE; + + /* Check if there was DownShift, must be checked + * immediately after link-up + */ + e1000_check_downshift_generic(hw); + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) + return -E1000_ERR_CONFIG; + + /* Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + mac->ops.config_collision_dist(hw); + + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) + DEBUGOUT("Error configuring flow control\n"); + + return ret_val; +} + +/** + * e1000_check_for_fiber_link_generic - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + DEBUGFUNC("e1000_check_for_fiber_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && + !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = TRUE; + return E1000_SUCCESS; + } + DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = TRUE; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + DEBUGFUNC("e1000_check_for_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + status = E1000_READ_REG(hw, E1000_STATUS); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { + if (!mac->autoneg_failed) { + mac->autoneg_failed = TRUE; + return E1000_SUCCESS; + } + DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up_generic(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); + E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); + E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = TRUE; + } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { + /* If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = TRUE; + DEBUGOUT("SERDES: Link up - forced.\n"); + } + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + usec_delay(10); + rxcw = E1000_READ_REG(hw, E1000_RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = TRUE; + DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); + } + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - no sync.\n"); + } + } else { + mac->serdes_has_link = FALSE; + DEBUGOUT("SERDES: Link down - autoneg failed\n"); + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 nvm_data; + + DEBUGFUNC("e1000_set_default_fc_generic"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) + hw->fc.requested_mode = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + hw->fc.requested_mode = e1000_fc_tx_pause; + else + hw->fc.requested_mode = e1000_fc_full; + + return E1000_SUCCESS; +} + +/** + * e1000_setup_link_generic - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000_setup_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_setup_link_generic"); + + /* In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) + return E1000_SUCCESS; + + /* If requested flow control is set to default, set flow control + * based on the EEPROM flow control settings. + */ + if (hw->fc.requested_mode == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + return ret_val; + } + + /* Save off the requested flow control mode for use later. Depending + * on the link partner's capabilities, we may or may not use this mode. + */ + hw->fc.current_mode = hw->fc.requested_mode; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", + hw->fc.current_mode); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = hw->mac.ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); + E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); + E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); + E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); + + E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); + + return e1000_set_fc_watermarks_generic(hw); +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + + DEBUGFUNC("e1000_commit_fc_settings_generic"); + + /* Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled and Tx Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of Rx Pause ONLY, we will + * advertise that we support both symmetric and asymmetric Rx + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + E1000_WRITE_REG(hw, E1000_TXCW, txcw); + mac->txcw = txcw; + + return E1000_SUCCESS; +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val; + + DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); + + /* If we have a signal (the cable is plugged in, or assumed TRUE for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + msec_delay(10); + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = TRUE; + /* AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = mac->ops.check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + mac->autoneg_failed = FALSE; + } else { + mac->autoneg_failed = FALSE; + DEBUGOUT("Valid Link Found\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + hw->mac.ops.config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + return ret_val; + + /* Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + msec_delay(1); + + /* For these adapters, the SW definable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->phy.media_type == e1000_media_type_internal_serdes || + (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + DEBUGOUT("No signal detected\n"); + } + + return ret_val; +} + +/** + * e1000_config_collision_dist_generic - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. + **/ +static void e1000_config_collision_dist_generic(struct e1000_hw *hw) +{ + u32 tctl; + + DEBUGFUNC("e1000_config_collision_dist_generic"); + + tctl = E1000_READ_REG(hw, E1000_TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); +} + +/** + * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * transmission as well. + **/ +s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) +{ + u32 fcrtl = 0, fcrth = 0; + + DEBUGFUNC("e1000_set_fc_watermarks_generic"); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (hw->fc.current_mode & e1000_fc_tx_pause) { + /* We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = hw->fc.low_water; + if (hw->fc.send_xon) + fcrtl |= E1000_FCRTL_XONE; + + fcrth = hw->fc.high_water; + } + E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); + E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); + + return E1000_SUCCESS; +} + +/** + * e1000_force_mac_fc_generic - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_force_mac_fc_generic"); + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc.current_mode" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and Tx flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); + + switch (hw->fc.current_mode) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_config_fc_after_link_up_generic - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + DEBUGFUNC("e1000_config_fc_after_link_up_generic"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->phy.media_type == e1000_media_type_fiber || + hw->phy.media_type == e1000_media_type_internal_serdes) + ret_val = e1000_force_mac_fc_generic(hw); + } else { + if (hw->phy.media_type == e1000_media_type_copper) + ret_val = e1000_force_mac_fc_generic(hw); + } + + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc.current_mode = e1000_fc_none; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have SerDes media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->phy.media_type == e1000_media_type_internal_serdes) && + mac->autoneg) { + /* Read the PCS_LSTS and check to see if AutoNeg + * has completed. + */ + pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); + + if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { + DEBUGOUT("PCS Auto Neg has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (PCS_ANADV) and the Auto_Negotiation Base + * Page Ability Register (PCS_LPAB) to determine how + * flow control was negotiated. + */ + pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); + pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); + + /* Two bits in the Auto Negotiation Advertisement Register + * (PCS_ANADV) and two bits in the Auto Negotiation Base + * Page Ability Register (PCS_LPAB) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + * Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | e1000_fc_full + * + */ + if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { + /* Now we need to check if the user selected Rx ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise Rx + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->fc.requested_mode == e1000_fc_full) { + hw->fc.current_mode = e1000_fc_full; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + */ + else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_tx_pause; + DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + */ + else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && + (pcs_adv_reg & E1000_TXCW_ASM_DIR) && + !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && + (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { + hw->fc.current_mode = e1000_fc_rx_pause; + DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); + } else { + /* Per the IEEE spec, at this point flow control + * should be disabled. + */ + hw->fc.current_mode = e1000_fc_none; + DEBUGOUT("Flow Control = NONE.\n"); + } + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); + pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; + E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); + + ret_val = e1000_force_mac_fc_generic(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + u32 status; + + DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); + + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, + u16 *speed, u16 *duplex) +{ + DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); + + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return E1000_SUCCESS; +} + +/** + * e1000_get_hw_semaphore_generic - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + DEBUGFUNC("e1000_get_hw_semaphore_generic"); + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + usec_delay(50); + i++; + } + + if (i == timeout) { + DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = E1000_READ_REG(hw, E1000_SWSM); + E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) + break; + + usec_delay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000_put_hw_semaphore_generic(hw); + DEBUGOUT("Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_put_hw_semaphore_generic - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) +{ + u32 swsm; + + DEBUGFUNC("e1000_put_hw_semaphore_generic"); + + swsm = E1000_READ_REG(hw, E1000_SWSM); + + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + + E1000_WRITE_REG(hw, E1000_SWSM, swsm); +} + +/** + * e1000_get_auto_rd_done_generic - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) +{ + s32 i = 0; + + DEBUGFUNC("e1000_get_auto_rd_done_generic"); + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) + break; + msec_delay(1); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + DEBUGOUT("Auto read by HW from NVM has not completed.\n"); + return -E1000_ERR_RESET; + } + + return E1000_SUCCESS; +} + +/** + * e1000_valid_led_default_generic - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_valid_led_default_generic"); + + ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + + return E1000_SUCCESS; +} + +/** + * e1000_id_led_init_generic - + * @hw: pointer to the HW structure + * + **/ +s32 e1000_id_led_init_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + DEBUGFUNC("e1000_id_led_init_generic"); + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_led_generic - Configures SW controllable LED + * @hw: pointer to the HW structure + * + * This prepares the SW controllable LED for use and saves the current state + * of the LED so it can be later restored. + **/ +s32 e1000_setup_led_generic(struct e1000_hw *hw) +{ + u32 ledctl; + + DEBUGFUNC("e1000_setup_led_generic"); + + if (hw->mac.ops.setup_led != e1000_setup_led_generic) + return -E1000_ERR_CONFIG; + + if (hw->phy.media_type == e1000_media_type_fiber) { + ledctl = E1000_READ_REG(hw, E1000_LEDCTL); + hw->mac.ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); + } else if (hw->phy.media_type == e1000_media_type_copper) { + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + } + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000_cleanup_led_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_cleanup_led_generic"); + + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); + return E1000_SUCCESS; +} + +/** + * e1000_blink_led_generic - Blink LED + * @hw: pointer to the HW structure + * + * Blink the LEDs which are set to be on. + **/ +s32 e1000_blink_led_generic(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + DEBUGFUNC("e1000_blink_led_generic"); + + if (hw->phy.media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* Set the blink bit for each LED that's "on" (0x0E) + * (or "off" if inverted) in ledctl_mode2. The blink + * logic in hardware only works when mode is set to "on" + * so it must be changed accordingly when the mode is + * "off" and inverted. + */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 32; i += 8) { + u32 mode = (hw->mac.ledctl_mode2 >> i) & + E1000_LEDCTL_LED0_MODE_MASK; + u32 led_default = hw->mac.ledctl_default >> i; + + if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_ON)) || + ((led_default & E1000_LEDCTL_LED0_IVRT) && + (mode == E1000_LEDCTL_MODE_LED_OFF))) { + ledctl_blink &= + ~(E1000_LEDCTL_LED0_MODE_MASK << i); + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_MODE_LED_ON) << i; + } + } + } + + E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); + + return E1000_SUCCESS; +} + +/** + * e1000_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_on_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000_led_off_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + DEBUGFUNC("e1000_led_off_generic"); + + switch (hw->phy.media_type) { + case e1000_media_type_fiber: + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + break; + case e1000_media_type_copper: + E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + return; + + if (no_snoop) { + gcr = E1000_READ_REG(hw, E1000_GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + E1000_WRITE_REG(hw, E1000_GCR, gcr); + } +} + +/** + * e1000_disable_pcie_master_generic - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns E1000_SUCCESS if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + + DEBUGFUNC("e1000_disable_pcie_master_generic"); + + if (hw->bus.type != e1000_bus_type_pci_express) + return E1000_SUCCESS; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + + while (timeout) { + if (!(E1000_READ_REG(hw, E1000_STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE)) + break; + usec_delay(100); + timeout--; + } + + if (!timeout) { + DEBUGOUT("Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + + return E1000_SUCCESS; +} + +/** + * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000_reset_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_reset_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + return; + } + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, E1000_AIT, 0); +} + +/** + * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000_update_adaptive_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_update_adaptive_generic"); + + if (!mac->adaptive_ifs) { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + return; + } + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = TRUE; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + E1000_WRITE_REG(hw, E1000_AIT, + mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = FALSE; + E1000_WRITE_REG(hw, E1000_AIT, 0); + } + } +} + +/** + * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Verify that when not using auto-negotiation that MDI/MDIx is correctly + * set, which is forced to MDI mode only. + **/ +static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_mdi_setting_generic"); + + if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->phy.mdix = 1; + return -E1000_ERR_CONFIG; + } + + return E1000_SUCCESS; +} + +/** + * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings + * @hw: pointer to the HW structure + * + * Validate the MDI/MDIx setting, allowing for auto-crossover during forced + * operation. + **/ +s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); + + return E1000_SUCCESS; +} + +/** + * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register + * @hw: pointer to the HW structure + * @reg: 32bit register offset such as E1000_SCTL + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes an address/data control type register. There are several of these + * and they all have the format address << 8 | data and bit 31 is polled for + * completion. + **/ +s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, + u32 offset, u8 data) +{ + u32 i, regvalue = 0; + + DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); + + /* Set up the address and data */ + regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); + E1000_WRITE_REG(hw, reg, regvalue); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { + usec_delay(5); + regvalue = E1000_READ_REG(hw, reg); + if (regvalue & E1000_GEN_CTL_READY) + break; + } + if (!(regvalue & E1000_GEN_CTL_READY)) { + DEBUGOUT1("Reg %08x did not indicate ready\n", reg); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} diff --git a/usr/src/uts/common/io/igb/igb_mac.h b/usr/src/uts/common/io/e1000api/e1000_mac.h index 7df097814c..b855030824 100644 --- a/usr/src/uts/common/io/igb/igb_mac.h +++ b/usr/src/uts/common/io/e1000api/e1000_mac.h @@ -1,45 +1,44 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ +/****************************************************************************** -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ +******************************************************************************/ +/*$FreeBSD$*/ -/* IntelVersion: 1.32 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_MAC_H -#define _IGB_MAC_H +#ifndef _E1000_MAC_H_ +#define _E1000_MAC_H_ #ifdef __cplusplus extern "C" { #endif -/* - * Functions that should not be called directly from drivers but can be used - * by other files in this 'shared code' - */ void e1000_init_mac_ops_generic(struct e1000_hw *hw); void e1000_null_mac_generic(struct e1000_hw *hw); s32 e1000_null_ops_generic(struct e1000_hw *hw); @@ -47,46 +46,49 @@ s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); bool e1000_null_mng_mode(struct e1000_hw *hw); void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); -void e1000_null_mta_set(struct e1000_hw *hw, u32 a); void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); +s32 e1000_null_set_obff_timer(struct e1000_hw *hw, u32 a); s32 e1000_blink_led_generic(struct e1000_hw *hw); s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); s32 e1000_cleanup_led_generic(struct e1000_hw *hw); +s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); +s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); +s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw); s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); void e1000_set_lan_id_single_port(struct e1000_hw *hw); +void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw); s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex); + u16 *duplex); s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, - u16 *speed, u16 *duplex); + u16 *speed, u16 *duplex); s32 e1000_id_led_init_generic(struct e1000_hw *hw); s32 e1000_led_on_generic(struct e1000_hw *hw); s32 e1000_led_off_generic(struct e1000_hw *hw); void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); + u8 *mc_addr_list, u32 mc_addr_count); +s32 e1000_set_default_fc_generic(struct e1000_hw *hw); s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); s32 e1000_setup_led_generic(struct e1000_hw *hw); s32 e1000_setup_link_generic(struct e1000_hw *hw); +s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw); s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data); + u32 offset, u8 data); u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); void e1000_clear_vfta_generic(struct e1000_hw *hw); -void e1000_config_collision_dist_generic(struct e1000_hw *hw); void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); -void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value); void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw); void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); -void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); void e1000_reset_adaptive_generic(struct e1000_hw *hw); void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); @@ -97,4 +99,4 @@ void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); } #endif -#endif /* _IGB_MAC_H */ +#endif /* _E1000_MAC_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_manage.c b/usr/src/uts/common/io/e1000api/e1000_manage.c new file mode 100644 index 0000000000..c58d32d16b --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_manage.c @@ -0,0 +1,574 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + DEBUGFUNC("e1000_calculate_checksum"); + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8) (0 - sum); +} + +/** + * e1000_mng_enable_host_if_generic - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operation + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw) +{ + u32 hicr; + u8 i; + + DEBUGFUNC("e1000_mng_enable_host_if_generic"); + + if (!hw->mac.arc_subsystem_valid) { + DEBUGOUT("ARC subsystem not valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay_irq(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + DEBUGOUT("Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_mng_mode_generic - Generic check management mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns TRUE (>0) if + * manageability is enabled, else FALSE (0). + **/ +bool e1000_check_mng_mode_generic(struct e1000_hw *hw) +{ + u32 fwsm = E1000_READ_REG(hw, E1000_FWSM); + + DEBUGFUNC("e1000_check_mng_mode_generic"); + + + return (fwsm & E1000_FWSM_MODE_MASK) == + (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); +} + +/** + * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + + DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); + + hw->mac.tx_pkt_filtering = TRUE; + + /* No manageability, no filtering */ + if (!hw->mac.ops.check_mng_mode(hw)) { + hw->mac.tx_pkt_filtering = FALSE; + return hw->mac.tx_pkt_filtering; + } + + /* If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = e1000_mng_enable_host_if_generic(hw); + if (ret_val != E1000_SUCCESS) { + hw->mac.tx_pkt_filtering = FALSE; + return hw->mac.tx_pkt_filtering; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) + *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, + offset + i); + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { + hw->mac.tx_pkt_filtering = TRUE; + return hw->mac.tx_pkt_filtering; + } + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) + hw->mac.tx_pkt_filtering = FALSE; + + return hw->mac.tx_pkt_filtering; +} + +/** + * e1000_mng_write_cmd_header_generic - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + DEBUGFUNC("e1000_mng_write_cmd_header_generic"); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *) hdr + i)); + E1000_WRITE_FLUSH(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_host_if_write_generic - Write to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + u16 remaining, i, j, prev_bytes; + + DEBUGFUNC("e1000_mng_host_if_write_generic"); + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) + return -E1000_ERR_PARAM; + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block into the + * ram area. + */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, + data); + } + + return E1000_SUCCESS; +} + +/** + * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, + u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = e1000_mng_enable_host_if_generic(hw); + if (ret_val) + return ret_val; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = e1000_mng_host_if_write_generic(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + return ret_val; + + /* Write the manageability command header */ + ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr); + if (ret_val) + return ret_val; + + /* Tell the ARC a new command is pending. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + return E1000_SUCCESS; +} + +/** + * e1000_enable_mng_pass_thru - Check if management passthrough is needed + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to leave interface enabled so that frames can + * be directed to and from the management interface. + **/ +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + + DEBUGFUNC("e1000_enable_mng_pass_thru"); + + if (!hw->mac.asf_firmware_present) + return FALSE; + + manc = E1000_READ_REG(hw, E1000_MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN)) + return FALSE; + + if (hw->mac.has_fwsm) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + factps = E1000_READ_REG(hw, E1000_FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) + return TRUE; + } else if ((hw->mac.type == e1000_82574) || + (hw->mac.type == e1000_82583)) { + u16 data; + + factps = E1000_READ_REG(hw, E1000_FACTPS); + e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((data & E1000_NVM_INIT_CTRL2_MNGM) == + (e1000_mng_mode_pt << 13))) + return TRUE; + } else if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + return TRUE; + } + + return FALSE; +} + +/** + * e1000_host_interface_command - Writes buffer to host interface + * @hw: pointer to the HW structure + * @buffer: contains a command to write + * @length: the byte length of the buffer, must be multiple of 4 bytes + * + * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS + * else returns E1000_ERR_HOST_INTERFACE_COMMAND. + **/ +s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length) +{ + u32 hicr, i; + + DEBUGFUNC("e1000_host_interface_command"); + + if (!(hw->mac.arc_subsystem_valid)) { + DEBUGOUT("Hardware doesn't support host interface command.\n"); + return E1000_SUCCESS; + } + + if (!hw->mac.asf_firmware_present) { + DEBUGOUT("Firmware is not present.\n"); + return E1000_SUCCESS; + } + + if (length == 0 || length & 0x3 || + length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) { + DEBUGOUT("Buffer length failure.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block + * into the ram area. + */ + for (i = 0; i < length; i++) + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, + *((u32 *)buffer + i)); + + /* Setting this bit tells the ARC that a new command is pending. */ + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay(1); + } + + /* Check command successful completion. */ + if (i == E1000_HI_COMMAND_TIMEOUT || + (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) { + DEBUGOUT("Command has failed with no status valid.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + for (i = 0; i < length; i++) + *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, + E1000_HOST_IF, + i); + + return E1000_SUCCESS; +} +/** + * e1000_load_firmware - Writes proxy FW code buffer to host interface + * and execute. + * @hw: pointer to the HW structure + * @buffer: contains a firmware to write + * @length: the byte length of the buffer, must be multiple of 4 bytes + * + * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled + * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND. + **/ +s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length) +{ + u32 hicr, hibba, fwsm, icr, i; + + DEBUGFUNC("e1000_load_firmware"); + + if (hw->mac.type < e1000_i210) { + DEBUGOUT("Hardware doesn't support loading FW by the driver\n"); + return -E1000_ERR_CONFIG; + } + + /* Check that the host interface is enabled. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_EN)) { + DEBUGOUT("E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_CONFIG; + } + if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) { + DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n"); + return -E1000_ERR_CONFIG; + } + + if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) { + DEBUGOUT("Buffer length failure.\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + /* Clear notification from ROM-FW by reading ICR register */ + icr = E1000_READ_REG(hw, E1000_ICR_V2); + + /* Reset ROM-FW */ + hicr = E1000_READ_REG(hw, E1000_HICR); + hicr |= E1000_HICR_FW_RESET_ENABLE; + E1000_WRITE_REG(hw, E1000_HICR, hicr); + hicr |= E1000_HICR_FW_RESET; + E1000_WRITE_REG(hw, E1000_HICR, hicr); + E1000_WRITE_FLUSH(hw); + + /* Wait till MAC notifies about its readiness after ROM-FW reset */ + for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) { + icr = E1000_READ_REG(hw, E1000_ICR_V2); + if (icr & E1000_ICR_MNG) + break; + msec_delay(1); + } + + /* Check for timeout */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("FW reset failed.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Wait till MAC is ready to accept new FW code */ + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + fwsm = E1000_READ_REG(hw, E1000_FWSM); + if ((fwsm & E1000_FWSM_FW_VALID) && + ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT == + E1000_FWSM_HI_EN_ONLY_MODE)) + break; + msec_delay(1); + } + + /* Check for timeout */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("FW reset failed.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant FW code block + * into the ram area in DWORDs via 1kB ram addressing window. + */ + for (i = 0; i < length; i++) { + if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) { + /* Point to correct 1kB ram window */ + hibba = E1000_HI_FW_BASE_ADDRESS + + ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) * + (i / E1000_HI_FW_BLOCK_DWORD_LENGTH)); + + E1000_WRITE_REG(hw, E1000_HIBBA, hibba); + } + + E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, + i % E1000_HI_FW_BLOCK_DWORD_LENGTH, + *((u32 *)buffer + i)); + } + + /* Setting this bit tells the ARC that a new FW is ready to execute. */ + hicr = E1000_READ_REG(hw, E1000_HICR); + E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); + + for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { + hicr = E1000_READ_REG(hw, E1000_HICR); + if (!(hicr & E1000_HICR_C)) + break; + msec_delay(1); + } + + /* Check for successful FW start. */ + if (i == E1000_HI_COMMAND_TIMEOUT) { + DEBUGOUT("New FW did not start within timeout period.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return E1000_SUCCESS; +} + + diff --git a/usr/src/uts/common/io/e1000api/e1000_manage.h b/usr/src/uts/common/io/e1000api/e1000_manage.h new file mode 100644 index 0000000000..68bf3a4b16 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_manage.h @@ -0,0 +1,104 @@ +/****************************************************************************** + + Copyright (c) 2001-2012, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_MANAGE_H_ +#define _E1000_MANAGE_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +bool e1000_check_mng_mode_generic(struct e1000_hw *hw); +bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); +s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); +s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum); +s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr); +s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, + u8 *buffer, u16 length); +bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); +u8 e1000_calculate_checksum(u8 *buffer, u32 length); +s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length); +s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length); + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +#define E1000_FWSM_MODE_MASK 0xE +#define E1000_FWSM_MODE_SHIFT 1 +#define E1000_FWSM_FW_VALID 0x00008000 +#define E1000_FWSM_HI_EN_ONLY_MODE 0x4 + +#define E1000_MNG_IAMT_MODE 0x3 +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 +#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 + +#define E1000_VFTA_ENTRY_SHIFT 5 +#define E1000_VFTA_ENTRY_MASK 0x7F +#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F + +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */ +#define E1000_HI_FW_BASE_ADDRESS 0x10000 +#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */ +#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */ +#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */ +#define E1000_HICR_EN 0x01 /* Enable bit - RO */ +/* Driver sets this bit when done to put command in RAM */ +#define E1000_HICR_C 0x02 +#define E1000_HICR_SV 0x04 /* Status Validity */ +#define E1000_HICR_FW_RESET_ENABLE 0x40 +#define E1000_HICR_FW_RESET 0x80 + +/* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_MANAGE_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_mbx.c b/usr/src/uts/common/io/e1000api/e1000_mbx.c new file mode 100644 index 0000000000..14af886738 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_mbx.c @@ -0,0 +1,764 @@ +/****************************************************************************** + + Copyright (c) 2001-2010, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_mbx.h" + +/** + * e1000_null_mbx_check_for_flag - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +static s32 e1000_null_mbx_check_for_flag(struct e1000_hw *hw, u16 mbx_id) +{ + DEBUGFUNC("e1000_null_mbx_check_flag"); + + return E1000_SUCCESS; +} + +/** + * e1000_null_mbx_transact - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +static s32 e1000_null_mbx_transact(struct e1000_hw *hw, u32 *msg, u16 size, + u16 mbx_id) +{ + DEBUGFUNC("e1000_null_mbx_rw_msg"); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mbx - Reads a message from the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to read + * + * returns SUCCESS if it successfuly read message from buffer + **/ +s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_read_mbx"); + + /* limit read to size of mailbox */ + if (size > mbx->size) + size = mbx->size; + + if (mbx->ops.read) + ret_val = mbx->ops.read(hw, msg, size, mbx_id); + + return ret_val; +} + +/** + * e1000_write_mbx - Write a message to the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully copied message into the buffer + **/ +s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_mbx"); + + if (size > mbx->size) + ret_val = -E1000_ERR_MBX; + + else if (mbx->ops.write) + ret_val = mbx->ops.write(hw, msg, size, mbx_id); + + return ret_val; +} + +/** + * e1000_check_for_msg - checks to see if someone sent us mail + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the Status bit was found or else ERR_MBX + **/ +s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_msg"); + + if (mbx->ops.check_for_msg) + ret_val = mbx->ops.check_for_msg(hw, mbx_id); + + return ret_val; +} + +/** + * e1000_check_for_ack - checks to see if someone sent us ACK + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the Status bit was found or else ERR_MBX + **/ +s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_ack"); + + if (mbx->ops.check_for_ack) + ret_val = mbx->ops.check_for_ack(hw, mbx_id); + + return ret_val; +} + +/** + * e1000_check_for_rst - checks to see if other side has reset + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the Status bit was found or else ERR_MBX + **/ +s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_rst"); + + if (mbx->ops.check_for_rst) + ret_val = mbx->ops.check_for_rst(hw, mbx_id); + + return ret_val; +} + +/** + * e1000_poll_for_msg - Wait for message notification + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully received a message notification + **/ +static s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + int countdown = mbx->timeout; + + DEBUGFUNC("e1000_poll_for_msg"); + + if (!countdown || !mbx->ops.check_for_msg) + goto out; + + while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) { + countdown--; + if (!countdown) + break; + usec_delay(mbx->usec_delay); + } + + /* if we failed, all future posted messages fail until reset */ + if (!countdown) + mbx->timeout = 0; +out: + return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; +} + +/** + * e1000_poll_for_ack - Wait for message acknowledgement + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully received a message acknowledgement + **/ +static s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + int countdown = mbx->timeout; + + DEBUGFUNC("e1000_poll_for_ack"); + + if (!countdown || !mbx->ops.check_for_ack) + goto out; + + while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) { + countdown--; + if (!countdown) + break; + usec_delay(mbx->usec_delay); + } + + /* if we failed, all future posted messages fail until reset */ + if (!countdown) + mbx->timeout = 0; +out: + return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; +} + +/** + * e1000_read_posted_mbx - Wait for message notification and receive message + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully received a message notification and + * copied it into the receive buffer. + **/ +s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_read_posted_mbx"); + + if (!mbx->ops.read) + goto out; + + ret_val = e1000_poll_for_msg(hw, mbx_id); + + /* if ack received read message, otherwise we timed out */ + if (!ret_val) + ret_val = mbx->ops.read(hw, msg, size, mbx_id); +out: + return ret_val; +} + +/** + * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully copied message into the buffer and + * received an ack to that message within delay * timeout period + **/ +s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_write_posted_mbx"); + + /* exit if either we can't write or there isn't a defined timeout */ + if (!mbx->ops.write || !mbx->timeout) + goto out; + + /* send msg */ + ret_val = mbx->ops.write(hw, msg, size, mbx_id); + + /* if msg sent wait until we receive an ack */ + if (!ret_val) + ret_val = e1000_poll_for_ack(hw, mbx_id); +out: + return ret_val; +} + +/** + * e1000_init_mbx_ops_generic - Initialize mbx function pointers + * @hw: pointer to the HW structure + * + * Sets the function pointers to no-op functions + **/ +void e1000_init_mbx_ops_generic(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + mbx->ops.init_params = e1000_null_ops_generic; + mbx->ops.read = e1000_null_mbx_transact; + mbx->ops.write = e1000_null_mbx_transact; + mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag; + mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag; + mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; +} + +/** + * e1000_read_v2p_mailbox - read v2p mailbox + * @hw: pointer to the HW structure + * + * This function is used to read the v2p mailbox without losing the read to + * clear status bits. + **/ +static u32 e1000_read_v2p_mailbox(struct e1000_hw *hw) +{ + u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0)); + + v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox; + hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS; + + return v2p_mailbox; +} + +/** + * e1000_check_for_bit_vf - Determine if a status bit was set + * @hw: pointer to the HW structure + * @mask: bitmask for bits to be tested and cleared + * + * This function is used to check for the read to clear bits within + * the V2P mailbox. + **/ +static s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask) +{ + u32 v2p_mailbox = e1000_read_v2p_mailbox(hw); + s32 ret_val = -E1000_ERR_MBX; + + if (v2p_mailbox & mask) + ret_val = E1000_SUCCESS; + + hw->dev_spec.vf.v2p_mailbox &= ~mask; + + return ret_val; +} + +/** + * e1000_check_for_msg_vf - checks to see if the PF has sent mail + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the PF has set the Status bit or else ERR_MBX + **/ +static s32 e1000_check_for_msg_vf(struct e1000_hw *hw, u16 mbx_id) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_msg_vf"); + + if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.reqs++; + } + + return ret_val; +} + +/** + * e1000_check_for_ack_vf - checks to see if the PF has ACK'd + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX + **/ +static s32 e1000_check_for_ack_vf(struct e1000_hw *hw, u16 mbx_id) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_ack_vf"); + + if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.acks++; + } + + return ret_val; +} + +/** + * e1000_check_for_rst_vf - checks to see if the PF has reset + * @hw: pointer to the HW structure + * @mbx_id: id of mailbox to check + * + * returns TRUE if the PF has set the reset done bit or else FALSE + **/ +static s32 e1000_check_for_rst_vf(struct e1000_hw *hw, u16 mbx_id) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_rst_vf"); + + if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD | + E1000_V2PMAILBOX_RSTI))) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.rsts++; + } + + return ret_val; +} + +/** + * e1000_obtain_mbx_lock_vf - obtain mailbox lock + * @hw: pointer to the HW structure + * + * return SUCCESS if we obtained the mailbox lock + **/ +static s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_obtain_mbx_lock_vf"); + + /* Take ownership of the buffer */ + E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU); + + /* reserve mailbox for vf use */ + if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU) + ret_val = E1000_SUCCESS; + + return ret_val; +} + +/** + * e1000_write_mbx_vf - Write a message to the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to write + * + * returns SUCCESS if it successfully copied message into the buffer + **/ +static s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 mbx_id) +{ + s32 ret_val; + u16 i; + + + DEBUGFUNC("e1000_write_mbx_vf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_vf(hw); + if (ret_val) + goto out_no_write; + + /* flush msg and acks as we are overwriting the message buffer */ + e1000_check_for_msg_vf(hw, 0); + e1000_check_for_ack_vf(hw, 0); + + /* copy the caller specified message to the mailbox memory buffer */ + for (i = 0; i < size; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]); + + /* update stats */ + hw->mbx.stats.msgs_tx++; + + /* Drop VFU and interrupt the PF to tell it a message has been sent */ + E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ); + +out_no_write: + return ret_val; +} + +/** + * e1000_read_mbx_vf - Reads a message from the inbox intended for vf + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @mbx_id: id of mailbox to read + * + * returns SUCCESS if it successfuly read message from buffer + **/ +static s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 mbx_id) +{ + s32 ret_val = E1000_SUCCESS; + u16 i; + + DEBUGFUNC("e1000_read_mbx_vf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_vf(hw); + if (ret_val) + goto out_no_read; + + /* copy the message from the mailbox memory buffer */ + for (i = 0; i < size; i++) + msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i); + + /* Acknowledge receipt and release mailbox, then we're done */ + E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK); + + /* update stats */ + hw->mbx.stats.msgs_rx++; + +out_no_read: + return ret_val; +} + +/** + * e1000_init_mbx_params_vf - set initial values for vf mailbox + * @hw: pointer to the HW structure + * + * Initializes the hw->mbx struct to correct values for vf mailbox + */ +s32 e1000_init_mbx_params_vf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + + /* start mailbox as timed out and let the reset_hw call set the timeout + * value to begin communications */ + mbx->timeout = 0; + mbx->usec_delay = E1000_VF_MBX_INIT_DELAY; + + mbx->size = E1000_VFMAILBOX_SIZE; + + mbx->ops.read = e1000_read_mbx_vf; + mbx->ops.write = e1000_write_mbx_vf; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; + mbx->ops.check_for_msg = e1000_check_for_msg_vf; + mbx->ops.check_for_ack = e1000_check_for_ack_vf; + mbx->ops.check_for_rst = e1000_check_for_rst_vf; + + mbx->stats.msgs_tx = 0; + mbx->stats.msgs_rx = 0; + mbx->stats.reqs = 0; + mbx->stats.acks = 0; + mbx->stats.rsts = 0; + + return E1000_SUCCESS; +} + +static s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask) +{ + u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR); + s32 ret_val = -E1000_ERR_MBX; + + if (mbvficr & mask) { + ret_val = E1000_SUCCESS; + E1000_WRITE_REG(hw, E1000_MBVFICR, mask); + } + + return ret_val; +} + +/** + * e1000_check_for_msg_pf - checks to see if the VF has sent mail + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * returns SUCCESS if the VF has set the Status bit or else ERR_MBX + **/ +static s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_msg_pf"); + + if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.reqs++; + } + + return ret_val; +} + +/** + * e1000_check_for_ack_pf - checks to see if the VF has ACKed + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * returns SUCCESS if the VF has set the Status bit or else ERR_MBX + **/ +static s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) +{ + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_ack_pf"); + + if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { + ret_val = E1000_SUCCESS; + hw->mbx.stats.acks++; + } + + return ret_val; +} + +/** + * e1000_check_for_rst_pf - checks to see if the VF has reset + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * returns SUCCESS if the VF has set the Status bit or else ERR_MBX + **/ +static s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) +{ + u32 vflre = E1000_READ_REG(hw, E1000_VFLRE); + s32 ret_val = -E1000_ERR_MBX; + + DEBUGFUNC("e1000_check_for_rst_pf"); + + if (vflre & (1 << vf_number)) { + ret_val = E1000_SUCCESS; + E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number)); + hw->mbx.stats.rsts++; + } + + return ret_val; +} + +/** + * e1000_obtain_mbx_lock_pf - obtain mailbox lock + * @hw: pointer to the HW structure + * @vf_number: the VF index + * + * return SUCCESS if we obtained the mailbox lock + **/ +static s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) +{ + s32 ret_val = -E1000_ERR_MBX; + u32 p2v_mailbox; + + DEBUGFUNC("e1000_obtain_mbx_lock_pf"); + + /* Take ownership of the buffer */ + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU); + + /* reserve mailbox for vf use */ + p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number)); + if (p2v_mailbox & E1000_P2VMAILBOX_PFU) + ret_val = E1000_SUCCESS; + + return ret_val; +} + +/** + * e1000_write_mbx_pf - Places a message in the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @vf_number: the VF index + * + * returns SUCCESS if it successfully copied message into the buffer + **/ +static s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 vf_number) +{ + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_write_mbx_pf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); + if (ret_val) + goto out_no_write; + + /* flush msg and acks as we are overwriting the message buffer */ + e1000_check_for_msg_pf(hw, vf_number); + e1000_check_for_ack_pf(hw, vf_number); + + /* copy the caller specified message to the mailbox memory buffer */ + for (i = 0; i < size; i++) + E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]); + + /* Interrupt VF to tell it a message has been sent and release buffer*/ + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); + + /* update stats */ + hw->mbx.stats.msgs_tx++; + +out_no_write: + return ret_val; + +} + +/** + * e1000_read_mbx_pf - Read a message from the mailbox + * @hw: pointer to the HW structure + * @msg: The message buffer + * @size: Length of buffer + * @vf_number: the VF index + * + * This function copies a message from the mailbox buffer to the caller's + * memory buffer. The presumption is that the caller knows that there was + * a message due to a VF request so no polling for message is needed. + **/ +static s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, + u16 vf_number) +{ + s32 ret_val; + u16 i; + + DEBUGFUNC("e1000_read_mbx_pf"); + + /* lock the mailbox to prevent pf/vf race condition */ + ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); + if (ret_val) + goto out_no_read; + + /* copy the message to the mailbox memory buffer */ + for (i = 0; i < size; i++) + msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i); + + /* Acknowledge the message and release buffer */ + E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); + + /* update stats */ + hw->mbx.stats.msgs_rx++; + +out_no_read: + return ret_val; +} + +/** + * e1000_init_mbx_params_pf - set initial values for pf mailbox + * @hw: pointer to the HW structure + * + * Initializes the hw->mbx struct to correct values for pf mailbox + */ +s32 e1000_init_mbx_params_pf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + + switch (hw->mac.type) { + case e1000_82576: + case e1000_i350: + mbx->timeout = 0; + mbx->usec_delay = 0; + + mbx->size = E1000_VFMAILBOX_SIZE; + + mbx->ops.read = e1000_read_mbx_pf; + mbx->ops.write = e1000_write_mbx_pf; + mbx->ops.read_posted = e1000_read_posted_mbx; + mbx->ops.write_posted = e1000_write_posted_mbx; + mbx->ops.check_for_msg = e1000_check_for_msg_pf; + mbx->ops.check_for_ack = e1000_check_for_ack_pf; + mbx->ops.check_for_rst = e1000_check_for_rst_pf; + + mbx->stats.msgs_tx = 0; + mbx->stats.msgs_rx = 0; + mbx->stats.reqs = 0; + mbx->stats.acks = 0; + mbx->stats.rsts = 0; + default: + return E1000_SUCCESS; + } +} + diff --git a/usr/src/uts/common/io/e1000api/e1000_mbx.h b/usr/src/uts/common/io/e1000api/e1000_mbx.h new file mode 100644 index 0000000000..c66ee7a78b --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_mbx.h @@ -0,0 +1,114 @@ +/****************************************************************************** + + Copyright (c) 2001-2010, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_MBX_H_ +#define _E1000_MBX_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "e1000_api.h" + +/* Define mailbox register bits */ +#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */ +#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */ +#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */ +#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */ +#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */ +#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */ +#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */ + +#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ +#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ +#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ +#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ + +#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */ +#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ +#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */ +#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ + +#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ + +/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the + * PF. The reverse is TRUE if it is E1000_PF_*. + * Message ACK's are the value or'd with 0xF0000000 + */ +#define E1000_VT_MSGTYPE_ACK 0x80000000 /* Messages below or'd with + * this are the ACK */ +#define E1000_VT_MSGTYPE_NACK 0x40000000 /* Messages below or'd with + * this are the NACK */ +#define E1000_VT_MSGTYPE_CTS 0x20000000 /* Indicates that VF is still + clear to send requests */ +#define E1000_VT_MSGINFO_SHIFT 16 +/* bits 23:16 are used for exra info for certain messages */ +#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) + +#define E1000_VF_RESET 0x01 /* VF requests reset */ +#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ +#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ +#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ +#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_LPE 0x05 /* VF requests to set VMOLR.LPE */ +#define E1000_VF_SET_PROMISC 0x06 /*VF requests to clear VMOLR.ROPE/MPME*/ +#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT) +#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) + +#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ + +#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */ +#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */ + +s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16); +s32 e1000_check_for_msg(struct e1000_hw *, u16); +s32 e1000_check_for_ack(struct e1000_hw *, u16); +s32 e1000_check_for_rst(struct e1000_hw *, u16); +void e1000_init_mbx_ops_generic(struct e1000_hw *hw); +s32 e1000_init_mbx_params_vf(struct e1000_hw *); +s32 e1000_init_mbx_params_pf(struct e1000_hw *); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_MBX_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_nvm.c b/usr/src/uts/common/io/e1000api/e1000_nvm.c new file mode 100644 index 0000000000..3acbe7debc --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_nvm.c @@ -0,0 +1,1219 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +static void e1000_reload_nvm_generic(struct e1000_hw *hw); + +/** + * e1000_init_nvm_ops_generic - Initialize NVM function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_nvm_ops_generic(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + DEBUGFUNC("e1000_init_nvm_ops_generic"); + + /* Initialize function pointers */ + nvm->ops.init_params = e1000_null_ops_generic; + nvm->ops.acquire = e1000_null_ops_generic; + nvm->ops.read = e1000_null_read_nvm; + nvm->ops.release = e1000_null_nvm_generic; + nvm->ops.reload = e1000_reload_nvm_generic; + nvm->ops.update = e1000_null_ops_generic; + nvm->ops.valid_led_default = e1000_null_led_default; + nvm->ops.validate = e1000_null_ops_generic; + nvm->ops.write = e1000_null_write_nvm; +} + +/** + * e1000_null_nvm_read - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) +{ + DEBUGFUNC("e1000_null_read_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_null_nvm_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_nvm_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_nvm_generic"); + return; +} + +/** + * e1000_null_led_default - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data) +{ + DEBUGFUNC("e1000_null_led_default"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_nvm - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) +{ + DEBUGFUNC("e1000_null_write_nvm"); + return E1000_SUCCESS; +} + +/** + * e1000_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + E1000_WRITE_REG(hw, E1000_EECD, *eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(hw->nvm.delay_usec); +} + +/** + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u32 mask; + + DEBUGFUNC("e1000_shift_out_eec_bits"); + + mask = 0x01 << (count - 1); + if (nvm->type == e1000_nvm_eeprom_microwire) + eecd &= ~E1000_EECD_DO; + else + if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + DEBUGFUNC("e1000_shift_in_eec_bits"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + e1000_raise_eec_clk(hw, &eecd); + + eecd = E1000_READ_REG(hw, E1000_EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + + DEBUGFUNC("e1000_poll_eerd_eewr_done"); + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = E1000_READ_REG(hw, E1000_EERD); + else + reg = E1000_READ_REG(hw, E1000_EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) + return E1000_SUCCESS; + + usec_delay(5); + } + + return -E1000_ERR_NVM; +} + +/** + * e1000_acquire_nvm_generic - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + + DEBUGFUNC("e1000_acquire_nvm_generic"); + + E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); + eecd = E1000_READ_REG(hw, E1000_EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + usec_delay(5); + eecd = E1000_READ_REG(hw, E1000_EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + DEBUGOUT("Could not acquire NVM grant\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +static void e1000_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + + DEBUGFUNC("e1000_standby_nvm"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + + e1000_lower_eec_clk(hw, &eecd); + } else if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_stop_nvm"); + + eecd = E1000_READ_REG(hw, E1000_EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + e1000_lower_eec_clk(hw, &eecd); + } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + } +} + +/** + * e1000_release_nvm_generic - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000_release_nvm_generic(struct e1000_hw *hw) +{ + u32 eecd; + + DEBUGFUNC("e1000_release_nvm_generic"); + + e1000_stop_nvm(hw); + + eecd = E1000_READ_REG(hw, E1000_EECD); + eecd &= ~E1000_EECD_REQ; + E1000_WRITE_REG(hw, E1000_EECD, eecd); +} + +/** + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = E1000_READ_REG(hw, E1000_EECD); + u8 spi_stat_reg; + + DEBUGFUNC("e1000_ready_nvm_eeprom"); + + if (nvm->type == e1000_nvm_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + /* Set CS */ + eecd |= E1000_EECD_CS; + E1000_WRITE_REG(hw, E1000_EECD, eecd); + } else if (nvm->type == e1000_nvm_eeprom_spi) { + u16 timeout = NVM_MAX_RETRY_SPI; + + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + E1000_WRITE_REG(hw, E1000_EECD, eecd); + E1000_WRITE_FLUSH(hw); + usec_delay(1); + + /* Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. + */ + while (timeout) { + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + usec_delay(5); + e1000_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + DEBUGOUT("SPI NVM Status error\n"); + return -E1000_ERR_NVM; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_nvm_spi - Read EEPROM's using SPI + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u16 word_in; + u8 read_opcode = NVM_READ_OPCODE_SPI; + + DEBUGFUNC("e1000_read_nvm_spi"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_standby_nvm(hw); + + if ((nvm->address_bits == 8) && (offset >= 128)) + read_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + + /* Read the data. SPI NVMs increment the address with each byte + * read and will roll over if reading beyond the end. This allows + * us to read the whole NVM from any offset + */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_eec_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_nvm_microwire - Reads EEPROM's using microwire + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; + + DEBUGFUNC("e1000_read_nvm_microwire"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset + i), + nvm->address_bits); + + /* Read the data. For microwire, each word requires the + * overhead of setup and tear-down. + */ + data[i] = e1000_shift_in_eec_bits(hw, 16); + e1000_standby_nvm(hw); + } + +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_read_nvm_eerd"); + + /* A check for invalid values: offset too large, too many words, + * too many words for the offset, and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + E1000_WRITE_REG(hw, E1000_EERD, eerd); + ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (E1000_READ_REG(hw, E1000_EERD) >> + E1000_NVM_RW_REG_DATA); + } + + return ret_val; +} + +/** + * e1000_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = -E1000_ERR_NVM; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_spi"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) { + nvm->ops.release(hw); + return ret_val; + } + + e1000_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + e1000_standby_nvm(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + e1000_standby_nvm(hw); + break; + } + } + msec_delay(10); + nvm->ops.release(hw); + } + + return ret_val; +} + +/** + * e1000_write_nvm_microwire - Writes EEPROM using microwire + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using microwire interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u32 eecd; + u16 words_written = 0; + u16 widx = 0; + + DEBUGFUNC("e1000_write_nvm_microwire"); + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + DEBUGOUT("nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + + e1000_standby_nvm(hw); + + while (words_written < words) { + e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, + nvm->opcode_bits); + + e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), + nvm->address_bits); + + e1000_shift_out_eec_bits(hw, data[words_written], 16); + + e1000_standby_nvm(hw); + + for (widx = 0; widx < 200; widx++) { + eecd = E1000_READ_REG(hw, E1000_EECD); + if (eecd & E1000_EECD_DO) + break; + usec_delay(50); + } + + if (widx == 200) { + DEBUGOUT("NVM Write did not complete\n"); + ret_val = -E1000_ERR_NVM; + goto release; + } + + e1000_standby_nvm(hw); + + words_written++; + } + + e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, + (u16)(nvm->opcode_bits + 2)); + + e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); + +release: + nvm->ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_pba_string_generic - Read device part number + * @hw: pointer to the HW structure + * @pba_num: pointer to device part number + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in pba_num. + **/ +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pba_ptr; + u16 offset; + u16 length; + + DEBUGFUNC("e1000_read_pba_string_generic"); + + if (pba_num == NULL) { + DEBUGOUT("PBA string buffer was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + /* if nvm_data is not ptr guard the PBA must be in legacy format which + * means pba_ptr is actually our second data word for the PBA number + * and we can decode it into an ascii string + */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + DEBUGOUT("NVM PBA number is not stored as string\n"); + + /* make sure callers buffer is big enough to store the PBA */ + if (pba_num_size < E1000_PBANUM_LENGTH) { + DEBUGOUT("PBA string buffer too small\n"); + return E1000_ERR_NO_SPACE; + } + + /* extract hex string from data and pba_ptr */ + pba_num[0] = (nvm_data >> 12) & 0xF; + pba_num[1] = (nvm_data >> 8) & 0xF; + pba_num[2] = (nvm_data >> 4) & 0xF; + pba_num[3] = nvm_data & 0xF; + pba_num[4] = (pba_ptr >> 12) & 0xF; + pba_num[5] = (pba_ptr >> 8) & 0xF; + pba_num[6] = '-'; + pba_num[7] = 0; + pba_num[8] = (pba_ptr >> 4) & 0xF; + pba_num[9] = pba_ptr & 0xF; + + /* put a null character on the end of our string */ + pba_num[10] = '\0'; + + /* switch all the data but the '-' to hex char */ + for (offset = 0; offset < 10; offset++) { + if (pba_num[offset] < 0xA) + pba_num[offset] += '0'; + else if (pba_num[offset] < 0x10) + pba_num[offset] += 'A' - 0xA; + } + + return E1000_SUCCESS; + } + + ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (length == 0xFFFF || length == 0) { + DEBUGOUT("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + /* check if pba_num buffer is big enough */ + if (pba_num_size < (((u32)length * 2) - 1)) { + DEBUGOUT("PBA string buffer too small\n"); + return -E1000_ERR_NO_SPACE; + } + + /* trim pba length from start of string */ + pba_ptr++; + length--; + + for (offset = 0; offset < length; offset++) { + ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + pba_num[offset * 2] = (u8)(nvm_data >> 8); + pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); + } + pba_num[offset * 2] = '\0'; + + return E1000_SUCCESS; +} + +/** + * e1000_read_pba_length_generic - Read device part number length + * @hw: pointer to the HW structure + * @pba_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number length from the EEPROM and + * stores the value in pba_num_size. + **/ +s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pba_ptr; + u16 length; + + DEBUGFUNC("e1000_read_pba_length_generic"); + + if (pba_num_size == NULL) { + DEBUGOUT("PBA buffer size was null\n"); + return -E1000_ERR_INVALID_ARGUMENT; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + /* if data is not ptr guard the PBA must be in legacy format */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + *pba_num_size = E1000_PBANUM_LENGTH; + return E1000_SUCCESS; + } + + ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + + if (length == 0xFFFF || length == 0) { + DEBUGOUT("NVM PBA number section invalid length\n"); + return -E1000_ERR_NVM_PBA_SECTION; + } + + /* Convert from length in u16 values to u8 chars, add 1 for NULL, + * and subtract 2 because length field is included in length. + */ + *pba_num_size = ((u32)length * 2) - 1; + + return E1000_SUCCESS; +} + + +/** + * e1000_read_pba_raw + * @hw: pointer to the HW structure + * @eeprom_buf: optional pointer to EEPROM image + * @eeprom_buf_size: size of EEPROM image in words + * @max_pba_block_size: PBA block size limit + * @pba: pointer to output PBA structure + * + * Reads PBA from EEPROM image when eeprom_buf is not NULL. + * Reads PBA from physical EEPROM device when eeprom_buf is NULL. + * + **/ +s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 max_pba_block_size, + struct e1000_pba *pba) +{ + s32 ret_val; + u16 pba_block_size; + + if (pba == NULL) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, + &pba->word[0]); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > NVM_PBA_OFFSET_1) { + pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; + pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; + } else { + return -E1000_ERR_PARAM; + } + } + + if (pba->word[0] == NVM_PBA_PTR_GUARD) { + if (pba->pba_block == NULL) + return -E1000_ERR_PARAM; + + ret_val = e1000_get_pba_block_size(hw, eeprom_buf, + eeprom_buf_size, + &pba_block_size); + if (ret_val) + return ret_val; + + if (pba_block_size > max_pba_block_size) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, pba->word[1], + pba_block_size, + pba->pba_block); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > (u32)(pba->word[1] + + pba->pba_block[0])) { + memcpy(pba->pba_block, + &eeprom_buf[pba->word[1]], + pba_block_size * sizeof(u16)); + } else { + return -E1000_ERR_PARAM; + } + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_write_pba_raw + * @hw: pointer to the HW structure + * @eeprom_buf: optional pointer to EEPROM image + * @eeprom_buf_size: size of EEPROM image in words + * @pba: pointer to PBA structure + * + * Writes PBA to EEPROM image when eeprom_buf is not NULL. + * Writes PBA to physical EEPROM device when eeprom_buf is NULL. + * + **/ +s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, struct e1000_pba *pba) +{ + s32 ret_val; + + if (pba == NULL) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2, + &pba->word[0]); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > NVM_PBA_OFFSET_1) { + eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0]; + eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1]; + } else { + return -E1000_ERR_PARAM; + } + } + + if (pba->word[0] == NVM_PBA_PTR_GUARD) { + if (pba->pba_block == NULL) + return -E1000_ERR_PARAM; + + if (eeprom_buf == NULL) { + ret_val = e1000_write_nvm(hw, pba->word[1], + pba->pba_block[0], + pba->pba_block); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > (u32)(pba->word[1] + + pba->pba_block[0])) { + memcpy(&eeprom_buf[pba->word[1]], + pba->pba_block, + pba->pba_block[0] * sizeof(u16)); + } else { + return -E1000_ERR_PARAM; + } + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_pba_block_size + * @hw: pointer to the HW structure + * @eeprom_buf: optional pointer to EEPROM image + * @eeprom_buf_size: size of EEPROM image in words + * @pba_data_size: pointer to output variable + * + * Returns the size of the PBA block in words. Function operates on EEPROM + * image if the eeprom_buf pointer is not NULL otherwise it accesses physical + * EEPROM device. + * + **/ +s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 *pba_block_size) +{ + s32 ret_val; + u16 pba_word[2]; + u16 length; + + DEBUGFUNC("e1000_get_pba_block_size"); + + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > NVM_PBA_OFFSET_1) { + pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; + pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; + } else { + return -E1000_ERR_PARAM; + } + } + + if (pba_word[0] == NVM_PBA_PTR_GUARD) { + if (eeprom_buf == NULL) { + ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1, + &length); + if (ret_val) + return ret_val; + } else { + if (eeprom_buf_size > pba_word[1]) + length = eeprom_buf[pba_word[1] + 0]; + else + return -E1000_ERR_PARAM; + } + + if (length == 0xFFFF || length == 0) + return -E1000_ERR_NVM_PBA_SECTION; + } else { + /* PBA number in legacy format, there is no PBA Block. */ + length = 0; + } + + if (pba_block_size != NULL) + *pba_block_size = length; + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr_generic - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) +{ + u32 rar_high; + u32 rar_low; + u16 i; + + rar_high = E1000_READ_REG(hw, E1000_RAH(0)); + rar_low = E1000_READ_REG(hw, E1000_RAL(0)); + + for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); + + for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return E1000_SUCCESS; +} + +/** + * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_validate_nvm_checksum_generic"); + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error\n"); + return ret_val; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + DEBUGOUT("NVM Checksum Invalid\n"); + return -E1000_ERR_NVM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_update_nvm_checksum_generic - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + DEBUGFUNC("e1000_update_nvm_checksum"); + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + DEBUGOUT("NVM Read Error while updating checksum.\n"); + return ret_val; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) + DEBUGOUT("NVM Write Error while updating checksum.\n"); + + return ret_val; +} + +/** + * e1000_reload_nvm_generic - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +static void e1000_reload_nvm_generic(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + DEBUGFUNC("e1000_reload_nvm_generic"); + + usec_delay(10); + ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(hw); +} diff --git a/usr/src/uts/common/io/e1000api/e1000_nvm.h b/usr/src/uts/common/io/e1000api/e1000_nvm.h new file mode 100644 index 0000000000..69c2ab072d --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_nvm.h @@ -0,0 +1,90 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_NVM_H_ +#define _E1000_NVM_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#if !defined(NO_READ_PBA_RAW) || !defined(NO_WRITE_PBA_RAW) +struct e1000_pba { + u16 word[2]; + u16 *pba_block; +}; +#endif + + +void e1000_init_nvm_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +void e1000_null_nvm_generic(struct e1000_hw *hw); +s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); +s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); +s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); + +s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, + u32 pba_num_size); +s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); +s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 max_pba_block_size, + struct e1000_pba *pba); +s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, struct e1000_pba *pba); +s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, + u32 eeprom_buf_size, u16 *pba_block_size); +s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); +s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); +s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); +void e1000_stop_nvm(struct e1000_hw *hw); +void e1000_release_nvm_generic(struct e1000_hw *hw); + +#define E1000_STM_OPCODE 0xDB00 + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_NVM_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_phy.c b/usr/src/uts/common/io/e1000api/e1000_phy.c new file mode 100644 index 0000000000..241c1d5d30 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_phy.c @@ -0,0 +1,4085 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#include "e1000_api.h" + +static s32 e1000_wait_autoneg(struct e1000_hw *hw); +static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set); +static u32 e1000_get_phy_addr_for_hv_page(u32 page); +static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read); + +/* Cable length tables */ +static const u16 e1000_m88_cable_length_table[] = { + 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_m88_cable_length_table) / \ + sizeof(e1000_m88_cable_length_table[0])) + +static const u16 e1000_igp_2_cable_length_table[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, + 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, + 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, + 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, + 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, + 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, + 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, + 124}; +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_2_cable_length_table) / \ + sizeof(e1000_igp_2_cable_length_table[0])) + +/** + * e1000_init_phy_ops_generic - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_phy_ops_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + DEBUGFUNC("e1000_init_phy_ops_generic"); + + /* Initialize function pointers */ + phy->ops.init_params = e1000_null_ops_generic; + phy->ops.acquire = e1000_null_ops_generic; + phy->ops.check_polarity = e1000_null_ops_generic; + phy->ops.check_reset_block = e1000_null_ops_generic; + phy->ops.commit = e1000_null_ops_generic; + phy->ops.force_speed_duplex = e1000_null_ops_generic; + phy->ops.get_cfg_done = e1000_null_ops_generic; + phy->ops.get_cable_length = e1000_null_ops_generic; + phy->ops.get_info = e1000_null_ops_generic; + phy->ops.set_page = e1000_null_set_page; + phy->ops.read_reg = e1000_null_read_reg; + phy->ops.read_reg_locked = e1000_null_read_reg; + phy->ops.read_reg_page = e1000_null_read_reg; + phy->ops.release = e1000_null_phy_generic; + phy->ops.reset = e1000_null_ops_generic; + phy->ops.set_d0_lplu_state = e1000_null_lplu_state; + phy->ops.set_d3_lplu_state = e1000_null_lplu_state; + phy->ops.write_reg = e1000_null_write_reg; + phy->ops.write_reg_locked = e1000_null_write_reg; + phy->ops.write_reg_page = e1000_null_write_reg; + phy->ops.power_up = e1000_null_phy_generic; + phy->ops.power_down = e1000_null_phy_generic; + phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; + phy->ops.cfg_on_link_up = e1000_null_ops_generic; +} + +/** + * e1000_null_set_page - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_set_page(struct e1000_hw *hw, u16 data) +{ + DEBUGFUNC("e1000_null_set_page"); + return E1000_SUCCESS; +} + +/** + * e1000_null_read_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data) +{ + DEBUGFUNC("e1000_null_read_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_null_phy_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_phy_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_null_phy_generic"); + return; +} + +/** + * e1000_null_lplu_state - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active) +{ + DEBUGFUNC("e1000_null_lplu_state"); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data) +{ + DEBUGFUNC("e1000_null_write_reg"); + return E1000_SUCCESS; +} + +/** + * e1000_read_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value read + * + **/ +s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data) +{ + DEBUGFUNC("e1000_read_i2c_byte_null"); + return E1000_SUCCESS; +} + +/** + * e1000_write_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value to write + * + **/ +s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, + u8 byte_offset, + u8 dev_addr, + u8 data) +{ + DEBUGFUNC("e1000_write_i2c_byte_null"); + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block_generic - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Read the PHY management control register and check whether a PHY reset + * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise + * return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000_check_reset_block_generic(struct e1000_hw *hw) +{ + u32 manc; + + DEBUGFUNC("e1000_check_reset_block"); + + manc = E1000_READ_REG(hw, E1000_MANC); + + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +/** + * e1000_get_phy_id - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +s32 e1000_get_phy_id(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + u16 retry_count = 0; + + DEBUGFUNC("e1000_get_phy_id"); + + if (!phy->ops.read_reg) + return E1000_SUCCESS; + + while (retry_count < 2) { + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id & PHY_REVISION_MASK); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + + if (phy->id != 0 && phy->id != PHY_REVISION_MASK) + return E1000_SUCCESS; + + retry_count++; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_reset_dsp_generic - Reset PHY DSP + * @hw: pointer to the HW structure + * + * Reset the digital signal processor. + **/ +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_phy_reset_dsp_generic"); + + if (!hw->phy.ops.write_reg) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); + if (ret_val) + return ret_val; + + return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); +} + +/** + * e1000_read_phy_reg_mdic - Read MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + DEBUGFUNC("e1000_read_phy_reg_mdic"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; + } + *data = (u16) mdic; + + /* Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + usec_delay(100); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_mdic - Write MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + DEBUGFUNC("e1000_write_phy_reg_mdic"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = (((u32)data) | + (offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; + } + + /* Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + usec_delay(100); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_i2c - Read PHY register using i2c + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the i2c interface and stores the + * retrieved information in data. + **/ +s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + + DEBUGFUNC("e1000_read_phy_reg_i2c"); + + /* Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + (E1000_I2CCMD_OPCODE_READ)); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + /* Need to byte-swap the 16-bit value. */ + *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_i2c - Write PHY register using i2c + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the i2c interface. + **/ +s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + u16 phy_data_swapped; + + DEBUGFUNC("e1000_write_phy_reg_i2c"); + + /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ + if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { + DEBUGOUT1("PHY I2C Address %d is out of range.\n", + hw->phy.addr); + return -E1000_ERR_CONFIG; + } + + /* Swap the data bytes for the I2C interface */ + phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); + + /* Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | + phy_data_swapped); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_sfp_data_byte - Reads SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to be read + * @data: read data buffer pointer + * + * Reads one byte from SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_read_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing with the + * EEPROM to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + data_local = E1000_READ_REG(hw, E1000_I2CCMD); + if (data_local & E1000_I2CCMD_READY) + break; + } + if (!(data_local & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (data_local & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + *data = (u8) data_local & 0xFF; + + return E1000_SUCCESS; +} + +/** + * e1000_write_sfp_data_byte - Writes SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to write to + * @data: data to write + * + * Writes one byte to SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_write_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + /* The programming interface is 16 bits wide + * so we need to read the whole word first + * then update appropriate byte lane and write + * the updated word back. + */ + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing + * with an EEPROM to write the data given. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + /* Set a command to read single word */ + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + /* Poll the ready bit to see if lastly + * launched I2C operation completed + */ + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) { + /* Check if this is READ or WRITE phase */ + if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == + E1000_I2CCMD_OPCODE_READ) { + /* Write the selected byte + * lane and update whole word + */ + data_local = i2ccmd & 0xFF00; + data_local |= data; + i2ccmd = ((offset << + E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | data_local); + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + } else { + break; + } + } + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_m88 - Read m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_m88"); + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_m88 - Write m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_m88"); + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_set_page_igp - Set page as on IGP-like PHY(s) + * @hw: pointer to the HW structure + * @page: page to set (shifted left when necessary) + * + * Sets PHY page required for PHY register access. Assumes semaphore is + * already acquired. Note, this function sets phy.addr to 1 so the caller + * must set it appropriately (if necessary) after this function returns. + **/ +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) +{ + DEBUGFUNC("e1000_set_page_igp"); + + DEBUGOUT1("Setting page 0x%x\n", page); + + hw->phy.addr = 1; + + return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); +} + +/** + * __e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +static s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_read_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores the + * retrieved information in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, FALSE); +} + +/** + * e1000_read_phy_reg_igp_locked - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, TRUE); +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +static s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & + offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, FALSE); +} + +/** + * e1000_write_phy_reg_igp_locked - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, TRUE); +} + +/** + * __e1000_read_kmrn_reg - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("__e1000_read_kmrn_reg"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg_generic - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset using the + * kumeran interface. The information retrieved is stored in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, FALSE); +} + +/** + * e1000_read_kmrn_reg_locked - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the kumeran interface. The + * information retrieved is stored in data. + * Assumes semaphore already acquired. + **/ +s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, TRUE); +} + +/** + * __e1000_write_kmrn_reg - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("e1000_write_kmrn_reg_generic"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_write_kmrn_reg_generic - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to the PHY register at the offset + * using the kumeran interface. Release the acquired semaphore before exiting. + **/ +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, FALSE); +} + +/** + * e1000_write_kmrn_reg_locked - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Write the data to PHY register at the offset using the kumeran interface. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, TRUE); +} + +/** + * e1000_set_master_slave_mode - Setup PHY for Master/slave mode + * @hw: pointer to the HW structure + * + * Sets up Master/slave mode + **/ +static s32 e1000_set_master_slave_mode(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + /* Resolve Master/Slave mode */ + ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : e1000_ms_auto; + + switch (hw->phy.ms_type) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + /* fall-through */ + default: + break; + } + + return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); +} + +/** + * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link + * @hw: pointer to the HW structure + * + * Sets up Carrier-sense on Transmit and downshift values. + **/ +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_82577"); + + if (hw->phy.type == e1000_phy_82580) { + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; + } + } + + /* Enable CRS on Tx. This must be set for half-duplex operation. + * Not required on some PHYs. + */ + ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); + if (ret_val) + return ret_val; + + if ((hw->phy.type != e1000_phy_82579) && + (hw->phy.type != e1000_phy_i217)) + phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; + + /* Enable downshift */ + phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; + + ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); + if (ret_val) + return ret_val; + + /* Set MDI/MDIX mode */ + ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; + /* Options: + * 0 - Auto (default) + * 1 - MDI mode + * 2 - MDI-X mode + */ + switch (hw->phy.mdix) { + case 1: + break; + case 2: + phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; + break; + case 0: + default: + phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); + if (ret_val) + return ret_val; + + return e1000_set_master_slave_mode(hw); +} + +/** + * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock + * and downshift values are set also. + **/ +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88"); + + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* For BM PHY this bit is downshift enable */ + if (phy->type != e1000_phy_bm) + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift on BM (disabled by default) */ + if (phy->type == e1000_phy_bm) { + /* For 82574/82583, first disable then enable downshift */ + if (phy->id == BME1000_E_PHY_ID_R2) { + phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + } + + phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; + } + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((phy->type == e1000_phy_m88) && + (phy->revision < E1000_REVISION_4) && + (phy->id != BME1000_E_PHY_ID_R2)) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((phy->revision == E1000_REVISION_2) && + (phy->id == M88E1111_I_PHY_ID)) { + /* 82573L PHY - set the downshift counter to 5x. */ + phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + } + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { + /* Set PHY page 0, register 29 to 0x0003 */ + ret_val = phy->ops.write_reg(hw, 29, 0x0003); + if (ret_val) + return ret_val; + + /* Set PHY page 0, register 30 to 0x0000 */ + ret_val = phy->ops.write_reg(hw, 30, 0x0000); + if (ret_val) + return ret_val; + } + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + if (phy->type == e1000_phy_82578) { + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + /* 82578 PHY - set the downshift count to 1x. */ + phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; + phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + if (phy->type == e1000_phy_i210) { + ret_val = e1000_set_master_slave_mode(hw); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. + * Also enables and sets the downshift parameters. + **/ +s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); + + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + /* M88E1112 does not support this mode) */ + if (phy->id != M88E1112_E_PHY_ID) { + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + } + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift and setting it to X6 */ + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; + phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; + phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_setup_igp - Setup igp PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + * igp PHY's. + **/ +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_copper_link_setup_igp"); + + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; + } + + /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid + * timeout issues when LFS is enabled. + */ + msec_delay(100); + + /* The NVM settings will configure LPLU in D3 for + * non-IGP1 PHYs. + */ + if (phy->type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = hw->phy.ops.set_d3_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* disable lplu d0 during driver init */ + if (hw->phy.ops.set_d0_lplu_state) { + ret_val = hw->phy.ops.set_d0_lplu_state(hw, FALSE); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + return ret_val; + } + } + /* Configure mdi-mdix settings */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (phy->mdix) { + case 1: + data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->mac.autoneg) { + /* when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + + /* Set auto Master/Slave resolution process */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~CR_1000T_MS_ENABLE; + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_set_master_slave_mode(hw); + } + + return ret_val; +} + +/** + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + * @hw: pointer to the HW structure + * + * Reads the MII auto-neg advertisement register and/or the 1000T control + * register and if the PHY is already setup for auto-negotiation, then + * return successful. Otherwise, setup advertisement and flow control to + * the appropriate values for the wanted auto-negotiation. + **/ +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg = 0; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + phy->autoneg_advertised &= phy->autoneg_mask; + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | + NWAY_AR_100TX_HD_CAPS | + NWAY_AR_10T_FD_CAPS | + NWAY_AR_10T_HD_CAPS); + mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); + + DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (phy->autoneg_advertised & ADVERTISE_1000_HALF) + DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- + * negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control (Rx & Tx) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled, and Tx Flow control is + * disabled, by a software over-ride. + * + * Since there really isn't a way to advertise that we are + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + * hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (!phy->autoneg_advertised) + phy->autoneg_advertised = phy->autoneg_mask; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->mac.get_link_status = TRUE; + + return ret_val; +} + +/** + * e1000_setup_copper_link_generic - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_generic"); + + if (hw->mac.autoneg) { + /* Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = hw->phy.ops.force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, + &link); + if (ret_val) + return ret_val; + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + hw->mac.ops.config_collision_dist(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Waits for link and returns + * successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IGP PSCR: %X\n", phy_data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Resets the PHY to commit the + * changes. If time expires while waiting for link up, we reset the DSP. + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon + * successful completion, else return corresponding error code. + **/ +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); + + /* I210 and I211 devices support Auto-Crossover in forced operation. */ + if (phy->type != e1000_phy_i210) { + /* Clear Auto-Crossover to force MDI manually. M88E1000 + * requires MDI forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Reset the phy to commit changes. */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + return ret_val; + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) { + bool reset_dsp = TRUE; + + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1112_E_PHY_ID: + case I210_I_PHY_ID: + reset_dsp = FALSE; + break; + default: + if (hw->phy.type != e1000_phy_m88) + reset_dsp = FALSE; + break; + } + + if (!reset_dsp) { + DEBUGOUT("Link taking longer than expected.\n"); + } else { + /* We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = phy->ops.write_reg(hw, + M88E1000_PHY_PAGE_SELECT, + 0x001d); + if (ret_val) + return ret_val; + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + return ret_val; + } + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + if (hw->phy.type != e1000_phy_m88) + return E1000_SUCCESS; + + if (hw->phy.id == I347AT4_E_PHY_ID || + hw->phy.id == M88E1340M_E_PHY_ID || + hw->phy.id == M88E1112_E_PHY_ID) + return E1000_SUCCESS; + if (hw->phy.id == I210_I_PHY_ID) + return E1000_SUCCESS; + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Resetting the phy means we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock from + * the reset value of 2.5MHz. + */ + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); + if (ret_val) + return ret_val; + + /* Disable MDI-X support for 10/100 */ + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IFE PMC: %X\n", data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * @hw: pointer to the HW structure + * @phy_ctrl: pointer to current value of PHY_CONTROL + * + * Forces speed and duplex on the PHY by doing the following: disable flow + * control, force speed/duplex on the MAC, disable auto speed detection, + * disable auto-negotiation, configure duplex, configure speed, configure + * the collision distance, write configuration to CTRL register. The + * caller must write to the PHY_CONTROL register for these settings to + * take affect. + **/ +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); + + /* Turn off flow control when forcing speed/duplex */ + hw->fc.current_mode = e1000_fc_none; + + /* Force speed/duplex on the mac */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~E1000_CTRL_SPD_SEL; + + /* Disable Auto Speed Detection */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Disable autoneg on the phy */ + *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; + + /* Forcing Full or Half Duplex? */ + if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { + ctrl &= ~E1000_CTRL_FD; + *phy_ctrl &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } else { + ctrl |= E1000_CTRL_FD; + *phy_ctrl |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } + + /* Forcing 10mb or 100mb? */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { + ctrl |= E1000_CTRL_SPD_100; + *phy_ctrl |= MII_CR_SPEED_100; + *phy_ctrl &= ~MII_CR_SPEED_1000; + DEBUGOUT("Forcing 100mb\n"); + } else { + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb\n"); + } + + hw->mac.ops.config_collision_dist(hw); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); +} + +/** + * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (!active) { + data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + } + + return ret_val; +} + +/** + * e1000_check_downshift_generic - Checks whether a downshift in speed occurred + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns 1 + * + * A downshift is detected by querying the PHY link health. + **/ +s32 e1000_check_downshift_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_downshift_generic"); + + switch (phy->type) { + case e1000_phy_i210: + case e1000_phy_m88: + case e1000_phy_gg82563: + case e1000_phy_bm: + case e1000_phy_82578: + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; + break; + case e1000_phy_igp: + case e1000_phy_igp_2: + case e1000_phy_igp_3: + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; + break; + default: + /* speed downshift not supported */ + phy->speed_downgraded = FALSE; + return E1000_SUCCESS; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->speed_downgraded = !!(phy_data & mask); + + return ret_val; +} + +/** + * e1000_check_polarity_m88 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); + + if (!ret_val) + phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_check_polarity_igp - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY port status register, and the + * current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_igp"); + + /* Polarity is determined based on the speed of + * our connection. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; + } else { + /* This really only applies to 10Mbps since + * there is no polarity for 100Mbps (always 0). + */ + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; + } + + ret_val = phy->ops.read_reg(hw, offset, &data); + + if (!ret_val) + phy->cable_polarity = (data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_check_polarity_ife - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_ife"); + + /* Polarity is determined based on the reversal feature being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = (phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_wait_autoneg - Wait for auto-neg completion + * @hw: pointer to the HW structure + * + * Waits for auto-negotiation to complete or for the auto-negotiation time + * limit to expire, which ever happens first. + **/ +static s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_wait_autoneg"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ + for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_AUTONEG_COMPLETE) + break; + msec_delay(100); + } + + /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation + * has completed. + */ + return ret_val; +} + +/** + * e1000_phy_has_link_generic - Polls PHY for link + * @hw: pointer to the HW structure + * @iterations: number of times to poll for link + * @usec_interval: delay between polling attempts + * @success: pointer to whether polling was successful or not + * + * Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_phy_has_link_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + for (i = 0; i < iterations; i++) { + /* Some PHYs require the PHY_STATUS register to be read + * twice due to the link bit being sticky. No harm doing + * it across the board. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + /* If the first read fails, another entity may have + * ownership of the resources, wait and try again to + * see if they have relinquished the resources yet. + */ + usec_delay(usec_interval); + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_LINK_STATUS) + break; + if (usec_interval >= 1000) + msec_delay_irq(usec_interval/1000); + else + usec_delay(usec_interval); + } + + *success = (i < iterations); + + return ret_val; +} + +/** + * e1000_get_cable_length_m88 - Determine cable length for m88 PHY + * @hw: pointer to the HW structure + * + * Reads the PHY specific status register to retrieve the cable length + * information. The cable length is determined by averaging the minimum and + * maximum values to get the "average" cable length. The m88 PHY has four + * possible cable length values, which are: + * Register Value Cable Length + * 0 < 50 meters + * 1 50 - 80 meters + * 2 80 - 110 meters + * 3 110 - 140 meters + * 4 > 140 meters + **/ +s32 e1000_get_cable_length_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, phy_data2, is_cm; + u16 index, default_page; + + DEBUGFUNC("e1000_get_cable_length_m88_gen2"); + + switch (hw->phy.id) { + case I210_I_PHY_ID: + /* Get cable length from PHY Cable Diagnostics Control Reg */ + ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + + (I347AT4_PCDL + phy->addr), + &phy_data); + if (ret_val) + return ret_val; + + /* Check if the unit of cable length is meters or cm */ + ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + + I347AT4_PCDC, &phy_data2); + if (ret_val) + return ret_val; + + is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); + + /* Populate the phy structure with cable length in meters */ + phy->min_cable_length = phy_data / (is_cm ? 100 : 1); + phy->max_cable_length = phy_data / (is_cm ? 100 : 1); + phy->cable_length = phy_data / (is_cm ? 100 : 1); + break; + case M88E1340M_E_PHY_ID: + case I347AT4_E_PHY_ID: + /* Remember the original page select and set it to 7 */ + ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, + &default_page); + if (ret_val) + return ret_val; + + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); + if (ret_val) + return ret_val; + + /* Get cable length from PHY Cable Diagnostics Control Reg */ + ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), + &phy_data); + if (ret_val) + return ret_val; + + /* Check if the unit of cable length is meters or cm */ + ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); + if (ret_val) + return ret_val; + + is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); + + /* Populate the phy structure with cable length in meters */ + phy->min_cable_length = phy_data / (is_cm ? 100 : 1); + phy->max_cable_length = phy_data / (is_cm ? 100 : 1); + phy->cable_length = phy_data / (is_cm ? 100 : 1); + + /* Reset the page select to its original value */ + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, + default_page); + if (ret_val) + return ret_val; + break; + + case M88E1112_E_PHY_ID: + /* Remember the original page select and set it to 5 */ + ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, + &default_page); + if (ret_val) + return ret_val; + + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, + &phy_data); + if (ret_val) + return ret_val; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + + phy->max_cable_length) / 2; + + /* Reset the page select to its original value */ + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, + default_page); + if (ret_val) + return ret_val; + + break; + default: + return -E1000_ERR_PHY; + } + + return ret_val; +} + +/** + * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, i, agc_value = 0; + u16 cur_agc_index, max_agc_index = 0; + u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; + static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { + IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D + }; + + DEBUGFUNC("e1000_get_cable_length_igp_2"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + /* Getting bits 15:9, which represent the combination of + * coarse and fine gain values. The result is a number + * that can be put into the lookup table to obtain the + * approximate cable length. + */ + cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK; + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; + + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0; + phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info_m88 - Retrieve PHY information + * @hw: pointer to the HW structure + * + * Valid for only copper links. Read the PHY status register (sticky read) + * to verify that link is up. Read the PHY special control register to + * determine the polarity and 10base-T extended distance. Read the PHY + * special status register to determine MDI/MDIx and current speed. If + * speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_m88"); + + if (phy->media_type != e1000_media_type_copper) { + DEBUGOUT("Phy info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy->polarity_correction = !!(phy_data & + M88E1000_PSCR_POLARITY_REVERSAL); + + ret_val = e1000_check_polarity_m88(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + /* Set values to "undefined" */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_igp - Retrieve igp PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_igp"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = TRUE; + + ret_val = e1000_check_polarity_igp(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + ret_val = phy->ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_ife - Retrieves various IFE PHY states + * @hw: pointer to the HW structure + * + * Populates "phy" structure with various feature states. + **/ +s32 e1000_get_phy_info_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_ife"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); + if (ret_val) + return ret_val; + phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); + + if (phy->polarity_correction) { + ret_val = e1000_check_polarity_ife(hw); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced */ + phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); + + /* The following parameters are undefined for 10/100 operation. */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + + return E1000_SUCCESS; +} + +/** + * e1000_phy_sw_reset_generic - PHY software reset + * @hw: pointer to the HW structure + * + * Does a software reset of the PHY by reading the PHY control register and + * setting/write the control register reset bit to the PHY. + **/ +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_phy_sw_reset_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= MII_CR_RESET; + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + usec_delay(1); + + return ret_val; +} + +/** + * e1000_phy_hw_reset_generic - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 ctrl; + + DEBUGFUNC("e1000_phy_hw_reset_generic"); + + if (phy->ops.check_reset_block) { + ret_val = phy->ops.check_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + } + + ret_val = phy->ops.acquire(hw); + if (ret_val) + return ret_val; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + usec_delay(phy->reset_delay_us); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + phy->ops.release(hw); + + return phy->ops.get_cfg_done(hw); +} + +/** + * e1000_get_cfg_done_generic - Generic configuration done + * @hw: pointer to the HW structure + * + * Generic function to wait 10 milli-seconds for configuration to complete + * and return success. + **/ +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_get_cfg_done_generic"); + + msec_delay_irq(10); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_init_script_igp3 - Inits the IGP3 PHY + * @hw: pointer to the HW structure + * + * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) +{ + DEBUGOUT("Running IGP 3 PHY init script\n"); + + /* PHY init IGP 3 */ + /* Enable rise/fall, 10-mode work in class-A */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); + /* Remove all caps from Replica path filter */ + hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); + /* Bias trimming for ADC, AFE and Driver (Default) */ + hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); + /* Increase Hybrid poly bias */ + hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); + /* Add 4% to Tx amplitude in Gig mode */ + hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); + /* Disable trimming (TTT) */ + hw->phy.ops.write_reg(hw, 0x2011, 0x0000); + /* Poly DC correction to 94.6% + 2% for all channels */ + hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); + /* ABS DC correction to 95.9% */ + hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); + /* BG temp curve trim */ + hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); + /* Increasing ADC OPAMP stage 1 currents to max */ + hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); + /* Force 1000 ( required for enabling PHY regs configuration) */ + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + /* Set upd_freq to 6 */ + hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); + /* Disable NPDFE */ + hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); + /* Disable adaptive fixed FFE (Default) */ + hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); + /* Enable FFE hysteresis */ + hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); + /* Fixed FFE for short cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); + /* Fixed FFE for medium cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); + /* Fixed FFE for long cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); + /* Enable Adaptive Clip Threshold */ + hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); + /* AHT reset limit to 1 */ + hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); + /* Set AHT master delay to 127 msec */ + hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); + /* Set scan bits for AHT */ + hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); + /* Set AHT Preset bits */ + hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); + /* Change integ_factor of channel A to 3 */ + hw->phy.ops.write_reg(hw, 0x1895, 0x0003); + /* Change prop_factor of channels BCD to 8 */ + hw->phy.ops.write_reg(hw, 0x1796, 0x0008); + /* Change cg_icount + enable integbp for channels BCD */ + hw->phy.ops.write_reg(hw, 0x1798, 0xD008); + /* Change cg_icount + enable integbp + change prop_factor_master + * to 8 for channel A + */ + hw->phy.ops.write_reg(hw, 0x1898, 0xD918); + /* Disable AHT in Slave mode on channel A */ + hw->phy.ops.write_reg(hw, 0x187A, 0x0800); + /* Enable LPLU and disable AN to 1000 in non-D0a states, + * Enable SPD+B2B + */ + hw->phy.ops.write_reg(hw, 0x0019, 0x008D); + /* Enable restart AN on an1000_dis change */ + hw->phy.ops.write_reg(hw, 0x001B, 0x2080); + /* Enable wh_fifo read clock in 10/100 modes */ + hw->phy.ops.write_reg(hw, 0x0014, 0x0045); + /* Restart AN, Speed selection is 1000 */ + hw->phy.ops.write_reg(hw, 0x0000, 0x1340); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_type_from_id - Get PHY type from id + * @phy_id: phy_id read from the phy + * + * Returns the phy type from the id. + **/ +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) +{ + enum e1000_phy_type phy_type = e1000_phy_unknown; + + switch (phy_id) { + case M88E1000_I_PHY_ID: + case M88E1000_E_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1011_I_PHY_ID: + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ + phy_type = e1000_phy_igp_2; + break; + case GG82563_E_PHY_ID: + phy_type = e1000_phy_gg82563; + break; + case IGP03E1000_E_PHY_ID: + phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy_type = e1000_phy_ife; + break; + case BME1000_E_PHY_ID: + case BME1000_E_PHY_ID_R2: + phy_type = e1000_phy_bm; + break; + case I82578_E_PHY_ID: + phy_type = e1000_phy_82578; + break; + case I82577_E_PHY_ID: + phy_type = e1000_phy_82577; + break; + case I82579_E_PHY_ID: + phy_type = e1000_phy_82579; + break; + case I217_E_PHY_ID: + phy_type = e1000_phy_i217; + break; + case I82580_I_PHY_ID: + phy_type = e1000_phy_82580; + break; + case I210_I_PHY_ID: + phy_type = e1000_phy_i210; + break; + default: + phy_type = e1000_phy_unknown; + break; + } + return phy_type; +} + +/** + * e1000_determine_phy_address - Determines PHY address. + * @hw: pointer to the HW structure + * + * This uses a trial and error method to loop through possible PHY + * addresses. It tests each by reading the PHY ID registers and + * checking for a match. + **/ +s32 e1000_determine_phy_address(struct e1000_hw *hw) +{ + u32 phy_addr = 0; + u32 i; + enum e1000_phy_type phy_type = e1000_phy_unknown; + + hw->phy.id = phy_type; + + for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { + hw->phy.addr = phy_addr; + i = 0; + + do { + e1000_get_phy_id(hw); + phy_type = e1000_get_phy_type_from_id(hw->phy.id); + + /* If phy_type is valid, break - we found our + * PHY address + */ + if (phy_type != e1000_phy_unknown) + return E1000_SUCCESS; + + msec_delay(1); + i++; + } while (i < 10); + } + + return -E1000_ERR_PHY_TYPE; +} + +/** + * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address + * @page: page to access + * + * Returns the phy address for the page requested. + **/ +static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) +{ + u32 phy_addr = 2; + + if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_write_phy_reg_bm - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + DEBUGFUNC("e1000_write_phy_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + FALSE, FALSE); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_bm - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + DEBUGFUNC("e1000_read_phy_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + TRUE, FALSE); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_bm2 - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_read_phy_reg_bm2"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + TRUE, FALSE); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_write_phy_reg_bm2 - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_write_phy_reg_bm2"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + FALSE, FALSE); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers + * @hw: pointer to the HW structure + * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG + * + * Assumes semaphore already acquired and phy_reg points to a valid memory + * address to store contents of the BM_WUC_ENABLE_REG register. + **/ +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + u16 temp; + + DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm"); + + if (!phy_reg) + return -E1000_ERR_PARAM; + + /* All page select, port ctrl and wakeup registers use phy address 1 */ + hw->phy.addr = 1; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + DEBUGOUT("Could not set Port Control page\n"); + return ret_val; + } + + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); + if (ret_val) { + DEBUGOUT2("Could not read PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* Enable both PHY wakeup mode and Wakeup register page writes. + * Prevent a power state change by disabling ME and Host PHY wakeup. + */ + temp = *phy_reg; + temp |= BM_WUC_ENABLE_BIT; + temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); + + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); + if (ret_val) { + DEBUGOUT2("Could not write PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* Select Host Wakeup Registers page - caller now able to write + * registers on the Wakeup registers page + */ + return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); +} + +/** + * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs + * @hw: pointer to the HW structure + * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG + * + * Restore BM_WUC_ENABLE_REG to its original value. + * + * Assumes semaphore already acquired and *phy_reg is the contents of the + * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by + * caller. + **/ +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + + DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm"); + + if (!phy_reg) + return -E1000_ERR_PARAM; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + DEBUGOUT("Could not set Port Control page\n"); + return ret_val; + } + + /* Restore 769.17 to its original value */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); + if (ret_val) + DEBUGOUT2("Could not restore PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + + return ret_val; +} + +/** + * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to read or write + * @read: determines if operation is read or write + * @page_set: BM_WUC_PAGE already set and access enabled + * + * Read the PHY register at offset and store the retrieved information in + * data, or write data to PHY register at offset. Note the procedure to + * access the PHY wakeup registers is different than reading the other PHY + * registers. It works as such: + * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 + * 2) Set page to 800 for host (801 if we were manageability) + * 3) Write the address using the address opcode (0x11) + * 4) Read or write the data using the data opcode (0x12) + * 5) Restore 769.17.2 to its original value + * + * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and + * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). + * + * Assumes semaphore is already acquired. When page_set==TRUE, assumes + * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack + * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). + **/ +static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set) +{ + s32 ret_val; + u16 reg = BM_PHY_REG_NUM(offset); + u16 page = BM_PHY_REG_PAGE(offset); + u16 phy_reg = 0; + + DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); + + /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ + if ((hw->mac.type == e1000_pchlan) && + (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) + DEBUGOUT1("Attempting to access page %d while gig enabled.\n", + page); + + if (!page_set) { + /* Enable access to PHY wakeup registers */ + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) { + DEBUGOUT("Could not enable PHY wakeup reg access\n"); + return ret_val; + } + } + + DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg); + + /* Write the Wakeup register page offset value using opcode 0x11 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); + if (ret_val) { + DEBUGOUT1("Could not write address opcode to page %d\n", page); + return ret_val; + } + + if (read) { + /* Read the Wakeup register page value using opcode 0x12 */ + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + data); + } else { + /* Write the Wakeup register page value using opcode 0x12 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + *data); + } + + if (ret_val) { + DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg); + return ret_val; + } + + if (!page_set) + ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + + return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + u16 power_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg &= ~MII_CR_POWER_DOWN; + if (hw->phy.type == e1000_phy_i210) { + hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); + power_reg &= ~GS40G_CS_POWER_DOWN; + hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); + } + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + u16 power_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + /* i210 Phy requires an additional bit for power up/down */ + if (hw->phy.type == e1000_phy_i210) { + hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); + power_reg |= GS40G_CS_POWER_DOWN; + hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); + } + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); + msec_delay(1); +} + +/** + * __e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphore before exiting. + **/ +static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + DEBUGFUNC("__e1000_read_phy_reg_hv"); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + TRUE, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + data, TRUE); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores + * the retrieved information in data. Release the acquired semaphore + * before exiting. + **/ +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, FALSE, FALSE); +} + +/** + * e1000_read_phy_reg_hv_locked - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, FALSE); +} + +/** + * e1000_read_phy_reg_page_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired and page already set. + **/ +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, TRUE, true); +} + +/** + * __e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + DEBUGFUNC("__e1000_write_phy_reg_hv"); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + FALSE, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + &data, FALSE); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + /* Workaround MDIO accesses being disabled after entering IEEE + * Power Down (when bit 11 of the PHY Control register is set) + */ + if ((hw->phy.type == e1000_phy_82578) && + (hw->phy.revision >= 1) && + (hw->phy.addr == 2) && + !(MAX_PHY_REG_ADDRESS & reg) && + (data & (1 << 11))) { + u16 data2 = 0x7EFF; + ret_val = e1000_access_phy_debug_regs_hv(hw, + (1 << 6) | 0x3, + &data2, FALSE); + if (ret_val) + goto out; + } + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); + +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register at the offset. + * Release the acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, FALSE, FALSE); +} + +/** + * e1000_write_phy_reg_hv_locked - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired. + **/ +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, FALSE); +} + +/** + * e1000_write_phy_reg_page_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired and page already set. + **/ +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, TRUE, true); +} + +/** + * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page + * @page: page to be accessed + **/ +static u32 e1000_get_phy_addr_for_hv_page(u32 page) +{ + u32 phy_addr = 2; + + if (page >= HV_INTC_FC_PAGE_START) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to be read or written + * @read: determines if operation is read or write + * + * Reads the PHY register at offset and stores the retreived information + * in data. Assumes semaphore already acquired. Note that the procedure + * to access these regs uses the address port and data port to read/write. + * These accesses done with PHY address 2 and without using pages. + **/ +static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read) +{ + s32 ret_val; + u32 addr_reg; + u32 data_reg; + + DEBUGFUNC("e1000_access_phy_debug_regs_hv"); + + /* This takes care of the difference with desktop vs mobile phy */ + addr_reg = (hw->phy.type == e1000_phy_82578) ? + I82578_ADDR_REG : I82577_ADDR_REG; + data_reg = addr_reg + 1; + + /* All operations in this function are phy address 2 */ + hw->phy.addr = 2; + + /* masking with 0x3F to remove the page from offset */ + ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); + if (ret_val) { + DEBUGOUT("Could not write the Address Offset port register\n"); + return ret_val; + } + + /* Read or write the data value next */ + if (read) + ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); + else + ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); + + if (ret_val) + DEBUGOUT("Could not access the Data port register\n"); + + return ret_val; +} + +/** + * e1000_link_stall_workaround_hv - Si workaround + * @hw: pointer to the HW structure + * + * This function works around a Si bug where the link partner can get + * a link up indication before the PHY does. If small packets are sent + * by the link partner they can be placed in the packet buffer without + * being properly accounted for by the PHY and will stall preventing + * further packets from being received. The workaround is to clear the + * packet buffer after the PHY detects link up. + **/ +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_link_stall_workaround_hv"); + + if (hw->phy.type != e1000_phy_82578) + return E1000_SUCCESS; + + /* Do not apply workaround if in PHY loopback bit 14 set */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); + if (data & PHY_CONTROL_LB) + return E1000_SUCCESS; + + /* check if link is up and at 1Gbps */ + ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); + if (ret_val) + return ret_val; + + data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK; + + if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + return E1000_SUCCESS; + + msec_delay(200); + + /* flush the packets in the fifo buffer */ + ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, + (HV_MUX_DATA_CTRL_GEN_TO_MAC | + HV_MUX_DATA_CTRL_FORCE_SPEED)); + if (ret_val) + return ret_val; + + return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, + HV_MUX_DATA_CTRL_GEN_TO_MAC); +} + +/** + * e1000_check_polarity_82577 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_82577"); + + ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); + + if (!ret_val) + phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal; + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. + **/ +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_get_phy_info_82577 - Retrieve I82577 PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_82577"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = TRUE; + + ret_val = e1000_check_polarity_82577(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); + + if ((data & I82577_PHY_STATUS2_SPEED_MASK) == + I82577_PHY_STATUS2_SPEED_1000MBPS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY + * @hw: pointer to the HW structure + * + * Reads the diagnostic status register and verifies result is valid before + * placing it in the phy_cable_length field. + **/ +s32 e1000_get_cable_length_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, length; + + DEBUGFUNC("e1000_get_cable_length_82577"); + + ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); + if (ret_val) + return ret_val; + + length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> + I82577_DSTATUS_CABLE_LENGTH_SHIFT; + + if (length == E1000_CABLE_LENGTH_UNDEFINED) + return -E1000_ERR_PHY; + + phy->cable_length = length; + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_gs40g - Write GS40G PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = offset >> GS40G_PAGE_SHIFT; + + DEBUGFUNC("e1000_write_phy_reg_gs40g"); + + offset = offset & GS40G_OFFSET_MASK; + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); + if (ret_val) + goto release; + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_gs40g - Read GS40G PHY register + * @hw: pointer to the HW structure + * @offset: lower half is register offset to read to + * upper half is page to use. + * @data: data to read at register offset + * + * Acquires semaphore, if necessary, then reads the data in the PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = offset >> GS40G_PAGE_SHIFT; + + DEBUGFUNC("e1000_read_phy_reg_gs40g"); + + offset = offset & GS40G_OFFSET_MASK; + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); + if (ret_val) + goto release; + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + diff --git a/usr/src/uts/common/io/e1000api/e1000_phy.h b/usr/src/uts/common/io/e1000api/e1000_phy.h new file mode 100644 index 0000000000..13f03fe63f --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_phy.h @@ -0,0 +1,323 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_PHY_H_ +#define _E1000_PHY_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +void e1000_init_phy_ops_generic(struct e1000_hw *hw); +s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); +void e1000_null_phy_generic(struct e1000_hw *hw); +s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); +s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_null_set_page(struct e1000_hw *hw, u16 data); +s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 *data); +s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, + u8 dev_addr, u8 data); +s32 e1000_check_downshift_generic(struct e1000_hw *hw); +s32 e1000_check_polarity_m88(struct e1000_hw *hw); +s32 e1000_check_polarity_igp(struct e1000_hw *hw); +s32 e1000_check_polarity_ife(struct e1000_hw *hw); +s32 e1000_check_reset_block_generic(struct e1000_hw *hw); +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); +s32 e1000_copper_link_autoneg(struct e1000_hw *hw); +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); +s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); +s32 e1000_get_cable_length_m88(struct e1000_hw *hw); +s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw); +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); +s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); +s32 e1000_get_phy_id(struct e1000_hw *hw); +s32 e1000_get_phy_info_igp(struct e1000_hw *hw); +s32 e1000_get_phy_info_m88(struct e1000_hw *hw); +s32 e1000_get_phy_info_ife(struct e1000_hw *hw); +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page); +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success); +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); +s32 e1000_determine_phy_address(struct e1000_hw *hw); +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); +void e1000_power_up_phy_copper(struct e1000_hw *hw); +void e1000_power_down_phy_copper(struct e1000_hw *hw); +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data); +s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data); +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data); +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw); +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); +s32 e1000_check_polarity_82577(struct e1000_hw *hw); +s32 e1000_get_phy_info_82577(struct e1000_hw *hw); +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); +s32 e1000_get_cable_length_82577(struct e1000_hw *hw); +s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data); +s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data); + +#define E1000_MAX_PHY_ADDR 8 + +/* IGP01E1000 Specific Registers */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ +#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ +#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ +#define IGP_PAGE_SHIFT 5 +#define PHY_REG_MASK 0x1F + +/* GS40G - I210 PHY defines */ +#define GS40G_PAGE_SELECT 0x16 +#define GS40G_PAGE_SHIFT 16 +#define GS40G_OFFSET_MASK 0xFFFF +#define GS40G_PAGE_2 0x20000 +#define GS40G_MAC_REG2 0x15 +#define GS40G_MAC_LB 0x4140 +#define GS40G_MAC_SPEED_1G 0X0006 +#define GS40G_COPPER_SPEC 0x0010 +#define GS40G_CS_POWER_DOWN 0x0002 + +/* BM/HV Specific Registers */ +#define BM_PORT_CTRL_PAGE 769 +#define BM_WUC_PAGE 800 +#define BM_WUC_ADDRESS_OPCODE 0x11 +#define BM_WUC_DATA_OPCODE 0x12 +#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE +#define BM_WUC_ENABLE_REG 17 +#define BM_WUC_ENABLE_BIT (1 << 2) +#define BM_WUC_HOST_WU_BIT (1 << 4) +#define BM_WUC_ME_WU_BIT (1 << 5) + +#define PHY_UPPER_SHIFT 21 +#define BM_PHY_REG(page, reg) \ + (((reg) & MAX_PHY_REG_ADDRESS) |\ + (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\ + (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT))) +#define BM_PHY_REG_PAGE(offset) \ + ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) +#define BM_PHY_REG_NUM(offset) \ + ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ + (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ + ~MAX_PHY_REG_ADDRESS))) + +#define HV_INTC_FC_PAGE_START 768 +#define I82578_ADDR_REG 29 +#define I82577_ADDR_REG 16 +#define I82577_CFG_REG 22 +#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) +#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ +#define I82577_CTRL_REG 23 + +/* 82577 specific PHY registers */ +#define I82577_PHY_CTRL_2 18 +#define I82577_PHY_LBK_CTRL 19 +#define I82577_PHY_STATUS_2 26 +#define I82577_PHY_DIAG_STATUS 31 + +/* I82577 PHY Status 2 */ +#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 +#define I82577_PHY_STATUS2_MDIX 0x0800 +#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 +#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 + +/* I82577 PHY Control 2 */ +#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200 +#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400 +#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600 + +/* I82577 PHY Diagnostics Status */ +#define I82577_DSTATUS_CABLE_LENGTH 0x03FC +#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 + +/* 82580 PHY Power Management */ +#define E1000_82580_PHY_POWER_MGMT 0xE14 +#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */ +#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */ +#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */ +#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */ + +/* BM PHY Copper Specific Control 1 */ +#define BM_CS_CTRL1 16 + +/* BM PHY Copper Specific Status */ +#define BM_CS_STATUS 17 +#define BM_CS_STATUS_LINK_UP 0x0400 +#define BM_CS_STATUS_RESOLVED 0x0800 +#define BM_CS_STATUS_SPEED_MASK 0xC000 +#define BM_CS_STATUS_SPEED_1000 0x8000 + +/* 82577 Mobile Phy Status Register */ +#define HV_M_STATUS 26 +#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000 +#define HV_M_STATUS_SPEED_MASK 0x0300 +#define HV_M_STATUS_SPEED_1000 0x0200 +#define HV_M_STATUS_LINK_UP 0x0040 + +#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 +#define IGP01E1000_PHY_POLARITY_MASK 0x0078 + +#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ + +#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 + +/* Enable flexible speed on link-up */ +#define IGP01E1000_GMII_FLEX_SPD 0x0010 +#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ + +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ + +#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 + +#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 +#define IGP01E1000_PSSR_MDIX 0x0800 +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 +#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 + +#define IGP02E1000_PHY_CHANNEL_NUM 4 +#define IGP02E1000_PHY_AGC_A 0x11B1 +#define IGP02E1000_PHY_AGC_B 0x12B1 +#define IGP02E1000_PHY_AGC_C 0x14B1 +#define IGP02E1000_PHY_AGC_D 0x18B1 + +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ +#define IGP02E1000_AGC_LENGTH_MASK 0x7F +#define IGP02E1000_AGC_RANGE 15 + +#define E1000_CABLE_LENGTH_UNDEFINED 0xFF + +#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 +#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 +#define E1000_KMRNCTRLSTA_REN 0x00200000 +#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */ +#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ +#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ +#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ +#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ +#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ +#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7 +#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 /* enable K1 */ +#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */ + +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ + +/* IFE PHY Extended Status Control */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 + +/* IFE PHY Special Control */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 +#define IFE_PSC_FORCE_POLARITY 0x0020 + +/* IFE PHY Special Control and LED Control */ +#define IFE_PSCL_PROBE_MODE 0x0020 +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +/* IFE PHY MDIX Control */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */ + +/* SFP modules ID memory locations */ +#define E1000_SFF_IDENTIFIER_OFFSET 0x00 +#define E1000_SFF_IDENTIFIER_SFF 0x02 +#define E1000_SFF_IDENTIFIER_SFP 0x03 + +#define E1000_SFF_ETH_FLAGS_OFFSET 0x06 +/* Flags for SFP modules compatible with ETH up to 1Gb */ +struct sfp_e1000_flags { + u8 e1000_base_sx:1; + u8 e1000_base_lx:1; + u8 e1000_base_cx:1; + u8 e1000_base_t:1; + u8 e100_base_lx:1; + u8 e100_base_fx:1; + u8 e10_base_bx10:1; + u8 e10_base_px:1; +}; + +/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */ +#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600 +#define E1000_SFF_VENDOR_OUI_FTL 0x00906500 +#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00 +#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100 + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_PHY_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_regs.h b/usr/src/uts/common/io/e1000api/e1000_regs.h new file mode 100644 index 0000000000..e460781a8c --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_regs.h @@ -0,0 +1,684 @@ +/****************************************************************************** + + Copyright (c) 2001-2013, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_REGS_H_ +#define _E1000_REGS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ +#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ +#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ +#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */ +#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ +#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ +#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ +#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */ +#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/ +#define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ +#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */ +#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */ +#define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */ +#define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ +#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ +#define E1000_SVCR 0x000F0 +#define E1000_SVT 0x000F4 +#define E1000_LPIC 0x000FC /* Low Power IDLE control */ +#define E1000_RCTL 0x00100 /* Rx Control - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ +#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */ +#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ +#define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) +#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ +#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ +#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ +#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ +#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ +#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ +#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ +#define E1000_TCTL 0x00400 /* Tx Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ +#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ +#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ +#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */ +#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */ +#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */ +#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */ +#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */ +#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */ +#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */ +#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */ +#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ +#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ +#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ +#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ +#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ +#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */ +#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */ +#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */ +#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */ +#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ +#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ +#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ +#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ +#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ +#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ +#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ +#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ +/* Split and Replication Rx Control - RW */ +#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ +#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ +#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ +#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ +#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ +#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ +#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ +#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */ +#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */ +#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ +#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ +#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */ +#define E1000_I210_FLMNGCTL 0x12038 +#define E1000_I210_FLMNGDATA 0x1203C +#define E1000_I210_FLMNGCNT 0x12040 + +#define E1000_I210_FLSWCTL 0x12048 +#define E1000_I210_FLSWDATA 0x1204C +#define E1000_I210_FLSWCNT 0x12050 + +#define E1000_I210_FLA 0x1201C + +#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n)) +#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */ + +/* QAV Tx mode control register */ +#define E1000_I210_TQAVCTRL 0x3570 + +/* QAV Tx mode control register bitfields masks */ +/* QAV enable */ +#define E1000_TQAVCTRL_MODE (1 << 0) +/* Fetching arbitration type */ +#define E1000_TQAVCTRL_FETCH_ARB (1 << 4) +/* Fetching timer enable */ +#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5) +/* Launch arbitration type */ +#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8) +/* Launch timer enable */ +#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9) +/* SP waits for SR enable */ +#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10) +/* Fetching timer correction */ +#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16 +#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \ + (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET) + +/* High credit registers where _n can be 0 or 1. */ +#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n)) + +/* Queues fetch arbitration priority control register */ +#define E1000_I210_TQAVARBCTRL 0x3574 +/* Queues priority masks where _n and _p can be 0-3. */ +#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * _n)) +/* QAV Tx mode control registers where _n can be 0 or 1. */ +#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n)) + +/* QAV Tx mode control register bitfields masks */ +#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */ +#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */ +#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */ + +/* Good transmitted packets counter registers */ +#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n))) + +/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */ +#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n)) + +/* Convenience macros + * + * Note: "_n" is the queue number of the register to be written to. + * + * Example usage: + * E1000_RDBAL_REG(current_rx_queue) + */ +#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ + (0x0C000 + ((_n) * 0x40))) +#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ + (0x0C004 + ((_n) * 0x40))) +#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ + (0x0C008 + ((_n) * 0x40))) +#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ + (0x0C00C + ((_n) * 0x40))) +#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ + (0x0C010 + ((_n) * 0x40))) +#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \ + (0x0C014 + ((_n) * 0x40))) +#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) +#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ + (0x0C018 + ((_n) * 0x40))) +#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ + (0x0C028 + ((_n) * 0x40))) +#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \ + (0x0C030 + ((_n) * 0x40))) +#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ + (0x0E000 + ((_n) * 0x40))) +#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ + (0x0E004 + ((_n) * 0x40))) +#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ + (0x0E008 + ((_n) * 0x40))) +#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ + (0x0E010 + ((_n) * 0x40))) +#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \ + (0x0E014 + ((_n) * 0x40))) +#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) +#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ + (0x0E018 + ((_n) * 0x40))) +#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ + (0x0E028 + ((_n) * 0x40))) +#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ + (0x0E038 + ((_n) * 0x40))) +#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ + (0x0E03C + ((_n) * 0x40))) +#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) +#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ +#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ +#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ +#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) +#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ + (0x054E0 + ((_i - 16) * 8))) +#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ + (0x054E4 + ((_i - 16) * 8))) +#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) +#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) +#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) +#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) +#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) +#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) +#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) +#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) +#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */ +#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */ +#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ +/* Same as TXPBS, renamed for newer Si - RW */ +#define E1000_ITPBS 0x03404 +#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ +#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */ +#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */ +#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */ +#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */ +#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */ +#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ +#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ +#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ +/* DMA Tx Max Total Allow Size Reqs - RW */ +#define E1000_DTXMXSZRQ 0x03540 +#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ +#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ +#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ +#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ +#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ +#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ +#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ +#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ +#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ +#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ +#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ +#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */ + +#define E1000_VFGPRC 0x00F10 +#define E1000_VFGORC 0x00F18 +#define E1000_VFMPRC 0x00F3C +#define E1000_VFGPTC 0x00F14 +#define E1000_VFGOTC 0x00F34 +#define E1000_VFGOTLBC 0x00F50 +#define E1000_VFGPTLBC 0x00F44 +#define E1000_VFGORLBC 0x00F48 +#define E1000_VFGPRLBC 0x00F40 +/* Virtualization statistical counters */ +#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n))) +#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n))) +#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n))) +#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n))) +#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n))) +#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n))) +#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n))) +#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n))) +#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n))) + +/* LinkSec */ +#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */ +#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */ +#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */ +#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */ +#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */ +#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */ +#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */ +#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */ +#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */ +#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */ +#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */ +#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */ +#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */ +#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */ +#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */ +#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */ +#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */ +#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */ +#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */ +#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */ +#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */ +#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */ +#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */ +#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */ +#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */ +#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */ +#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */ +#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */ +#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */ +#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */ +/* LinkSec Tx 128-bit Key 0 - WO */ +#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) +/* LinkSec Tx 128-bit Key 1 - WO */ +#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) +#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */ +#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */ +/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit + * key - RW. + */ +#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) + +#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */ +#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ +#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ +#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ +/* IPSec Rx IPv4/v6 Address - RW */ +#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n))) +/* IPSec Rx 128-bit Key - RW */ +#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) +#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ +#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ +/* IPSec Tx 128-bit Key - RW */ +#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) +#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ +#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ +#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ +#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ +#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ +#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ +#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ +#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ +#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ +#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ +#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ +#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ +#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ +#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ +#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ +#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ +#define E1000_LENERRS 0x04138 /* Length Errors Count */ +#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ +#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ +#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ +#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ +#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ +#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */ +#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ +#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ +#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ +#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */ +#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */ +#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ +#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ +#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */ +/* Flexible Host Filter Table */ +#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100)) +/* Ext Flexible Host Filter Table */ +#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100)) + + +#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ +/* Management Decision Filters */ +#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) +#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */ +#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ +#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ +#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +/* Driver-only SW semaphore (not used by BOOT agents) */ +#define E1000_SWSM2 0x05B58 +#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ +#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ +#define E1000_UFUSE 0x05B78 /* UFUSE - RO */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Interface Control */ +#define E1000_FWSTS 0x08F0C /* FW Status */ + +/* RSS registers */ +#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ +#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ +#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ +#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/ +#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */ +#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */ +#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ +#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ +#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ +#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ +/* VT Registers */ +#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ +#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ +#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ +#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ +#define E1000_VFRE 0x00C8C /* VF Receive Enables */ +#define E1000_VFTE 0x00C90 /* VF Transmit Enables */ +#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ +#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ +#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ +#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ +#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ +#define E1000_IOVTCL 0x05BBC /* IOV Control Register */ +#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ +#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */ +#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */ +#define E1000_MDFB 0x03558 /* Malicious Driver free block */ +#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */ +#define E1000_TXSWC 0x05ACC /* Tx Switch Control */ +#define E1000_SCCRL 0x05DB0 /* Storm Control Control */ +#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */ +#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */ +/* These act per VF so an array friendly macro is used */ +#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) +#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) +#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) +#define E1000_VFVMBMEM(_n) (0x00800 + (_n)) +#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) +/* VLAN Virtual Machine Filter - RW */ +#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) +#define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) +#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */ +#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */ +#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ +#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ +#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ +#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ +#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ +#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ +#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ +#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ +#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ +#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ +#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ +#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ +#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */ +#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */ +#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ +#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ +#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */ +#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */ +#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */ +#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ + +/* Filtering Registers */ +#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ +#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ +#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ +#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ +#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ +#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ +#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ + +#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ +#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ +#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ +#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ +#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ +/* Tx Desc plane TC Rate-scheduler config */ +#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) +/* Tx Packet plane TC Rate-Scheduler Config */ +#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) +/* Rx Packet plane TC Rate-Scheduler Config */ +#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) +/* Tx Desc Plane TC Rate-Scheduler Status */ +#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) +/* Tx Desc Plane TC Rate-Scheduler MMW */ +#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) +/* Tx Packet plane TC Rate-Scheduler Status */ +#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) +/* Tx Packet plane TC Rate-scheduler MMW */ +#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) +/* Rx Packet plane TC Rate-Scheduler Status */ +#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) +/* Rx Packet plane TC Rate-Scheduler MMW */ +#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) +/* Tx Desc plane VM Rate-Scheduler MMW*/ +#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) +/* Tx BCN Rate-Scheduler MMW */ +#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) +#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ +#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ +#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ +#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ +#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ +#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ +#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ +#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ +#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ +#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ +#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ +#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ +#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ +#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ + +/* DMA Coalescing registers */ +#define E1000_DMACR 0x02508 /* Control Register */ +#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ +#define E1000_DMCTLX 0x02514 /* Time to Lx Request */ +#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ +#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ +#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ +#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ + +/* PCIe Parity Status Register */ +#define E1000_PCIEERRSTS 0x05BA8 + +#define E1000_PROXYS 0x5F64 /* Proxying Status */ +#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */ +/* Thermal sensor configuration and status registers */ +#define E1000_THMJT 0x08100 /* Junction Temperature */ +#define E1000_THLOWTC 0x08104 /* Low Threshold Control */ +#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */ +#define E1000_THHIGHTC 0x0810C /* High Threshold Control */ +#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ + +/* Energy Efficient Ethernet "EEE" registers */ +#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ +#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ +#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/ +#define E1000_EEE_SU 0x0E34 /* EEE Setup */ +#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ +#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ + +/* OS2BMC Registers */ +#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ +#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ +#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ +#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ + +#define E1000_DOBFFCTL 0x3F24 /* DMA OBFF Control Register */ + + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_REGS_H_ */ diff --git a/usr/src/uts/common/io/e1000api/e1000_vf.c b/usr/src/uts/common/io/e1000api/e1000_vf.c new file mode 100644 index 0000000000..d1286ad2a5 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_vf.c @@ -0,0 +1,582 @@ +/****************************************************************************** + + Copyright (c) 2001-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + + +#include "e1000_api.h" + + +static s32 e1000_init_phy_params_vf(struct e1000_hw *hw); +static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); +static void e1000_release_vf(struct e1000_hw *hw); +static s32 e1000_acquire_vf(struct e1000_hw *hw); +static s32 e1000_setup_link_vf(struct e1000_hw *hw); +static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); +static s32 e1000_init_mac_params_vf(struct e1000_hw *hw); +static s32 e1000_check_for_link_vf(struct e1000_hw *hw); +static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, + u16 *duplex); +static s32 e1000_init_hw_vf(struct e1000_hw *hw); +static s32 e1000_reset_hw_vf(struct e1000_hw *hw); +static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); +static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); +static s32 e1000_read_mac_addr_vf(struct e1000_hw *); + +/** + * e1000_init_phy_params_vf - Inits PHY params + * @hw: pointer to the HW structure + * + * Doesn't do much - there's no PHY available to the VF. + **/ +static s32 e1000_init_phy_params_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_phy_params_vf"); + hw->phy.type = e1000_phy_vf; + hw->phy.ops.acquire = e1000_acquire_vf; + hw->phy.ops.release = e1000_release_vf; + + return E1000_SUCCESS; +} + +/** + * e1000_init_nvm_params_vf - Inits NVM params + * @hw: pointer to the HW structure + * + * Doesn't do much - there's no NVM available to the VF. + **/ +static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_nvm_params_vf"); + hw->nvm.type = e1000_nvm_none; + hw->nvm.ops.acquire = e1000_acquire_vf; + hw->nvm.ops.release = e1000_release_vf; + + return E1000_SUCCESS; +} + +/** + * e1000_init_mac_params_vf - Inits MAC params + * @hw: pointer to the HW structure + **/ +static s32 e1000_init_mac_params_vf(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + DEBUGFUNC("e1000_init_mac_params_vf"); + + /* Set media type */ + /* + * Virtual functions don't care what they're media type is as they + * have no direct access to the PHY, or the media. That is handled + * by the physical function driver. + */ + hw->phy.media_type = e1000_media_type_unknown; + + /* No ASF features for the VF driver */ + mac->asf_firmware_present = FALSE; + /* ARC subsystem not supported */ + mac->arc_subsystem_valid = FALSE; + /* Disable adaptive IFS mode so the generic funcs don't do anything */ + mac->adaptive_ifs = FALSE; + /* VF's have no MTA Registers - PF feature only */ + mac->mta_reg_count = 128; + /* VF's have no access to RAR entries */ + mac->rar_entry_count = 1; + + /* Function pointers */ + /* link setup */ + mac->ops.setup_link = e1000_setup_link_vf; + /* bus type/speed/width */ + mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; + /* reset */ + mac->ops.reset_hw = e1000_reset_hw_vf; + /* hw initialization */ + mac->ops.init_hw = e1000_init_hw_vf; + /* check for link */ + mac->ops.check_for_link = e1000_check_for_link_vf; + /* link info */ + mac->ops.get_link_up_info = e1000_get_link_up_info_vf; + /* multicast address update */ + mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; + /* set mac address */ + mac->ops.rar_set = e1000_rar_set_vf; + /* read mac address */ + mac->ops.read_mac_addr = e1000_read_mac_addr_vf; + + + return E1000_SUCCESS; +} + +/** + * e1000_init_function_pointers_vf - Inits function pointers + * @hw: pointer to the HW structure + **/ +void e1000_init_function_pointers_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_function_pointers_vf"); + + hw->mac.ops.init_params = e1000_init_mac_params_vf; + hw->nvm.ops.init_params = e1000_init_nvm_params_vf; + hw->phy.ops.init_params = e1000_init_phy_params_vf; + hw->mbx.ops.init_params = e1000_init_mbx_params_vf; +} + +/** + * e1000_acquire_vf - Acquire rights to access PHY or NVM. + * @hw: pointer to the HW structure + * + * There is no PHY or NVM so we want all attempts to acquire these to fail. + * In addition, the MAC registers to access PHY/NVM don't exist so we don't + * even want any SW to attempt to use them. + **/ +static s32 e1000_acquire_vf(struct e1000_hw *hw) +{ + return -E1000_ERR_PHY; +} + +/** + * e1000_release_vf - Release PHY or NVM + * @hw: pointer to the HW structure + * + * There is no PHY or NVM so we want all attempts to acquire these to fail. + * In addition, the MAC registers to access PHY/NVM don't exist so we don't + * even want any SW to attempt to use them. + **/ +static void e1000_release_vf(struct e1000_hw *hw) +{ + return; +} + +/** + * e1000_setup_link_vf - Sets up link. + * @hw: pointer to the HW structure + * + * Virtual functions cannot change link. + **/ +static s32 e1000_setup_link_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_setup_link_vf"); + + return E1000_SUCCESS; +} + +/** + * e1000_get_bus_info_pcie_vf - Gets the bus info. + * @hw: pointer to the HW structure + * + * Virtual functions are not really on their own bus. + **/ +static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + + DEBUGFUNC("e1000_get_bus_info_pcie_vf"); + + /* Do not set type PCI-E because we don't want disable master to run */ + bus->type = e1000_bus_type_reserved; + bus->speed = e1000_bus_speed_2500; + + return 0; +} + +/** + * e1000_get_link_up_info_vf - Gets link info. + * @hw: pointer to the HW structure + * @speed: pointer to 16 bit value to store link speed. + * @duplex: pointer to 16 bit value to store duplex. + * + * Since we cannot read the PHY and get accurate link info, we must rely upon + * the status register's data which is often stale and inaccurate. + **/ +static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, + u16 *duplex) +{ + s32 status; + + DEBUGFUNC("e1000_get_link_up_info_vf"); + + status = E1000_READ_REG(hw, E1000_STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + return E1000_SUCCESS; +} + +/** + * e1000_reset_hw_vf - Resets the HW + * @hw: pointer to the HW structure + * + * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. + * This is all the reset we can perform on a VF. + **/ +static s32 e1000_reset_hw_vf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 timeout = E1000_VF_INIT_TIMEOUT; + s32 ret_val = -E1000_ERR_MAC_INIT; + u32 ctrl, msgbuf[3]; + u8 *addr = (u8 *)(&msgbuf[1]); + + DEBUGFUNC("e1000_reset_hw_vf"); + + DEBUGOUT("Issuing a function level reset to MAC\n"); + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); + + /* we cannot reset while the RSTI / RSTD bits are asserted */ + while (!mbx->ops.check_for_rst(hw, 0) && timeout) { + timeout--; + usec_delay(5); + } + + if (timeout) { + /* mailbox timeout can now become active */ + mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; + + msgbuf[0] = E1000_VF_RESET; + mbx->ops.write_posted(hw, msgbuf, 1, 0); + + msec_delay(10); + + /* set our "perm_addr" based on info provided by PF */ + ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); + if (!ret_val) { + if (msgbuf[0] == (E1000_VF_RESET | + E1000_VT_MSGTYPE_ACK)) + memcpy(hw->mac.perm_addr, addr, 6); + else + ret_val = -E1000_ERR_MAC_INIT; + } + } + + return ret_val; +} + +/** + * e1000_init_hw_vf - Inits the HW + * @hw: pointer to the HW structure + * + * Not much to do here except clear the PF Reset indication if there is one. + **/ +static s32 e1000_init_hw_vf(struct e1000_hw *hw) +{ + DEBUGFUNC("e1000_init_hw_vf"); + + /* attempt to set and restore our mac address */ + e1000_rar_set_vf(hw, hw->mac.addr, 0); + + return E1000_SUCCESS; +} + +/** + * e1000_rar_set_vf - set device MAC address + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index receive address array register + **/ +static void e1000_rar_set_vf(struct e1000_hw *hw, u8 * addr, u32 index) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 msgbuf[3]; + u8 *msg_addr = (u8 *)(&msgbuf[1]); + s32 ret_val; + + memset(msgbuf, 0, 12); + msgbuf[0] = E1000_VF_SET_MAC_ADDR; + memcpy(msg_addr, addr, 6); + ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); + + if (!ret_val) + ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); + + msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; + + /* if nacked the address was rejected, use "perm_addr" */ + if (!ret_val && + (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) + e1000_read_mac_addr_vf(hw); +} + +/** + * e1000_hash_mc_addr_vf - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. + **/ +static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + DEBUGFUNC("e1000_hash_mc_addr_generic"); + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* + * The bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. + */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +static void e1000_write_msg_read_ack(struct e1000_hw *hw, + u32 *msg, u16 size) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 retmsg[E1000_VFMAILBOX_SIZE]; + s32 retval = mbx->ops.write_posted(hw, msg, size, 0); + + if (!retval) + mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); +} + +/** + * e1000_update_mc_addr_list_vf - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * + * Updates the Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + **/ +void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count) +{ + u32 msgbuf[E1000_VFMAILBOX_SIZE]; + u16 *hash_list = (u16 *)&msgbuf[1]; + u32 hash_value; + u32 i; + + DEBUGFUNC("e1000_update_mc_addr_list_vf"); + + /* Each entry in the list uses 1 16 bit word. We have 30 + * 16 bit words available in our HW msg buffer (minus 1 for the + * msg type). That's 30 hash values if we pack 'em right. If + * there are more than 30 MC addresses to add then punt the + * extras for now and then add code to handle more than 30 later. + * It would be unusual for a server to request that many multi-cast + * addresses except for in large enterprise network environments. + */ + + DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); + + if (mc_addr_count > 30) { + msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; + mc_addr_count = 30; + } + + msgbuf[0] = E1000_VF_SET_MULTICAST; + msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; + + for (i = 0; i < mc_addr_count; i++) { + hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); + DEBUGOUT1("Hash value = 0x%03X\n", hash_value); + hash_list[i] = hash_value & 0x0FFF; + mc_addr_list += ETH_ADDR_LEN; + } + + e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); +} + +/** + * e1000_vfta_set_vf - Set/Unset vlan filter table address + * @hw: pointer to the HW structure + * @vid: determines the vfta register and bit to set/unset + * @set: if TRUE then set bit, else clear bit + **/ +void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) +{ + u32 msgbuf[2]; + + msgbuf[0] = E1000_VF_SET_VLAN; + msgbuf[1] = vid; + /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ + if (set) + msgbuf[0] |= E1000_VF_SET_VLAN_ADD; + + e1000_write_msg_read_ack(hw, msgbuf, 2); +} + +/** e1000_rlpml_set_vf - Set the maximum receive packet length + * @hw: pointer to the HW structure + * @max_size: value to assign to max frame size + **/ +void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) +{ + u32 msgbuf[2]; + + msgbuf[0] = E1000_VF_SET_LPE; + msgbuf[1] = max_size; + + e1000_write_msg_read_ack(hw, msgbuf, 2); +} + +/** + * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc + * @hw: pointer to the HW structure + * @uni: boolean indicating unicast promisc status + * @multi: boolean indicating multicast promisc status + **/ +s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + u32 msgbuf = E1000_VF_SET_PROMISC; + s32 ret_val; + + switch (type) { + case e1000_promisc_multicast: + msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; + break; + case e1000_promisc_enabled: + msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; + case e1000_promisc_unicast: + msgbuf |= E1000_VF_SET_PROMISC_UNICAST; + case e1000_promisc_disabled: + break; + default: + return -E1000_ERR_MAC_INIT; + } + + ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); + + if (!ret_val) + ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); + + if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) + ret_val = -E1000_ERR_MAC_INIT; + + return ret_val; +} + +/** + * e1000_read_mac_addr_vf - Read device MAC address + * @hw: pointer to the HW structure + **/ +static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) +{ + int i; + + for (i = 0; i < ETH_ADDR_LEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return E1000_SUCCESS; +} + +/** + * e1000_check_for_link_vf - Check for link for a virtual interface + * @hw: pointer to the HW structure + * + * Checks to see if the underlying PF is still talking to the VF and + * if it is then it reports the link state to the hardware, otherwise + * it reports link down and returns an error. + **/ +static s32 e1000_check_for_link_vf(struct e1000_hw *hw) +{ + struct e1000_mbx_info *mbx = &hw->mbx; + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = E1000_SUCCESS; + u32 in_msg = 0; + + DEBUGFUNC("e1000_check_for_link_vf"); + + /* + * We only want to run this if there has been a rst asserted. + * in this case that could mean a link change, device reset, + * or a virtual function reset + */ + + /* If we were hit with a reset or timeout drop the link */ + if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) + mac->get_link_status = TRUE; + + if (!mac->get_link_status) + goto out; + + /* if link status is down no point in checking to see if pf is up */ + if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) + goto out; + + /* if the read failed it could just be a mailbox collision, best wait + * until we are called again and don't report an error */ + if (mbx->ops.read(hw, &in_msg, 1, 0)) + goto out; + + /* if incoming message isn't clear to send we are waiting on response */ + if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { + /* message is not CTS and is NACK we have lost CTS status */ + if (in_msg & E1000_VT_MSGTYPE_NACK) + ret_val = -E1000_ERR_MAC_INIT; + goto out; + } + + /* at this point we know the PF is talking to us, check and see if + * we are still accepting timeout or if we had a timeout failure. + * if we failed then we will need to reinit */ + if (!mbx->timeout) { + ret_val = -E1000_ERR_MAC_INIT; + goto out; + } + + /* if we passed all the tests above then the link is up and we no + * longer need to check for link */ + mac->get_link_status = FALSE; + +out: + return ret_val; +} + diff --git a/usr/src/uts/common/io/e1000api/e1000_vf.h b/usr/src/uts/common/io/e1000api/e1000_vf.h new file mode 100644 index 0000000000..6208f542d5 --- /dev/null +++ b/usr/src/uts/common/io/e1000api/e1000_vf.h @@ -0,0 +1,303 @@ +/****************************************************************************** + + Copyright (c) 2001-2010, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +******************************************************************************/ +/*$FreeBSD$*/ + +#ifndef _E1000_VF_H_ +#define _E1000_VF_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "e1000_osdep.h" +#include "e1000_regs.h" +#include "e1000_defines.h" + +struct e1000_hw; + +#define E1000_DEV_ID_82576_VF 0x10CA +#define E1000_DEV_ID_I350_VF 0x1520 + +#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ + +/* Additional Descriptor Control definitions */ +#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Tx Queue */ +#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Enable specific Rx Queue */ + +/* SRRCTL bit definitions */ +#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ +#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 +#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ +#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 +#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 +#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 +#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 +#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 +#define E1000_SRRCTL_DROP_EN 0x80000000 + +#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F +#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 + +/* Interrupt Defines */ +#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ +#define E1000_EITR(_n) (0x01680 + ((_n) << 2)) +#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ +#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ +#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ +#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ +#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ +#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ +#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ +#define E1000_IVAR_VALID 0x80 + +/* Receive Descriptor - Advanced */ +union e1000_adv_rx_desc { + struct { + u64 pkt_addr; /* Packet buffer address */ + u64 hdr_addr; /* Header buffer address */ + } read; + struct { + struct { + union { + u32 data; + struct { + /* RSS type, Packet type */ + u16 pkt_info; + /* Split Header, header buffer len */ + u16 hdr_info; + } hs_rss; + } lo_dword; + union { + u32 rss; /* RSS Hash */ + struct { + u16 ip_id; /* IP id */ + u16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + u32 status_error; /* ext status/error */ + u16 length; /* Packet length */ + u16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ +}; + +#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 +#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 + +/* Transmit Descriptor - Advanced */ +union e1000_adv_tx_desc { + struct { + u64 buffer_addr; /* Address of descriptor's data buf */ + u32 cmd_type_len; + u32 olinfo_status; + } read; + struct { + u64 rsvd; /* Reserved */ + u32 nxtseq_seed; + u32 status; + } wb; +}; + +/* Adv Transmit Descriptor Config Masks */ +#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ +#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ +#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ +#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ +#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ +#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ +#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ +#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ + +/* Context descriptors */ +struct e1000_adv_tx_context_desc { + u32 vlan_macip_lens; + u32 seqnum_seed; + u32 type_tucmd_mlhl; + u32 mss_l4len_idx; +}; + +#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ +#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ +#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ +#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ +#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ + +enum e1000_mac_type { + e1000_undefined = 0, + e1000_vfadapt, + e1000_vfadapt_i350, + e1000_num_macs /* List is 1-based, so subtract 1 for TRUE count. */ +}; + +struct e1000_vf_stats { + u64 base_gprc; + u64 base_gptc; + u64 base_gorc; + u64 base_gotc; + u64 base_mprc; + u64 base_gotlbc; + u64 base_gptlbc; + u64 base_gorlbc; + u64 base_gprlbc; + + u32 last_gprc; + u32 last_gptc; + u32 last_gorc; + u32 last_gotc; + u32 last_mprc; + u32 last_gotlbc; + u32 last_gptlbc; + u32 last_gorlbc; + u32 last_gprlbc; + + u64 gprc; + u64 gptc; + u64 gorc; + u64 gotc; + u64 mprc; + u64 gotlbc; + u64 gptlbc; + u64 gorlbc; + u64 gprlbc; +}; + +#include "e1000_mbx.h" + +struct e1000_mac_operations { + /* Function pointers for the MAC. */ + s32 (*init_params)(struct e1000_hw *); + s32 (*check_for_link)(struct e1000_hw *); + void (*clear_vfta)(struct e1000_hw *); + s32 (*get_bus_info)(struct e1000_hw *); + s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); + void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); + s32 (*reset_hw)(struct e1000_hw *); + s32 (*init_hw)(struct e1000_hw *); + s32 (*setup_link)(struct e1000_hw *); + void (*write_vfta)(struct e1000_hw *, u32, u32); + void (*rar_set)(struct e1000_hw *, u8*, u32); + s32 (*read_mac_addr)(struct e1000_hw *); +}; + +struct e1000_mac_info { + struct e1000_mac_operations ops; + u8 addr[6]; + u8 perm_addr[6]; + + enum e1000_mac_type type; + + u16 mta_reg_count; + u16 rar_entry_count; + + bool get_link_status; +}; + +struct e1000_mbx_operations { + s32 (*init_params)(struct e1000_hw *hw); + s32 (*read)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write)(struct e1000_hw *, u32 *, u16, u16); + s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); + s32 (*check_for_msg)(struct e1000_hw *, u16); + s32 (*check_for_ack)(struct e1000_hw *, u16); + s32 (*check_for_rst)(struct e1000_hw *, u16); +}; + +struct e1000_mbx_stats { + u32 msgs_tx; + u32 msgs_rx; + + u32 acks; + u32 reqs; + u32 rsts; +}; + +struct e1000_mbx_info { + struct e1000_mbx_operations ops; + struct e1000_mbx_stats stats; + u32 timeout; + u32 usec_delay; + u16 size; +}; + +struct e1000_dev_spec_vf { + u32 vf_number; + u32 v2p_mailbox; +}; + +struct e1000_hw { + void *back; + + u8 *hw_addr; + u8 *flash_address; + unsigned long io_base; + + struct e1000_mac_info mac; + struct e1000_mbx_info mbx; + + union { + struct e1000_dev_spec_vf vf; + } dev_spec; + + u16 device_id; + u16 subsystem_vendor_id; + u16 subsystem_device_id; + u16 vendor_id; + + u8 revision_id; +}; + +enum e1000_promisc_type { + e1000_promisc_disabled = 0, /* all promisc modes disabled */ + e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ + e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ + e1000_promisc_enabled = 3, /* both uni and multicast promisc */ + e1000_num_promisc_types +}; + +/* These functions must be implemented by drivers */ +s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); +void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); +void e1000_rlpml_set_vf(struct e1000_hw *, u16); +s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type); + +#ifdef __cplusplus +} +#endif + +#endif /* _E1000_VF_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_80003es2lan.h b/usr/src/uts/common/io/e1000g/e1000_80003es2lan.h deleted file mode 100644 index 2b2fbac500..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_80003es2lan.h +++ /dev/null @@ -1,108 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.10 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_80003ES2LAN_H_ -#define _E1000_80003ES2LAN_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 -#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 -#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 -#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F - -#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 -#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 -#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 - -#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 -#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 -#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 - -#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C -#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 - -/* Gigabit Carry Extend Padding */ -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 - -#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 - -#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 -#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 - -/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ -#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disabled */ -#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 -#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ -#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ -#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ - -/* PHY Specific Control Register 2 (Page 0, Register 26) */ -#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 - /* 1=Reverse Auto-Negotiation */ - -/* MAC Specific Control Register (Page 2, Register 21) */ -/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ -#define GG82563_MSCR_TX_CLK_MASK 0x0007 -#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 -#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 -#define GG82563_MSCR_TX_CLK_1000MBPS_2_5 0x0006 -#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 - -#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ - -/* DSP Distance Register (Page 5, Register 26) */ -/* - * 0 = <50M - * 1 = 50-80M - * 2 = 80-100M - * 3 = 110-140M - * 4 = >140M - */ -#define GG82563_DSPD_CABLE_LENGTH 0x0007 - -/* Kumeran Mode Control Register (Page 193, Register 16) */ -#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 - -/* Max number of times Kumeran read/write should be validated */ -#define GG82563_MAX_KMRN_RETRY 0x5 - -/* Power Management Control Register (Page 193, Register 20) */ -#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 - /* 1=Enable SERDES Electrical Idle */ - -/* In-Band Control Register (Page 194, Register 18) */ -#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_80003ES2LAN_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_82541.h b/usr/src/uts/common/io/e1000g/e1000_82541.h deleted file mode 100644 index 9dba90a1df..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_82541.h +++ /dev/null @@ -1,111 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.9 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_82541_H_ -#define _E1000_82541_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1) - -#define IGP01E1000_PHY_CHANNEL_NUM 4 - -#define IGP01E1000_PHY_AGC_A 0x1172 -#define IGP01E1000_PHY_AGC_B 0x1272 -#define IGP01E1000_PHY_AGC_C 0x1472 -#define IGP01E1000_PHY_AGC_D 0x1872 - -#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 -#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 -#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 -#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 - -#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 -#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 - -#define IGP01E1000_PHY_DSP_RESET 0x1F33 - -#define IGP01E1000_PHY_DSP_FFE 0x1F35 -#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 -#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A - -#define IGP01E1000_IEEE_FORCE_GIG 0x0140 -#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 - -#define IGP01E1000_AGC_LENGTH_SHIFT 7 -#define IGP01E1000_AGC_RANGE 10 - -#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 - -#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 -#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 -#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC -#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE - -#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 -#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 -#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 -#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 -#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 -#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 -#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 -#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 -#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 - -#define IGP01E1000_MSE_CHANNEL_D 0x000F -#define IGP01E1000_MSE_CHANNEL_C 0x00F0 -#define IGP01E1000_MSE_CHANNEL_B 0x0F00 -#define IGP01E1000_MSE_CHANNEL_A 0xF000 - -#define E1000_FIFO_MULTIPLIER 0x80 -#define E1000_FIFO_HDR_SIZE 0x10 -#define E1000_FIFO_GRANULARITY 0x10 -#define E1000_FIFO_PAD_82547 0x3E0 -#define E1000_ERR_FIFO_WRAP 8 - -#define DSP_RESET_ENABLE 0x0 -#define DSP_RESET_DISABLE 0x2 -#define E1000_MAX_DSP_RESETS 10 - -#define E1000_ROUNDUP(size, unit) (((size) + (unit) - 1) & ~((unit) - 1)) - -void e1000_init_script_state_82541(struct e1000_hw *hw, bool state); -s32 e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length); -void e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length); -void e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, bool state); -bool e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw); -s32 e1000_igp_ttl_workaround_82547(struct e1000_hw *hw); - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_82541_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_82543.h b/usr/src/uts/common/io/e1000g/e1000_82543.h deleted file mode 100644 index 149f306b00..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_82543.h +++ /dev/null @@ -1,58 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.8 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_82543_H_ -#define _E1000_82543_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#define PHY_PREAMBLE 0xFFFFFFFF -#define PHY_PREAMBLE_SIZE 32 -#define PHY_SOF 0x1 -#define PHY_OP_READ 0x2 -#define PHY_OP_WRITE 0x1 -#define PHY_TURNAROUND 0x2 - -#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */ -/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */ -#define TBI_SBP_ENABLED 0x2 - -void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, - struct e1000_hw_stats *stats, - u32 frame_len, u8 *mac_addr, - u32 max_frame_size); -void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state); -bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw); - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_82543_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_82571.c b/usr/src/uts/common/io/e1000g/e1000_82571.c deleted file mode 100644 index 0e53592f61..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_82571.c +++ /dev/null @@ -1,1857 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.113 v3-1-10-1_2009-9-18_Release14-6 - */ - -/* - * 82571EB Gigabit Ethernet Controller - * 82571EB Gigabit Ethernet Controller (Copper) - * 82571EB Gigabit Ethernet Controller (Fiber) - * 82571EB Dual Port Gigabit Mezzanine Adapter - * 82571EB Quad Port Gigabit Mezzanine Adapter - * 82571PT Gigabit PT Quad Port Server ExpressModule - * 82572EI Gigabit Ethernet Controller (Copper) - * 82572EI Gigabit Ethernet Controller (Fiber) - * 82572EI Gigabit Ethernet Controller - * 82573V Gigabit Ethernet Controller (Copper) - * 82573E Gigabit Ethernet Controller (Copper) - * 82573L Gigabit Ethernet Controller - * 82574L Gigabit Network Connection - * 82583V Gigabit Network Connection - */ - -#include "e1000_api.h" - -static s32 e1000_init_phy_params_82571(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82571(struct e1000_hw *hw); -static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); -static void e1000_release_nvm_82571(struct e1000_hw *hw); -static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); -static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); -static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); -static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, - bool active); -static s32 e1000_reset_hw_82571(struct e1000_hw *hw); -static s32 e1000_init_hw_82571(struct e1000_hw *hw); -static void e1000_clear_vfta_82571(struct e1000_hw *hw); -static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); -static s32 e1000_led_on_82574(struct e1000_hw *hw); -static s32 e1000_setup_link_82571(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); -static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); -static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); -static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); -static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); -static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw); -static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); -static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); -static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); -static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); -static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw); -static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); - -/* - * e1000_init_phy_params_82571 - Init PHY func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_phy_params_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_init_phy_params_82571"); - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - goto out; - } - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_get_hw_semaphore_82571; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.release = e1000_put_hw_semaphore_82571; - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82571; - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - phy->type = e1000_phy_igp_2; - phy->ops.get_cfg_done = e1000_get_cfg_done_82571; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.write_reg = e1000_write_phy_reg_igp; - - /* This uses above function pointers */ - ret_val = e1000_get_phy_id_82571(hw); - - /* Verify PHY ID */ - if (phy->id != IGP01E1000_I_PHY_ID) { - ret_val = -E1000_ERR_PHY; - goto out; - } - break; - case e1000_82573: - phy->type = e1000_phy_m88; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.read_reg = e1000_read_phy_reg_m88; - phy->ops.write_reg = e1000_write_phy_reg_m88; - - /* This uses above function pointers */ - ret_val = e1000_get_phy_id_82571(hw); - - /* Verify PHY ID */ - if (phy->id != M88E1111_I_PHY_ID) { - ret_val = -E1000_ERR_PHY; - DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); - goto out; - } - break; - case e1000_82574: - case e1000_82583: - phy->type = e1000_phy_bm; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.read_reg = e1000_read_phy_reg_bm2; - phy->ops.write_reg = e1000_write_phy_reg_bm2; - - /* This uses above function pointers */ - ret_val = e1000_get_phy_id_82571(hw); - /* Verify PHY ID */ - if (phy->id != BME1000_E_PHY_ID_R2) { - ret_val = -E1000_ERR_PHY; - DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); - goto out; - } - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_init_nvm_params_82571 - Init NVM func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_82571(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_82571"); - - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; - break; - } - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (((eecd >> 15) & 0x3) == 0x3) { - nvm->type = e1000_nvm_flash_hw; - nvm->word_size = 2048; - /* - * Autonomous Flash update bit must be cleared due - * to Flash update issue. - */ - eecd &= ~E1000_EECD_AUPDEN; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - break; - } - /* Fall Through */ - default: - nvm->type = e1000_nvm_eeprom_spi; - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - nvm->word_size = 1 << size; - break; - } - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_82571; - nvm->ops.read = e1000_read_nvm_eerd; - nvm->ops.release = e1000_release_nvm_82571; - nvm->ops.update = e1000_update_nvm_checksum_82571; - nvm->ops.validate = e1000_validate_nvm_checksum_82571; - nvm->ops.valid_led_default = e1000_valid_led_default_82571; - nvm->ops.write = e1000_write_nvm_82571; - - return (E1000_SUCCESS); -} - -/* - * e1000_init_mac_params_82571 - Init MAC func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u32 swsm = 0; - u32 swsm2 = 0; - bool force_clear_smbi = false; - - DEBUGFUNC("e1000_init_mac_params_82571"); - - /* Set media type */ - switch (hw->device_id) { - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - hw->phy.media_type = e1000_media_type_fiber; - break; - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82572EI_SERDES: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* Set if manageability features are enabled. */ - mac->arc_subsystem_valid = - (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) - ? true : false; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; - /* function id */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - mac->ops.set_lan_id = e1000_set_lan_id_single_port; - break; - default: - break; - } - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_82571; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82571; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_82571; - /* physical interface link setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82571 - : e1000_setup_fiber_serdes_link_82571; - /* check for link */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - mac->ops.check_for_link = e1000_check_for_copper_link_generic; - break; - case e1000_media_type_fiber: - mac->ops.check_for_link = e1000_check_for_fiber_link_generic; - break; - case e1000_media_type_internal_serdes: - mac->ops.check_for_link = e1000_check_for_serdes_link_82571; - break; - default: - ret_val = -E1000_ERR_CONFIG; - goto out; - } - /* check management mode */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - mac->ops.check_mng_mode = e1000_check_mng_mode_82574; - break; - default: - mac->ops.check_mng_mode = e1000_check_mng_mode_generic; - break; - } - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_82571; - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_generic; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82571; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn on/off LED */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - mac->ops.led_on = e1000_led_on_82574; - break; - default: - mac->ops.led_on = e1000_led_on_generic; - break; - } - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571; - /* link info */ - mac->ops.get_link_up_info = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_get_speed_and_duplex_copper_generic - : e1000_get_speed_and_duplex_fiber_serdes_generic; - - /* - * Ensure that the inter-port SWSM.SMBI lock bit is clear before - * first NVM or PHY acess. This should be done for single-port - * devices, and for one port only on dual-port devices so that - * for those devices we can still use the SMBI lock to synchronize - * inter-port accesses to the PHY & NVM. - */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - swsm2 = E1000_READ_REG(hw, E1000_SWSM2); - - if (!(swsm2 & E1000_SWSM2_LOCK)) { - /* Only do this for the first interface on this card */ - E1000_WRITE_REG(hw, E1000_SWSM2, - swsm2 | E1000_SWSM2_LOCK); - force_clear_smbi = true; - } else - force_clear_smbi = false; - break; - default: - force_clear_smbi = true; - break; - } - - if (force_clear_smbi) { - /* Make sure SWSM.SMBI is clear */ - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (swsm & E1000_SWSM_SMBI) { - /* EMPTY */ - /* - * This bit should not be set on a first interface, and - * indicates that the bootagent or EFI code has - * improperly left this bit enabled - */ - DEBUGOUT("Please update your 82571 Bootagent\n"); - } - E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI); - } - - /* - * Initialze device specific counter of SMBI acquisition - * timeouts. - */ - hw->dev_spec._82571.smb_counter = 0; - -out: - return (ret_val); -} - -/* - * e1000_init_function_pointers_82571 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82571"); - - hw->mac.ops.init_params = e1000_init_mac_params_82571; - hw->nvm.ops.init_params = e1000_init_nvm_params_82571; - hw->phy.ops.init_params = e1000_init_phy_params_82571; -} - -/* - * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - */ -static s32 -e1000_get_phy_id_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id = 0; - - DEBUGFUNC("e1000_get_phy_id_82571"); - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* - * The 82571 firmware may still be configuring the PHY. In - * this case, we cannot access the PHY until the configuration - * is done. So we explicitly set the PHY ID. - */ - phy->id = IGP01E1000_I_PHY_ID; - break; - case e1000_82573: - ret_val = e1000_get_phy_id(hw); - break; - case e1000_82574: - case e1000_82583: - ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); - if (ret_val) - goto out; - - phy->id = (u32)(phy_id << 16); - usec_delay(20); - ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); - if (ret_val) - goto out; - - phy->id |= (u32)(phy_id); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - -out: - return (ret_val); -} - -/* - * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - */ -s32 -e1000_get_hw_semaphore_82571(struct e1000_hw *hw) -{ - u32 swsm; - s32 ret_val = E1000_SUCCESS; - s32 sw_timeout = hw->nvm.word_size + 1; - s32 fw_timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_82571"); - - /* - * If we have timedout 3 times on trying to acquire - * the inter-port SMBI semaphore, there is old code - * operating on the other port, and it is not - * releasing SMBI. Modify the number of times that - * we try for the semaphore to interwork with this - * older code. - */ - if (hw->dev_spec._82571.smb_counter > 2) - sw_timeout = 1; - - /* Get the SW semaphore */ - while (i < sw_timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == sw_timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - hw->dev_spec._82571.smb_counter++; - } - /* Get the FW semaphore. */ - for (i = 0; i < fw_timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == fw_timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_82571(hw); - DEBUGOUT("Driver can't access the NVM\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_put_hw_semaphore_82571 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - */ -void -e1000_put_hw_semaphore_82571(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/* - * e1000_acquire_nvm_82571 - Request for access to the EEPROM - * @hw: pointer to the HW structure - * - * To gain access to the EEPROM, first we must obtain a hardware semaphore. - * Then for non-82573 hardware, set the EEPROM access request bit and wait - * for EEPROM access grant bit. If the access grant bit is not set, release - * hardware semaphore. - */ -static s32 -e1000_acquire_nvm_82571(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_82571"); - - ret_val = e1000_get_hw_semaphore_82571(hw); - if (ret_val) - goto out; - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - break; - default: - ret_val = e1000_acquire_nvm_generic(hw); - break; - } - - if (ret_val) - e1000_put_hw_semaphore_82571(hw); - -out: - return (ret_val); -} - -/* - * e1000_release_nvm_82571 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - */ -static void -e1000_release_nvm_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_82571"); - - e1000_release_nvm_generic(hw); - e1000_put_hw_semaphore_82571(hw); -} - -/* - * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * For non-82573 silicon, write data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - */ -static s32 -e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_nvm_82571"); - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); - break; - case e1000_82571: - case e1000_82572: - ret_val = e1000_write_nvm_spi(hw, offset, words, data); - break; - default: - ret_val = -E1000_ERR_NVM; - break; - } - - return (ret_val); -} - -/* - * e1000_update_nvm_checksum_82571 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - */ -static s32 -e1000_update_nvm_checksum_82571(struct e1000_hw *hw) -{ - u32 eecd; - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_update_nvm_checksum_82571"); - - ret_val = e1000_update_nvm_checksum_generic(hw); - if (ret_val) - goto out; - - /* - * If our nvm is an EEPROM, then we're done otherwise, commit the - * checksum to the flash NVM. - */ - if (hw->nvm.type != e1000_nvm_flash_hw) - goto out; - - /* Check for pending operations. */ - for (i = 0; i < E1000_FLASH_UPDATES; i++) { - msec_delay(1); - if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0) - break; - } - - if (i == E1000_FLASH_UPDATES) { - ret_val = -E1000_ERR_NVM; - goto out; - } - - /* Reset the firmware if using STM opcode. */ - if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { - /* - * The enabling of and the actual reset must be done in two - * write cycles. - */ - E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); - } - - /* Commit the write to flash */ - eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - - for (i = 0; i < E1000_FLASH_UPDATES; i++) { - msec_delay(1); - if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0) - break; - } - - if (i == E1000_FLASH_UPDATES) { - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - */ -static s32 -e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_validate_nvm_checksum_82571"); - - if (hw->nvm.type == e1000_nvm_flash_hw) - (void) e1000_fix_nvm_checksum_82571(hw); - - return (e1000_validate_nvm_checksum_generic(hw)); -} - -/* - * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * After checking for invalid values, poll the EEPROM to ensure the previous - * command has completed before trying to write the next word. After write - * poll for completion. - * - * If e1000_update_nvm_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - */ -static s32 -e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eewr = 0; - s32 ret_val = 0; - - DEBUGFUNC("e1000_write_nvm_eewr_82571"); - - /* - * A check for invalid values: offset too large, too many words, and - * not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - for (i = 0; i < words; i++) { - eewr = (data[i] << E1000_NVM_RW_REG_DATA) | - ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | - E1000_NVM_RW_REG_START; - - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); - if (ret_val) - break; - - E1000_WRITE_REG(hw, E1000_EEWR, eewr); - - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); - if (ret_val) - break; - } - -out: - return (ret_val); -} - -/* - * e1000_get_cfg_done_82571 - Poll for configuration done - * @hw: pointer to the HW structure - * - * Reads the management control register for the config done bit to be set. - */ -static s32 -e1000_get_cfg_done_82571(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_get_cfg_done_82571"); - - while (timeout) { - if (E1000_READ_REG(hw, E1000_EEMNGCTL) & - E1000_NVM_CFG_DONE_PORT_0) - break; - msec_delay(1); - timeout--; - } - if (!timeout) { - DEBUGOUT("MNG configuration cycle has not completed.\n"); - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When activating LPLU - * this function also disables smart speed and vice versa. LPLU will not be - * activated unless the device autonegotiation advertisement meets standards - * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function - * pointer entry point only called by PHY setup routines. - */ -static s32 -e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82571"); - - if (!(phy->ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - goto out; - - if (active) { - data |= IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else { - data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_reset_hw_82571 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - */ -static s32 -e1000_reset_hw_82571(struct e1000_hw *hw) -{ - u32 ctrl, extcnf_ctrl, ctrl_ext; - s32 ret_val; - u16 i = 0; - - DEBUGFUNC("e1000_reset_hw_82571"); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) { - /* EMPTY */ - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - } - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* - * Must acquire the MDIO ownership before MAC reset. Ownership - * defaults to firmware after a reset. - */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - do { - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) - break; - - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - - msec_delay(2); - i++; - } while (i < MDIO_OWNERSHIP_TIMEOUT); - break; - default: - break; - } - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - if (hw->nvm.type == e1000_nvm_flash_hw) { - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) - /* We don't want to continue accessing MAC registers. */ - goto out; - - /* - * Phy configuration from NVM just starts after EECD_AUTO_RD is set. - * Need to wait for Phy configuration completion before accessing - * NVM and Phy. - */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - msec_delay(25); - break; - default: - break; - } - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - - e1000_set_laa_state_82571(hw, true); - - /* Reinitialize the 82571 serdes link state machine */ - if (hw->phy.media_type == e1000_media_type_internal_serdes) - hw->mac.serdes_link_state = e1000_serdes_link_down; - -out: - return (ret_val); -} - -/* - * e1000_init_hw_82571 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - */ -static s32 -e1000_init_hw_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 reg_data; - s32 ret_val; - u16 i, rar_count = mac->rar_entry_count; - - DEBUGFUNC("e1000_init_hw_82571"); - - e1000_initialize_hw_bits_82571(hw); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - /* EMPTY */ - DEBUGOUT("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - } - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - /* - * If, however, a locally administered address was assigned to the - * 82571, we must reserve a RAR for it to work around an issue where - * resetting one port will reload the MAC on the other port. - */ - if (e1000_get_laa_state_82571(hw)) - rar_count--; - e1000_init_rx_addrs_generic(hw, rar_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | - E1000_TXDCTL_COUNT_DESC; - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); - - /* ...for both queues. */ - switch (mac->type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - (void) e1000_enable_tx_pkt_filtering_generic(hw); - reg_data = E1000_READ_REG(hw, E1000_GCR); - reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; - E1000_WRITE_REG(hw, E1000_GCR, reg_data); - break; - default: - reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | - E1000_TXDCTL_COUNT_DESC; - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); - break; - } - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82571(hw); - - return (ret_val); -} - -/* - * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits - * @hw: pointer to the HW structure - * - * Initializes required hardware-dependent bits needed for normal operation. - */ -static void -e1000_initialize_hw_bits_82571(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_initialize_hw_bits_82571"); - - /* Transmit Descriptor Control 0 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = E1000_READ_REG(hw, E1000_TARC(0)); - reg &= ~(0xF << 27); /* 30:27 */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); - break; - default: - break; - } - E1000_WRITE_REG(hw, E1000_TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = E1000_READ_REG(hw, E1000_TARC(1)); - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - reg &= ~((1 << 29) | (1 << 30)); - reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); - if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - E1000_WRITE_REG(hw, E1000_TARC(1), reg); - break; - default: - break; - } - - /* Device Control */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - reg = E1000_READ_REG(hw, E1000_CTRL); - reg &= ~(1 << 29); - E1000_WRITE_REG(hw, E1000_CTRL, reg); - break; - default: - break; - } - - /* Extended Device Control */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~(1 << 23); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - break; - default: - break; - } - - if (hw->mac.type == e1000_82571) { - reg = E1000_READ_REG(hw, E1000_PBA_ECC); - reg |= E1000_PBA_ECC_CORR_EN; - E1000_WRITE_REG(hw, E1000_PBA_ECC, reg); - } - - /* - * Workaround for hardware errata. - * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 - */ - if ((hw->mac.type == e1000_82571) || - (hw->mac.type == e1000_82572)) { - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - } - - /* PCI-Ex Control Registers */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - reg = E1000_READ_REG(hw, E1000_GCR); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_GCR, reg); - /* - * Workaround for hardware errata. - * apply workaround for hardware errata documented in errata - * docs Fixes issue where some error prone or unreliable PCIe - * completions are occurring, particularly with ASPM enabled. - * Without fix, issue can cause tx timeouts. - */ - reg = E1000_READ_REG(hw, E1000_GCR2); - reg |= 1; - E1000_WRITE_REG(hw, E1000_GCR2, reg); - break; - default: - break; - } -} - -/* - * e1000_clear_vfta_82571 - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - */ -static void -e1000_clear_vfta_82571(struct e1000_hw *hw) -{ - u32 offset; - u32 vfta_value = 0; - u32 vfta_offset = 0; - u32 vfta_bit_in_reg = 0; - - DEBUGFUNC("e1000_clear_vfta_82571"); - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (hw->mng_cookie.vlan_id != 0) { - /* - * The VFTA is a 4096b bit-field, each identifying - * a single VLAN ID. The following operations - * determine which 32b entry (i.e. offset) into the - * array we want to set the VLAN ID (i.e. bit) of - * the manageability unit. - */ - vfta_offset = (hw->mng_cookie.vlan_id >> - E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; - - vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & - E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - } - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; - offset ++) { - /* - * If the offset we want to clear is the same offset of - * the manageability VLAN ID, then clear all bits except - * that of the manageability unit - */ - vfta_value = (offset == vfta_offset) ? - vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, - vfta_value); - E1000_WRITE_FLUSH(hw); - } - break; - default: - break; - } -} - -/* - * e1000_check_mng_mode_82574 - Check manageability is enabled - * @hw: pointer to the HW structure - * - * Reads the NVM Initialization Control Word 2 and returns true - * (>0) if any manageability is enabled, else false (0). - */ -static bool -e1000_check_mng_mode_82574(struct e1000_hw *hw) -{ - u16 data; - - DEBUGFUNC("e1000_check_mng_mode_82574"); - - hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); - return ((data & E1000_NVM_INIT_CTRL2_MNGM) != 0); -} - -/* - * e1000_led_on_82574 - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - */ -static s32 -e1000_led_on_82574(struct e1000_hw *hw) -{ - u32 ctrl; - u32 i; - - DEBUGFUNC("e1000_led_on_82574"); - - ctrl = hw->mac.ledctl_mode2; - if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) { - /* - * If no link, then turn LED on by setting the invert bit - * for each LED that's "on" (0x0E) in ledctl_mode2. - */ - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); - } - E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl); - - return (E1000_SUCCESS); -} - -/* - * e1000_setup_link_82571 - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - */ -static s32 -e1000_setup_link_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_setup_link_82571"); - - /* - * 82573 does not have a word in the NVM to determine the default flow - * control setting, so we explicitly set it to full. - */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (hw->fc.requested_mode == e1000_fc_default) - hw->fc.requested_mode = e1000_fc_full; - break; - default: - break; - } - return (e1000_setup_link_generic(hw)); -} - -/* - * e1000_setup_copper_link_82571 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - */ -static s32 -e1000_setup_copper_link_82571(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_copper_link_82571"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - switch (hw->phy.type) { - case e1000_phy_m88: - case e1000_phy_bm: - ret_val = e1000_copper_link_setup_m88(hw); - break; - case e1000_phy_igp_2: - ret_val = e1000_copper_link_setup_igp(hw); - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - if (ret_val) - goto out; - - ret_val = e1000_setup_copper_link_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes links. - * Upon successful setup, poll for link. - */ -static s32 -e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* - * If SerDes loopback mode is entered, there is no form of - * reset to take the adapter out of that mode. So we have to - * explicitly take the adapter out of loopback mode. This - * prevents drivers from twiddling their thumbs if another - * tool failed to take it out of loopback mode. - */ - E1000_WRITE_REG(hw, E1000_SCTL, - E1000_SCTL_DISABLE_SERDES_LOOPBACK); - break; - default: - break; - } - - return (e1000_setup_fiber_serdes_link_generic(hw)); -} - -/* - * e1000_check_for_serdes_link_82571 - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Reports the link state as up or down. - * - * If autonegotiation is supported by the link partner, the link state is - * determined by the result of autongotiation. This is the most likely case. - * If autonegotiation is not supported by the link partner, and the link - * has a valid signal, force the link up. - * - * The link state is represented internally here by 4 states: - * - * 1) down - * 2) autoneg_progress - * 3) autoneg_complete (the link sucessfully autonegotiated) - * 4) forced_up (the link has been forced up, it did not autonegotiate) - */ -s32 -e1000_check_for_serdes_link_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_serdes_link_82571"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { - - /* Receiver is synchronized with no invalid bits. */ - switch (mac->serdes_link_state) { - case e1000_serdes_link_autoneg_complete: - if (!(status & E1000_STATUS_LU)) { - /* - * We have lost link, retry autoneg before - * reporting link failure - */ - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - DEBUGOUT("AN_UP -> AN_PROG\n"); - } - break; - - case e1000_serdes_link_forced_up: - /* - * If we are receiving /C/ ordered sets, re-enable - * auto-negotiation in the TXCW register and disable - * forced link in the Device Control register in an - * attempt to auto-negotiate with our link partner. - */ - if (rxcw & E1000_RXCW_C) { - /* Enable autoneg, and unforce link up */ - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, - (ctrl & ~E1000_CTRL_SLU)); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - DEBUGOUT("FORCED_UP -> AN_PROG\n"); - } - break; - - case e1000_serdes_link_autoneg_progress: - if (rxcw & E1000_RXCW_C) { - /* - * We received /C/ ordered sets, meaning the - * link partner has autonegotiated, and we can - * trust the Link Up (LU) status bit - */ - if (status & E1000_STATUS_LU) { - mac->serdes_link_state = - e1000_serdes_link_autoneg_complete; - DEBUGOUT("AN_PROG -> AN_UP\n"); - mac->serdes_has_link = true; - } else { - /* Autoneg completed, but failed */ - mac->serdes_link_state = - e1000_serdes_link_down; - DEBUGOUT("AN_PROG -> DOWN\n"); - } - } else { - /* - * The link partner did not autoneg. - * Force link up and full duplex, and change - * state to forced. - */ - E1000_WRITE_REG(hw, E1000_TXCW, - (mac->txcw & ~E1000_TXCW_ANE)); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after link up. */ - ret_val = - e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error config flow control\n"); - break; - } - mac->serdes_link_state = - e1000_serdes_link_forced_up; - mac->serdes_has_link = true; - DEBUGOUT("AN_PROG -> FORCED_UP\n"); - } - break; - - case e1000_serdes_link_down: - default: - /* - * The link was down but the receiver has now gained - * valid sync, so lets see if we can bring the link - * up. - */ - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, - (ctrl & ~E1000_CTRL_SLU)); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - DEBUGOUT("DOWN -> AN_PROG\n"); - break; - } - } else { - if (!(rxcw & E1000_RXCW_SYNCH)) { - mac->serdes_has_link = false; - mac->serdes_link_state = e1000_serdes_link_down; - DEBUGOUT("ANYSTATE -> DOWN\n"); - } else { - /* - * We have sync, and can tolerate one - * invalid (IV) codeword before declaring - * link down, so reread to look again - */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_IV) { - mac->serdes_link_state = e1000_serdes_link_down; - mac->serdes_has_link = false; - DEBUGOUT("ANYSTATE -> DOWN\n"); - } - } - } - - return (ret_val); -} - -/* - * e1000_valid_led_default_82571 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - */ -static s32 -e1000_valid_led_default_82571(struct e1000_hw *hw, u16 * data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_82571"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (*data == ID_LED_RESERVED_F746) - *data = ID_LED_DEFAULT_82573; - break; - default: - if (*data == ID_LED_RESERVED_0000 || - *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - break; - } - -out: - return (ret_val); -} - -/* - * e1000_get_laa_state_82571 - Get locally administered address state - * @hw: pointer to the HW structure - * - * Retrieve and return the current locally administered address state. - */ -bool -e1000_get_laa_state_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_get_laa_state_82571"); - - if (hw->mac.type != e1000_82571) - return (false); - - return (hw->dev_spec._82571.laa_is_present); -} - -/* - * e1000_set_laa_state_82571 - Set locally administered address state - * @hw: pointer to the HW structure - * @state: enable/disable locally administered address - * - * Enable/Disable the current locally administered address state. - */ -void -e1000_set_laa_state_82571(struct e1000_hw *hw, bool state) -{ - DEBUGFUNC("e1000_set_laa_state_82571"); - - if (hw->mac.type != e1000_82571) - return; - - hw->dev_spec._82571.laa_is_present = state; - - /* If workaround is activated... */ - if (state) { - /* - * Hold a copy of the LAA in RAR[14] This is done so that - * between the time RAR[0] gets clobbered and the time it gets - * fixed, the actual LAA is in one of the RARs and no incoming - * packets directed to this port are dropped. Eventually the - * LAA will be in RAR[0] and RAR[14]. - */ - e1000_rar_set_generic(hw, hw->mac.addr, - hw->mac.rar_entry_count - 1); - } -} - -/* - * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum - * @hw: pointer to the HW structure - * - * Verifies that the EEPROM has completed the update. After updating the - * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If - * the checksum fix is not implemented, we need to set the bit and update - * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, - * we need to return bad checksum. - */ -static s32 -e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_fix_nvm_checksum_82571"); - - if (nvm->type != e1000_nvm_flash_hw) - goto out; - - /* - * Check bit 4 of word 10h. If it is 0, firmware is done updating - * 10h-12h. Checksum may need to be fixed. - */ - ret_val = nvm->ops.read(hw, 0x10, 1, &data); - if (ret_val) - goto out; - - if (!(data & 0x10)) { - /* - * Read 0x23 and check bit 15. This bit is a 1 when the - * checksum has already been fixed. If the checksum is still - * wrong and this bit is a 1, we need to return bad checksum. - * Otherwise, we need to set this bit to a 1 and update the - * checksum. - */ - ret_val = nvm->ops.read(hw, 0x23, 1, &data); - if (ret_val) - goto out; - - if (!(data & 0x8000)) { - data |= 0x8000; - ret_val = nvm->ops.write(hw, 0x23, 1, &data); - if (ret_val) - goto out; - ret_val = nvm->ops.update(hw); - } - } - -out: - return (ret_val); -} - -/* - * e1000_read_mac_addr_82571 - Read device MAC address - * @hw: pointer to the HW structure - */ -static s32 -e1000_read_mac_addr_82571(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_mac_addr_82571"); - - /* - * If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_mac_addr_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_power_down_phy_copper_82571 - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - */ -static void -e1000_power_down_phy_copper_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - struct e1000_mac_info *mac = &hw->mac; - - if (!(phy->ops.check_reset_block)) - return; - - /* If the management interface is not enabled, then power down */ - if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); -} - -/* - * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82571"); - - e1000_clear_hw_cntrs_base_generic(hw); - - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); - - (void) E1000_READ_REG(hw, E1000_MGTPRC); - (void) E1000_READ_REG(hw, E1000_MGTPDC); - (void) E1000_READ_REG(hw, E1000_MGTPTC); - - (void) E1000_READ_REG(hw, E1000_IAC); - (void) E1000_READ_REG(hw, E1000_ICRXOC); - - (void) E1000_READ_REG(hw, E1000_ICRXPTC); - (void) E1000_READ_REG(hw, E1000_ICRXATC); - (void) E1000_READ_REG(hw, E1000_ICTXPTC); - (void) E1000_READ_REG(hw, E1000_ICTXATC); - (void) E1000_READ_REG(hw, E1000_ICTXQEC); - (void) E1000_READ_REG(hw, E1000_ICTXQMTC); - (void) E1000_READ_REG(hw, E1000_ICRXDMTC); -} diff --git a/usr/src/uts/common/io/e1000g/e1000_82571.h b/usr/src/uts/common/io/e1000g/e1000_82571.h deleted file mode 100644 index 98279ddd49..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_82571.h +++ /dev/null @@ -1,61 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.16 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_82571_H_ -#define _E1000_82571_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#define ID_LED_RESERVED_F746 0xF746 -#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_OFF1_ON2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) - -#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 - -/* Intr Throttling - RW */ -#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n))) - -#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */ -#define E1000_EIAC_MASK_82574 0x01F00000 - -#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */ - -#define E1000_RXCFGL 0x0B634 /* TimeSync Rx EtherType & Msg Type Reg - RW */ - -bool e1000_get_laa_state_82571(struct e1000_hw *hw); -void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state); - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_82571_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_api.c b/usr/src/uts/common/io/e1000g/e1000_api.c deleted file mode 100644 index b2f960e685..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_api.c +++ /dev/null @@ -1,1289 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include "e1000_api.h" - -/* - * e1000_init_mac_params - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the MAC - * set of functions. Called by drivers or by e1000_setup_init_funcs. - */ -s32 -e1000_init_mac_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mac.ops.init_params) { - ret_val = hw->mac.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("MAC Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("mac.init_mac_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return (ret_val); -} - -/* - * e1000_init_nvm_params - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the NVM - * set of functions. Called by drivers or by e1000_setup_init_funcs. - */ -s32 -e1000_init_nvm_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->nvm.ops.init_params) { - ret_val = hw->nvm.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("NVM Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("nvm.init_nvm_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return (ret_val); -} - -/* - * e1000_init_phy_params - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the PHY - * set of functions. Called by drivers or by e1000_setup_init_funcs. - */ -s32 -e1000_init_phy_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->phy.ops.init_params) { - ret_val = hw->phy.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("PHY Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("phy.init_phy_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return (ret_val); -} - -/* - * e1000_set_mac_type - Sets MAC type - * @hw: pointer to the HW structure - * - * This function sets the mac type of the adapter based on the - * device ID stored in the hw structure. - * MUST BE FIRST FUNCTION CALLED (explicitly or through - * e1000_setup_init_funcs()). - */ -s32 -e1000_set_mac_type(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - mac->type = e1000_82542; - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - mac->type = e1000_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - mac->type = e1000_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - mac->type = e1000_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - mac->type = e1000_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - mac->type = e1000_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - mac->type = e1000_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82546GB_PCIE: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - mac->type = e1000_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER_LOM: - mac->type = e1000_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - mac->type = e1000_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - case E1000_DEV_ID_82547EI_MOBILE: - mac->type = e1000_82547; - break; - case E1000_DEV_ID_82547GI: - mac->type = e1000_82547_rev_2; - break; - case E1000_DEV_ID_82571EB_COPPER: - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82571EB_QUAD_COPPER: - case E1000_DEV_ID_82571PT_QUAD_COPPER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: - mac->type = e1000_82571; - break; - case E1000_DEV_ID_82572EI: - case E1000_DEV_ID_82572EI_COPPER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82572EI_SERDES: - mac->type = e1000_82572; - break; - case E1000_DEV_ID_82573E: - case E1000_DEV_ID_82573E_IAMT: - case E1000_DEV_ID_82573L: - mac->type = e1000_82573; - break; - case E1000_DEV_ID_82574L: - case E1000_DEV_ID_82574LA: - mac->type = e1000_82574; - break; - case E1000_DEV_ID_82583V: - mac->type = e1000_82583; - break; - case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: - mac->type = e1000_80003es2lan; - break; - case E1000_DEV_ID_ICH8_IFE: - case E1000_DEV_ID_ICH8_IFE_GT: - case E1000_DEV_ID_ICH8_IFE_G: - case E1000_DEV_ID_ICH8_IGP_M: - case E1000_DEV_ID_ICH8_IGP_M_AMT: - case E1000_DEV_ID_ICH8_IGP_AMT: - case E1000_DEV_ID_ICH8_IGP_C: - mac->type = e1000_ich8lan; - break; - case E1000_DEV_ID_ICH9_IFE: - case E1000_DEV_ID_ICH9_IFE_GT: - case E1000_DEV_ID_ICH9_IFE_G: - case E1000_DEV_ID_ICH9_IGP_M: - case E1000_DEV_ID_ICH9_IGP_M_AMT: - case E1000_DEV_ID_ICH9_IGP_M_V: - case E1000_DEV_ID_ICH9_IGP_AMT: - case E1000_DEV_ID_ICH9_BM: - case E1000_DEV_ID_ICH9_IGP_C: - case E1000_DEV_ID_ICH10_R_BM_LM: - case E1000_DEV_ID_ICH10_R_BM_LF: - case E1000_DEV_ID_ICH10_R_BM_V: - mac->type = e1000_ich9lan; - break; - case E1000_DEV_ID_ICH10_D_BM_LM: - case E1000_DEV_ID_ICH10_D_BM_LF: - case E1000_DEV_ID_ICH10_HANKSVILLE: - mac->type = e1000_ich10lan; - break; - case E1000_DEV_ID_PCH_D_HV_DM: - case E1000_DEV_ID_PCH_D_HV_DC: - case E1000_DEV_ID_PCH_M_HV_LM: - case E1000_DEV_ID_PCH_M_HV_LC: - mac->type = e1000_pchlan; - break; - case E1000_DEV_ID_PCH2_LV_LM: - case E1000_DEV_ID_PCH2_LV_V: - mac->type = e1000_pch2lan; - break; - default: - /* Should never have loaded on this device */ - ret_val = -E1000_ERR_MAC_INIT; - break; - } - - return (ret_val); -} - -/* - * e1000_setup_init_funcs - Initializes function pointers - * @hw: pointer to the HW structure - * @init_device: true will initialize the rest of the function pointers - * getting the device ready for use. false will only set - * MAC type and the function pointers for the other init - * functions. Passing false will not generate any hardware - * reads or writes. - * - * This function must be called by a driver in order to use the rest - * of the 'shared' code files. Called by drivers only. - */ -s32 -e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) -{ - s32 ret_val; - - /* Can't do much good without knowing the MAC type. */ - ret_val = e1000_set_mac_type(hw); - if (ret_val) { - DEBUGOUT("ERROR: MAC type could not be set properly.\n"); - goto out; - } - - if (!hw->hw_addr) { - DEBUGOUT("ERROR: Registers not mapped\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Init function pointers to generic implementations. We do this first - * allowing a driver module to override it afterward. - */ - e1000_init_mac_ops_generic(hw); - e1000_init_phy_ops_generic(hw); - e1000_init_nvm_ops_generic(hw); - - /* - * Set up the init function pointers. These are functions within the - * adapter family file that sets up function pointers for the rest of - * the functions in that family. - */ - switch (hw->mac.type) { - case e1000_82542: - e1000_init_function_pointers_82542(hw); - break; - case e1000_82543: - case e1000_82544: - e1000_init_function_pointers_82543(hw); - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - e1000_init_function_pointers_82540(hw); - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - e1000_init_function_pointers_82541(hw); - break; - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_82574: - case e1000_82583: - e1000_init_function_pointers_82571(hw); - break; - case e1000_80003es2lan: - e1000_init_function_pointers_80003es2lan(hw); - break; - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - case e1000_pchlan: - case e1000_pch2lan: - e1000_init_function_pointers_ich8lan(hw); - break; - default: - DEBUGOUT("Hardware not supported\n"); - ret_val = -E1000_ERR_CONFIG; - break; - } - - /* - * Initialize the rest of the function pointers. These require some - * register reads/writes in some cases. - */ - if (!(ret_val) && init_device) { - ret_val = e1000_init_mac_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_nvm_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_phy_params(hw); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_get_bus_info - Obtain bus information for adapter - * @hw: pointer to the HW structure - * - * This will obtain information about the HW bus for which the - * adapter is attached and stores it in the hw structure. This is a - * function pointer entry point called by drivers. - */ -s32 -e1000_get_bus_info(struct e1000_hw *hw) -{ - if (hw->mac.ops.get_bus_info) - return (hw->mac.ops.get_bus_info(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_clear_vfta - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * This clears the VLAN filter table on the adapter. This is a function - * pointer entry point called by drivers. - */ -void -e1000_clear_vfta(struct e1000_hw *hw) -{ - if (hw->mac.ops.clear_vfta) - hw->mac.ops.clear_vfta(hw); -} - -/* - * e1000_write_vfta - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: the 32-bit offset in which to write the value to. - * @value: the 32-bit value to write at location offset. - * - * This writes a 32-bit value to a 32-bit offset in the VLAN filter - * table. This is a function pointer entry point called by drivers. - */ -void -e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) -{ - if (hw->mac.ops.write_vfta) - hw->mac.ops.write_vfta(hw, offset, value); -} - -/* - * e1000_update_mc_addr_list - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - */ -void -e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count) -{ - if (hw->mac.ops.update_mc_addr_list) - hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, - mc_addr_count); -} - -/* - * e1000_force_mac_fc - Force MAC flow control - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Currently no func pointer exists - * and all implementations are handled in the generic version of this - * function. - */ -s32 -e1000_force_mac_fc(struct e1000_hw *hw) -{ - return (e1000_force_mac_fc_generic(hw)); -} - -/* - * e1000_check_for_link - Check/Store link connection - * @hw: pointer to the HW structure - * - * This checks the link condition of the adapter and stores the - * results in the hw->mac structure. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_check_for_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_for_link) - return (hw->mac.ops.check_for_link(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_check_mng_mode - Check management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has manageability enabled. - * This is a function pointer entry point called by drivers. - */ -bool -e1000_check_mng_mode(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_mng_mode) - return (hw->mac.ops.check_mng_mode(hw)); - - return (false); -} - -/* - * e1000_mng_write_dhcp_info - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - */ -s32 -e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) -{ - return (e1000_mng_write_dhcp_info_generic(hw, buffer, length)); -} - -/* - * e1000_reset_hw - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. This is a function pointer - * entry point called by drivers. - */ -s32 -e1000_reset_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.reset_hw) - return (hw->mac.ops.reset_hw(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_init_hw - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. This is a function - * pointer entry point called by drivers. - */ -s32 -e1000_init_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.init_hw) - return (hw->mac.ops.init_hw(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_setup_link - Configures link and flow control - * @hw: pointer to the HW structure - * - * This configures link and flow control settings for the adapter. This - * is a function pointer entry point called by drivers. While modules can - * also call this, they probably call their own version of this function. - */ -s32 -e1000_setup_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_link) - return (hw->mac.ops.setup_link(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_get_speed_and_duplex - Returns current speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to a 16-bit value to store the speed - * @duplex: pointer to a 16-bit value to store the duplex. - * - * This returns the speed and duplex of the adapter in the two 'out' - * variables passed in. This is a function pointer entry point called - * by drivers. - */ -s32 -e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - if (hw->mac.ops.get_link_up_info) - return (hw->mac.ops.get_link_up_info(hw, speed, duplex)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_setup_led - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_setup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_led) - return (hw->mac.ops.setup_led(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_cleanup_led - Restores SW controllable LED - * @hw: pointer to the HW structure - * - * This restores the SW controllable LED to the value saved off by - * e1000_setup_led. This is a function pointer entry point called by drivers. - */ -s32 -e1000_cleanup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.cleanup_led) - return (hw->mac.ops.cleanup_led(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_blink_led - Blink SW controllable LED - * @hw: pointer to the HW structure - * - * This starts the adapter LED blinking. Request the LED to be setup first - * and cleaned up after. This is a function pointer entry point called by - * drivers. - */ -s32 -e1000_blink_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.blink_led) - return (hw->mac.ops.blink_led(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_id_led_init - store LED configurations in SW - * @hw: pointer to the HW structure - * - * Initializes the LED config in SW. This is a function pointer entry point - * called by drivers. - */ -s32 -e1000_id_led_init(struct e1000_hw *hw) -{ - if (hw->mac.ops.id_led_init) - return (hw->mac.ops.id_led_init(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_led_on - Turn on SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED on. This is a function pointer entry point - * called by drivers. - */ -s32 -e1000_led_on(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_on) - return (hw->mac.ops.led_on(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_led_off - Turn off SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED off. This is a function pointer entry point - * called by drivers. - */ -s32 -e1000_led_off(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_off) - return (hw->mac.ops.led_off(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_reset_adaptive - Reset adaptive IFS - * @hw: pointer to the HW structure - * - * Resets the adaptive IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -void -e1000_reset_adaptive(struct e1000_hw *hw) -{ - e1000_reset_adaptive_generic(hw); -} - -/* - * e1000_update_adaptive - Update adaptive IFS - * @hw: pointer to the HW structure - * - * Updates adapter IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -void -e1000_update_adaptive(struct e1000_hw *hw) -{ - e1000_update_adaptive_generic(hw); -} - -/* - * e1000_disable_pcie_master - Disable PCI-Express master access - * @hw: pointer to the HW structure - * - * Disables PCI-Express master access and verifies there are no pending - * requests. Currently no func pointer exists and all implementations are - * handled in the generic version of this function. - */ -s32 -e1000_disable_pcie_master(struct e1000_hw *hw) -{ - return (e1000_disable_pcie_master_generic(hw)); -} - -/* - * e1000_config_collision_dist - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - */ -void -e1000_config_collision_dist(struct e1000_hw *hw) -{ - if (hw->mac.ops.config_collision_dist) - hw->mac.ops.config_collision_dist(hw); -} - -/* - * e1000_rar_set - Sets a receive address register - * @hw: pointer to the HW structure - * @addr: address to set the RAR to - * @index: the RAR to set - * - * Sets a Receive Address Register (RAR) to the specified address. - */ -void -e1000_rar_set(struct e1000_hw *hw, u8 * addr, u32 index) -{ - if (hw->mac.ops.rar_set) - hw->mac.ops.rar_set(hw, addr, index); -} - -/* - * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state - * @hw: pointer to the HW structure - * - * Ensures that the MDI/MDIX SW state is valid. - */ -s32 -e1000_validate_mdi_setting(struct e1000_hw *hw) -{ - if (hw->mac.ops.validate_mdi_setting) - return (hw->mac.ops.validate_mdi_setting(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_mta_set - Sets multicast table bit - * @hw: pointer to the HW structure - * @hash_value: Multicast hash value. - * - * This sets the bit in the multicast table corresponding to the - * hash value. This is a function pointer entry point called by drivers. - */ -void -e1000_mta_set(struct e1000_hw *hw, u32 hash_value) -{ - if (hw->mac.ops.mta_set) - hw->mac.ops.mta_set(hw, hash_value); -} - -/* - * e1000_hash_mc_addr - Determines address location in multicast table - * @hw: pointer to the HW structure - * @mc_addr: Multicast address to hash. - * - * This hashes an address to determine its location in the multicast - * table. Currently no func pointer exists and all implementations - * are handled in the generic version of this function. - */ -u32 -e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - return (e1000_hash_mc_addr_generic(hw, mc_addr)); -} - -/* - * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -bool -e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) -{ - return (e1000_enable_tx_pkt_filtering_generic(hw)); -} - -/* - * e1000_mng_host_if_write - Writes to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - */ -s32 -e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, - u16 offset, u8 *sum) -{ - if (hw->mac.ops.mng_host_if_write) - return (hw->mac.ops.mng_host_if_write(hw, buffer, length, - offset, sum)); - - return (E1000_NOT_IMPLEMENTED); -} - -/* - * e1000_mng_write_cmd_header - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - */ -s32 -e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - if (hw->mac.ops.mng_write_cmd_header) - return (hw->mac.ops.mng_write_cmd_header(hw, hdr)); - - return (E1000_NOT_IMPLEMENTED); -} - -/* - * e1000_mng_enable_host_if - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - */ -s32 -e1000_mng_enable_host_if(struct e1000_hw *hw) -{ - if (hw->mac.ops.mng_enable_host_if) - return (hw->mac.ops.mng_enable_host_if(hw)); - - return (E1000_NOT_IMPLEMENTED); -} - -/* - * e1000_wait_autoneg - Waits for autonegotiation completion - * @hw: pointer to the HW structure - * - * Waits for autoneg to complete. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -s32 -e1000_wait_autoneg(struct e1000_hw *hw) -{ - if (hw->mac.ops.wait_autoneg) - return (hw->mac.ops.wait_autoneg(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_check_reset_block - Verifies PHY can be reset - * @hw: pointer to the HW structure - * - * Checks if the PHY is in a state that can be reset or if manageability - * has it tied up. This is a function pointer entry point called by drivers. - */ -s32 -e1000_check_reset_block(struct e1000_hw *hw) -{ - if (hw->phy.ops.check_reset_block) - return (hw->phy.ops.check_reset_block(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_read_phy_reg - Reads PHY register - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the buffer to store the 16-bit read. - * - * Reads the PHY register and returns the value in data. - * This is a function pointer entry point called by drivers. - */ -s32 -e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - if (hw->phy.ops.read_reg) - return (hw->phy.ops.read_reg(hw, offset, data)); - - return (E1000_SUCCESS); -} - -/* - * e1000_write_phy_reg - Writes PHY register - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - */ -s32 -e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - if (hw->phy.ops.write_reg) - return (hw->phy.ops.write_reg(hw, offset, data)); - - return (E1000_SUCCESS); -} - -/* - * e1000_release_phy - Generic release PHY - * @hw: pointer to the HW structure - * - * Return if silicon family does not require a semaphore when accessing the - * PHY. - */ -void -e1000_release_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.release) - hw->phy.ops.release(hw); -} - -/* - * e1000_acquire_phy - Generic acquire PHY - * @hw: pointer to the HW structure - * - * Return success if silicon family does not require a semaphore when - * accessing the PHY. - */ -s32 -e1000_acquire_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.acquire) - return (hw->phy.ops.acquire(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_cfg_on_link_up - Configure PHY upon link up - * @hw: pointer to the HW structure - */ -s32 -e1000_cfg_on_link_up(struct e1000_hw *hw) -{ - if (hw->phy.ops.cfg_on_link_up) - return (hw->phy.ops.cfg_on_link_up(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_read_kmrn_reg - Reads register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the location to store the 16-bit value read. - * - * Reads a register out of the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - */ -s32 -e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (e1000_read_kmrn_reg_generic(hw, offset, data)); -} - -/* - * e1000_write_kmrn_reg - Writes register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes a register to the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - */ -s32 -e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (e1000_write_kmrn_reg_generic(hw, offset, data)); -} - -/* - * e1000_get_cable_length - Retrieves cable length estimation - * @hw: pointer to the HW structure - * - * This function estimates the cable length and stores them in - * hw->phy.min_length and hw->phy.max_length. This is a function pointer - * entry point called by drivers. - */ -s32 -e1000_get_cable_length(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_cable_length) - return (hw->phy.ops.get_cable_length(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_get_phy_info - Retrieves PHY information from registers - * @hw: pointer to the HW structure - * - * This function gets some information from various PHY registers and - * populates hw->phy values with it. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_get_phy_info(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_info) - return (hw->phy.ops.get_info(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_phy_hw_reset - Hard PHY reset - * @hw: pointer to the HW structure - * - * Performs a hard PHY reset. This is a function pointer entry point called - * by drivers. - */ -s32 -e1000_phy_hw_reset(struct e1000_hw *hw) -{ - if (hw->phy.ops.reset) - return (hw->phy.ops.reset(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_phy_commit - Soft PHY reset - * @hw: pointer to the HW structure - * - * Performs a soft PHY reset on those that apply. This is a function pointer - * entry point called by drivers. - */ -s32 -e1000_phy_commit(struct e1000_hw *hw) -{ - if (hw->phy.ops.commit) - return (hw->phy.ops.commit(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_d0_lplu_state - Sets low power link up state for D0 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D0 - * and SmartSpeed is disabled when active is true, else clear lplu for D0 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - */ -s32 -e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d0_lplu_state) - return (hw->phy.ops.set_d0_lplu_state(hw, active)); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_d3_lplu_state - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - */ -s32 -e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d3_lplu_state) - return (hw->phy.ops.set_d3_lplu_state(hw, active)); - - return (E1000_SUCCESS); -} - -/* - * e1000_read_mac_addr - Reads MAC address - * @hw: pointer to the HW structure - * - * Reads the MAC address out of the adapter and stores it in the HW structure. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -s32 -e1000_read_mac_addr(struct e1000_hw *hw) -{ - if (hw->mac.ops.read_mac_addr) - return (hw->mac.ops.read_mac_addr(hw)); - - return (e1000_read_mac_addr_generic(hw)); -} - -/* - * e1000_read_pba_num - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -s32 -e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) -{ - return (e1000_read_pba_num_generic(hw, pba_num)); -} - -/* - * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Validates the NVM checksum is correct. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_validate_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.validate) - return (hw->nvm.ops.validate(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Updates the NVM checksum. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -s32 -e1000_update_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.update) - return (hw->nvm.ops.update(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_reload_nvm - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - */ -void -e1000_reload_nvm(struct e1000_hw *hw) -{ - if (hw->nvm.ops.reload) - hw->nvm.ops.reload(hw); -} - -/* - * e1000_read_nvm - Reads NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to read - * @data: pointer to the properly sized buffer for the data. - * - * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - */ -s32 -e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.read) - return (hw->nvm.ops.read(hw, offset, words, data)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_write_nvm - Writes to NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to write - * @data: pointer to the properly sized buffer for the data. - * - * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - */ -s32 -e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.write) - return (hw->nvm.ops.write(hw, offset, words, data)); - - return (E1000_SUCCESS); -} - -/* - * e1000_power_up_phy - Restores link in case of PHY power down - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - */ -void -e1000_power_up_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_up) - hw->phy.ops.power_up(hw); - - (void) e1000_setup_link(hw); -} - -/* - * e1000_power_down_phy - Power down PHY - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - */ -void -e1000_power_down_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_down) - hw->phy.ops.power_down(hw); -} diff --git a/usr/src/uts/common/io/e1000g/e1000_api.h b/usr/src/uts/common/io/e1000g/e1000_api.h deleted file mode 100644 index a2ba7bcab1..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_api.h +++ /dev/null @@ -1,157 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.53 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_API_H_ -#define _E1000_API_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#include "e1000_hw.h" - -extern void e1000_init_function_pointers_82542(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82543(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82540(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82571(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82541(struct e1000_hw *hw); -extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw); -extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw); - -s32 e1000_set_mac_type(struct e1000_hw *hw); -s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); -s32 e1000_init_mac_params(struct e1000_hw *hw); -s32 e1000_init_nvm_params(struct e1000_hw *hw); -s32 e1000_init_phy_params(struct e1000_hw *hw); -s32 e1000_get_bus_info(struct e1000_hw *hw); -void e1000_clear_vfta(struct e1000_hw *hw); -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); -s32 e1000_force_mac_fc(struct e1000_hw *hw); -s32 e1000_check_for_link(struct e1000_hw *hw); -s32 e1000_reset_hw(struct e1000_hw *hw); -s32 e1000_init_hw(struct e1000_hw *hw); -s32 e1000_setup_link(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); -s32 e1000_disable_pcie_master(struct e1000_hw *hw); -void e1000_config_collision_dist(struct e1000_hw *hw); -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); -void e1000_mta_set(struct e1000_hw *hw, u32 hash_value); -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); -void e1000_update_mc_addr_list(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); -s32 e1000_setup_led(struct e1000_hw *hw); -s32 e1000_cleanup_led(struct e1000_hw *hw); -s32 e1000_check_reset_block(struct e1000_hw *hw); -s32 e1000_blink_led(struct e1000_hw *hw); -s32 e1000_led_on(struct e1000_hw *hw); -s32 e1000_led_off(struct e1000_hw *hw); -s32 e1000_id_led_init(struct e1000_hw *hw); -void e1000_reset_adaptive(struct e1000_hw *hw); -void e1000_update_adaptive(struct e1000_hw *hw); -s32 e1000_get_cable_length(struct e1000_hw *hw); -s32 e1000_validate_mdi_setting(struct e1000_hw *hw); -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_get_phy_info(struct e1000_hw *hw); -void e1000_release_phy(struct e1000_hw *hw); -s32 e1000_acquire_phy(struct e1000_hw *hw); -s32 e1000_cfg_on_link_up(struct e1000_hw *hw); -s32 e1000_phy_hw_reset(struct e1000_hw *hw); -s32 e1000_phy_commit(struct e1000_hw *hw); -void e1000_power_up_phy(struct e1000_hw *hw); -void e1000_power_down_phy(struct e1000_hw *hw); -s32 e1000_read_mac_addr(struct e1000_hw *hw); -s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num); -void e1000_reload_nvm(struct e1000_hw *hw); -s32 e1000_update_nvm_checksum(struct e1000_hw *hw); -s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); -s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_wait_autoneg(struct e1000_hw *hw); -s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -bool e1000_check_mng_mode(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if(struct e1000_hw *hw); -s32 e1000_mng_host_if_write(struct e1000_hw *hw, - u8 *buffer, u16 length, u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, - u8 *buffer, u16 length); -u32 e1000_translate_register_82542(u32 reg); - -/* - * TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the Rx descriptor with EOP set - * error = the 8 bit error field of the Rx descriptor with EOP set - * length = the sum of all the length fields of the Rx descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = true; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = false; - * } - * ... - */ - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -#define TBI_ACCEPT(a, status, errors, length, last_byte, \ - min_frame_size, max_frame_size) \ - (e1000_tbi_sbp_enabled_82543(a) && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= (max_frame_size + 1))) : \ - (((length) > min_frame_size) && \ - ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_API_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_defines.h b/usr/src/uts/common/io/e1000g/e1000_defines.h deleted file mode 100644 index e28ae88ce4..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_defines.h +++ /dev/null @@ -1,1551 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_DEFINES_H_ -#define _E1000_DEFINES_H_ - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */ -#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */ -#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ -#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_IGNORE_TCO_PHY 0x00000800 /* Ignore WakeOn TCO packets */ -#define E1000_WUFC_FLX0_PHY 0x00001000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1_PHY 0x00002000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2_PHY 0x00004000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3_PHY 0x00008000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_FLX4_PHY 0x00000200 /* Flexible Filter 4 Enable */ -#define E1000_WUFC_FLX5_PHY 0x00000400 /* Flexible Filter 5 Enable */ -#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_FLX4 0x00100000 /* Flexible Filter 4 Enable */ -#define E1000_WUFC_FLX5 0x00200000 /* Flexible Filter 5 Enable */ -/* Mask for all wakeup filters */ -#define E1000_WUFC_ALL_FILTERS_PHY_4 0x0000F0FF -#define E1000_WUFC_FLX_OFFSET_PHY 12 /* Offset to the Flexible Filters bits */ -/* Mask for 4 flexible filters */ -#define E1000_WUFC_FLX_FILTERS_PHY_4 0x0000F000 -/* Mask for 6 wakeup filters */ -#define E1000_WUFC_ALL_FILTERS_PHY_6 0x0000F6FF -/* Mask for 6 flexible filters */ -#define E1000_WUFC_FLX_FILTERS_PHY_6 0x0000F600 -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -/* Mask for all 6 wakeup filters */ -#define E1000_WUFC_ALL_FILTERS_6 0x003F00FF -/* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_OFFSET 16 -/* Mask for the 4 flexible filters */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 -/* Mask for 6 flexible filters */ -#define E1000_WUFC_FLX_FILTERS_6 0x003F0000 - -/* Wake Up Status */ -#define E1000_WUS_LNKC E1000_WUFC_LNKC -#define E1000_WUS_MAG E1000_WUFC_MAG -#define E1000_WUS_EX E1000_WUFC_EX -#define E1000_WUS_MC E1000_WUFC_MC -#define E1000_WUS_BC E1000_WUFC_BC -#define E1000_WUS_ARP E1000_WUFC_ARP -#define E1000_WUS_IPV4 E1000_WUFC_IPV4 -#define E1000_WUS_IPV6 E1000_WUFC_IPV6 -#define E1000_WUS_FLX0_PHY E1000_WUFC_FLX0_PHY -#define E1000_WUS_FLX1_PHY E1000_WUFC_FLX1_PHY -#define E1000_WUS_FLX2_PHY E1000_WUFC_FLX2_PHY -#define E1000_WUS_FLX3_PHY E1000_WUFC_FLX3_PHY -#define E1000_WUS_FLX4_PHY E1000_WUFC_FLX4_PHY -#define E1000_WUS_FLX5_PHY E1000_WUFC_FLX5_PHY - -#define E1000_WUS_FLX_FILTERS_PHY_4 E1000_WUFC_FLX_FILTERS_PHY_4 -#define E1000_WUS_FLX0 E1000_WUFC_FLX0 -#define E1000_WUS_FLX1 E1000_WUFC_FLX1 -#define E1000_WUS_FLX2 E1000_WUFC_FLX2 -#define E1000_WUS_FLX3 E1000_WUFC_FLX3 -#define E1000_WUS_FLX4 E1000_WUFC_FLX4 -#define E1000_WUS_FLX5 E1000_WUFC_FLX5 - -#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS -#define E1000_WUS_FLX_FILTERS_6 E1000_WUFC_FLX_FILTERS_6 -#define E1000_WUS_FLX_FILTERS_PHY_6 E1000_WUFC_FLX_FILTERS_PHY_6 - -/* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ - -/* Four Flexible Filters are supported */ -#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 -/* Six Flexible Filters are supported */ -#define E1000_FLEXIBLE_FILTER_COUNT_MAX_6 6 - -/* Each Flexible Filter is at most 128 (0x80) bytes in length */ -#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 - -#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX -#define E1000_FFLT_SIZE_6 E1000_FLEXIBLE_FILTER_COUNT_MAX_6 -#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX -#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX - -/* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ -#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -/* Reserved (bits 4,5) in >= 82575 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */ -#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */ -#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */ -/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -/* DMA Dynamic Clock Gating */ -#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_EIAME 0x01000000 -#define E1000_CTRL_EXT_IRCA 0x00000001 -#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 -#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 -#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 -#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 -#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 -#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */ -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ -/* IAME enable bit (27) was removed in >= 82575 */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Int acknowledge Auto-mask */ -/* packet buffer parity error detection enabled */ -#define E1000_CRTL_EXT_PB_PAREN 0x01000000 -/* descriptor FIFO parity error detection enable */ -#define E1000_CTRL_EXT_DF_PAREN 0x02000000 -#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 -#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ -#define E1000_CTRL_EXT_LSECCK 0x00001000 -#define E1000_CTRL_EXT_PHYPDEN 0x00100000 -#define E1000_I2CCMD_REG_ADDR_SHIFT 16 -#define E1000_I2CCMD_REG_ADDR 0x00FF0000 -#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 -#define E1000_I2CCMD_PHY_ADDR 0x07000000 -#define E1000_I2CCMD_OPCODE_READ 0x08000000 -#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 -#define E1000_I2CCMD_RESET 0x10000000 -#define E1000_I2CCMD_READY 0x20000000 -#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000 -#define E1000_I2CCMD_ERROR 0x80000000 -#define E1000_MAX_SGMII_PHY_REG_ADDR 255 -#define E1000_I2CCMD_PHY_TIMEOUT 200 - -/* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ -#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ -#define E1000_RXD_SPC_PRI_SHIFT 13 -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ -#define E1000_RXD_SPC_CFI_SHIFT 12 - -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -#define E1000_RXDEXT_LSECH 0x01000000 -#define E1000_RXDEXT_LSECE_MASK 0x60000000 -#define E1000_RXDEXT_LSECE_NO_ERROR 0x00000000 -#define E1000_RXDEXT_LSECE_NO_SA_MATCH 0x20000000 -#define E1000_RXDEXT_LSECE_REPLAY_DETECT 0x40000000 -#define E1000_RXDEXT_LSECE_BAD_SIG 0x60000000 - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - -#define E1000_MRQC_ENABLE_MASK 0x00000007 -#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 -#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 -#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 -#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -/* Enable Neighbor Discovery Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 -#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -/* Enable MAC address filtering */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 -/* Enable MNG packets to host memory */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 -/* Enable IP address filtering */ -#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 -#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable cksum filtering */ -#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min thresh size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min thresh size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min thresh size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ -#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ -#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ - -/* - * Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SWFW_SYNC Definitions */ -#define E1000_SWFW_EEP_SM 0x01 -#define E1000_SWFW_PHY0_SM 0x02 -#define E1000_SWFW_PHY1_SM 0x04 -#define E1000_SWFW_CSR_SM 0x08 - -/* FACTPS Definitions */ -#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */ -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /* Block new Master reqs */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ -/* Defined polarity of Dock/Undock indication in SDP[0] */ -#define E1000_CTRL_D_UD_POLARITY 0x00004000 -/* Reset both PHY ports, through PHYRST_N pin */ -#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 -/* enable link status from external LINK_0 and LINK_1 pins */ -#define E1000_CTRL_EXT_LINK_EN 0x00010000 -#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ -#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -/* Initiate an interrupt to ME */ -#define E1000_CTRL_SW2FW_INT 0x02000000 -#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ - -/* - * Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ -#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 -#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 -#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR -#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA - -#define E1000_CONNSW_ENRGSRC 0x4 -#define E1000_PCS_CFG_PCS_EN 8 -#define E1000_PCS_LCTL_FLV_LINK_UP 1 -#define E1000_PCS_LCTL_FSV_10 0 -#define E1000_PCS_LCTL_FSV_100 2 -#define E1000_PCS_LCTL_FSV_1000 4 -#define E1000_PCS_LCTL_FDV_FULL 8 -#define E1000_PCS_LCTL_FSD 0x10 -#define E1000_PCS_LCTL_FORCE_LINK 0x20 -#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40 -#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 -#define E1000_PCS_LCTL_AN_ENABLE 0x10000 -#define E1000_PCS_LCTL_AN_RESTART 0x20000 -#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 -#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000 -#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000 -#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000 -#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000 -#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000 -#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 - -#define E1000_PCS_LSTS_LINK_OK 1 -#define E1000_PCS_LSTS_SPEED_10 0 -#define E1000_PCS_LSTS_SPEED_100 2 -#define E1000_PCS_LSTS_SPEED_1000 4 -#define E1000_PCS_LSTS_DUPLEX_FULL 8 -#define E1000_PCS_LSTS_SYNK_OK 0x10 -#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 -#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000 -#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000 -#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000 -#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000 - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ -/* Change in Dock/Undock state. Clear on write '0'. */ -#define E1000_STATUS_DOCK_CI 0x00000800 -/* Master request status */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ -#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ -#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ -#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ -#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ -/* BMC external code execution disabled */ -#define E1000_STATUS_BMC_LITE 0x01000000 -#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ -#define E1000_STATUS_FUSE_8 0x04000000 -#define E1000_STATUS_FUSE_9 0x08000000 -#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ -#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ - -/* Constants used to interpret the masked PCI-X bus speed. */ -/* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 -/* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 -/* PCI-X bus speed 100-133 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -#define PHY_FORCE_TIME 20 - -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ -#define ADVERTISE_1000_FULL 0x0020 - -/* 1000/H is not supported, nor spec-compliant. */ -#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) -#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) - -#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX - -/* LED Control */ -#define E1000_PHY_LED0_MODE_MASK 0x00000007 -#define E1000_PHY_LED0_IVRT 0x00000008 -#define E1000_PHY_LED0_BLINK 0x00000010 -#define E1000_PHY_LED0_MASK 0x0000001F - -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 -#define E1000_LEDCTL_LED1_MODE_SHIFT 8 -#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000 -#define E1000_LEDCTL_LED1_IVRT 0x00004000 -#define E1000_LEDCTL_LED1_BLINK 0x00008000 -#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 -#define E1000_LEDCTL_LED2_MODE_SHIFT 16 -#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 -#define E1000_LEDCTL_LED2_IVRT 0x00400000 -#define E1000_LEDCTL_LED2_BLINK 0x00800000 -#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 -#define E1000_LEDCTL_LED3_MODE_SHIFT 24 -#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 -#define E1000_LEDCTL_LED3_IVRT 0x40000000 -#define E1000_LEDCTL_LED3_BLINK 0x80000000 - -#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 -#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_ACTIVITY 0x3 -#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 -#define E1000_LEDCTL_MODE_LINK_10 0x5 -#define E1000_LEDCTL_MODE_LINK_100 0x6 -#define E1000_LEDCTL_MODE_LINK_1000 0x7 -#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 -#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 -#define E1000_LEDCTL_MODE_COLLISION 0xA -#define E1000_LEDCTL_MODE_BUS_SPEED 0xB -#define E1000_LEDCTL_MODE_BUS_SIZE 0xC -#define E1000_LEDCTL_MODE_PAUSED 0xD -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -/* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_DEXT 0x20000000 -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ -/* Extended desc bits for Linksec and timesync */ -#define E1000_TXD_CMD_LINKSEC 0x10000000 /* Apply LinkSec on packet */ -#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ - -/* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ - -/* Transmit Arbitration Count */ -#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ - -/* SerDes Control */ -#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 - -/* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ -#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ - -/* Header split receive */ -#define E1000_RFCTL_ISCSI_DIS 0x00000001 -#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E -#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_NFS_VER_MASK 0x00000300 -#define E1000_RFCTL_NFS_VER_SHIFT 8 -#define E1000_RFCTL_IPV6_DIS 0x00000400 -#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_ACKD_DIS 0x00002000 -#define E1000_RFCTL_IPFRSP_DIS 0x00004000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 -#define E1000_RFCTL_LEF 0x00040000 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLD_SHIFT 12 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82542_TIPG_IPGT 10 -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF -#define E1000_TIPG_IPGR1_MASK 0x000FFC00 -#define E1000_TIPG_IPGR2_MASK 0x3FF00000 - -#define DEFAULT_82542_TIPG_IPGR1 2 -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82542_TIPG_IPGR2 10 -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ - -#define ETHERNET_FCS_SIZE 4 -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 -#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 - -#define E1000_PHY_CTRL_SPD_EN 0x00000001 -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -/* PBA constants */ -#define E1000_PBA_6K 0x0006 /* 6KB */ -#define E1000_PBA_8K 0x0008 /* 8KB */ -#define E1000_PBA_10K 0x000A /* 10KB */ -#define E1000_PBA_12K 0x000C /* 12KB */ -#define E1000_PBA_14K 0x000E /* 14KB */ -#define E1000_PBA_16K 0x0010 /* 16KB */ -#define E1000_PBA_18K 0x0012 -#define E1000_PBA_20K 0x0014 -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_26K 0x001A -#define E1000_PBA_30K 0x001E -#define E1000_PBA_32K 0x0020 -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_35K 0x0023 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB */ -#define E1000_PBA_64K 0x0040 /* 64KB */ - -#define E1000_PBS_16K E1000_PBA_16K -#define E1000_PBS_24K E1000_PBA_24K - -#define IFS_MAX 80 -#define IFS_MIN 40 -#define IFS_RATIO 4 -#define IFS_STEP 10 -#define MIN_NUM_XMITS 1000 - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -/* Secondary driver semaphore bit */ -#define E1000_SWSM2_LOCK 0x00000002 - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_SRPD 0x00010000 -#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ -/* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_INT_ASSERTED 0x80000000 -/* Q0 Rx desc FIFO parity error */ -#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 -/* Q0 Tx desc FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 -/* host arb read buffer parity err */ -#define E1000_ICR_HOST_ARB_PAR 0x00400000 -/* packet buffer parity error */ -#define E1000_ICR_PB_PAR 0x00800000 -/* Q1 Rx desc FIFO parity error */ -#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 -/* Q1 Tx desc FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 -/* all parity error bits */ -#define E1000_ICR_ALL_PARITY 0x03F00000 -/* FW changed the status of DISSW bit in the FWSM */ -#define E1000_ICR_DSW 0x00000020 -/* LAN connected device generates an interrupt */ -#define E1000_ICR_PHYINT 0x00001000 -/* NIC DMA out of sync */ -#define E1000_ICR_DOUTSYNC 0x10000000 -/* ME hardware reset occurs */ -#define E1000_ICR_EPRST 0x00100000 -#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ -#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ -#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ -#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ -#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ - -/* PBA ECC Register */ -#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ -#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ -/* Enable ECC error correction */ -#define E1000_PBA_ECC_CORR_EN 0x00000001 -#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ -/* Enable ICR bit 5 on ECC error */ -#define E1000_PBA_ECC_INT_EN 0x00000004 - -/* - * This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - */ -#define POLL_IMS_ENABLE_MASK ( \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ) - -/* - * This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_SRPD E1000_ICR_SRPD -#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -/* Q0 Rx desc FIFO parity error */ -#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 -/* Q0 Tx desc FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 -/* host arb read buffer parity error */ -#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR -/* packet buffer parity error */ -#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR -/* Q1 Rx desc FIFO parity error */ -#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 -/* Q1 Tx desc FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 -#define E1000_IMS_DSW E1000_ICR_DSW -#define E1000_IMS_PHYINT E1000_ICR_PHYINT -#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_IMS_EPRST E1000_ICR_EPRST -#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ -#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ -#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ -#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ -#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ - -/* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Tx desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_ICS_SRPD E1000_ICR_SRPD -#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -/* Q0 Rx desc FIFO parity error */ -#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 -/* Q0 Tx desc FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 -/* host arb read buffer parity error */ -#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR -/* packet buffer parity error */ -#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR -/* Q1 Rx desc FIFO parity error */ -#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 -/* Q1 Tx desc FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 -#define E1000_ICS_DSW E1000_ICR_DSW -#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_ICS_PHYINT E1000_ICR_PHYINT -#define E1000_ICS_EPRST E1000_ICR_EPRST - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ -/* Enable the counting of descriptors still to be processed. */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* 802.1q VLAN Packet Size */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Receive Address */ -/* - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * Technically, we have 16 spots. However, we reserve one of these spots - * (RAR[15]) for our directed address used by controllers with - * manageability enabled, allowing us room for 15 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ -#define E1000_RAL_MAC_ADDR_LEN 4 -#define E1000_RAH_MAC_ADDR_LEN 2 -#define E1000_RAH_POOL_MASK 0x03FC0000 -#define E1000_RAH_POOL_1 0x00040000 - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_NVM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_INIT 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 -#define E1000_NOT_IMPLEMENTED 14 -#define E1000_ERR_MBX 15 - -/* Loop limit on how long we wait for auto-negotiation to complete */ -#define FIBER_LINK_UP_LIMIT 50 -#define COPPER_LINK_UP_LIMIT 10 -#define PHY_AUTO_NEG_LIMIT 45 -#define PHY_FORCE_LIMIT 20 -/* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 -/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ -#define MDIO_OWNERSHIP_TIMEOUT 10 -/* Number of milliseconds for NVM auto read done after MAC reset. */ -#define AUTO_READ_DONE_TIMEOUT 10 - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ - -/* PCI Express Control */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 -#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 -#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 -#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 -#define E1000_GCR_CAP_VER2 0x00040000 - -#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ - -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CONTROL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ - -/* NVM Control */ -#define E1000_EECD_SK 0x00000001 /* NVM Clock */ -#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* NVM Data In */ -#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ -#define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ -#define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* NVM Present */ -#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ -/* NVM Addressing bits based on type 0=small, 1=large */ -#define E1000_EECD_ADDR_BITS 0x00000400 -#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_NVM_GRANT_ATTEMPTS -#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ -#endif -#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ -#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ -#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SECVAL_SHIFT 22 -#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) - -#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */ -#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */ -/* Offset to data in NVM read/write regs */ -#define E1000_NVM_RW_REG_DATA 16 -#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_NVM_RW_REG_START 1 /* Start operation */ -#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ -#define E1000_FLASH_UPDATES 2000 - -/* NVM Word Offsets */ -#define NVM_COMPAT 0x0003 -#define NVM_ID_LED_SETTINGS 0x0004 -#define NVM_VERSION 0x0005 -/* SERDES output amplitude */ -#define NVM_SERDES_AMPLITUDE 0x0006 -#define NVM_PHY_CLASS_WORD 0x0007 -#define NVM_INIT_CONTROL1_REG 0x000A -#define NVM_INIT_CONTROL2_REG 0x000F -#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010 -#define NVM_INIT_CONTROL3_PORT_B 0x0014 -#define NVM_INIT_3GIO_3 0x001A -#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define NVM_INIT_CONTROL3_PORT_A 0x0024 -#define NVM_CFG 0x0012 -#define NVM_FLASH_VERSION 0x0032 -#define NVM_ALT_MAC_ADDR_PTR 0x0037 -#define NVM_CHECKSUM_REG 0x003F - -/* MNG config cycle done */ -#define E1000_NVM_CFG_DONE_PORT_0 0x040000 -/* ...for second port */ -#define E1000_NVM_CFG_DONE_PORT_1 0x080000 - -/* Mask bits for fields in Word 0x0f of the NVM */ -#define NVM_WORD0F_PAUSE_MASK 0x3000 -#define NVM_WORD0F_PAUSE 0x1000 -#define NVM_WORD0F_ASM_DIR 0x2000 -#define NVM_WORD0F_ANE 0x0800 -#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 -#define NVM_WORD0F_LPLU 0x0001 - -/* Mask bits for fields in Word 0x1a of the NVM */ -#define NVM_WORD1A_ASPM_MASK 0x000C - -/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ -#define NVM_SUM 0xBABA - -#define NVM_MAC_ADDR_OFFSET 0 -#define NVM_PBA_OFFSET_0 8 -#define NVM_PBA_OFFSET_1 9 -#define NVM_RESERVED_WORD 0xFFFF -#define NVM_PHY_CLASS_A 0x8000 -#define NVM_SERDES_AMPLITUDE_MASK 0x000F -#define NVM_SIZE_MASK 0x1C00 -#define NVM_SIZE_SHIFT 10 -#define NVM_WORD_SIZE_BASE_SHIFT 6 -#define NVM_SWDPIO_EXT_SHIFT 4 - -/* NVM Commands - Microwire */ -#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ -#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ -#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ -#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ - -/* NVM Commands - SPI */ -#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ -#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ -#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */ -#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ -#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */ - -/* SPI NVM Status Register */ -#define NVM_STATUS_RDY_SPI 0x01 -#define NVM_STATUS_WEN_SPI 0x02 -#define NVM_STATUS_BP0_SPI 0x04 -#define NVM_STATUS_BP1_SPI 0x08 -#define NVM_STATUS_WPEN_SPI 0x80 - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* PCI/PCI-X/PCI-EX Config space */ -#define PCIX_COMMAND_REGISTER 0xE6 -#define PCIX_STATUS_REGISTER_LO 0xE8 -#define PCIX_STATUS_REGISTER_HI 0xEA -#define PCI_HEADER_TYPE_REGISTER 0x0E -#define PCIE_LINK_STATUS 0x12 -#define PCIE_DEVICE_CONTROL2 0x28 - -#define PCIX_COMMAND_MMRBC_MASK 0x000C -#define PCIX_COMMAND_MMRBC_SHIFT 0x2 -#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 -#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 -#define PCIX_STATUS_HI_MMRBC_4K 0x3 -#define PCIX_STATUS_HI_MMRBC_2K 0x2 -#define PCIX_STATUS_LO_FUNC_MASK 0x7 -#define PCI_HEADER_TYPE_MULTIFUNC 0x80 -#define PCIE_LINK_WIDTH_MASK 0x3F0 -#define PCIE_LINK_WIDTH_SHIFT 4 -#define PCIE_DEVICE_CONTROL2_16ms 0x0005 - -#ifndef ETH_ADDR_LEN -#define ETH_ADDR_LEN 6 -#endif - -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF - -/* Bit definitions for valid PHY IDs. */ -/* - * I = Integrated - * E = External - */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1011_I_REV_4 0x04 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define GG82563_E_PHY_ID 0x01410CA0 -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 -#define BME1000_E_PHY_ID 0x01410CB0 -#define BME1000_E_PHY_ID_R2 0x01410CB1 -#define I82577_E_PHY_ID 0x01540050 -#define I82578_E_PHY_ID 0x004DD040 -#define I82579_E_PHY_ID 0x01540090 -#define M88_VENDOR 0x0141 - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -/* 1=CLK125 low, 0=CLK125 toggling */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 -/* Auto crossover enabled all speeds */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 -/* - * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold - * 0=Normal 10BASE-T Rx Threshold - */ -#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080 -/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -/* - * 0 = <50M - * 1 = 50-80M - * 2 = 80-110M - * 3 = 110-140M - * 4 = >140M - */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -/* - * 1 = Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the slave - */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 - -#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 -#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C - -/* BME1000 PHY Specific Control Register */ -#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ - -/* - * Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL \ - GG82563_REG(0, 16) /* PHY Specific Control */ -#define GG82563_PHY_SPEC_STATUS \ - GG82563_REG(0, 17) /* PHY Specific Status */ -#define GG82563_PHY_INT_ENABLE \ - GG82563_REG(0, 18) /* Interrupt Enable */ -#define GG82563_PHY_SPEC_STATUS_2 \ - GG82563_REG(0, 19) /* PHY Specific Status 2 */ -#define GG82563_PHY_RX_ERR_CNTR \ - GG82563_REG(0, 21) /* Receive Error Counter */ -#define GG82563_PHY_PAGE_SELECT \ - GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 \ - GG82563_REG(0, 26) /* PHY Specific Control 2 */ -#define GG82563_PHY_PAGE_SELECT_ALT \ - GG82563_REG(0, 29) /* Alternate Page Select */ -#define GG82563_PHY_TEST_CLK_CTRL \ - GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ - -#define GG82563_PHY_MAC_SPEC_CTRL \ - GG82563_REG(2, 21) /* MAC Specific Control Register */ -#define GG82563_PHY_MAC_SPEC_CTRL_2 \ - GG82563_REG(2, 26) /* MAC Specific Control 2 */ - -#define GG82563_PHY_DSP_DISTANCE \ - GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -#define GG82563_PHY_KMRN_MODE_CTRL \ - GG82563_REG(193, 16) /* Kumeran Mode Control */ -#define GG82563_PHY_PORT_RESET \ - GG82563_REG(193, 17) /* Port Reset */ -#define GG82563_PHY_REVISION_ID \ - GG82563_REG(193, 18) /* Revision ID */ -#define GG82563_PHY_DEVICE_ID \ - GG82563_REG(193, 19) /* Device ID */ -#define GG82563_PHY_PWR_MGMT_CTRL \ - GG82563_REG(193, 20) /* Power Management Control */ -#define GG82563_PHY_RATE_ADAPT_CTRL \ - GG82563_REG(193, 25) /* Rate Adaptation Control */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ - GG82563_REG(194, 16) /* FIFO's Control/Status */ -#define GG82563_PHY_KMRN_CTRL \ - GG82563_REG(194, 17) /* Control */ -#define GG82563_PHY_INBAND_CTRL \ - GG82563_REG(194, 18) /* Inband Control */ -#define GG82563_PHY_KMRN_DIAGNOSTIC \ - GG82563_REG(194, 19) /* Diagnostic */ -#define GG82563_PHY_ACK_TIMEOUTS \ - GG82563_REG(194, 20) /* Acknowledge Timeouts */ -#define GG82563_PHY_ADV_ABILITY \ - GG82563_REG(194, 21) /* Advertised Ability */ -#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ - GG82563_REG(194, 23) /* Link Partner Advertised Ability */ -#define GG82563_PHY_ADV_NEXT_PAGE \ - GG82563_REG(194, 24) /* Advertised Next Page */ -#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ - GG82563_REG(194, 25) /* Link Partner Advertised Next page */ -#define GG82563_PHY_KMRN_MISC \ - GG82563_REG(194, 26) /* Misc. */ - -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 - -/* SerDes Control */ -#define E1000_GEN_CTL_READY 0x80000000 -#define E1000_GEN_CTL_ADDRESS_SHIFT 8 -#define E1000_GEN_POLL_TIMEOUT 640 - -#endif /* _E1000_DEFINES_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_hw.h b/usr/src/uts/common/io/e1000g/e1000_hw.h deleted file mode 100644 index d2f779f86a..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_hw.h +++ /dev/null @@ -1,866 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#include "e1000_osdep.h" -#include "e1000_regs.h" -#include "e1000_defines.h" - -struct e1000_hw; - -#define E1000_DEV_ID_82542 0x1000 -#define E1000_DEV_ID_82543GC_FIBER 0x1001 -#define E1000_DEV_ID_82543GC_COPPER 0x1004 -#define E1000_DEV_ID_82544EI_COPPER 0x1008 -#define E1000_DEV_ID_82544EI_FIBER 0x1009 -#define E1000_DEV_ID_82544GC_COPPER 0x100C -#define E1000_DEV_ID_82544GC_LOM 0x100D -#define E1000_DEV_ID_82540EM 0x100E -#define E1000_DEV_ID_82540EM_LOM 0x1015 -#define E1000_DEV_ID_82540EP_LOM 0x1016 -#define E1000_DEV_ID_82540EP 0x1017 -#define E1000_DEV_ID_82540EP_LP 0x101E -#define E1000_DEV_ID_82545EM_COPPER 0x100F -#define E1000_DEV_ID_82545EM_FIBER 0x1011 -#define E1000_DEV_ID_82545GM_COPPER 0x1026 -#define E1000_DEV_ID_82545GM_FIBER 0x1027 -#define E1000_DEV_ID_82545GM_SERDES 0x1028 -#define E1000_DEV_ID_82546EB_COPPER 0x1010 -#define E1000_DEV_ID_82546EB_FIBER 0x1012 -#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D -#define E1000_DEV_ID_82546GB_COPPER 0x1079 -#define E1000_DEV_ID_82546GB_FIBER 0x107A -#define E1000_DEV_ID_82546GB_SERDES 0x107B -#define E1000_DEV_ID_82546GB_PCIE 0x108A -#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 -#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 -#define E1000_DEV_ID_82541EI 0x1013 -#define E1000_DEV_ID_82541EI_MOBILE 0x1018 -#define E1000_DEV_ID_82541ER_LOM 0x1014 -#define E1000_DEV_ID_82541ER 0x1078 -#define E1000_DEV_ID_82541GI 0x1076 -#define E1000_DEV_ID_82541GI_LF 0x107C -#define E1000_DEV_ID_82541GI_MOBILE 0x1077 -#define E1000_DEV_ID_82547EI 0x1019 -#define E1000_DEV_ID_82547EI_MOBILE 0x101A -#define E1000_DEV_ID_82547GI 0x1075 -#define E1000_DEV_ID_82571EB_COPPER 0x105E -#define E1000_DEV_ID_82571EB_FIBER 0x105F -#define E1000_DEV_ID_82571EB_SERDES 0x1060 -#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 -#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA -#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 -#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 -#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 -#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC -#define E1000_DEV_ID_82572EI_COPPER 0x107D -#define E1000_DEV_ID_82572EI_FIBER 0x107E -#define E1000_DEV_ID_82572EI_SERDES 0x107F -#define E1000_DEV_ID_82572EI 0x10B9 -#define E1000_DEV_ID_82573E 0x108B -#define E1000_DEV_ID_82573E_IAMT 0x108C -#define E1000_DEV_ID_82573L 0x109A -#define E1000_DEV_ID_82574L 0x10D3 -#define E1000_DEV_ID_82574LA 0x10F6 -#define E1000_DEV_ID_82583V 0x150C -#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 -#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 -#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA -#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB -#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 -#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A -#define E1000_DEV_ID_ICH8_IGP_C 0x104B -#define E1000_DEV_ID_ICH8_IFE 0x104C -#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 -#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 -#define E1000_DEV_ID_ICH8_IGP_M 0x104D -#define E1000_DEV_ID_ICH9_IGP_M 0x10BF -#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 -#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB -#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD -#define E1000_DEV_ID_ICH9_BM 0x10E5 -#define E1000_DEV_ID_ICH9_IGP_C 0x294C -#define E1000_DEV_ID_ICH9_IFE 0x10C0 -#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 -#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 -#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC -#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD -#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE -#define E1000_DEV_ID_ICH10_HANKSVILLE 0xF0FE -#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE -#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF -#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA -#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB -#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF -#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 -#define E1000_DEV_ID_PCH2_LV_LM 0x1502 -#define E1000_DEV_ID_PCH2_LV_V 0x1503 - -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 -#define E1000_REVISION_4 4 - -#define E1000_FUNC_0 0 -#define E1000_FUNC_1 1 - -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 - -/* Maximum size of the MTA register table in all supported adapters */ -#define MAX_MTA_REG 128 - -enum e1000_mac_type { - e1000_undefined = 0, - e1000_82542, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_82571, - e1000_82572, - e1000_82573, - e1000_82574, - e1000_82583, - e1000_80003es2lan, - e1000_ich8lan, - e1000_ich9lan, - e1000_ich10lan, - e1000_pchlan, - e1000_pch2lan, - e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ -}; - -enum e1000_media_type { - e1000_media_type_unknown = 0, - e1000_media_type_copper = 1, - e1000_media_type_fiber = 2, - e1000_media_type_internal_serdes = 3, - e1000_num_media_types -}; - -enum e1000_nvm_type { - e1000_nvm_unknown = 0, - e1000_nvm_none, - e1000_nvm_eeprom_spi, - e1000_nvm_eeprom_microwire, - e1000_nvm_flash_hw, - e1000_nvm_flash_sw -}; - -enum e1000_nvm_override { - e1000_nvm_override_none = 0, - e1000_nvm_override_spi_small, - e1000_nvm_override_spi_large, - e1000_nvm_override_microwire_small, - e1000_nvm_override_microwire_large -}; - -enum e1000_phy_type { - e1000_phy_unknown = 0, - e1000_phy_none, - e1000_phy_m88, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_bm, - e1000_phy_82578, - e1000_phy_82577, - e1000_phy_82579 -}; - -enum e1000_bus_type { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_pci_express, - e1000_bus_type_reserved -}; - -enum e1000_bus_speed { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_2500, - e1000_bus_speed_5000, - e1000_bus_speed_reserved -}; - -enum e1000_bus_width { - e1000_bus_width_unknown = 0, - e1000_bus_width_pcie_x1, - e1000_bus_width_pcie_x2, - e1000_bus_width_pcie_x4 = 4, - e1000_bus_width_pcie_x8 = 8, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -}; - -enum e1000_1000t_rx_status { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -}; - -enum e1000_rev_polarity { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -}; - -enum e1000_fc_mode { - e1000_fc_none = 0, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full, - e1000_fc_default = 0xFF -}; - -enum e1000_ffe_config { - e1000_ffe_config_enabled = 0, - e1000_ffe_config_active, - e1000_ffe_config_blocked -}; - -enum e1000_dsp_config { - e1000_dsp_config_disabled = 0, - e1000_dsp_config_enabled, - e1000_dsp_config_activated, - e1000_dsp_config_undefined = 0xFF -}; - -enum e1000_ms_type { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -}; - -enum e1000_smart_speed { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -}; - -enum e1000_serdes_link_state { - e1000_serdes_link_down = 0, - e1000_serdes_link_autoneg_progress, - e1000_serdes_link_autoneg_complete, - e1000_serdes_link_forced_up -}; - -/* Receive Descriptor */ -struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; -}; - -/* Receive Descriptor - Extended */ -union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define MAX_PS_BUFFERS 4 -/* Receive Descriptor - Packet Split */ -union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - __le16 length[3]; /* length of buffers 1-3 */ - } upper; - __le64 reserved; - } wb; /* writeback */ -}; - -/* Transmit Descriptor */ -struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; -}; - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; - u8 cmd; - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; - } fields; - } upper; -}; - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 tor; - u64 tot; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; - u64 cbtmpc; - u64 htdpmc; - u64 cbrdpc; - u64 cbrmpc; - u64 rpthc; - u64 hgptc; - u64 htcbdpc; - u64 hgorc; - u64 hgotc; - u64 lenerrs; - u64 scvpc; - u64 hrmpc; - u64 doosync; -}; - -struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; -}; - -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; -}; - -/* Host Interface "Rev 1" */ -struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; - u8 checksum; -}; - -#define E1000_HI_MAX_DATA_LENGTH 252 -struct e1000_host_command_info { - struct e1000_host_command_header command_header; - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; -}; - -/* Host Interface "Rev 2" */ -struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; -}; - -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; -}; - -#include "e1000_mac.h" -#include "e1000_phy.h" -#include "e1000_nvm.h" -#include "e1000_manage.h" - -struct e1000_mac_operations { - /* Function pointers for the MAC. */ - s32 (*init_params)(struct e1000_hw *); - s32 (*id_led_init)(struct e1000_hw *); - s32 (*blink_led)(struct e1000_hw *); - s32 (*check_for_link)(struct e1000_hw *); - bool (*check_mng_mode)(struct e1000_hw *hw); - s32 (*cleanup_led)(struct e1000_hw *); - void (*clear_hw_cntrs)(struct e1000_hw *); - void (*clear_vfta)(struct e1000_hw *); - s32 (*get_bus_info)(struct e1000_hw *); - void (*set_lan_id)(struct e1000_hw *); - s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); - s32 (*led_on)(struct e1000_hw *); - s32 (*led_off)(struct e1000_hw *); - void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); - s32 (*reset_hw)(struct e1000_hw *); - s32 (*init_hw)(struct e1000_hw *); - s32 (*setup_link)(struct e1000_hw *); - s32 (*setup_physical_interface)(struct e1000_hw *); - s32 (*setup_led)(struct e1000_hw *); - void (*write_vfta)(struct e1000_hw *, u32, u32); - void (*mta_set)(struct e1000_hw *, u32); - void (*config_collision_dist)(struct e1000_hw *); - void (*rar_set)(struct e1000_hw *, u8 *, u32); - s32 (*read_mac_addr)(struct e1000_hw *); - s32 (*validate_mdi_setting)(struct e1000_hw *); - s32 (*mng_host_if_write)(struct e1000_hw *, u8 *, u16, u16, u8 *); - s32 (*mng_write_cmd_header)(struct e1000_hw *hw, - struct e1000_host_mng_command_header *); - s32 (*mng_enable_host_if)(struct e1000_hw *); - s32 (*wait_autoneg)(struct e1000_hw *); -}; - -struct e1000_phy_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*cfg_on_link_up)(struct e1000_hw *); - s32 (*check_polarity)(struct e1000_hw *); - s32 (*check_reset_block)(struct e1000_hw *); - s32 (*commit)(struct e1000_hw *); - s32 (*force_speed_duplex)(struct e1000_hw *); - s32 (*get_cfg_done)(struct e1000_hw *hw); - s32 (*get_cable_length)(struct e1000_hw *); - s32 (*get_info)(struct e1000_hw *); - s32 (*read_reg)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); - void (*release)(struct e1000_hw *); - s32 (*reset)(struct e1000_hw *); - s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); - s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); - s32 (*write_reg)(struct e1000_hw *, u32, u16); - s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); - void (*power_up)(struct e1000_hw *); - void (*power_down)(struct e1000_hw *); -}; - -struct e1000_nvm_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*read)(struct e1000_hw *, u16, u16, u16 *); - void (*release)(struct e1000_hw *); - void (*reload)(struct e1000_hw *); - s32 (*update)(struct e1000_hw *); - s32 (*valid_led_default)(struct e1000_hw *, u16 *); - s32 (*validate)(struct e1000_hw *); - s32 (*write)(struct e1000_hw *, u16, u16, u16 *); -}; - -struct e1000_mac_info { - struct e1000_mac_operations ops; - u8 addr[6]; - u8 perm_addr[6]; - - enum e1000_mac_type type; - - u32 collision_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - u32 mc_filter_type; - u32 tx_packet_delta; - u32 txcw; - - u16 current_ifs_val; - u16 ifs_max_val; - u16 ifs_min_val; - u16 ifs_ratio; - u16 ifs_step_size; - u16 mta_reg_count; - u32 mta_shadow[MAX_MTA_REG]; - u16 rar_entry_count; - - u8 forced_speed_duplex; - - bool adaptive_ifs; - bool has_fwsm; - bool arc_subsystem_valid; - bool asf_firmware_present; - bool autoneg; - bool autoneg_failed; - bool get_link_status; - bool in_ifs_mode; - bool report_tx_early; - enum e1000_serdes_link_state serdes_link_state; - bool serdes_has_link; - bool tx_pkt_filtering; -}; - -struct e1000_phy_info { - struct e1000_phy_operations ops; - enum e1000_phy_type type; - - enum e1000_1000t_rx_status local_rx; - enum e1000_1000t_rx_status remote_rx; - enum e1000_ms_type ms_type; - enum e1000_ms_type original_ms_type; - enum e1000_rev_polarity cable_polarity; - enum e1000_smart_speed smart_speed; - - u32 addr; - u32 id; - u32 reset_delay_us; /* in usec */ - u32 revision; - - enum e1000_media_type media_type; - - u16 autoneg_advertised; - u16 autoneg_mask; - u16 cable_length; - u16 max_cable_length; - u16 min_cable_length; - - u8 mdix; - - bool disable_polarity_correction; - bool is_mdix; - bool polarity_correction; - bool reset_disable; - bool speed_downgraded; - bool autoneg_wait_to_complete; -}; - -struct e1000_nvm_info { - struct e1000_nvm_operations ops; - enum e1000_nvm_type type; - enum e1000_nvm_override override; - - u32 flash_bank_size; - u32 flash_base_addr; - - u16 word_size; - u16 delay_usec; - u16 address_bits; - u16 opcode_bits; - u16 page_size; -}; - -struct e1000_bus_info { - enum e1000_bus_type type; - enum e1000_bus_speed speed; - enum e1000_bus_width width; - - u16 func; - u16 pci_cmd_word; -}; - -struct e1000_fc_info { - u32 high_water; /* Flow control high-water mark */ - u32 low_water; /* Flow control low-water mark */ - u16 pause_time; /* Flow control pause timer */ - u16 refresh_time; /* Flow control refresh timer */ - bool send_xon; /* Flow control send XON */ - bool strict_ieee; /* Strict IEEE mode */ - enum e1000_fc_mode current_mode; /* FC mode in effect */ - enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ -}; - -struct e1000_dev_spec_82541 { - enum e1000_dsp_config dsp_config; - enum e1000_ffe_config ffe_config; - u32 tx_fifo_head; - u32 tx_fifo_start; - u32 tx_fifo_size; - u16 dsp_reset_counter; - u16 spd_default; - bool phy_init_script; - bool ttl_workaround; -}; - -struct e1000_dev_spec_82542 { - bool dma_fairness; -}; - -struct e1000_dev_spec_82543 { - u32 tbi_compatibility; - bool dma_fairness; - bool init_phy_disabled; -}; - -struct e1000_dev_spec_82571 { - bool laa_is_present; - u32 smb_counter; -}; - -struct e1000_dev_spec_80003es2lan { - bool mdic_wa_enable; -}; - -struct e1000_shadow_ram { - u16 value; - bool modified; -}; - -#define E1000_SHADOW_RAM_WORDS 2048 - -struct e1000_dev_spec_ich8lan { - bool kmrn_lock_loss_workaround_enabled; - struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS]; - E1000_MUTEX nvm_mutex; - E1000_MUTEX swflag_mutex; - bool nvm_k1_enabled; - bool eee_disable; -}; - -struct e1000_hw { - void *back; - - u8 *hw_addr; - u8 *flash_address; - unsigned long io_base; - - struct e1000_mac_info mac; - struct e1000_fc_info fc; - struct e1000_phy_info phy; - struct e1000_nvm_info nvm; - struct e1000_bus_info bus; - struct e1000_host_mng_dhcp_cookie mng_cookie; - - union { - struct e1000_dev_spec_82541 _82541; - struct e1000_dev_spec_82542 _82542; - struct e1000_dev_spec_82543 _82543; - struct e1000_dev_spec_82571 _82571; - struct e1000_dev_spec_80003es2lan _80003es2lan; - struct e1000_dev_spec_ich8lan ich8lan; - } dev_spec; - - u16 device_id; - u16 subsystem_vendor_id; - u16 subsystem_device_id; - u16 vendor_id; - - u8 revision_id; -}; - -#include "e1000_82541.h" -#include "e1000_82543.h" -#include "e1000_82571.h" -#include "e1000_80003es2lan.h" -#include "e1000_ich8lan.h" - -/* These functions must be implemented by drivers */ -void e1000_pci_clear_mwi(struct e1000_hw *hw); -void e1000_pci_set_mwi(struct e1000_hw *hw); -s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); -void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_HW_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_ich8lan.c b/usr/src/uts/common/io/e1000g/e1000_ich8lan.c deleted file mode 100644 index 0cc9f26f27..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_ich8lan.c +++ /dev/null @@ -1,4289 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -/* - * 82562G 10/100 Network Connection - * 82562G-2 10/100 Network Connection - * 82562GT 10/100 Network Connection - * 82562GT-2 10/100 Network Connection - * 82562V 10/100 Network Connection - * 82562V-2 10/100 Network Connection - * 82566DC-2 Gigabit Network Connection - * 82566DC Gigabit Network Connection - * 82566DM-2 Gigabit Network Connection - * 82566DM Gigabit Network Connection - * 82566MC Gigabit Network Connection - * 82566MM Gigabit Network Connection - * 82567LM Gigabit Network Connection - * 82567LF Gigabit Network Connection - * 82567V Gigabit Network Connection - * 82567LM-2 Gigabit Network Connection - * 82567LF-2 Gigabit Network Connection - * 82567V-2 Gigabit Network Connection - * 82567LF-3 Gigabit Network Connection - * 82567LM-3 Gigabit Network Connection - * 82567LM-4 Gigabit Network Connection - * 82577LM Gigabit Network Connection - * 82577LC Gigabit Network Connection - * 82578DM Gigabit Network Connection - * 82578DC Gigabit Network Connection - * 82579LM Gigabit Network Connection - * 82579V Gigabit Network Connection - */ - -#include "e1000_api.h" - -static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw); -static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw); -static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw); -static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); -static void e1000_release_swflag_ich8lan(struct e1000_hw *hw); -static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); -static void e1000_release_nvm_ich8lan(struct e1000_hw *hw); -static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); -static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); -static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); -static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, - u8 *mc_addr_list, - u32 mc_addr_count); -static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); -static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); -static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw); -static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); -static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, - bool active); -static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, - bool active); -static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); -static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); -static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, - u16 *data); -static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); -static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); -static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); -static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); -static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); -static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); -static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); -static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); -static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); -static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); -static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); -static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); -static s32 e1000_led_on_pchlan(struct e1000_hw *hw); -static s32 e1000_led_off_pchlan(struct e1000_hw *hw); -static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); -static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); -static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout); -static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw); -static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw); -static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); -static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); -static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 *data); -static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 *data); -static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, - u32 offset, u16 *data); -static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 byte); -static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 data); -static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 data); -static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); -static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); -static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); -static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); -static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); -static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); -static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); -static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); - -/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ -/* Offset 04h HSFSTS */ -union ich8_hws_flash_status { - struct ich8_hsfsts { - u16 flcdone:1; /* bit 0 Flash Cycle Done */ - u16 flcerr:1; /* bit 1 Flash Cycle Error */ - u16 dael:1; /* bit 2 Direct Access error Log */ - u16 berasesz:2; /* bit 4:3 Sector Erase Size */ - u16 flcinprog:1; /* bit 5 flash cycle in Progress */ - u16 reserved1:2; /* bit 13:6 Reserved */ - u16 reserved2:6; /* bit 13:6 Reserved */ - u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ - u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ - } hsf_status; - u16 regval; -}; - -/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ -/* Offset 06h FLCTL */ -union ich8_hws_flash_ctrl { - struct ich8_hsflctl { - u16 flcgo:1; /* 0 Flash Cycle Go */ - u16 flcycle:2; /* 2:1 Flash Cycle */ - u16 reserved:5; /* 7:3 Reserved */ - u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ - u16 flockdn:6; /* 15:10 Reserved */ - } hsf_ctrl; - u16 regval; -}; - -/* ICH Flash Region Access Permissions */ -union ich8_hws_flash_regacc { - struct ich8_flracc { - u32 grra:8; /* 0:7 GbE region Read Access */ - u32 grwa:8; /* 8:15 GbE region Write Access */ - u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ - u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ - } hsf_flregacc; - u16 regval; -}; - -/* - * e1000_init_phy_params_pchlan - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific PHY parameters and function pointers. - */ -static s32 -e1000_init_phy_params_pchlan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 ctrl, fwsm; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_init_phy_params_pchlan"); - - phy->addr = 1; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_swflag_ich8lan; - phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; - phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; - phy->ops.read_reg = e1000_read_phy_reg_hv; - phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; - phy->ops.release = e1000_release_swflag_ich8lan; - phy->ops.reset = e1000_phy_hw_reset_ich8lan; - phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; - phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; - phy->ops.write_reg = e1000_write_phy_reg_hv; - phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* - * The MAC-PHY interconnect may still be in SMBus mode - * after Sx->S0. If the manageability engine (ME) is - * disabled, then toggle the LANPHYPC Value bit to force - * the interconnect to PCIe mode. - */ - fwsm = E1000_READ_REG(hw, E1000_FWSM); - if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && - !(hw->phy.ops.check_reset_block(hw))) { - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; - ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - usec_delay(10); - ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - msec_delay(50); - - /* - * Gate automatic PHY configuration by hardware on - * non-managed 82579 - */ - if (hw->mac.type == e1000_pch2lan) - e1000_gate_hw_phy_config_ich8lan(hw, true); - } - - /* - * Reset the PHY before any acccess to it. Doing so, ensures that - * the PHY is in a known good state before we read/write PHY registers. - * The generic reset is sufficient here, because we haven't determined - * the PHY type yet. - */ - ret_val = e1000_phy_hw_reset_generic(hw); - if (ret_val) - goto out; - - /* Ungate automatic PHY configuration on non-managed 82579 */ - if ((hw->mac.type == e1000_pch2lan) && - !(fwsm & E1000_ICH_FWSM_FW_VALID)) { - msec_delay(10); - e1000_gate_hw_phy_config_ich8lan(hw, false); - } - - phy->id = e1000_phy_unknown; - switch (hw->mac.type) { - default: - ret_val = e1000_get_phy_id(hw); - if (ret_val) - goto out; - if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) - break; - /* FALLTHROUGH */ - case e1000_pch2lan: - /* - * In case the PHY needs to be in mdio slow mode, - * set slow mode and try to get the PHY id again. - */ - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (ret_val) - goto out; - ret_val = e1000_get_phy_id(hw); - if (ret_val) - goto out; - break; - } - phy->type = e1000_get_phy_type_from_id(phy->id); - - switch (phy->type) { - case e1000_phy_82577: - case e1000_phy_82579: - phy->ops.check_polarity = e1000_check_polarity_82577; - phy->ops.force_speed_duplex = - e1000_phy_force_speed_duplex_82577; - phy->ops.get_cable_length = e1000_get_cable_length_82577; - phy->ops.get_info = e1000_get_phy_info_82577; - phy->ops.commit = e1000_phy_sw_reset_generic; - break; - case e1000_phy_82578: - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - -out: - return (ret_val); -} - -/* - * e1000_init_phy_params_ich8lan - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific PHY parameters and function pointers. - */ -static s32 -e1000_init_phy_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 i = 0; - - DEBUGFUNC("e1000_init_phy_params_ich8lan"); - - phy->addr = 1; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_swflag_ich8lan; - phy->ops.check_polarity = e1000_check_polarity_ife; - phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; - phy->ops.get_info = e1000_get_phy_info_ich8lan; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.release = e1000_release_swflag_ich8lan; - phy->ops.reset = e1000_phy_hw_reset_ich8lan; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; - phy->ops.write_reg = e1000_write_phy_reg_igp; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; - - /* - * We may need to do this twice - once for IGP and if that fails, - * we'll set BM func pointers and try again - */ - ret_val = e1000_determine_phy_address(hw); - if (ret_val) { - phy->ops.write_reg = e1000_write_phy_reg_bm; - phy->ops.read_reg = e1000_read_phy_reg_bm; - ret_val = e1000_determine_phy_address(hw); - if (ret_val) { - DEBUGOUT("Can't determine PHY address. Erroring out\n"); - goto out; - } - } - - phy->id = 0; - while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && - (i++ < 100)) { - msec_delay(1); - ret_val = e1000_get_phy_id(hw); - if (ret_val) - goto out; - } - - /* Verify phy id */ - switch (phy->id) { - case IGP03E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; - phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy->type = e1000_phy_ife; - phy->autoneg_mask = E1000_ALL_NOT_GIG; - break; - case BME1000_E_PHY_ID: - phy->type = e1000_phy_bm; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->ops.read_reg = e1000_read_phy_reg_bm; - phy->ops.write_reg = e1000_write_phy_reg_bm; - phy->ops.commit = e1000_phy_sw_reset_generic; - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific NVM parameters and function - * pointers. - */ -static s32 -e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 gfpreg, sector_base_addr, sector_end_addr; - s32 ret_val = E1000_SUCCESS; - u16 i; - - DEBUGFUNC("e1000_init_nvm_params_ich8lan"); - - /* Can't read flash registers if the register set isn't mapped. */ - if (!hw->flash_address) { - DEBUGOUT("ERROR: Flash registers not mapped\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - nvm->type = e1000_nvm_flash_sw; - - gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); - - /* - * sector_X_addr is a "sector"-aligned address (4096 bytes) Add 1 to - * sector_end_addr since this sector is included in the overall size. - */ - sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; - sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; - - /* flash_base_addr is byte-aligned */ - nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; - - /* - * find total size of the NVM, then cut in half since the total size - * represents two separate NVM banks. - */ - nvm->flash_bank_size = (sector_end_addr - sector_base_addr) - << FLASH_SECTOR_ADDR_SHIFT; - nvm->flash_bank_size /= 2; - /* Adjust to word count */ - nvm->flash_bank_size /= sizeof (u16); - - nvm->word_size = E1000_SHADOW_RAM_WORDS; - - /* Clear shadow ram */ - for (i = 0; i < nvm->word_size; i++) { - dev_spec->shadow_ram[i].modified = false; - dev_spec->shadow_ram[i].value = 0xFFFF; - } - - E1000_MUTEX_INIT(&dev_spec->nvm_mutex); - E1000_MUTEX_INIT(&dev_spec->swflag_mutex); - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_ich8lan; - nvm->ops.release = e1000_release_nvm_ich8lan; - nvm->ops.read = e1000_read_nvm_ich8lan; - nvm->ops.update = e1000_update_nvm_checksum_ich8lan; - nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; - nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; - nvm->ops.write = e1000_write_nvm_ich8lan; - -out: - return (ret_val); -} - -/* - * e1000_init_mac_params_ich8lan - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific MAC parameters and function - * pointers. - */ -static s32 -e1000_init_mac_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u16 pci_cfg; - - DEBUGFUNC("e1000_init_mac_params_ich8lan"); - - /* Set media type function pointer */ - hw->phy.media_type = e1000_media_type_copper; - - /* Set mta register count */ - mac->mta_reg_count = 32; - /* Set rar entry count */ - mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; - if (mac->type == e1000_ich8lan) - mac->rar_entry_count--; - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC subsystem not supported */ - mac->arc_subsystem_valid = false; - /* Adaptive IFS supported */ - mac->adaptive_ifs = true; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; - /* function id */ - mac->ops.set_lan_id = e1000_set_lan_id_single_port; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_ich8lan; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_ich8lan; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_ich8lan; - /* physical interface setup */ - mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; - - /* LED operations */ - switch (mac->type) { - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_ich8lan; - mac->ops.led_off = e1000_led_off_ich8lan; - break; - case e1000_pch2lan: - mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; - mac->ops.rar_set = e1000_rar_set_pch2lan; - /* multicast address update for pch2 */ - mac->ops.update_mc_addr_list = - e1000_update_mc_addr_list_pch2lan; - /* FALLTHROUGH */ - case e1000_pchlan: - /* save PCH revision_id */ - e1000_read_pci_cfg(hw, 0x2, &pci_cfg); - hw->revision_id = (u8)(pci_cfg &= 0x000F); - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_pchlan; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_pchlan; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_pchlan; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_pchlan; - mac->ops.led_off = e1000_led_off_pchlan; - break; - default: - break; - } - - /* Enable PCS Lock-loss workaround for ICH8 */ - if (mac->type == e1000_ich8lan) - e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true); - - /* Gate automatic PHY configuration by hardware on managed 82579 */ - if ((mac->type == e1000_pch2lan) && - (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_eee_pchlan - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE based on setting in dev_spec structure. The bits in - * the LPI Control register will remain set only if/when link is up. - */ -static s32 -e1000_set_eee_pchlan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 phy_reg; - - DEBUGFUNC("e1000_set_eee_pchlan"); - - if (hw->phy.type != e1000_phy_82579) - goto out; - - ret_val = hw->phy.ops.read_reg(hw, I82579_LPI_CTRL, &phy_reg); - if (ret_val) - goto out; - - if (hw->dev_spec.ich8lan.eee_disable) - phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; - else - phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; - - ret_val = hw->phy.ops.write_reg(hw, I82579_LPI_CTRL, phy_reg); -out: - return (ret_val); -} - -/* - * e1000_check_for_copper_link_ich8lan - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - */ -static s32 -e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); - - /* - * We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* - * First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (hw->mac.type == e1000_pchlan) { - ret_val = e1000_k1_gig_workaround_hv(hw, link); - if (ret_val) - goto out; - } - - if (!link) - goto out; /* No link detected */ - - mac->get_link_status = false; - - if (hw->phy.type == e1000_phy_82578) { - ret_val = e1000_link_stall_workaround_hv(hw); - if (ret_val) - goto out; - } - - if (hw->mac.type == e1000_pch2lan) { - ret_val = e1000_k1_workaround_lv(hw); - if (ret_val) - goto out; - } - - /* - * Check if there was DownShift, must be checked - * immediately after link-up - */ - (void) e1000_check_downshift_generic(hw); - - /* Enable/Disable EEE after link up */ - ret_val = e1000_set_eee_pchlan(hw); - if (ret_val) - goto out; - - /* - * If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - e1000_config_collision_dist_generic(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - -out: - return (ret_val); -} - -/* - * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific function pointers for PHY, MAC, and NVM. - */ -void -e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_ich8lan"); - - hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; - hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; - switch (hw->mac.type) { - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; - break; - case e1000_pchlan: - case e1000_pch2lan: - hw->phy.ops.init_params = e1000_init_phy_params_pchlan; - break; - default: - break; - } -} - -/* - * e1000_acquire_nvm_ich8lan - Acquire NVM mutex - * @hw: pointer to the HW structure - * - * Acquires the mutex for performing NVM operations. - */ -static s32 -e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_acquire_nvm_ich8lan"); - - E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex); - - return (E1000_SUCCESS); -} - -/* - * e1000_release_nvm_ich8lan - Release NVM mutex - * @hw: pointer to the HW structure - * - * Releases the mutex used while performing NVM operations. - */ -static void -e1000_release_nvm_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_ich8lan"); - - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex); -} - -/* - * e1000_acquire_swflag_ich8lan - Acquire software control flag - * @hw: pointer to the HW structure - * - * Acquires the software control flag for performing PHY and select - * MAC CSR accesses. - */ -static s32 -e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) -{ - u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_acquire_swflag_ich8lan"); - - E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex); - - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) - break; - - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SW/FW/HW has locked the resource for too long.\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* In some cases, hardware will take up to 400ms to set the SW flag. */ - timeout = SW_FLAG_TIMEOUT; - - extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) - break; - - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Failed to acquire the semaphore.\n"); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - -out: - if (ret_val) - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); - - return (ret_val); -} - -/* - * e1000_release_swflag_ich8lan - Release software control flag - * @hw: pointer to the HW structure - * - * Releases the software control flag for performing PHY and select - * MAC CSR accesses. - */ -static void -e1000_release_swflag_ich8lan(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - - DEBUGFUNC("e1000_release_swflag_ich8lan"); - - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); -} - -/* - * e1000_check_mng_mode_ich8lan - Checks management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has manageability enabled. - * This is a function pointer entry point only called by read/write - * routines for the PHY and NVM parts. - */ -static bool -e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_mng_mode_ich8lan"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/* - * e1000_check_mng_mode_pchlan - Checks management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has iAMT enabled. - * This is a function pointer entry point only called by read/write - * routines for the PHY and NVM parts. - */ -static bool -e1000_check_mng_mode_pchlan(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_mng_mode_pchlan"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return ((fwsm & E1000_ICH_FWSM_FW_VALID) && - (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))); -} - -/* - * e1000_rar_set_pch2lan - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. For 82579, RAR[0] is the base address register that is to - * contain the MAC address but RAR[1-6] are reserved for manageability (ME). - * Use SHRA[0-3] in place of those reserved for ME. - */ -static void -e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_pch2lan"); - - /* - * HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - if (index == 0) { - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); - return; - } - - if (index < hw->mac.rar_entry_count) { - E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); - E1000_WRITE_FLUSH(hw); - - /* verify the register updates */ - if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && - (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) - return; - - DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", - (index - 1), E1000_READ_REG(hw, E1000_FWSM)); - } - - DEBUGOUT1("Failed to write receive address at index %d\n", index); -} - -/* - * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array of the PCH2 MAC and PHY. - * The caller must have a packed mc_addr_list of multicast addresses. - */ -static void -e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count) -{ - int i; - - DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); - - e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); - - for (i = 0; i < hw->mac.mta_reg_count; i++) { - hw->phy.ops.write_reg(hw, BM_MTA(i), - (u16)(hw->mac.mta_shadow[i] & 0xFFFF)); - hw->phy.ops.write_reg(hw, (BM_MTA(i) + 1), - (u16)((hw->mac.mta_shadow[i] >> 16) & - 0xFFFF)); - } -} - -/* - * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Checks if firmware is blocking the reset of the PHY. - * This is a function pointer entry point only called by - * reset routines. - */ -static s32 -e1000_check_reset_block_ich8lan(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_reset_block_ich8lan"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return ((fwsm & E1000_ICH_FWSM_RSPCIPHY) ? E1000_SUCCESS - : E1000_BLK_PHY_RESET); -} - -/* - * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states - * @hw: pointer to the HW structure - * - * Assumes semaphore already acquired. - * - */ -static s32 -e1000_write_smbus_addr(struct e1000_hw *hw) -{ - u16 phy_data; - u32 strap = E1000_READ_REG(hw, E1000_STRAP); - s32 ret_val = E1000_SUCCESS; - - strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; - - ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~HV_SMB_ADDR_MASK; - phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); - phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; - ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); - -out: - return (ret_val); -} - -/* - * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration - * @hw: pointer to the HW structure - * - * SW should configure the LCD from the NVM extended configuration region - * as a workaround for certain parts. - */ -static s32 -e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; - s32 ret_val = E1000_SUCCESS; - u16 word_addr, reg_data, reg_addr, phy_page = 0; - - DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); - - /* - * Initialize the PHY from the NVM on ICH platforms. This - * is needed due to an issue where the NVM configuration is - * not properly autoloaded after power transitions. - * Therefore, after each PHY reset, we will load the - * configuration data out of the NVM manually. - */ - switch (hw->mac.type) { - case e1000_ich8lan: - if (phy->type != e1000_phy_igp_3) - return (ret_val); - - if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || - (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { - sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; - break; - } - /* FALLTHROUGH */ - case e1000_pchlan: - case e1000_pch2lan: - sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; - break; - default: - return (ret_val); - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return (ret_val); - - data = E1000_READ_REG(hw, E1000_FEXTNVM); - if (!(data & sw_cfg_mask)) - goto out; - - /* - * Make sure HW does not configure LCD from PHY - * extended configuration before SW configuration - */ - data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (!(hw->mac.type == e1000_pch2lan)) { - if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) - goto out; - } - - cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); - cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; - cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; - if (!cnf_size) - goto out; - - cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; - cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; - - if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && - (hw->mac.type == e1000_pchlan)) || - (hw->mac.type == e1000_pch2lan)) { - /* - * HW configures the SMBus address and LEDs when the - * OEM and LCD Write Enable bits are set in the NVM. - * When both NVM bits are cleared, SW will configure - * them instead. - */ - ret_val = e1000_write_smbus_addr(hw); - if (ret_val) - goto out; - - data = E1000_READ_REG(hw, E1000_LEDCTL); - ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, - (u16)data); - if (ret_val) - goto out; - } - - /* Configure LCD from extended configuration region. */ - - /* cnf_base_addr is in DWORD */ - word_addr = (u16)(cnf_base_addr << 1); - - for (i = 0; i < cnf_size; i++) { - ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, - ®_data); - if (ret_val) - goto out; - - ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), - 1, ®_addr); - if (ret_val) - goto out; - - /* Save off the PHY page for future writes. */ - if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { - phy_page = reg_data; - continue; - } - - reg_addr &= PHY_REG_MASK; - reg_addr |= phy_page; - - ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, - reg_data); - if (ret_val) - goto out; - } - -out: - hw->phy.ops.release(hw); - return (ret_val); -} - - -/* - * e1000_k1_gig_workaround_hv - K1 Si workaround - * @hw: pointer to the HW structure - * @link: link up bool flag - * - * If K1 is enabled for 1Gbps, the MAC might stall when transitioning - * from a lower speed. This workaround disables K1 whenever link is at 1Gig - * If link is down, the function will restore the default K1 setting located - * in the NVM. - */ -static s32 -e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) -{ - s32 ret_val = E1000_SUCCESS; - u16 status_reg = 0; - bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; - - DEBUGFUNC("e1000_k1_gig_workaround_hv"); - - if (hw->mac.type != e1000_pchlan) - goto out; - - /* Wrap the whole flow with the sw flag */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ - if (link) { - if (hw->phy.type == e1000_phy_82578) { - ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, - &status_reg); - if (ret_val) - goto release; - - status_reg &= BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK; - - if (status_reg == (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - k1_enable = false; - } - - if (hw->phy.type == e1000_phy_82577) { - ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, - &status_reg); - if (ret_val) - goto release; - - status_reg &= HV_M_STATUS_LINK_UP | - HV_M_STATUS_AUTONEG_COMPLETE | - HV_M_STATUS_SPEED_MASK; - - if (status_reg == (HV_M_STATUS_LINK_UP | - HV_M_STATUS_AUTONEG_COMPLETE | - HV_M_STATUS_SPEED_1000)) - k1_enable = false; - } - - /* Link stall fix for link up */ - ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), - 0x0100); - if (ret_val) - goto release; - - } else { - /* Link stall fix for link down */ - ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), - 0x4100); - if (ret_val) - goto release; - } - - ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); - -release: - hw->phy.ops.release(hw); -out: - return (ret_val); -} - -/* - * e1000_configure_k1_ich8lan - Configure K1 power state - * @hw: pointer to the HW structure - * @enable: K1 state to configure - * - * Configure the K1 power state based on the provided parameter. - * Assumes semaphore already acquired. - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - */ -s32 -e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) -{ - s32 ret_val = E1000_SUCCESS; - u32 ctrl_reg = 0; - u32 ctrl_ext = 0; - u32 reg = 0; - u16 kmrn_reg = 0; - - ret_val = e1000_read_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_K1_CONFIG, - &kmrn_reg); - if (ret_val) - goto out; - - if (k1_enable) - kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; - else - kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; - - ret_val = e1000_write_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_K1_CONFIG, - kmrn_reg); - if (ret_val) - goto out; - - usec_delay(20); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); - - reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - reg |= E1000_CTRL_FRCSPD; - E1000_WRITE_REG(hw, E1000_CTRL, reg); - - E1000_WRITE_REG(hw, - E1000_CTRL_EXT, - ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); - usec_delay(20); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - usec_delay(20); - -out: - return (ret_val); -} - -/* - * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration - * @hw: pointer to the HW structure - * @d0_state: boolean if entering d0 or d3 device state - * - * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are - * collectively called OEM bits. The OEM Write Enable bit and SW Config bit - * in NVM determines whether HW should configure LPLU and Gbe Disable. - */ -s32 -e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) -{ - s32 ret_val = 0; - u32 mac_reg; - u16 oem_reg; - - DEBUGFUNC("e1000_oem_bits_config_ich8lan"); - - if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) - return (ret_val); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return (ret_val); - - if (!(hw->mac.type == e1000_pch2lan)) { - mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) - goto out; - } - - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); - if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) - goto out; - - mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); - - ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); - if (ret_val) - goto out; - - oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); - - if (d0_state) { - if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) - oem_reg |= HV_OEM_BITS_GBE_DIS; - - if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) - oem_reg |= HV_OEM_BITS_LPLU; - } else { - if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) - oem_reg |= HV_OEM_BITS_GBE_DIS; - - if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) - oem_reg |= HV_OEM_BITS_LPLU; - } - /* Restart auto-neg to activate the bits */ - if (!hw->phy.ops.check_reset_block(hw)) - oem_reg |= HV_OEM_BITS_RESTART_AN; - ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); - -out: - hw->phy.ops.release(hw); - - return (ret_val); -} - -/* - * e1000_hv_phy_powerdown_workaround_ich8lan - Power down workaround on Sx - * @hw: pointer to the HW structure - */ -s32 -e1000_hv_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_hv_phy_powerdown_workaround_ich8lan"); - - if ((hw->phy.type != e1000_phy_82577) || (hw->revision_id > 2)) - return (E1000_SUCCESS); - - return (hw->phy.ops.write_reg(hw, PHY_REG(768, 25), 0x0444)); -} - -/* - * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode - * @hw: pointer to the HW structure - */ -static s32 -e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) -{ - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); - - ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); - if (ret_val) - return (ret_val); - - data |= HV_KMRN_MDIO_SLOW; - - ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); - - return (ret_val); -} - -/* - * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be - * done after every PHY reset. - */ -static s32 -e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mac.type != e1000_pchlan) - goto out; - - if (((hw->phy.type == e1000_phy_82577) && - ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || - ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { - /* Disable generation of early preamble */ - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); - if (ret_val) - goto out; - - /* Preamble tuning for SSC */ - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(770, 16), 0xA204); - if (ret_val) - goto out; - } - - if (hw->phy.type == e1000_phy_82578) { - /* - * Return registers to default by doing a soft reset then - * writing 0x3140 to the control register. - */ - if (hw->phy.revision < 2) { - (void) e1000_phy_sw_reset_generic(hw); - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, - 0x3140); - } - } - - /* Select page 0 */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - hw->phy.addr = 1; - ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); - if (ret_val) - goto out; - hw->phy.ops.release(hw); - - /* - * Configure the K1 Si workaround during phy reset assuming there is - * link so that it disables K1 if link is in 1Gbps. - */ - ret_val = e1000_k1_gig_workaround_hv(hw, true); - -out: - return (ret_val); -} - -/* - * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY - * @hw: pointer to the HW structure - */ -void -e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) -{ - u32 mac_reg; - u16 i; - - DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); - - /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ - for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { - mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); - hw->phy.ops.write_reg(hw, BM_RAR_L(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg(hw, BM_RAR_M(i), - (u16)((mac_reg >> 16) & 0xFFFF)); - mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); - hw->phy.ops.write_reg(hw, BM_RAR_H(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg(hw, BM_RAR_CTRL(i), - (u16)((mac_reg >> 16) & 0x8000)); - } -} - -static u32 -e1000_calc_rx_da_crc(u8 mac[]) -{ - u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ - u32 i, j, mask, crc; - - DEBUGFUNC("e1000_calc_rx_da_crc"); - - crc = 0xffffffff; - for (i = 0; i < 6; i++) { - crc = crc ^ mac[i]; - for (j = 8; j > 0; j--) { - mask = (crc & 1) * (-1); - crc = (crc >> 1) ^ (poly & mask); - } - } - return (~crc); -} - -/* - * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation - * with 82579 PHY - * @hw: pointer to the HW structure - * @enable: flag to enable/disable workaround when enabling/disabling jumbos - */ -s32 -e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) -{ - s32 ret_val = E1000_SUCCESS; - u16 phy_reg, data; - u32 mac_reg; - u16 i; - - DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); - - if (hw->mac.type != e1000_pch2lan) - goto out; - - /* disable Rx path while enabling/disabling workaround */ - hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), - phy_reg | (1 << 14)); - if (ret_val) - goto out; - - if (enable) { - /* - * Write Rx addresses (rar_entry_count for RAL/H, +4 for - * SHRAL/H) and initial CRC values to the MAC - */ - for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { - u8 mac_addr[ETH_ADDR_LEN] = {0}; - u32 addr_high, addr_low; - - addr_high = E1000_READ_REG(hw, E1000_RAH(i)); - if (!(addr_high & E1000_RAH_AV)) - continue; - addr_low = E1000_READ_REG(hw, E1000_RAL(i)); - mac_addr[0] = (addr_low & 0xFF); - mac_addr[1] = ((addr_low >> 8) & 0xFF); - mac_addr[2] = ((addr_low >> 16) & 0xFF); - mac_addr[3] = ((addr_low >> 24) & 0xFF); - mac_addr[4] = (addr_high & 0xFF); - mac_addr[5] = ((addr_high >> 8) & 0xFF); - - E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), - e1000_calc_rx_da_crc(mac_addr)); - } - - /* Write Rx addresses to the PHY */ - e1000_copy_rx_addrs_to_phy_ich8lan(hw); - - /* Enable jumbo frame workaround in the MAC */ - mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); - mac_reg &= ~(1 << 14); - mac_reg |= (7 << 15); - E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); - - mac_reg = E1000_READ_REG(hw, E1000_RCTL); - mac_reg |= E1000_RCTL_SECRC; - E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); - - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - &data); - if (ret_val) - goto out; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - data | (1 << 0)); - if (ret_val) - goto out; - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - &data); - if (ret_val) - goto out; - data &= ~(0xF << 8); - data |= (0xB << 8); - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - data); - if (ret_val) - goto out; - - /* Enable jumbo frame workaround in the PHY */ - hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); - data &= ~(0x7F << 5); - data |= (0x37 << 5); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); - if (ret_val) - goto out; - hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); - data &= ~(1 << 13); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); - if (ret_val) - goto out; - hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); - data &= ~(0x3FF << 2); - data |= (0x1A << 2); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); - if (ret_val) - goto out; - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xFE00); - if (ret_val) - goto out; - hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); - ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, - data | (1 << 10)); - if (ret_val) - goto out; - } else { - /* Write MAC register values back to h/w defaults */ - mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); - mac_reg &= ~(0xF << 14); - E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); - - mac_reg = E1000_READ_REG(hw, E1000_RCTL); - mac_reg &= ~E1000_RCTL_SECRC; - E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); - - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - &data); - if (ret_val) - goto out; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - data & ~(1 << 0)); - if (ret_val) - goto out; - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - &data); - if (ret_val) - goto out; - data &= ~(0xF << 8); - data |= (0xB << 8); - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, data); - if (ret_val) - goto out; - - /* Write PHY register values back to h/w defaults */ - hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); - data &= ~(0x7F << 5); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); - if (ret_val) - goto out; - hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); - data |= (1 << 13); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); - if (ret_val) - goto out; - hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); - data &= ~(0x3FF << 2); - data |= (0x8 << 2); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); - if (ret_val) - goto out; - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); - if (ret_val) - goto out; - hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); - ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, - data & ~(1 << 10)); - if (ret_val) - goto out; - } - - /* re-enable Rx path after enabling/disabling workaround */ - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), - phy_reg & ~(1 << 14)); - -out: - return (ret_val); -} - -/* - * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be - * done after every PHY reset. - */ -static s32 -e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); - - if (hw->mac.type != e1000_pch2lan) - goto out; - - /* Set MDIO slow mode before any other MDIO access */ - ret_val = e1000_set_mdio_slow_mode_hv(hw); - -out: - return (ret_val); -} - -/* - * e1000_k1_gig_workaround_lv - K1 Si workaround - * @hw: pointer to the HW structure - * - * Workaround to set the K1 beacon duration for 82579 parts - */ -static s32 -e1000_k1_workaround_lv(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 status_reg = 0; - u32 mac_reg; - - DEBUGFUNC("e1000_k1_workaround_lv"); - - if (hw->mac.type != e1000_pch2lan) - goto out; - - /* Set K1 beacon duration based on 1Gbps speed or otherwise */ - ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); - if (ret_val) - goto out; - - if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) - == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); - mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; - - if (status_reg & HV_M_STATUS_SPEED_1000) - mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; - else - mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; - - E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); - } - -out: - return (ret_val); -} - -/* - * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware - * @hw: pointer to the HW structure - * @gate: boolean set to true to gate, false to ungate - * - * Gate/ungate the automatic PHY configuration via hardware; perform - * the configuration via software instead. - */ -static void -e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) -{ - u32 extcnf_ctrl; - - DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); - - if (hw->mac.type != e1000_pch2lan) - return; - - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - - if (gate) - extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; - else - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; - - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); -} - -/* - * e1000_hv_phy_tuning_workaround_ich8lan - This is a Phy tuning work around - * needed for Nahum3 + Hanksville testing, requested by HW team - */ -static s32 -e1000_hv_phy_tuning_workaround_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(770, 16), 0xA204); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x29, 0x66C0); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, (1 << 6) | 0x1E, 0xFFFF); - -out: - return (ret_val); -} - -/* - * e1000_lan_init_done_ich8lan - Check for PHY config completion - * @hw: pointer to the HW structure - * - * Check the appropriate indication the MAC has finished configuring the - * PHY after a software reset. - */ -static void -e1000_lan_init_done_ich8lan(struct e1000_hw *hw) -{ - u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; - - DEBUGFUNC("e1000_lan_init_done_ich8lan"); - - /* Wait for basic configuration completes before proceeding */ - do { - data = E1000_READ_REG(hw, E1000_STATUS); - data &= E1000_STATUS_LAN_INIT_DONE; - usec_delay(100); - } while ((!data) && --loop); - - /* - * If basic configuration is incomplete before the above loop - * count reaches 0, loading the configuration from NVM will - * leave the PHY in a bad state possibly resulting in no link. - */ - if (loop == 0) { - /* EMPTY */ - DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); - } - - /* Clear the Init Done bit for the next init event */ - data = E1000_READ_REG(hw, E1000_STATUS); - data &= ~E1000_STATUS_LAN_INIT_DONE; - E1000_WRITE_REG(hw, E1000_STATUS, data); -} - -/* - * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset - * @hw: pointer to the HW structure - */ -static s32 -e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 reg; - - DEBUGFUNC("e1000_post_phy_reset_ich8lan"); - - if (hw->phy.ops.check_reset_block(hw)) - goto out; - - /* Allow time for h/w to get to quiescent state after reset */ - msec_delay(10); - - /* Perform any necessary post-reset workarounds */ - switch (hw->mac.type) { - case e1000_pchlan: - ret_val = e1000_hv_phy_workarounds_ich8lan(hw); - if (ret_val) - goto out; - break; - case e1000_pch2lan: - ret_val = e1000_lv_phy_workarounds_ich8lan(hw); - if (ret_val) - goto out; - break; - default: - break; - } - - if (hw->device_id == E1000_DEV_ID_ICH10_HANKSVILLE) { - ret_val = e1000_hv_phy_tuning_workaround_ich8lan(hw); - if (ret_val) - goto out; - } - - /* Dummy read to clear the phy wakeup bit after lcd reset */ - if (hw->mac.type >= e1000_pchlan) - hw->phy.ops.read_reg(hw, BM_WUC, ®); - - /* Configure the LCD with the extended configuration region in NVM */ - ret_val = e1000_sw_lcd_config_ich8lan(hw); - if (ret_val) - goto out; - - /* Configure the LCD with the OEM bits in NVM */ - ret_val = e1000_oem_bits_config_ich8lan(hw, true); - - if (hw->mac.type == e1000_pch2lan) { - /* Ungate automatic PHY configuration on non-managed 82579 */ - if (!(E1000_READ_REG(hw, E1000_FWSM) & - E1000_ICH_FWSM_FW_VALID)) { - msec_delay(10); - e1000_gate_hw_phy_config_ich8lan(hw, false); - } - - /* Set EEE LPI Update Timer to 200usec */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, - I82579_LPI_UPDATE_TIMER); - if (ret_val) - goto release; - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, - 0x1387); -release: - hw->phy.ops.release(hw); - } - -out: - return (ret_val); -} - -/* - * e1000_phy_hw_reset_ich8lan - Performs a PHY reset - * @hw: pointer to the HW structure - * - * Resets the PHY - * This is a function pointer entry point called by drivers - * or other shared routines. - */ -static s32 -e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); - - /* Gate automatic PHY configuration by hardware on non-managed 82579 */ - if ((hw->mac.type == e1000_pch2lan) && - !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - - ret_val = e1000_phy_hw_reset_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_post_phy_reset_ich8lan(hw); - -out: - return (ret_val); -} - - -/* - * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info - * @hw: pointer to the HW structure - * - * Wrapper for calling the get_phy_info routines for the appropriate phy type. - */ -static s32 -e1000_get_phy_info_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_PHY_TYPE; - - DEBUGFUNC("e1000_get_phy_info_ich8lan"); - - switch (hw->phy.type) { - case e1000_phy_ife: - ret_val = e1000_get_phy_info_ife_ich8lan(hw); - break; - case e1000_phy_igp_3: - case e1000_phy_bm: - case e1000_phy_82578: - case e1000_phy_82577: - ret_val = e1000_get_phy_info_igp(hw); - break; - default: - break; - } - - return (ret_val); -} - -/* - * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states - * @hw: pointer to the HW structure - * - * Populates "phy" structure with various feature states. - * This function is only called by other family-specific - * routines. - */ -static s32 -e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_ife_ich8lan"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); - if (ret_val) - goto out; - phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) - ? false : true; - - if (phy->polarity_correction) { - ret_val = e1000_check_polarity_ife(hw); - if (ret_val) - goto out; - } else { - /* Polarity is forced */ - phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - } - - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false; - - /* The following parameters are undefined for 10/100 operation. */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - -out: - return (ret_val); -} - -/* - * e1000_set_lplu_state_pchlan - Set Low Power Link Up state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU state according to the active flag. For PCH, if OEM write - * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set - * the phy speed. This function will manually set the LPLU bit and restart - * auto-neg as hw would do. D3 and D0 LPLU will call the same function - * since it configures the same bit. - */ -static s32 -e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) -{ - s32 ret_val = E1000_SUCCESS; - u16 oem_reg; - - DEBUGFUNC("e1000_set_lplu_state_pchlan"); - - ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); - if (ret_val) - goto out; - - if (active) - oem_reg |= HV_OEM_BITS_LPLU; - else - oem_reg &= ~HV_OEM_BITS_LPLU; - - oem_reg |= HV_OEM_BITS_RESTART_AN; - ret_val = hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); - -out: - return (ret_val); -} - -/* - * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - */ -static s32 -e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 phy_ctrl; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); - - if (phy->type == e1000_phy_ife) - goto out; - - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - - if (active) { - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - goto out; - - /* - * Call gig speed drop workaround on LPLU before accessing any - * PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else { - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - goto out; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D3 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - */ -static s32 -e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 phy_ctrl; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); - - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - - if (!active) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - goto out; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - goto out; - - /* - * Call gig speed drop workaround on LPLU before accessing any - * PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - } - -out: - return (ret_val); -} - -/* - * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 - * @hw: pointer to the HW structure - * @bank: pointer to the variable that returns the active bank - * - * Reads signature byte from the NVM using the flash access registers. - * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. - */ -static s32 -e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) -{ - u32 eecd; - struct e1000_nvm_info *nvm = &hw->nvm; - u32 bank1_offset = nvm->flash_bank_size * sizeof (u16); - u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; - u8 sig_byte = 0; - s32 ret_val = E1000_SUCCESS; - - switch (hw->mac.type) { - case e1000_ich8lan: - case e1000_ich9lan: - eecd = E1000_READ_REG(hw, E1000_EECD); - if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == - E1000_EECD_SEC1VAL_VALID_MASK) { - if (eecd & E1000_EECD_SEC1VAL) - *bank = 1; - else - *bank = 0; - - goto out; - } - DEBUGOUT("Unable to determine valid NVM bank via EEC - " - "reading flash signature\n"); - /* fall-thru */ - default: - /* set bank to 0 in case flash read fails */ - *bank = 0; - - /* Check bank 0 */ - ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, - &sig_byte); - if (ret_val) - goto out; - if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == - E1000_ICH_NVM_SIG_VALUE) { - *bank = 0; - goto out; - } - - /* Check bank 1 */ - ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + - bank1_offset, &sig_byte); - if (ret_val) - goto out; - if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == - E1000_ICH_NVM_SIG_VALUE) { - *bank = 1; - goto out; - } - - DEBUGOUT("ERROR: No valid NVM bank present\n"); - ret_val = -E1000_ERR_NVM; - break; - } -out: - return (ret_val); -} - -/* - * e1000_read_nvm_ich8lan - Read word(s) from the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the word(s) to read. - * @words: Size of data to read in words - * @data: Pointer to the word(s) to read at offset. - * - * Reads a word(s) from the NVM using the flash access registers. - */ -static s32 -e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 act_offset; - s32 ret_val = E1000_SUCCESS; - u32 bank = 0; - u16 i, word; - - DEBUGFUNC("e1000_read_nvm_ich8lan"); - - if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - nvm->ops.acquire(hw); - - ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); - bank = 0; - } - - act_offset = (bank) ? nvm->flash_bank_size : 0; - act_offset += offset; - - ret_val = E1000_SUCCESS; - for (i = 0; i < words; i++) { - if ((dev_spec->shadow_ram) && - (dev_spec->shadow_ram[offset + i].modified)) { - data[i] = dev_spec->shadow_ram[offset + i].value; - } else { - ret_val = e1000_read_flash_word_ich8lan(hw, - act_offset + i, - &word); - if (ret_val) - break; - data[i] = word; - } - } - - nvm->ops.release(hw); - -out: - if (ret_val) { - /* EMPTY */ - DEBUGOUT1("NVM read error: %d\n", ret_val); - } - - return (ret_val); -} - -/* - * e1000_flash_cycle_init_ich8lan - Initialize flash - * @hw: pointer to the HW structure - * - * This function does initial flash setup so that a new read/write/erase cycle - * can be started. - */ -static s32 -e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) -{ - union ich8_hws_flash_status hsfsts; - s32 ret_val = -E1000_ERR_NVM; - s32 i = 0; - - DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); - - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* Check if the flash descriptor is valid */ - if (hsfsts.hsf_status.fldesvalid == 0) { - DEBUGOUT("Flash descriptor invalid. " - "SW Sequencing must be used."); - goto out; - } - - /* Clear FCERR and DAEL in hw status by writing 1 */ - hsfsts.hsf_status.flcerr = 1; - hsfsts.hsf_status.dael = 1; - - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - - /* - * Either we should have a hardware SPI cycle in progress bit to check - * against, in order to start a new cycle or FDONE bit should be - * changed in the hardware so that it is 1 after hardware reset, which - * can then be used as an indication whether a cycle is in progress or - * has been completed. - */ - - if (hsfsts.hsf_status.flcinprog == 0) { - /* - * There is no cycle running at present, so we can start a - * cycle. Begin by setting Flash Cycle Done. - */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - ret_val = E1000_SUCCESS; - } else { - /* - * Otherwise poll for sometime so the current cycle has a - * chance to end before giving up. - */ - for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { - hsfsts.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcinprog == 0) { - ret_val = E1000_SUCCESS; - break; - } - usec_delay(1); - } - if (ret_val == E1000_SUCCESS) { - /* - * Successful in waiting for previous cycle to - * timeout, now set the Flash Cycle Done. - */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_FLASH_REG16(hw, - ICH_FLASH_HSFSTS, - hsfsts.regval); - } else { - /* EMPTY */ - DEBUGOUT("Flash controller busy, cannot get access"); - } - } - -out: - return (ret_val); -} - -/* - * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) - * @hw: pointer to the HW structure - * @timeout: maximum time to wait for completion - * - * This function starts a flash cycle and waits for its completion. - */ -static s32 -e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) -{ - union ich8_hws_flash_ctrl hsflctl; - union ich8_hws_flash_status hsfsts; - s32 ret_val = -E1000_ERR_NVM; - u32 i = 0; - - DEBUGFUNC("e1000_flash_cycle_ich8lan"); - - /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ - hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcgo = 1; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* wait till FDONE bit is set to 1 */ - do { - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcdone == 1) - break; - usec_delay(1); - } while (i++ < timeout); - - if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) - ret_val = E1000_SUCCESS; - - return (ret_val); -} - -/* - * e1000_read_flash_word_ich8lan - Read word from flash - * @hw: pointer to the HW structure - * @offset: offset to data location - * @data: pointer to the location for storing the data - * - * Reads the flash word at offset into data. Offset is converted - * to bytes before read. - */ -static s32 -e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_flash_word_ich8lan"); - - if (!data) { - ret_val = -E1000_ERR_NVM; - goto out; - } - - /* Must convert offset into bytes. */ - offset <<= 1; - - ret_val = e1000_read_flash_data_ich8lan(hw, offset, 2, data); - -out: - return (ret_val); -} - -/* - * e1000_read_flash_byte_ich8lan - Read byte from flash - * @hw: pointer to the HW structure - * @offset: The offset of the byte to read. - * @data: Pointer to a byte to store the value read. - * - * Reads a single byte from the NVM using the flash access registers. - */ -static s32 -e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 *data) -{ - s32 ret_val = E1000_SUCCESS; - u16 word = 0; - - ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); - if (ret_val) - goto out; - - *data = (u8)word; - -out: - return (ret_val); -} - -/* - * e1000_read_flash_data_ich8lan - Read byte or word from NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the byte or word to read. - * @size: Size of data to read, 1=byte 2=word - * @data: Pointer to the word to store the value read. - * - * Reads a byte or word from the NVM using the flash access registers. - */ -static s32 -e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 *data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - u32 flash_data = 0; - s32 ret_val = -E1000_ERR_NVM; - u8 count = 0; - - DEBUGFUNC("e1000_read_flash_data_ich8lan"); - - if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) - goto out; - - flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + - hw->nvm.flash_base_addr; - - do { - usec_delay(1); - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); - - ret_val = e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_READ_COMMAND_TIMEOUT); - - /* - * Check if FCERR is set to 1, if set to 1, clear it and try - * the whole sequence a few more times, else read in (shift - * in) the Flash Data0, the order is least significant byte - * first msb to lsb - */ - if (ret_val == E1000_SUCCESS) { - flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); - if (size == 1) - *data = (u8)(flash_data & 0x000000FF); - else if (size == 2) - *data = (u16)(flash_data & 0x0000FFFF); - break; - } else { - /* - * If we've gotten here, then things are probably - * completely hosed, but if the error condition is - * detected, it won't hurt to give it another try... - * ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle " - "did not complete."); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - -out: - return (ret_val); -} - -/* - * e1000_write_nvm_ich8lan - Write word(s) to the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the word(s) to write. - * @words: Size of data to write in words - * @data: Pointer to the word(s) to write at offset. - * - * Writes a byte or word to the NVM using the flash access registers. - */ -static s32 -e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - s32 ret_val = E1000_SUCCESS; - u16 i; - - DEBUGFUNC("e1000_write_nvm_ich8lan"); - - if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - nvm->ops.acquire(hw); - - for (i = 0; i < words; i++) { - dev_spec->shadow_ram[offset + i].modified = true; - dev_spec->shadow_ram[offset + i].value = data[i]; - } - - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM - * @hw: pointer to the HW structure - * - * The NVM checksum is updated by calling the generic update_nvm_checksum, - * which writes the checksum to the shadow ram. The changes in the shadow - * ram are then committed to the EEPROM by processing each bank at a time - * checking for the modified bit and writing only the pending changes. - * After a successful commit, the shadow ram is cleared and is ready for - * future writes. - */ -static s32 -e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 i, act_offset, new_bank_offset, old_bank_offset, bank; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); - - ret_val = e1000_update_nvm_checksum_generic(hw); - if (ret_val) - goto out; - - if (nvm->type != e1000_nvm_flash_sw) - goto out; - - nvm->ops.acquire(hw); - - /* - * We're writing to the opposite bank so if we're on bank 1, write to - * bank 0 etc. We also need to erase the segment that is going to be - * written - */ - ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); - bank = 0; - } - - if (bank == 0) { - new_bank_offset = nvm->flash_bank_size; - old_bank_offset = 0; - ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); - if (ret_val) { - nvm->ops.release(hw); - goto out; - } - } else { - old_bank_offset = nvm->flash_bank_size; - new_bank_offset = 0; - ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); - if (ret_val) { - nvm->ops.release(hw); - goto out; - } - } - - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - /* - * Determine whether to write the value stored in the other - * NVM bank or a modified value stored in the shadow RAM - */ - if (dev_spec->shadow_ram[i].modified) { - data = dev_spec->shadow_ram[i].value; - } else { - ret_val = e1000_read_flash_word_ich8lan(hw, - i + old_bank_offset, - &data); - if (ret_val) - break; - } - - /* - * If the word is 0x13, then make sure the signature bits - * (15:14) are 11b until the commit has completed. This will - * allow us to write 10b which indicates the signature is - * valid. We want to do this after the write has completed so - * that we don't mark the segment valid while the write is - * still in progress - */ - if (i == E1000_ICH_NVM_SIG_WORD) - data |= E1000_ICH_NVM_SIG_MASK; - - /* Convert offset to bytes. */ - act_offset = (i + new_bank_offset) << 1; - - usec_delay(100); - /* Write the bytes to the new bank. */ - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset, - (u8)data); - if (ret_val) - break; - - usec_delay(100); - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset + 1, - (u8)(data >> 8)); - if (ret_val) - break; - } - - /* - * Don't bother writing the segment valid bits if sector programming - * failed. - */ - if (ret_val) { - DEBUGOUT("Flash commit failed.\n"); - nvm->ops.release(hw); - goto out; - } - - /* - * Finally validate the new segment by setting bit 15:14 to 10b in - * word 0x13 , this can be done without an erase as well since these - * bits are 11 to start with and we need to change bit 14 to 0b - */ - act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; - ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); - if (ret_val) { - nvm->ops.release(hw); - goto out; - } - - data &= 0xBFFF; - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset * 2 + 1, - (u8)(data >> 8)); - if (ret_val) { - nvm->ops.release(hw); - goto out; - } - - /* - * And invalidate the previously valid segment by setting its - * signature word (0x13) high_byte to 0b. This can be done without an - * erase because flash erase sets all bits to 1's. We can write 1's to - * 0's without an erase - */ - act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); - if (ret_val) { - nvm->ops.release(hw); - goto out; - } - - /* Great! Everything worked, we can now clear the cached entries. */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - dev_spec->shadow_ram[i].modified = false; - dev_spec->shadow_ram[i].value = 0xFFFF; - } - - nvm->ops.release(hw); - - /* - * Reload the EEPROM, or else modifications will not appear until - * after the next adapter reset. - */ - nvm->ops.reload(hw); - msec_delay(10); - -out: - if (ret_val) { - /* EMPTY */ - DEBUGOUT1("NVM update error: %d\n", ret_val); - } - - return (ret_val); -} - -/* - * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. - * If the bit is 0, that the EEPROM had been modified, but the checksum was not - * calculated, in which case we need to calculate the checksum and set bit 6. - */ -static s32 -e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); - - /* - * Read 0x19 and check bit 6. If this bit is 0, the checksum needs to - * be fixed. This bit is an indication that the NVM was prepared by - * OEM software and did not calculate the checksum...a likely - * scenario. - */ - ret_val = hw->nvm.ops.read(hw, 0x19, 1, &data); - if (ret_val) - goto out; - - if ((data & 0x40) == 0) { - data |= 0x40; - ret_val = hw->nvm.ops.write(hw, 0x19, 1, &data); - if (ret_val) - goto out; - ret_val = hw->nvm.ops.update(hw); - if (ret_val) - goto out; - } - - ret_val = e1000_validate_nvm_checksum_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_flash_data_ich8lan - Writes bytes to the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the byte/word to read. - * @size: Size of data to read, 1=byte 2=word - * @data: The byte(s) to write to the NVM. - * - * Writes one/two bytes to the NVM using the flash access registers. - */ -static s32 -e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - u32 flash_data = 0; - s32 ret_val = -E1000_ERR_NVM; - u8 count = 0; - - DEBUGFUNC("e1000_write_ich8_data"); - - if (size < 1 || size > 2 || data > size * 0xff || - offset > ICH_FLASH_LINEAR_ADDR_MASK) - goto out; - - flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + - hw->nvm.flash_base_addr; - - do { - usec_delay(1); - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val != E1000_SUCCESS) - break; - - hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); - - if (size == 1) - flash_data = (u32)data & 0x00FF; - else - flash_data = (u32)data; - - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); - - /* - * check if FCERR is set to 1 , if set to 1, clear it and try - * the whole sequence a few more times else done - */ - ret_val = e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_WRITE_COMMAND_TIMEOUT); - if (ret_val == E1000_SUCCESS) - break; - - /* - * If we're here, then things are most likely - * completely hosed, but if the error condition is - * detected, it won't hurt to give it another - * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) { - /* Repeat for some time before giving up. */ - continue; - } else if (hsfsts.hsf_status.flcdone == 0) { - DEBUGOUT("Timeout error - flash cycle " - "did not complete."); - break; - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - -out: - return (ret_val); -} - -/* - * e1000_write_flash_byte_ich8lan - Write a single byte to NVM - * @hw: pointer to the HW structure - * @offset: The index of the byte to read. - * @data: The byte to write to the NVM. - * - * Writes a single byte to the NVM using the flash access registers. - */ -static s32 -e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 data) -{ - u16 word = (u16)data; - - DEBUGFUNC("e1000_write_flash_byte_ich8lan"); - - return (e1000_write_flash_data_ich8lan(hw, offset, 1, word)); -} - -/* - * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM - * @hw: pointer to the HW structure - * @offset: The offset of the byte to write. - * @byte: The byte to write to the NVM. - * - * Writes a single byte to the NVM using the flash access registers. - * Goes through a retry algorithm before giving up. - */ -static s32 -e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, u8 byte) -{ - s32 ret_val; - u16 program_retries; - - DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); - - ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); - if (ret_val == E1000_SUCCESS) - goto out; - - for (program_retries = 0; program_retries < 100; program_retries++) { - DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); - usec_delay(100); - ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); - if (ret_val == E1000_SUCCESS) - break; - } - if (program_retries == 100) { - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM - * @hw: pointer to the HW structure - * @bank: 0 for first bank, 1 for second bank, etc. - * - * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. - * bank N is 4096 * N + flash_reg_addr. - */ -static s32 -e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - - /* bank size is in 16bit words - adjust to bytes */ - u32 flash_bank_size = nvm->flash_bank_size * 2; - s32 ret_val = E1000_SUCCESS; - s32 count = 0; - s32 j, iteration, sector_size; - - DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); - - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* - * Determine HW Sector size: Read BERASE bits of hw flash status - * register - * 00: The Hw sector is 256 bytes, hence we need to erase 16 - * consecutive sectors. The start index for the nth Hw sector - * can be calculated as = bank * 4096 + n * 256 - * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. - * The start index for the nth Hw sector can be calculated - * as = bank * 4096 - * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 - * (ich9 only, otherwise error condition) - * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 - */ - switch (hsfsts.hsf_status.berasesz) { - case 0: - /* Hw sector size 256 */ - sector_size = ICH_FLASH_SEG_SIZE_256; - iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; - break; - case 1: - sector_size = ICH_FLASH_SEG_SIZE_4K; - iteration = 1; - break; - case 2: - sector_size = ICH_FLASH_SEG_SIZE_8K; - iteration = 1; - break; - case 3: - sector_size = ICH_FLASH_SEG_SIZE_64K; - iteration = 1; - break; - default: - ret_val = -E1000_ERR_NVM; - goto out; - } - - /* Start with the base address, then add the sector offset. */ - flash_linear_addr = hw->nvm.flash_base_addr; - flash_linear_addr += (bank) ? flash_bank_size : 0; - - for (j = 0; j < iteration; j++) { - do { - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val) - goto out; - - /* - * Write a value 11 (block Erase) in Flash Cycle field - * in hw flash control - */ - hsflctl.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; - E1000_WRITE_FLASH_REG16(hw, - ICH_FLASH_HSFCTL, - hsflctl.regval); - - /* - * Write the last 24 bits of an index within the block - * into Flash Linear address field in Flash Address. - */ - flash_linear_addr += (j * sector_size); - E1000_WRITE_FLASH_REG(hw, - ICH_FLASH_FADDR, - flash_linear_addr); - - ret_val = e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_ERASE_COMMAND_TIMEOUT); - if (ret_val == E1000_SUCCESS) - break; - - /* - * Check if FCERR is set to 1. If 1, - * clear it and try the whole sequence - * a few more times else Done - */ - hsfsts.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr == 1) - /* repeat for some time before giving up */ - continue; - else if (hsfsts.hsf_status.flcdone == 0) - goto out; - } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); - } - -out: - return (ret_val); -} - -/* - * e1000_valid_led_default_ich8lan - Set the default LED settings - * @hw: pointer to the HW structure - * @data: Pointer to the LED settings - * - * Reads the LED default settings from the NVM to data. If the NVM LED - * settings is all 0's or F's, set the LED default to a valid LED default - * setting. - */ -static s32 -e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_ich8lan"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || - *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT_ICH8LAN; - -out: - return (ret_val); -} - -/* - * e1000_id_led_init_pchlan - store LED configurations - * @hw: pointer to the HW structure - * - * PCH does not control LEDs via the LEDCTL register, rather it uses - * the PHY LED configuration register. - * - * PCH also does not have an "always on" or "always off" mode which - * complicates the ID feature. Instead of using the "on" mode to indicate - * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), - * use "link_up" mode. The LEDs will still ID on request if there is no - * link based on logic in e1000_led_[on|off]_pchlan(). - */ -static s32 -e1000_id_led_init_pchlan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; - const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; - u16 data, i, temp, shift; - - DEBUGFUNC("e1000_id_led_init_pchlan"); - - /* Get default ID LED modes */ - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - goto out; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; - shift = (i * 5); - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode1 |= (ledctl_on << shift); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode1 |= (ledctl_off << shift); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode2 |= (ledctl_on << shift); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode2 |= (ledctl_off << shift); - break; - default: - /* Do nothing */ - break; - } - } - -out: - return (ret_val); -} - -/* - * e1000_get_bus_info_ich8lan - Get/Set the bus type and width - * @hw: pointer to the HW structure - * - * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability - * register, so the the bus width is hard coded. - */ -static s32 -e1000_get_bus_info_ich8lan(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - - DEBUGFUNC("e1000_get_bus_info_ich8lan"); - - ret_val = e1000_get_bus_info_pcie_generic(hw); - - /* - * ICH devices are "PCI Express"-ish. They have a configuration - * space, but do not contain PCI Express Capability registers, so bus - * width must be hardcoded. - */ - if (bus->width == e1000_bus_width_unknown) - bus->width = e1000_bus_width_pcie_x1; - - return (ret_val); -} - -/* - * e1000_reset_hw_ich8lan - Reset the hardware - * @hw: pointer to the HW structure - * - * Does a full reset of the hardware which includes a reset of the PHY and - * MAC. - */ -static s32 -e1000_reset_hw_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u16 reg; - u32 ctrl, kab; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw_ich8lan"); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - /* - * Disable the Transmit and Receive units. Then delay to allow any - * pending transactions to complete before we hit the MAC with the - * global reset. - */ - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* Workaround for ICH8 bit corruption issue in FIFO memory */ - if (hw->mac.type == e1000_ich8lan) { - /* Set Tx and Rx buffer allocation to 8k apiece. */ - E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); - /* Set Packet Buffer Size to 16k. */ - E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); - } - - if (hw->mac.type == e1000_pchlan) { - /* Save the NVM K1 bit setting */ - ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); - if (ret_val) - return (ret_val); - - if (reg & E1000_NVM_K1_ENABLE) - dev_spec->nvm_k1_enabled = true; - else - dev_spec->nvm_k1_enabled = false; - } - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - if (!hw->phy.ops.check_reset_block(hw)) { - /* - * Full-chip reset requires MAC and PHY reset at the same - * time to make sure the interface between MAC and the - * external PHY is reset. - */ - ctrl |= E1000_CTRL_PHY_RST; - - /* - * Gate automatic PHY configuration by hardware on - * non-managed 82579 - */ - if ((hw->mac.type == e1000_pch2lan) && - !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - } - ret_val = e1000_acquire_swflag_ich8lan(hw); - DEBUGOUT("Issuing a global reset to ich8lan\n"); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); - msec_delay(20); - - if (!ret_val) - e1000_release_swflag_ich8lan(hw); - - if (ctrl & E1000_CTRL_PHY_RST) { - ret_val = hw->phy.ops.get_cfg_done(hw); - if (ret_val) - goto out; - - ret_val = e1000_post_phy_reset_ich8lan(hw); - if (ret_val) - goto out; - } - - /* - * For PCH, this write will make sure that any noise - * will be detected as a CRC error and be dropped rather than show up - * as a bad packet to the DMA engine. - */ - if (hw->mac.type == e1000_pchlan) - E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); - - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); - - kab = E1000_READ_REG(hw, E1000_KABGTXD); - kab |= E1000_KABGTXD_BGSQLBIAS; - E1000_WRITE_REG(hw, E1000_KABGTXD, kab); - -out: - return (ret_val); -} - - -/* - * e1000_init_hw_ich8lan - Initialize the hardware - * @hw: pointer to the HW structure - * - * Prepares the hardware for transmit and receive by doing the following: - * - initialize hardware bits - * - initialize LED identification - * - setup receive address registers - * - setup flow control - * - setup transmit descriptors - * - clear statistics - */ -static s32 -e1000_init_hw_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl_ext, txdctl, snoop; - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_init_hw_ich8lan"); - - e1000_initialize_hw_bits_ich8lan(hw); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - /* EMPTY */ - /* This is not fatal and we should not stop init due to this */ - DEBUGOUT("Error initializing identification LED\n"); - } - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* - * The 82578 Rx buffer will stall if wakeup is enabled in host and - * the ME. Reading the BM_WUC register will clear the host wakeup bit. - * Reset the phy after disabling host wakeup to reset the Rx buffer. - */ - if (hw->phy.type == e1000_phy_82578) { - hw->phy.ops.read_reg(hw, BM_WUC, &i); - ret_val = e1000_phy_hw_reset_ich8lan(hw); - if (ret_val) - return (ret_val); - } - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* Set the transmit descriptor write-back policy for both queues */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); - txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | - E1000_TXDCTL_MAX_TX_DESC_PREFETCH; - E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); - txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | - E1000_TXDCTL_MAX_TX_DESC_PREFETCH; - E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); - - /* - * ICH8 has opposite polarity of no_snoop bits. By default, we should - * use snoop behavior. - */ - if (mac->type == e1000_ich8lan) - snoop = PCIE_ICH8_SNOOP_ALL; - else - snoop = (u32)~(PCIE_NO_SNOOP_ALL); - e1000_set_pcie_no_snoop_generic(hw, snoop); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_ich8lan(hw); - - return (ret_val); -} - -/* - * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits - * @hw: pointer to the HW structure - * - * Sets/Clears required hardware bits necessary for correctly setting up the - * hardware for transmit and receive. - */ -static void -e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); - - /* Extended Device Control */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg |= (1 << 22); - /* Enable PHY low-power state when MAC is at D3 w/o WoL */ - if (hw->mac.type >= e1000_pchlan) - reg |= E1000_CTRL_EXT_PHYPDEN; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* Transmit Descriptor Control 0 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = E1000_READ_REG(hw, E1000_TARC(0)); - if (hw->mac.type == e1000_ich8lan) - reg |= (1 << 28) | (1 << 29); - reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); - E1000_WRITE_REG(hw, E1000_TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = E1000_READ_REG(hw, E1000_TARC(1)); - if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - reg |= (1 << 24) | (1 << 26) | (1 << 30); - E1000_WRITE_REG(hw, E1000_TARC(1), reg); - - /* Device Status */ - if (hw->mac.type == e1000_ich8lan) { - reg = E1000_READ_REG(hw, E1000_STATUS); - reg &= ~((u32)1 << 31); - E1000_WRITE_REG(hw, E1000_STATUS, reg); - } -} - -/* - * e1000_setup_link_ich8lan - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - */ -static s32 -e1000_setup_link_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_link_ich8lan"); - - if (hw->phy.ops.check_reset_block(hw)) - goto out; - - /* - * ICH parts do not have a word in the NVM to determine the default - * flow control setting, so we explicitly set it to full. - */ - if (hw->fc.requested_mode == e1000_fc_default) - hw->fc.requested_mode = e1000_fc_full; - - /* - * Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Continue to configure the copper link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - goto out; - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - if ((hw->phy.type == e1000_phy_82578) || - (hw->phy.type == e1000_phy_82579) || - (hw->phy.type == e1000_phy_82577)) { - /* added from freebsd */ - E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); - - ret_val = hw->phy.ops.write_reg(hw, - PHY_REG(BM_PORT_CTRL_PAGE, 27), - hw->fc.pause_time); - if (ret_val) - goto out; - } - - ret_val = e1000_set_fc_watermarks_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface - * @hw: pointer to the HW structure - * - * Configures the kumeran interface to the PHY to wait the appropriate time - * when polling the PHY, then call the generic setup_copper_link to finish - * configuring the copper link. - */ -static s32 -e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 reg_data; - - DEBUGFUNC("e1000_setup_copper_link_ich8lan"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* - * Set the mac to wait the maximum time between each iteration and - * increase the max iterations when polling the phy; this fixes - * erroneous timeouts at 10Mbps. - */ - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); - if (ret_val) - goto out; - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_INBAND_PARAM, ®_data); - if (ret_val) - goto out; - reg_data |= 0x3F; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_INBAND_PARAM, reg_data); - if (ret_val) - goto out; - - switch (hw->phy.type) { - case e1000_phy_igp_3: - ret_val = e1000_copper_link_setup_igp(hw); - if (ret_val) - goto out; - break; - case e1000_phy_bm: - case e1000_phy_82578: - ret_val = e1000_copper_link_setup_m88(hw); - if (ret_val) - goto out; - break; - case e1000_phy_82577: - ret_val = e1000_copper_link_setup_82577(hw); - if (ret_val) - goto out; - break; - case e1000_phy_ife: - ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, - ®_data); - if (ret_val) - goto out; - - reg_data &= ~IFE_PMC_AUTO_MDIX; - - switch (hw->phy.mdix) { - case 1: - reg_data &= ~IFE_PMC_FORCE_MDIX; - break; - case 2: - reg_data |= IFE_PMC_FORCE_MDIX; - break; - case 0: - default: - reg_data |= IFE_PMC_AUTO_MDIX; - break; - } - ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, - reg_data); - if (ret_val) - goto out; - break; - default: - break; - } - ret_val = e1000_setup_copper_link_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_get_link_up_info_ich8lan - Get current link speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to store current link speed - * @duplex: pointer to store the current link duplex - * - * Calls the generic get_speed_and_duplex to retrieve the current link - * information and then calls the Kumeran lock loss workaround for links at - * gigabit speeds. - */ -static s32 -e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_link_up_info_ich8lan"); - - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); - if (ret_val) - goto out; - - if ((hw->mac.type == e1000_ich8lan) && - (hw->phy.type == e1000_phy_igp_3) && - (*speed == SPEED_1000)) { - ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); - } - -out: - return (ret_val); -} - -/* - * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround - * @hw: pointer to the HW structure - * - * Work-around for 82566 Kumeran PCS lock loss: - * On link status change (i.e. PCI reset, speed change) and link is up and - * speed is gigabit- - * 0) if workaround is optionally disabled do nothing - * 1) wait 1ms for Kumeran link to come up - * 2) check Kumeran Diagnostic register PCS lock loss bit - * 3) if not set the link is locked (all is good), otherwise... - * 4) reset the PHY - * 5) repeat up to 10 times - * Note: this is only called for IGP3 copper when speed is 1gb. - */ -static s32 -e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 phy_ctrl; - s32 ret_val = E1000_SUCCESS; - u16 i, data; - bool link; - - DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); - - if (!(dev_spec->kmrn_lock_loss_workaround_enabled)) - goto out; - - /* - * Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouled up link stability - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (!link) { - ret_val = E1000_SUCCESS; - goto out; - } - - for (i = 0; i < 10; i++) { - /* read once to clear */ - ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); - if (ret_val) - goto out; - /* and again to get new status */ - ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); - if (ret_val) - goto out; - - /* check for PCS lock */ - if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* Issue PHY reset */ - hw->phy.ops.reset(hw); - msec_delay_irq(5); - } - /* Disable GigE link negotiation */ - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - /* - * Call gig speed drop workaround on Gig disable before accessing any - * PHY registers - */ - e1000_gig_downshift_workaround_ich8lan(hw); - - /* unable to acquire PCS lock */ - ret_val = -E1000_ERR_PHY; - -out: - return (ret_val); -} - -/* - * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state - * @hw: pointer to the HW structure - * @state: boolean value used to set the current Kumeran workaround state - * - * If ICH8, set the current Kumeran workaround state (enabled - true - * /disabled - false). - */ -void -e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, - bool state) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - - DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); - - if (hw->mac.type != e1000_ich8lan) { - DEBUGOUT("Workaround applies to ICH8 only.\n"); - return; - } - - dev_spec->kmrn_lock_loss_workaround_enabled = state; -} - -/* - * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 - * @hw: pointer to the HW structure - * - * Workaround for 82566 power-down on D3 entry: - * 1) disable gigabit link - * 2) write VR power-down enable - * 3) read it back - * Continue if successful, else issue LCD reset and repeat - */ -void -e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) -{ - u32 reg; - u16 data; - u8 retry = 0; - - DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); - - if (hw->phy.type != e1000_phy_igp_3) - return; - - /* Try the workaround twice (if needed) */ - do { - /* Disable link */ - reg = E1000_READ_REG(hw, E1000_PHY_CTRL); - reg |= (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); - - /* - * Call gig speed drop workaround on Gig disable before - * accessing any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - /* Write VR power-down enable */ - hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); - data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; - hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, - data | IGP3_VR_CTRL_MODE_SHUTDOWN); - - /* Read it back and test */ - hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); - data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; - if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) - break; - - /* Issue PHY reset and repeat at most one more time */ - reg = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); - retry++; - } while (retry); -} - -/* - * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working - * @hw: pointer to the HW structure - * - * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), - * LPLU, Gig disable, MDIC PHY reset): - * 1) Set Kumeran Near-end loopback - * 2) Clear Kumeran Near-end loopback - * Should only be called for ICH8[m] devices with IGP_3 Phy. - */ -void -e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 reg_data; - - DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); - - if ((hw->mac.type != e1000_ich8lan) || - (hw->phy.type != e1000_phy_igp_3)) - return; - - ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, - ®_data); - if (ret_val) - return; - reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_DIAG_OFFSET, - reg_data); - if (ret_val) - return; - reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_DIAG_OFFSET, - reg_data); -} - -/* - * e1000_disable_gig_wol_ich8lan - disable gig during WoL - * @hw: pointer to the HW structure - * - * During S0 to Sx transition, it is possible the link remains at gig - * instead of negotiating to a lower speed. Before going to Sx, set - * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation - * to a lower speed. - * - * Should only be called for applicable parts. - */ -void -e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw) -{ - u32 phy_ctrl; - - switch (hw->mac.type) { - case e1000_ich9lan: - case e1000_ich10lan: - case e1000_pchlan: - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | - E1000_PHY_CTRL_GBE_DISABLE; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (hw->mac.type == e1000_pchlan) - (void) e1000_phy_hw_reset_ich8lan(hw); - default: - break; - } -} - -/* - * e1000_cleanup_led_ich8lan - Restore the default LED operation - * @hw: pointer to the HW structure - * - * Return the LED back to the default configuration. - */ -static s32 -e1000_cleanup_led_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_cleanup_led_ich8lan"); - - if (hw->phy.type == e1000_phy_ife) - ret_val = hw->phy.ops.write_reg(hw, - IFE_PHY_SPECIAL_CONTROL_LED, - 0); - else - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - - return (ret_val); -} - -/* - * e1000_led_on_ich8lan - Turn LEDs on - * @hw: pointer to the HW structure - * - * Turn on the LEDs. - */ -static s32 -e1000_led_on_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_led_on_ich8lan"); - - if (hw->phy.type == e1000_phy_ife) - ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); - else - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - - return (ret_val); -} - -/* - * e1000_led_off_ich8lan - Turn LEDs off - * @hw: pointer to the HW structure - * - * Turn off the LEDs. - */ -static s32 -e1000_led_off_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_led_off_ich8lan"); - - if (hw->phy.type == e1000_phy_ife) - ret_val = hw->phy.ops.write_reg(hw, - IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); - else - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - - return (ret_val); -} - -/* - * e1000_setup_led_pchlan - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use. - */ -static s32 -e1000_setup_led_pchlan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_setup_led_pchlan"); - - return (hw->phy.ops.write_reg(hw, HV_LED_CONFIG, - (u16)hw->mac.ledctl_mode1)); -} - -/* - * e1000_cleanup_led_pchlan - Restore the default LED operation - * @hw: pointer to the HW structure - * - * Return the LED back to the default configuration. - */ -static s32 -e1000_cleanup_led_pchlan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_cleanup_led_pchlan"); - - return (hw->phy.ops.write_reg(hw, HV_LED_CONFIG, - (u16)hw->mac.ledctl_default)); -} - -/* - * e1000_led_on_pchlan - Turn LEDs on - * @hw: pointer to the HW structure - * - * Turn on the LEDs. - */ -static s32 -e1000_led_on_pchlan(struct e1000_hw *hw) -{ - u16 data = (u16)hw->mac.ledctl_mode2; - u32 i, led; - - DEBUGFUNC("e1000_led_on_pchlan"); - - /* - * If no link, then turn LED on by setting the invert bit - * for each LED that's mode is "link_up" in ledctl_mode2. - */ - if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { - for (i = 0; i < 3; i++) { - led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; - if ((led & E1000_PHY_LED0_MODE_MASK) != - E1000_LEDCTL_MODE_LINK_UP) - continue; - if (led & E1000_PHY_LED0_IVRT) - data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); - else - data |= (E1000_PHY_LED0_IVRT << (i * 5)); - } - } - - return (hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data)); -} - -/* - * e1000_led_off_pchlan - Turn LEDs off - * @hw: pointer to the HW structure - * - * Turn off the LEDs. - */ -static s32 -e1000_led_off_pchlan(struct e1000_hw *hw) -{ - u16 data = (u16)hw->mac.ledctl_mode1; - u32 i, led; - - DEBUGFUNC("e1000_led_off_pchlan"); - - /* - * If no link, then turn LED off by clearing the invert bit - * for each LED that's mode is "link_up" in ledctl_mode1. - */ - if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { - for (i = 0; i < 3; i++) { - led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; - if ((led & E1000_PHY_LED0_MODE_MASK) != - E1000_LEDCTL_MODE_LINK_UP) - continue; - if (led & E1000_PHY_LED0_IVRT) - data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); - else - data |= (E1000_PHY_LED0_IVRT << (i * 5)); - } - } - - return (hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data)); -} - -/* - * e1000_get_cfg_done_ich8lan - Read config done bit - * @hw: pointer to the HW structure - * - * Read the management control register for the config done bit for - * completion status. NOTE: silicon which is EEPROM-less will fail trying - * to read the config done bit, so an error is *ONLY* logged and returns - * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon - * would not be able to be reset or change link. - */ -static s32 -e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 bank = 0; - u32 status; - - DEBUGFUNC("e1000_get_cfg_done_ich8lan"); - - (void) e1000_get_cfg_done_generic(hw); - - /* Wait for indication from h/w that it has completed basic config */ - if (hw->mac.type >= e1000_ich10lan) { - e1000_lan_init_done_ich8lan(hw); - } else { - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - ret_val = E1000_SUCCESS; - } - } - - /* Clear PHY Reset Asserted bit */ - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_PHYRA) { - E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); - } else { - DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); - } - - /* If EEPROM is not marked present, init the IGP 3 PHY manually */ - if (hw->mac.type <= e1000_ich9lan) { - if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) && - (hw->phy.type == e1000_phy_igp_3)) { - ret_val = e1000_phy_init_script_igp3(hw); - } - } else { - if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { - /* Maybe we should do a basic PHY config */ - DEBUGOUT("EEPROM not present\n"); - ret_val = -E1000_ERR_CONFIG; - } - } - - return (ret_val); -} - -/* - * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - */ -static void -e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(hw->mac.ops.check_mng_mode(hw) || - hw->phy.ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); -} - -/* - * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters - * @hw: pointer to the HW structure - * - * Clears hardware counters specific to the silicon family and calls - * clear_hw_cntrs_generic to clear all general purpose counters. - */ -static void -e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) -{ - u16 phy_data; - - DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); - - e1000_clear_hw_cntrs_base_generic(hw); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); - - (void) E1000_READ_REG(hw, E1000_MGTPRC); - (void) E1000_READ_REG(hw, E1000_MGTPDC); - (void) E1000_READ_REG(hw, E1000_MGTPTC); - - (void) E1000_READ_REG(hw, E1000_IAC); - (void) E1000_READ_REG(hw, E1000_ICRXOC); - - /* Clear PHY statistics registers */ - if ((hw->phy.type == e1000_phy_82578) || - (hw->phy.type == e1000_phy_82577)) { - (void) hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data); - (void) hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data); - } -} diff --git a/usr/src/uts/common/io/e1000g/e1000_ich8lan.h b/usr/src/uts/common/io/e1000g/e1000_ich8lan.h deleted file mode 100644 index 3dad4b6ed2..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_ich8lan.h +++ /dev/null @@ -1,271 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_ICH8LAN_H_ -#define _E1000_ICH8LAN_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#define ICH_FLASH_GFPREG 0x0000 -#define ICH_FLASH_HSFSTS 0x0004 -#define ICH_FLASH_HSFCTL 0x0006 -#define ICH_FLASH_FADDR 0x0008 -#define ICH_FLASH_FDATA0 0x0010 - -/* Requires up to 10 seconds when MNG might be accessing part. */ -#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000 -#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000 -#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000 -#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF -#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 - -#define ICH_CYCLE_READ 0 -#define ICH_CYCLE_WRITE 2 -#define ICH_CYCLE_ERASE 3 - -#define FLASH_GFPREG_BASE_MASK 0x1FFF -#define FLASH_SECTOR_ADDR_SHIFT 12 - -#define ICH_FLASH_SEG_SIZE_256 256 -#define ICH_FLASH_SEG_SIZE_4K 4096 -#define ICH_FLASH_SEG_SIZE_8K 8192 -#define ICH_FLASH_SEG_SIZE_64K 65536 -#define ICH_FLASH_SECTOR_SIZE 4096 - -#define ICH_FLASH_REG_MAPSIZE 0x00A0 - -#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ -#define E1000_ICH_FWSM_DISSW 0x10000000 /* FW Disables SW Writes */ -/* FW established a valid mode */ -#define E1000_ICH_FWSM_FW_VALID 0x00008000 - -#define E1000_ICH_MNG_IAMT_MODE 0x2 - -#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_OFF1_ON2 << 4) | \ - (ID_LED_DEF1_DEF2)) - -#define E1000_ICH_NVM_SIG_WORD 0x13 -#define E1000_ICH_NVM_SIG_MASK 0xC000 -#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 -#define E1000_ICH_NVM_SIG_VALUE 0x80 - -#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 - -#define E1000_FEXTNVM_SW_CONFIG 1 -#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M */ - -#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 -#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 -#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 - -#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL - -#define E1000_ICH_RAR_ENTRIES 7 -#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */ - -#define PHY_PAGE_SHIFT 5 -#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ - ((reg) & MAX_PHY_REG_ADDRESS)) -#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ -#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ -#define IGP3_CAPABILITY PHY_REG(776, 19) /* Capability */ -#define IGP3_PM_CTRL PHY_REG(769, 20) /* Power Management Control */ - -#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 -#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 -#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 -#define IGP3_PM_CTRL_FORCE_PWR_DOWN 0x0020 - -/* PHY Wakeup Registers and defines */ -#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0) -#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) -#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) -#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) -#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2))) -#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2))) -#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2))) -#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2))) -#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1))) - -#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */ -#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */ -#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */ -#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */ -#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */ -#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */ -#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */ - -#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ -#define HV_MUX_DATA_CTRL PHY_REG(776, 16) -#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 -#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 -#define HV_SCC_UPPER PHY_REG(778, 16) /* Single Collision Count */ -#define HV_SCC_LOWER PHY_REG(778, 17) -#define HV_ECOL_UPPER PHY_REG(778, 18) /* Excessive Collision Count */ -#define HV_ECOL_LOWER PHY_REG(778, 19) -#define HV_MCC_UPPER PHY_REG(778, 20) /* Multiple Collision Count */ -#define HV_MCC_LOWER PHY_REG(778, 21) -#define HV_LATECOL_UPPER PHY_REG(778, 23) /* Late Collision Count */ -#define HV_LATECOL_LOWER PHY_REG(778, 24) -#define HV_COLC_UPPER PHY_REG(778, 25) /* Collision Count */ -#define HV_COLC_LOWER PHY_REG(778, 26) -#define HV_DC_UPPER PHY_REG(778, 27) /* Defer Count */ -#define HV_DC_LOWER PHY_REG(778, 28) -#define HV_TNCRS_UPPER PHY_REG(778, 29) /* Transmit with no CRS */ -#define HV_TNCRS_LOWER PHY_REG(778, 30) - -/* PCH Flow Control Refresh Timer Value */ -#define E1000_FCRTV_PCH 0x05F40 - -#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ -#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ - -/* SMBus Address Phy Register */ -#define HV_SMB_ADDR PHY_REG(768, 26) -#define HV_SMB_ADDR_MASK 0x007F -#define HV_SMB_ADDR_PEC_EN 0x0200 -#define HV_SMB_ADDR_VALID 0x0080 - -/* Strapping Option Register - RO */ -#define E1000_STRAP 0x0000C -#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 -#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 - -/* OEM Bits Phy Register */ -#define HV_OEM_BITS PHY_REG(768, 25) -#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ -#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ -#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ -/* Phy address bit from LCD Config word */ -#define LCD_CFG_PHY_ADDR_BIT 0x0020 - -/* KMRN Mode Control */ -#define HV_KMRN_MODE_CTRL PHY_REG(769, 16) -#define HV_KMRN_MDIO_SLOW 0x0400 - -/* KMRN FIFO Control and Status */ -#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) -#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 -#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 - -/* PHY Power Management Control */ -#define HV_PM_CTRL PHY_REG(770, 17) - -/* SW Semaphore flag timeout in milliseconds */ -#define SW_FLAG_TIMEOUT 400 - -/* PHY Low Power Idle Control */ -#define I82579_LPI_CTRL PHY_REG(772, 20) -#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 - -/* EMI Registers */ -#define I82579_EMI_ADDR 0x10 -#define I82579_EMI_DATA 0x11 -#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ - -/* PHY Low Power Idle Control */ -#define I82579_LPI_CTRL PHY_REG(772, 20) -#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 - -/* EMI Registers */ -#define I82579_EMI_ADDR 0x10 -#define I82579_EMI_DATA 0x11 -#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ - -/* - * Additional interrupts need to be handled for ICH family: - * DSW = The FW changed the status of the DISSW bit in FWSM - * PHYINT = The LAN connected device generates an interrupt - * EPRST = Manageability reset event - */ -#define IMS_ICH_ENABLE_MASK (\ - E1000_IMS_DSW | \ - E1000_IMS_PHYINT | \ - E1000_IMS_EPRST) - -/* Additional interrupt register bit definitions */ -#define E1000_ICR_LSECPNC 0x00004000 /* PN threshold - client */ -#define E1000_IMS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */ -#define E1000_ICS_LSECPNC E1000_ICR_LSECPNC /* PN threshold - client */ - -/* Security Processing bit Indication */ -#define E1000_RXDEXT_LINKSEC_STATUS_LSECH 0x01000000 -#define E1000_RXDEXT_LINKSEC_ERROR_BIT_MASK 0x60000000 -#define E1000_RXDEXT_LINKSEC_ERROR_NO_SA_MATCH 0x20000000 -#define E1000_RXDEXT_LINKSEC_ERROR_REPLAY_ERROR 0x40000000 -#define E1000_RXDEXT_LINKSEC_ERROR_BAD_SIG 0x60000000 - -/* Receive Address Initial CRC Calculation */ -#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4)) - -void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, - bool state); -void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); -void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); -void e1000_disable_gig_wol_ich8lan(struct e1000_hw *hw); -s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable); -s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_config); -s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable); - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_ICH8LAN_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_mac.c b/usr/src/uts/common/io/e1000g/e1000_mac.c deleted file mode 100644 index a142743072..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_mac.c +++ /dev/null @@ -1,2206 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.108 v3-1-10-1_2009-9-18_Release14-6 - */ -#include "e1000_api.h" - -static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); -static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); - -/* - * e1000_init_mac_ops_generic - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - */ -void -e1000_init_mac_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - DEBUGFUNC("e1000_init_mac_ops_generic"); - - /* General Setup */ - mac->ops.init_params = e1000_null_ops_generic; - mac->ops.init_hw = e1000_null_ops_generic; - mac->ops.reset_hw = e1000_null_ops_generic; - mac->ops.setup_physical_interface = e1000_null_ops_generic; - mac->ops.get_bus_info = e1000_null_ops_generic; - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; - mac->ops.read_mac_addr = e1000_read_mac_addr_generic; - mac->ops.config_collision_dist = e1000_config_collision_dist_generic; - mac->ops.clear_hw_cntrs = e1000_null_mac_generic; - /* LED */ - mac->ops.cleanup_led = e1000_null_ops_generic; - mac->ops.setup_led = e1000_null_ops_generic; - mac->ops.blink_led = e1000_null_ops_generic; - mac->ops.led_on = e1000_null_ops_generic; - mac->ops.led_off = e1000_null_ops_generic; - /* LINK */ - mac->ops.setup_link = e1000_null_ops_generic; - mac->ops.get_link_up_info = e1000_null_link_info; - mac->ops.check_for_link = e1000_null_ops_generic; - mac->ops.wait_autoneg = e1000_wait_autoneg_generic; - /* Management */ - mac->ops.check_mng_mode = e1000_null_mng_mode; - mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic; - mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic; - mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic; - /* VLAN, MC, etc. */ - mac->ops.update_mc_addr_list = e1000_null_update_mc; - mac->ops.clear_vfta = e1000_null_mac_generic; - mac->ops.write_vfta = e1000_null_write_vfta; - mac->ops.mta_set = e1000_null_mta_set; - mac->ops.rar_set = e1000_rar_set_generic; - mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; -} - -/* - * e1000_null_ops_generic - No-op function, returns 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_ops_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_ops_generic"); - UNREFERENCED_1PARAMETER(hw); - return (E1000_SUCCESS); -} - -/* - * e1000_null_mac_generic - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_mac_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_mac_generic"); - UNREFERENCED_1PARAMETER(hw); -} - -/* - * e1000_null_link_info - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d) -{ - DEBUGFUNC("e1000_null_link_info"); - UNREFERENCED_3PARAMETER(hw, s, d); - return (E1000_SUCCESS); -} - -/* - * e1000_null_mng_mode - No-op function, return false - * @hw: pointer to the HW structure - */ -bool -e1000_null_mng_mode(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_mng_mode"); - UNREFERENCED_1PARAMETER(hw); - return (false); -} - -/* - * e1000_null_update_mc - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a) -{ - DEBUGFUNC("e1000_null_update_mc"); - UNREFERENCED_3PARAMETER(hw, h, a); -} - -/* - * e1000_null_write_vfta - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b) -{ - DEBUGFUNC("e1000_null_write_vfta"); - UNREFERENCED_3PARAMETER(hw, a, b); -} - -/* - * e1000_null_set_mta - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_mta_set(struct e1000_hw *hw, u32 a) -{ - DEBUGFUNC("e1000_null_mta_set"); - UNREFERENCED_2PARAMETER(hw, a); -} - -/* - * e1000_null_rar_set - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a) -{ - DEBUGFUNC("e1000_null_rar_set"); - UNREFERENCED_3PARAMETER(hw, h, a); -} - -/* - * e1000_get_bus_info_pci_generic - Get PCI(x) bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. - */ -s32 -e1000_get_bus_info_pci_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - u32 status = E1000_READ_REG(hw, E1000_STATUS); - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_get_bus_info_pci_generic"); - - /* PCI or PCI-X? */ - bus->type = (status & E1000_STATUS_PCIX_MODE) - ? e1000_bus_type_pcix - : e1000_bus_type_pci; - - /* Bus speed */ - if (bus->type == e1000_bus_type_pci) { - bus->speed = (status & E1000_STATUS_PCI66) - ? e1000_bus_speed_66 - : e1000_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - bus->speed = e1000_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - bus->speed = e1000_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - bus->speed = e1000_bus_speed_133; - break; - default: - bus->speed = e1000_bus_speed_reserved; - break; - } - } - - /* Bus width */ - bus->width = (status & E1000_STATUS_BUS64) - ? e1000_bus_width_64 - : e1000_bus_width_32; - - /* Which PCI(-X) function? */ - mac->ops.set_lan_id(hw); - - return (ret_val); -} - -/* - * e1000_get_bus_info_pcie_generic - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - */ -s32 -e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - u16 pcie_link_status; - - DEBUGFUNC("e1000_get_bus_info_pcie_generic"); - - bus->type = e1000_bus_type_pci_express; - bus->speed = e1000_bus_speed_2500; - - ret_val = e1000_read_pcie_cap_reg(hw, - PCIE_LINK_STATUS, - &pcie_link_status); - if (ret_val) - bus->width = e1000_bus_width_unknown; - else - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCIE_LINK_WIDTH_MASK) >> - PCIE_LINK_WIDTH_SHIFT); - - mac->ops.set_lan_id(hw); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices - * - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading memory-mapped registers - * and swaps the port value if requested. - */ -static void -e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u32 reg; - - /* - * The status register reports the correct function number - * for the device regardless of function swap state. - */ - reg = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; -} - -/* - * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading PCI config space. - */ -void -e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u16 pci_header_type; - u32 status; - - e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); - if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { - status = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (status & E1000_STATUS_FUNC_MASK) - >> E1000_STATUS_FUNC_SHIFT; - } else { - bus->func = 0; - } -} - -/* - * e1000_set_lan_id_single_port - Set LAN id for a single port device - * @hw: pointer to the HW structure - * - * Sets the LAN function id to zero for a single port device. - */ -void -e1000_set_lan_id_single_port(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - bus->func = 0; -} - -/* - * e1000_clear_vfta_generic - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - */ -void -e1000_clear_vfta_generic(struct e1000_hw *hw) -{ - u32 offset; - - DEBUGFUNC("e1000_clear_vfta_generic"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - E1000_WRITE_FLUSH(hw); - } -} - -/* - * e1000_write_vfta_generic - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - */ -void -e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) -{ - DEBUGFUNC("e1000_write_vfta_generic"); - - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_init_rx_addrs_generic - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setups the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - */ -void -e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ADDR_LEN] = {0}; - - DEBUGFUNC("e1000_init_rx_addrs_generic"); - - /* Setup the receive address */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - hw->mac.ops.rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count - 1); - for (i = 1; i < rar_count; i++) - hw->mac.ops.rar_set(hw, mac_addr, i); - -} - -/* - * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is found it is programmed into RAR0, replacing - * the permanent address that was installed into RAR0 by the Si on reset. - * This function will return SUCCESS unless it encounters an error while - * reading the EEPROM. - */ -s32 -e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val = E1000_SUCCESS; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ADDR_LEN]; - - DEBUGFUNC("e1000_check_alt_mac_addr_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (nvm_alt_mac_addr_offset == 0xFFFF) { - /* There is no Alternate MAC Address */ - goto out; - } - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (alt_mac_addr[0] & 0x01) { - DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); - goto out; - } - - /* - * We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - hw->mac.ops.rar_set(hw, alt_mac_addr, 0); - -out: - return (ret_val); -} - -/* - * e1000_rar_set_generic - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - */ -void -e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_generic"); - - /* - * HW expects these in little endian so we reverse the byte order from - * network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* - * Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_mta_set_generic - Set multicast filter table address - * @hw: pointer to the HW structure - * @hash_value: determines the MTA register and bit to set - * - * The multicast table address is a register array of 32-bit registers. - * The hash_value is used to determine what register the bit is in, the - * current value is read, the new bit is OR'd in and the new value is - * written back into the register. - */ -void -e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value) -{ - u32 hash_bit, hash_reg, mta; - - DEBUGFUNC("e1000_mta_set_generic"); - /* - * The MTA is a register array of 32-bit registers. It is treated like - * an array of (32*mta_reg_count) bits. We want to set bit - * BitArray[hash_value]. So we figure out what register the bit is in, - * read it, OR in the new bit, then write back the new value. The - * (hw->mac.mta_reg_count - 1) serves as a mask to bits 31:5 of the - * hash value which gives us the register we're modifying. The hash - * bit within that register is determined by the lower 5 bits of the - * hash value. - */ - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); - - mta |= (1 << hash_bit); - - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_update_mc_addr_list_generic - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - */ -void -e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - DEBUGFUNC("e1000_update_mc_addr_list_generic"); - - /* clear mta_shadow */ - (void) memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ADDR_LEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_hash_mc_addr_generic - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. See - * e1000_mta_set_generic() - */ -u32 -e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - DEBUGFUNC("e1000_hash_mc_addr_generic"); - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* - * For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* - * The portion of the address that is used for the hash table is - * determined by the mc_filter_type setting. The algorithm is such - * that there is a total of 8 bits of shifting. The bit_shift for a - * mc_filter_type of 0 represents the number of left-shifts where the - * MSB of mc_addr[5] would still fall within the hash_mask. Case 0 - * does this exactly. Since there are a total of 8 bits of shifting, - * then mc_addr[4] will shift right the remaining number of bits. Thus - * 8 - bit_shift. The rest of the cases are a variation of this - * algorithm...essentially raising the number of bits to shift - * mc_addr[5] left, while still keeping the 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an mta - * register count of 128 (thus a 4096-bit vector and 0xFFF mask), we - * can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return (hash_value); -} - -/* - * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value - * @hw: pointer to the HW structure - * - * In certain situations, a system BIOS may report that the PCIx maximum - * memory read byte count (MMRBC) value is higher than than the actual - * value. We check the PCIx command register with the current PCIx status - * register. - */ -void -e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) -{ - u16 cmd_mmrbc; - u16 pcix_cmd; - u16 pcix_stat_hi_word; - u16 stat_mmrbc; - - DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); - - /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ - if (hw->bus.type != e1000_bus_type_pcix) - return; - - e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); - e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); - cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> - PCIX_COMMAND_MMRBC_SHIFT; - stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> - PCIX_STATUS_HI_MMRBC_SHIFT; - if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) - stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if (cmd_mmrbc > stat_mmrbc) { - pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; - pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; - e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); - } -} - -/* - * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - */ -void -e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); - - (void) E1000_READ_REG(hw, E1000_CRCERRS); - (void) E1000_READ_REG(hw, E1000_SYMERRS); - (void) E1000_READ_REG(hw, E1000_MPC); - (void) E1000_READ_REG(hw, E1000_SCC); - (void) E1000_READ_REG(hw, E1000_ECOL); - (void) E1000_READ_REG(hw, E1000_MCC); - (void) E1000_READ_REG(hw, E1000_LATECOL); - (void) E1000_READ_REG(hw, E1000_COLC); - (void) E1000_READ_REG(hw, E1000_DC); - (void) E1000_READ_REG(hw, E1000_SEC); - (void) E1000_READ_REG(hw, E1000_RLEC); - (void) E1000_READ_REG(hw, E1000_XONRXC); - (void) E1000_READ_REG(hw, E1000_XONTXC); - (void) E1000_READ_REG(hw, E1000_XOFFRXC); - (void) E1000_READ_REG(hw, E1000_XOFFTXC); - (void) E1000_READ_REG(hw, E1000_FCRUC); - (void) E1000_READ_REG(hw, E1000_GPRC); - (void) E1000_READ_REG(hw, E1000_BPRC); - (void) E1000_READ_REG(hw, E1000_MPRC); - (void) E1000_READ_REG(hw, E1000_GPTC); - (void) E1000_READ_REG(hw, E1000_GORCL); - (void) E1000_READ_REG(hw, E1000_GORCH); - (void) E1000_READ_REG(hw, E1000_GOTCL); - (void) E1000_READ_REG(hw, E1000_GOTCH); - (void) E1000_READ_REG(hw, E1000_RNBC); - (void) E1000_READ_REG(hw, E1000_RUC); - (void) E1000_READ_REG(hw, E1000_RFC); - (void) E1000_READ_REG(hw, E1000_ROC); - (void) E1000_READ_REG(hw, E1000_RJC); - (void) E1000_READ_REG(hw, E1000_TORL); - (void) E1000_READ_REG(hw, E1000_TORH); - (void) E1000_READ_REG(hw, E1000_TOTL); - (void) E1000_READ_REG(hw, E1000_TOTH); - (void) E1000_READ_REG(hw, E1000_TPR); - (void) E1000_READ_REG(hw, E1000_TPT); - (void) E1000_READ_REG(hw, E1000_MPTC); - (void) E1000_READ_REG(hw, E1000_BPTC); -} - -/* - * e1000_check_for_copper_link_generic - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - */ -s32 -e1000_check_for_copper_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link"); - - /* - * We only want to go out to the PHY registers to see if Auto-Neg has - * completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status Change or - * Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* - * First we want to see if the MII Status Register reports link. If - * so, then we want to get the current speed/duplex of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) - goto out; /* No link detected */ - - mac->get_link_status = false; - - /* - * Check if there was DownShift, must be checked immediately after - * link-up - */ - (void) e1000_check_downshift_generic(hw); - - /* - * If we are forcing speed/duplex, then we simply return since we have - * already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care of MAC - * speed/duplex configuration. So we only need to configure Collision - * Distance in the MAC. - */ - e1000_config_collision_dist_generic(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - /* EMPTY */ - DEBUGOUT("Error configuring flow control\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_check_for_fiber_link_generic - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - */ -s32 -e1000_check_for_fiber_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_fiber_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (mac->autoneg_failed == 0) { - mac->autoneg_failed = 1; - goto out; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - goto out; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register and - * disable forced link in the Device Control register in an - * attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - -out: - return (ret_val); -} - -/* - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - */ -s32 -e1000_check_for_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), we need to - * force link up. We also need to give auto-negotiation time to - * complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { - if (mac->autoneg_failed == 0) { - mac->autoneg_failed = 1; - goto out; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - goto out; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register and - * disable forced link in the Device Control register in an - * attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { - /* - * If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - forced.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - autoneg " - "completed sucessfully.\n"); - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - invalid" - "codewords detected in autoneg.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - no sync.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - autoneg failed\n"); - } - } - -out: - return (ret_val); -} - -/* - * e1000_setup_link_generic - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - */ -s32 -e1000_setup_link_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_link_generic"); - - /* - * In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (hw->phy.ops.check_reset_block) - if (hw->phy.ops.check_reset_block(hw)) - goto out; - - /* - * If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - goto out; - } - - /* - * Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - goto out; - - /* - * Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing Flow Control address, type and timer regs\n"); - E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - - ret_val = e1000_set_fc_watermarks_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes - * links. Upon successful setup, poll for link. - */ -s32 -e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - e1000_config_collision_dist_generic(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - goto out; - - /* - * Since auto-negotiation is enabled, take the link out of reset (the - * link will be in reset, because we previously reset the chip). This - * will restart auto-negotiation. If auto-negotiation is successful - * then the link-up status bit will be set and the flow control enable - * bits (RFCE and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - - /* - * For these adapters, the SW definable pin 1 is set when the optics - * detect a signal. If we have a signal, then poll for a "Link-Up" - * indication. - */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - } else { - /* EMPTY */ - DEBUGOUT("No signal detected\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_config_collision_dist_generic - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -void -e1000_config_collision_dist_generic(struct e1000_hw *hw) -{ - u32 tctl; - - DEBUGFUNC("e1000_config_collision_dist_generic"); - - tctl = E1000_READ_REG(hw, E1000_TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_poll_fiber_serdes_link_generic - Poll for link up - * @hw: pointer to the HW structure - * - * Polls for link up by reading the status register, if link fails to come - * up with auto-negotiation, then the link is forced if a signal is detected. - */ -s32 -e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 i, status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); - - /* - * If we have a signal (the cable is plugged in, or assumed true for - * serdes media) then poll for a "Link-Up" indication in the Device - * Status Register. Time-out if a link isn't seen in 500 milliseconds - * seconds (Auto-negotiation should complete in less than 500 - * milliseconds even if the other end is doing it in SW). - */ - for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { - msec_delay(10); - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == FIBER_LINK_UP_LIMIT) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - mac->autoneg_failed = 1; - /* - * AutoNeg failed to achieve a link, so we'll call - * mac->check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - ret_val = hw->mac.ops.check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - goto out; - } - mac->autoneg_failed = 0; - } else { - mac->autoneg_failed = 0; - DEBUGOUT("Valid Link Found\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_commit_fc_settings_generic - Configure flow control - * @hw: pointer to the HW structure - * - * Write the flow control settings to the Transmit Config Word Register (TXCW) - * base on the flow control settings in e1000_mac_info. - */ -s32 -e1000_commit_fc_settings_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txcw; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_commit_fc_settings_generic"); - - /* - * Check for a software override of the flow control settings, and - * setup the device accordingly. If auto-negotiation is enabled, then - * software will have to set the "PAUSE" bits to the correct value in - * the Transmit Config Word Register (TXCW) and re-start auto- - * negotiation. However, if auto-negotiation is disabled, then - * software will have to manually configure the two flow control enable - * bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we - * do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled and Tx Flow control is disabled - * by a software over-ride. Since there really isn't a way to - * advertise that we are capable of Rx Pause ONLY, we will - * advertise that we support both symmetric and asymmetric RX - * PAUSE. Later, we will disable the adapter's ability to send - * PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is disabled, - * by a software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - E1000_WRITE_REG(hw, E1000_TXCW, txcw); - mac->txcw = txcw; - -out: - return (ret_val); -} - -/* - * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * transmission as well. - */ -s32 -e1000_set_fc_watermarks_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 fcrtl = 0, fcrth = 0; - - DEBUGFUNC("e1000_set_fc_watermarks_generic"); - - /* - * Set the flow control receive threshold registers. Normally, these - * registers will be set to a default threshold that may be adjusted - * later by the driver's runtime code. However, if the ability to - * transmit pause frames is not enabled, then these registers will be - * set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* - * We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - if (hw->fc.send_xon) - fcrtl |= E1000_FCRTL_XONE; - - fcrth = hw->fc.high_water; - } - E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); - E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); - - return (ret_val); -} - -/* - * e1000_set_default_fc_generic - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - */ -s32 -e1000_set_default_fc_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 nvm_data; - - DEBUGFUNC("e1000_set_default_fc_generic"); - - /* - * Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, a - * bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the SW defined - * pins. If there is no SW over-ride of the flow control setting, then - * the variable hw->fc will be initialized based on a value in the - * EEPROM. - */ - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); - - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - -out: - return (ret_val); -} - -/* - * e1000_force_mac_fc_generic - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - */ -s32 -e1000_force_mac_fc_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_force_mac_fc_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* - * Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY auto-neg), - * we have to manually enable/disable transmit an receive flow - * control. - * - * The "Case" statement below enables/disable flow control according to - * the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and Tx flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - -out: - return (ret_val); -} - -/* - * e1000_config_fc_after_link_up_generic - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - */ -s32 -e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up_generic"); - - /* - * Check for the case where we have fiber media and auto-neg failed so - * we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = e1000_force_mac_fc_generic(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = e1000_force_mac_fc_generic(hw); - } - - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - goto out; - } - - /* - * Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg has - * completed, and if so, how the PHY and link partner has flow control - * configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* - * Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - goto out; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - DEBUGOUT("Copper PHY and Auto Neg " - "has not completed.\n"); - goto out; - } - /* - * The AutoNeg process has completed, so we now need to read - * both the Auto Negotiation Advertisement Register (Address - * 4) and the Auto_Negotiation Base Page Ability Register - * (Address 5) to determine how flow control was negotiated. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - goto out; - - /* - * Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - * ------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - * ------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* - * Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\r\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = " - "RX PAUSE frames only.\r\n"); - } - } - /* - * For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - * ------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); - } - /* - * For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - * ------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); - } else { - /* - * Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\r\n"); - } - - /* - * Now we need to do one last check... If we auto- negotiated - * to HALF DUPLEX, flow control should not be enabled per IEEE - * 802.3 spec. - */ - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - goto out; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* - * Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - */ -s32 -e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - u32 status; - - DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - return (E1000_SUCCESS); -} - -/* - * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Sets the speed and duplex to gigabit full duplex (the only possible option) - * for fiber/serdes links. - */ -s32 -e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, - u16 *speed, u16 *duplex) -{ - DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); - UNREFERENCED_1PARAMETER(hw); - - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - - return (E1000_SUCCESS); -} - -/* - * e1000_get_hw_semaphore_generic - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - */ -s32 -e1000_get_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - s32 ret_val = E1000_SUCCESS; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_generic"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_put_hw_semaphore_generic - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - */ -void -e1000_put_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/* - * e1000_get_auto_rd_done_generic - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - */ -s32 -e1000_get_auto_rd_done_generic(struct e1000_hw *hw) -{ - s32 i = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_get_auto_rd_done_generic"); - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) - break; - msec_delay(1); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - DEBUGOUT("Auto read by HW from NVM has not completed.\n"); - ret_val = -E1000_ERR_RESET; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_valid_led_default_generic - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - */ -s32 -e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - -out: - return (ret_val); -} - -/* - * e1000_id_led_init_generic - - * @hw: pointer to the HW structure - * - */ -s32 -e1000_id_led_init_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init_generic"); - - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - goto out; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - -out: - return (ret_val); -} - -/* - * e1000_setup_led_generic - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - */ -s32 -e1000_setup_led_generic(struct e1000_hw *hw) -{ - u32 ledctl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_led_generic"); - - if (hw->mac.ops.setup_led != e1000_setup_led_generic) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - if (hw->phy.media_type == e1000_media_type_fiber) { - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - hw->mac.ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | - E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } else if (hw->phy.media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - } - -out: - return (ret_val); -} - -/* - * e1000_cleanup_led_generic - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - */ -s32 -e1000_cleanup_led_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_cleanup_led_generic"); - - if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - -out: - return (ret_val); -} - -/* - * e1000_blink_led_generic - Blink LED - * @hw: pointer to the HW structure - * - * Blink the LEDs which are set to be on. - */ -s32 -e1000_blink_led_generic(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - DEBUGFUNC("e1000_blink_led_generic"); - - if (hw->phy.media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* - * set the blink bit for each LED that's "on" (0x0E) - * in ledctl_mode2 - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << - (i * 8)); - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); - - return (E1000_SUCCESS); -} - -/* - * e1000_led_on_generic - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - */ -s32 -e1000_led_on_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_on_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - break; - default: - break; - } - - return (E1000_SUCCESS); -} - -/* - * e1000_led_off_generic - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - */ -s32 -e1000_led_off_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_off_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return (E1000_SUCCESS); -} - -/* - * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities - * @hw: pointer to the HW structure - * @no_snoop: bitmap of snoop events - * - * Set the PCI-express register to snoop for events enabled in 'no_snoop'. - */ -void -e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) -{ - u32 gcr; - - DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - return; - - if (no_snoop) { - gcr = E1000_READ_REG(hw, E1000_GCR); - gcr &= ~(PCIE_NO_SNOOP_ALL); - gcr |= no_snoop; - E1000_WRITE_REG(hw, E1000_GCR, gcr); - } -} - -/* - * e1000_disable_pcie_master_generic - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns 0 (E1000_SUCCESS) if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - */ -s32 -e1000_disable_pcie_master_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_disable_pcie_master_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - goto out; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - while (timeout) { - if (!(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE)) - break; - usec_delay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Reset the Adaptive Interframe Spacing throttle to default values. - */ -void -e1000_reset_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_reset_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - mac->current_ifs_val = 0; - mac->ifs_min_val = IFS_MIN; - mac->ifs_max_val = IFS_MAX; - mac->ifs_step_size = IFS_STEP; - mac->ifs_ratio = IFS_RATIO; - - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); -} - -/* - * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Update the Adaptive Interframe Spacing Throttle value based on the - * time between transmitted packets and time between collisions. - */ -void -e1000_update_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_update_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { - if (mac->tx_packet_delta > MIN_NUM_XMITS) { - mac->in_ifs_mode = true; - if (mac->current_ifs_val < mac->ifs_max_val) { - if (!mac->current_ifs_val) - mac->current_ifs_val = mac->ifs_min_val; - else - mac->current_ifs_val += - mac->ifs_step_size; - E1000_WRITE_REG(hw, E1000_AIT, - mac->current_ifs_val); - } - } - } else { - if (mac->in_ifs_mode && - (mac->tx_packet_delta <= MIN_NUM_XMITS)) { - mac->current_ifs_val = 0; - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); - } - } -} - -/* - * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Verify that when not using auto-negotiation that MDI/MDIx is correctly - * set, which is forced to MDI mode only. - */ -static s32 -e1000_validate_mdi_setting_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_validate_mdi_setting_generic"); - - if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->phy.mdix = 1; - ret_val = -E1000_ERR_CONFIG; - goto out; - } - -out: - return (ret_val); -} diff --git a/usr/src/uts/common/io/e1000g/e1000_mac.h b/usr/src/uts/common/io/e1000g/e1000_mac.h deleted file mode 100644 index 022798b5a7..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_mac.h +++ /dev/null @@ -1,100 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.32 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_MAC_H_ -#define _E1000_MAC_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -/* - * Functions that should not be called directly from drivers but can be used - * by other files in this 'shared code' - */ -void e1000_init_mac_ops_generic(struct e1000_hw *hw); -void e1000_null_mac_generic(struct e1000_hw *hw); -s32 e1000_null_ops_generic(struct e1000_hw *hw); -s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); -bool e1000_null_mng_mode(struct e1000_hw *hw); -void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); -void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); -void e1000_null_mta_set(struct e1000_hw *hw, u32 a); -void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); -s32 e1000_blink_led_generic(struct e1000_hw *hw); -s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); -s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); -s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_cleanup_led_generic(struct e1000_hw *hw); -s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); -s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); -s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); -s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); -s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); -s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw); -s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); -void e1000_set_lan_id_single_port(struct e1000_hw *hw); -void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw); -s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -s32 e1000_id_led_init_generic(struct e1000_hw *hw); -s32 e1000_led_on_generic(struct e1000_hw *hw); -s32 e1000_led_off_generic(struct e1000_hw *hw); -void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); -s32 e1000_set_default_fc_generic(struct e1000_hw *hw); -s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); -s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_setup_led_generic(struct e1000_hw *hw); -s32 e1000_setup_link_generic(struct e1000_hw *hw); - -u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); - -void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); -void e1000_clear_vfta_generic(struct e1000_hw *hw); -void e1000_config_collision_dist_generic(struct e1000_hw *hw); -void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); -void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value); -void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw); -void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); -void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); -void e1000_reset_adaptive_generic(struct e1000_hw *hw); -void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); -void e1000_update_adaptive_generic(struct e1000_hw *hw); -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_MAC_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_manage.c b/usr/src/uts/common/io/e1000g/e1000_manage.c deleted file mode 100644 index aa4c2d14b2..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_manage.c +++ /dev/null @@ -1,391 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.27 v3-1-10-1_2009-9-18_Release14-6 - */ - -#include "e1000_api.h" - -static u8 e1000_calculate_checksum(u8 *buffer, u32 length); - -/* - * e1000_calculate_checksum - Calculate checksum for buffer - * @buffer: pointer to EEPROM - * @length: size of EEPROM to calculate a checksum for - * - * Calculates the checksum for some buffer on a specified length. The - * checksum calculated is returned. - */ -static u8 -e1000_calculate_checksum(u8 *buffer, u32 length) -{ - u32 i; - u8 sum = 0; - - DEBUGFUNC("e1000_calculate_checksum"); - - if (!buffer) - return (0); - - for (i = 0; i < length; i++) - sum += buffer[i]; - - return (u8)(0 - sum); -} - -/* - * e1000_mng_enable_host_if_generic - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - */ -s32 -e1000_mng_enable_host_if_generic(struct e1000_hw *hw) -{ - u32 hicr; - s32 ret_val = E1000_SUCCESS; - u8 i; - - DEBUGFUNC("e1000_mng_enable_host_if_generic"); - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if ((hicr & E1000_HICR_EN) == 0) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; - goto out; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay_irq(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - DEBUGOUT("Previous command timeout failed .\n"); - ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; - goto out; - } -out: - return (ret_val); -} - -/* - * e1000_check_mng_mode_generic - Generic check management mode - * @hw: pointer to the HW structure - * - * Reads the firmware semaphore register and returns true (>0) if - * manageability is enabled, else false (0). - */ -bool -e1000_check_mng_mode_generic(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_mng_mode_generic"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/* - * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - */ -bool -e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) -{ - struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; - u32 *buffer = (u32 *)&hw->mng_cookie; - u32 offset; - s32 ret_val, hdr_csum, csum; - u8 i, len; - bool tx_filter = true; - - DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); - - /* No manageability, no filtering */ - if (!hw->mac.ops.check_mng_mode(hw)) { - tx_filter = false; - goto out; - } - - /* - * If we can't read from the host interface for whatever reason, - * disable filtering. - */ - ret_val = hw->mac.ops.mng_enable_host_if(hw); - if (ret_val != E1000_SUCCESS) { - tx_filter = false; - goto out; - } - - /* Read in the header. Length and offset are in dwords. */ - len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; - offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; - for (i = 0; i < len; i++) { - *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, - E1000_HOST_IF, - offset + i); - } - hdr_csum = hdr->checksum; - hdr->checksum = 0; - csum = e1000_calculate_checksum((u8 *)hdr, - E1000_MNG_DHCP_COOKIE_LENGTH); - /* - * If either the checksums or signature don't match, then the cookie - * area isn't considered valid, in which case we take the safe route - * of assuming Tx filtering is enabled. - */ - if (hdr_csum != csum) - goto out; - if (hdr->signature != E1000_IAMT_SIGNATURE) - goto out; - - /* Cookie area is valid, make the final check for filtering. */ - if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) - tx_filter = false; - -out: - hw->mac.tx_pkt_filtering = tx_filter; - return (tx_filter); -} - -/* - * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - */ -s32 -e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, - u16 length) -{ - struct e1000_host_mng_command_header hdr; - s32 ret_val; - u32 hicr; - - DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); - - hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; - hdr.command_length = length; - hdr.reserved1 = 0; - hdr.reserved2 = 0; - hdr.checksum = 0; - - /* Enable the host interface */ - ret_val = hw->mac.ops.mng_enable_host_if(hw); - if (ret_val) - goto out; - - /* Populate the host interface with the contents of "buffer". */ - ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length, - sizeof (hdr), &(hdr.checksum)); - if (ret_val) - goto out; - - /* Write the manageability command header */ - ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr); - if (ret_val) - goto out; - - /* Tell the ARC a new command is pending. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - -out: - return (ret_val); -} - -/* - * e1000_mng_write_cmd_header_generic - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - */ -s32 -e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - u16 i, length = sizeof (struct e1000_host_mng_command_header); - - DEBUGFUNC("e1000_mng_write_cmd_header_generic"); - - /* Write the whole command header structure with new checksum. */ - - hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); - - length >>= 2; - /* Write the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, - *((u32 *)(uintptr_t)hdr + i)); - E1000_WRITE_FLUSH(hw); - } - - return (E1000_SUCCESS); -} - -/* - * e1000_mng_host_if_write_generic - Write to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - */ -s32 -e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum) -{ - u8 *tmp; - u8 *bufptr = buffer; - u32 data = 0; - s32 ret_val = E1000_SUCCESS; - u16 remaining, i, j, prev_bytes; - - DEBUGFUNC("e1000_mng_host_if_write_generic"); - - /* sum = only sum of the data and it is not checksum */ - - if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { - ret_val = -E1000_ERR_PARAM; - goto out; - } - - tmp = (u8 *)&data; - prev_bytes = offset & 0x3; - offset >>= 2; - - if (prev_bytes) { - data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); - for (j = prev_bytes; j < sizeof (u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); - length -= j - prev_bytes; - offset++; - } - - remaining = length & 0x3; - length -= remaining; - - /* Calculate length in DWORDs */ - length >>= 2; - - /* - * The device driver writes the relevant command block into the ram - * area. - */ - for (i = 0; i < length; i++) { - for (j = 0; j < sizeof (u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - offset + i, data); - } - if (remaining) { - for (j = 0; j < sizeof (u32); j++) { - if (j < remaining) - *(tmp + j) = *bufptr++; - else - *(tmp + j) = 0; - - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - offset + i, data); - } -out: - return (ret_val); -} - -/* - * e1000_enable_mng_pass_thru - Enable processing of ARP's - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to allow ARPs to be processed by the host. - */ -bool -e1000_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - bool ret_val = false; - - DEBUGFUNC("e1000_enable_mng_pass_thru"); - - if (!hw->mac.asf_firmware_present) - goto out; - - manc = E1000_READ_REG(hw, E1000_MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN) || - !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) - goto out; - - if (hw->mac.arc_subsystem_valid) { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - factps = E1000_READ_REG(hw, E1000_FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { - ret_val = true; - goto out; - } - } else { - if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - ret_val = true; - goto out; - } - } - -out: - return (ret_val); -} diff --git a/usr/src/uts/common/io/e1000g/e1000_manage.h b/usr/src/uts/common/io/e1000g/e1000_manage.h deleted file mode 100644 index 0bae703485..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_manage.h +++ /dev/null @@ -1,90 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.18 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_MANAGE_H_ -#define _E1000_MANAGE_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -bool e1000_check_mng_mode_generic(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); -s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, - u8 *buffer, u16 length); -bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); - -enum e1000_mng_mode { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_if_only -}; - -#define E1000_FACTPS_MNGCG 0x20000000 - -#define E1000_FWSM_MODE_MASK 0xE -#define E1000_FWSM_MODE_SHIFT 1 - -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 - -#define E1000_VFTA_ENTRY_SHIFT 5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F - -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ -#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI command limit */ - -#define E1000_HICR_EN 0x01 /* Enable bit - RO */ -/* Driver sets this bit when done to put command in RAM */ -#define E1000_HICR_C 0x02 -#define E1000_HICR_SV 0x04 /* Status Validity */ -#define E1000_HICR_FW_RESET_ENABLE 0x40 -#define E1000_HICR_FW_RESET 0x80 - -/* Intel(R) Active Management Technology signature */ -#define E1000_IAMT_SIGNATURE 0x544D4149 - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_MANAGE_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_nvm.c b/usr/src/uts/common/io/e1000g/e1000_nvm.c deleted file mode 100644 index 2b01ef1db5..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_nvm.c +++ /dev/null @@ -1,943 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.49 v3-1-10-1_2009-9-18_Release14-6 - */ -#include "e1000_api.h" - -static void e1000_reload_nvm_generic(struct e1000_hw *hw); - -/* - * e1000_init_nvm_ops_generic - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - */ -void -e1000_init_nvm_ops_generic(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - DEBUGFUNC("e1000_init_nvm_ops_generic"); - - /* Initialize function pointers */ - nvm->ops.init_params = e1000_null_ops_generic; - nvm->ops.acquire = e1000_null_ops_generic; - nvm->ops.read = e1000_null_read_nvm; - nvm->ops.release = e1000_null_nvm_generic; - nvm->ops.reload = e1000_reload_nvm_generic; - nvm->ops.update = e1000_null_ops_generic; - nvm->ops.valid_led_default = e1000_null_led_default; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.write = e1000_null_write_nvm; -} - -/* - * e1000_null_nvm_read - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) -{ - DEBUGFUNC("e1000_null_read_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return (E1000_SUCCESS); -} - -/* - * e1000_null_nvm_generic - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_nvm_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_nvm_generic"); - UNREFERENCED_1PARAMETER(hw); -} - -/* - * e1000_null_led_default - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_led_default(struct e1000_hw *hw, u16 *data) -{ - DEBUGFUNC("e1000_null_led_default"); - UNREFERENCED_2PARAMETER(hw, data); - return (E1000_SUCCESS); -} - -/* - * e1000_null_write_nvm - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) -{ - DEBUGFUNC("e1000_null_write_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return (E1000_SUCCESS); -} - -/* - * e1000_raise_eec_clk - Raise EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Enable/Raise the EEPROM clock bit. - */ -static void -e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/* - * e1000_lower_eec_clk - Lower EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Clear/Lower the EEPROM clock bit. - */ -static void -e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/* - * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM - * @hw: pointer to the HW structure - * @data: data to send to the EEPROM - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the EEPROM. So, the value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ -static void -e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u32 mask; - - DEBUGFUNC("e1000_shift_out_eec_bits"); - - mask = 0x01 << (count - 1); - if (nvm->type == e1000_nvm_eeprom_microwire) - eecd &= ~E1000_EECD_DO; - else if (nvm->type == e1000_nvm_eeprom_spi) - eecd |= E1000_EECD_DO; - - do { - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - - mask >>= 1; - } while (mask); - - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/* - * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM - * @hw: pointer to the HW structure - * @count: number of bits to shift in - * - * In order to read a register from the EEPROM, we need to shift 'count' bits - * in from the EEPROM. Bits are "shifted in" by raising the clock input to - * the EEPROM (setting the SK bit), and then reading the value of the data out - * "DO" bit. During this "shifting in" process the data in "DI" bit should - * always be clear. - */ -static u16 -e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - DEBUGFUNC("e1000_shift_in_eec_bits"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data <<= 1; - e1000_raise_eec_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~E1000_EECD_DI; - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_eec_clk(hw, &eecd); - } - - return (data); -} - -/* - * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion - * @hw: pointer to the HW structure - * @ee_reg: EEPROM flag for polling - * - * Polls the EEPROM status bit for either read or write completion based - * upon the value of 'ee_reg'. - */ -s32 -e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) -{ - u32 attempts = 100000; - u32 i, reg = 0; - s32 ret_val = -E1000_ERR_NVM; - - DEBUGFUNC("e1000_poll_eerd_eewr_done"); - - for (i = 0; i < attempts; i++) { - if (ee_reg == E1000_NVM_POLL_READ) - reg = E1000_READ_REG(hw, E1000_EERD); - else - reg = E1000_READ_REG(hw, E1000_EEWR); - - if (reg & E1000_NVM_RW_REG_DONE) { - ret_val = E1000_SUCCESS; - break; - } - - usec_delay(5); - } - - return (ret_val); -} - -/* - * e1000_acquire_nvm_generic - Generic request for access to EEPROM - * @hw: pointer to the HW structure - * - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - */ -s32 -e1000_acquire_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_acquire_nvm_generic"); - - E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); - eecd = E1000_READ_REG(hw, E1000_EECD); - - while (timeout) { - if (eecd & E1000_EECD_GNT) - break; - usec_delay(5); - eecd = E1000_READ_REG(hw, E1000_EECD); - timeout--; - } - - if (!timeout) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - DEBUGOUT("Could not acquire NVM grant\n"); - ret_val = -E1000_ERR_NVM; - } - return (ret_val); -} - -/* - * e1000_standby_nvm - Return EEPROM to standby state - * @hw: pointer to the HW structure - * - * Return the EEPROM to a standby state. - */ -static void -e1000_standby_nvm(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - - DEBUGFUNC("e1000_standby_nvm"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_lower_eec_clk(hw, &eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - } -} - -/* - * e1000_stop_nvm - Terminate EEPROM command - * @hw: pointer to the HW structure - * - * Terminates the current command by inverting the EEPROM's chip select pin. - */ -void -e1000_stop_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_stop_nvm"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - /* Pull CS high */ - eecd |= E1000_EECD_CS; - e1000_lower_eec_clk(hw, &eecd); - } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - } -} - -/* - * e1000_release_nvm_generic - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - */ -void -e1000_release_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_release_nvm_generic"); - - e1000_stop_nvm(hw); - - eecd = E1000_READ_REG(hw, E1000_EECD); - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/* - * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write - * @hw: pointer to the HW structure - * - * Setups the EEPROM for reading and writing. - */ -static s32 -e1000_ready_nvm_eeprom(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 ret_val = E1000_SUCCESS; - u16 timeout = 0; - u8 spi_stat_reg; - - DEBUGFUNC("e1000_ready_nvm_eeprom"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - usec_delay(1); - timeout = NVM_MAX_RETRY_SPI; - - /* - * Read "Status Register" repeatedly until the LSB is cleared. - * The EEPROM will signal that the command has been completed - * by clearing bit 0 of the internal status register. If it's - * not cleared within 'timeout', then error out. - */ - while (timeout) { - e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, - hw->nvm.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); - if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) - break; - - usec_delay(5); - e1000_standby_nvm(hw); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SPI NVM Status error\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_read_nvm_spi - Read EEPROM's using SPI - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - */ -s32 -e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 * data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u16 word_in; - u8 read_opcode = NVM_READ_OPCODE_SPI; - - DEBUGFUNC("e1000_read_nvm_spi"); - - /* - * A check for invalid values: offset too large, too many words, and - * not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_standby_nvm(hw); - - if ((nvm->address_bits == 8) && (offset >= 128)) - read_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset * 2), nvm->address_bits); - - /* - * Read the data. SPI NVMs increment the address with each byte read - * and will roll over if reading beyond the end. This allows us to - * read the whole NVM from any offset - */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_eec_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_nvm_microwire - Reads EEPROM's using microwire - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - */ -s32 -e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; - - DEBUGFUNC("e1000_read_nvm_microwire"); - - /* - * A check for invalid values: offset too large, too many words, and - * not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset + i), - nvm->address_bits); - - /* - * Read the data. For microwire, each word requires the - * overhead of setup and tear-down. - */ - data[i] = e1000_shift_in_eec_bits(hw, 16); - e1000_standby_nvm(hw); - } - -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_nvm_eerd - Reads EEPROM using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM using the EERD register. - */ -s32 -e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eerd = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_nvm_eerd"); - - /* - * A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - for (i = 0; i < words; i++) { - eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_EERD, eerd); - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); - if (ret_val) - break; - - data[i] = (E1000_READ_REG(hw, E1000_EERD) >> - E1000_NVM_RW_REG_DATA); - } - -out: - return (ret_val); -} - -/* - * e1000_write_nvm_spi - Write to EEPROM using SPI - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - */ -s32 -e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_spi"); - - /* - * A check for invalid values: offset too large, too many words, and - * not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - while (widx < words) { - u8 write_opcode = NVM_WRITE_OPCODE_SPI; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_standby_nvm(hw); - - /* Send the WRITE ENABLE command (8 bit opcode) */ - e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, - nvm->opcode_bits); - - e1000_standby_nvm(hw); - - /* - * Some SPI eeproms use the 8th address bit embedded in the - * opcode - */ - if ((nvm->address_bits == 8) && (offset >= 128)) - write_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), - nvm->address_bits); - - /* Loop to allow for up to whole page write of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_eec_bits(hw, word_out, 16); - widx++; - - if ((((offset + widx) * 2) % nvm->page_size) == 0) { - e1000_standby_nvm(hw); - break; - } - } - } - - msec_delay(10); -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_nvm_microwire - Writes EEPROM using microwire - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using microwire interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - */ -s32 -e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u32 eecd; - u16 words_written = 0; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_microwire"); - - /* - * A check for invalid values: offset too large, too many words, and - * not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - - e1000_standby_nvm(hw); - - while (words_written < words) { - e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, - nvm->opcode_bits); - - e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), - nvm->address_bits); - - e1000_shift_out_eec_bits(hw, data[words_written], 16); - - e1000_standby_nvm(hw); - - for (widx = 0; widx < 200; widx++) { - eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & E1000_EECD_DO) - break; - usec_delay(50); - } - - if (widx == 200) { - DEBUGOUT("NVM Write did not complete\n"); - ret_val = -E1000_ERR_NVM; - goto release; - } - - e1000_standby_nvm(hw); - - words_written++; - } - - e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_pba_num_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - */ -s32 -e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) -{ - s32 ret_val; - u16 nvm_data; - - DEBUGFUNC("e1000_read_pba_num_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - *pba_num = (u32)(nvm_data << 16); - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - *pba_num |= nvm_data; - -out: - return (ret_val); -} - -/* - * e1000_read_mac_addr_generic - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - */ -s32 -e1000_read_mac_addr_generic(struct e1000_hw *hw) -{ - u32 rar_high; - u32 rar_low; - u16 i; - - rar_high = E1000_READ_REG(hw, E1000_RAH(0)); - rar_low = E1000_READ_REG(hw, E1000_RAL(0)); - - for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); - - for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return (E1000_SUCCESS); -} - -/* - * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - */ -s32 -e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_generic"); - - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - checksum += nvm_data; - } - - if (checksum != (u16)NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_update_nvm_checksum_generic - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - */ -s32 -e1000_update_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum"); - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16)NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); - if (ret_val) { - /* EMPTY */ - DEBUGOUT("NVM Write Error while updating checksum.\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_reload_nvm_generic - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - */ -void -e1000_reload_nvm_generic(struct e1000_hw *hw) -{ - u32 ctrl_ext; - - DEBUGFUNC("e1000_reload_nvm_generic"); - - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); -} diff --git a/usr/src/uts/common/io/e1000g/e1000_nvm.h b/usr/src/uts/common/io/e1000g/e1000_nvm.h deleted file mode 100644 index 9bb72407f5..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_nvm.h +++ /dev/null @@ -1,67 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * IntelVersion: 1.18 v3-1-10-1_2009-9-18_Release14-6 - */ -#ifndef _E1000_NVM_H_ -#define _E1000_NVM_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -void e1000_init_nvm_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -void e1000_null_nvm_generic(struct e1000_hw *hw); -s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); -s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); - -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); -s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num); -s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); -s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); -void e1000_stop_nvm(struct e1000_hw *hw); -void e1000_release_nvm_generic(struct e1000_hw *hw); - -#define E1000_STM_OPCODE 0xDB00 - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_NVM_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_osdep.h b/usr/src/uts/common/io/e1000g/e1000_osdep.h index 901171b06b..9853673b24 100644 --- a/usr/src/uts/common/io/e1000g/e1000_osdep.h +++ b/usr/src/uts/common/io/e1000g/e1000_osdep.h @@ -47,6 +47,7 @@ extern "C" { #include <sys/atomic.h> #include <sys/note.h> #include <sys/mutex.h> +#include <sys/pci_cap.h> #include "e1000g_debug.h" #define usec_delay(x) drv_usecwait(x) @@ -76,6 +77,8 @@ extern "C" { #define false 0 #define true 1 +#define FALSE false +#define TRUE true #define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ #define PCI_COMMAND_REGISTER 0x04 diff --git a/usr/src/uts/common/io/e1000g/e1000_phy.c b/usr/src/uts/common/io/e1000g/e1000_phy.c deleted file mode 100644 index e8e0698fb8..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_phy.c +++ /dev/null @@ -1,3517 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include "e1000_api.h" - -static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); -static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read); - -static u32 e1000_get_phy_addr_for_hv_page(u32 page); -static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read); - -/* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = - {0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED}; - -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof (e1000_m88_cable_length_table) / \ - sizeof (e1000_m88_cable_length_table[0])) - -static const u16 e1000_igp_2_cable_length_table[] = - {0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, - 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, - 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, - 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, - 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, - 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, - 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, - 104, 109, 114, 118, 121, 124}; - -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof (e1000_igp_2_cable_length_table) / \ - sizeof (e1000_igp_2_cable_length_table[0])) - -/* - * e1000_init_phy_ops_generic - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - */ -void -e1000_init_phy_ops_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - DEBUGFUNC("e1000_init_phy_ops_generic"); - - /* Initialize function pointers */ - phy->ops.init_params = e1000_null_ops_generic; - phy->ops.acquire = e1000_null_ops_generic; - phy->ops.check_polarity = e1000_null_ops_generic; - phy->ops.check_reset_block = e1000_null_ops_generic; - phy->ops.commit = e1000_null_ops_generic; - phy->ops.force_speed_duplex = e1000_null_ops_generic; - phy->ops.get_cfg_done = e1000_null_ops_generic; - phy->ops.get_cable_length = e1000_null_ops_generic; - phy->ops.get_info = e1000_null_ops_generic; - phy->ops.read_reg = e1000_null_read_reg; - phy->ops.read_reg_locked = e1000_null_read_reg; - phy->ops.release = e1000_null_phy_generic; - phy->ops.reset = e1000_null_ops_generic; - phy->ops.set_d0_lplu_state = e1000_null_lplu_state; - phy->ops.set_d3_lplu_state = e1000_null_lplu_state; - phy->ops.write_reg = e1000_null_write_reg; - phy->ops.write_reg_locked = e1000_null_write_reg; - phy->ops.power_up = e1000_null_phy_generic; - phy->ops.power_down = e1000_null_phy_generic; - phy->ops.cfg_on_link_up = e1000_null_ops_generic; -} - -/* - * e1000_null_read_reg - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - DEBUGFUNC("e1000_null_read_reg"); - UNREFERENCED_3PARAMETER(hw, offset, data); - return (E1000_SUCCESS); -} - -/* - * e1000_null_phy_generic - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_phy_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_phy_generic"); - UNREFERENCED_1PARAMETER(hw); -} - -/* - * e1000_null_lplu_state - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_lplu_state(struct e1000_hw *hw, bool active) -{ - DEBUGFUNC("e1000_null_lplu_state"); - UNREFERENCED_2PARAMETER(hw, active); - return (E1000_SUCCESS); -} - -/* - * e1000_null_write_reg - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - DEBUGFUNC("e1000_null_write_reg"); - UNREFERENCED_3PARAMETER(hw, offset, data); - return (E1000_SUCCESS); -} - -/* - * e1000_check_reset_block_generic - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise - * return E1000_BLK_PHY_RESET (12). - */ -s32 -e1000_check_reset_block_generic(struct e1000_hw *hw) -{ - u32 manc; - - DEBUGFUNC("e1000_check_reset_block"); - - manc = E1000_READ_REG(hw, E1000_MANC); - - return ((manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : E1000_SUCCESS); -} - -/* - * e1000_get_phy_id - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - */ -s32 -e1000_get_phy_id(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - u16 retry_count = 0; - - DEBUGFUNC("e1000_get_phy_id"); - - if (!(phy->ops.read_reg)) - goto out; - - while (retry_count < 2) { - ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); - if (ret_val) - goto out; - - phy->id = (u32)(phy_id << 16); - usec_delay(20); - ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); - if (ret_val) - goto out; - - phy->id |= (u32)(phy_id & PHY_REVISION_MASK); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - - if (phy->id != 0 && phy->id != PHY_REVISION_MASK) - goto out; - - retry_count++; - } -out: - return (ret_val); -} - -/* - * e1000_phy_reset_dsp_generic - Reset PHY DSP - * @hw: pointer to the HW structure - * - * Reset the digital signal processor. - */ -s32 -e1000_phy_reset_dsp_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_phy_reset_dsp_generic"); - - if (!(hw->phy.ops.write_reg)) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); - -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_mdic - Read MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - */ -s32 -e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_phy_reg_mdic"); - - /* - * Set up Op-code, Phy Address, and register offset in the MDI Control - * register. The MAC will take care of interfacing with the PHY to - * retrieve the desired data. - */ - mdic = ((offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - *data = (u16)mdic; - - /* - * Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - usec_delay(100); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_mdic - Write MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - */ -s32 -e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_mdic"); - - /* - * Set up Op-code, Phy Address, and register offset in the MDI Control - * register. The MAC will take care of interfacing with the PHY to - * retrieve the desired data. - */ - mdic = (((u32)data) | - (offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - - /* - * Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - usec_delay(100); - -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_m88 - Read m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - */ -s32 -e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_phy_reg_m88"); - - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_m88 - Write m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_m88"); - - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphores before exiting. - */ -static s32 -__e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_read_phy_reg_igp"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - if (!locked) - hw->phy.ops.release(hw); -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores the - * retrieved information in data. - * Release the acquired semaphore before exiting. - */ -s32 -e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_phy_reg_igp(hw, offset, data, false)); -} - -/* - * e1000_read_phy_reg_igp_locked - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - */ -s32 -e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_phy_reg_igp(hw, offset, data, true)); -} - -/* - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -static s32 -__e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_igp"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_phy_reg_igp(hw, offset, data, false)); -} - -/* - * e1000_write_phy_reg_igp_locked - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. - * Assumes semaphore already acquired. - */ -s32 -e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_phy_reg_igp(hw, offset, data, true)); -} - -/* - * __e1000_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then reads the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release any acquired semaphores before exiting. - */ -static s32 -__e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_read_kmrn_reg"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - - usec_delay(2); - - kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_kmrn_reg_generic - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset using the - * kumeran interface. The information retrieved is stored in data. - * Release the acquired semaphore before exiting. - */ -s32 -e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_kmrn_reg(hw, offset, data, false)); -} - -/* - * e1000_read_kmrn_reg_locked - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the kumeran interface. The - * information retrieved is stored in data. - * Assumes semaphore already acquired. - */ -s32 -e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_kmrn_reg(hw, offset, data, true)); -} - -/* - * __e1000_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then write the data to PHY register - * at the offset using the kumeran interface. Release any acquired semaphores - * before exiting. - */ -static s32 -__e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_kmrn_reg_generic"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - - usec_delay(2); - - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_kmrn_reg_generic - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to the PHY register at the offset - * using the kumeran interface. Release the acquired semaphore before exiting. - */ -s32 -e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_kmrn_reg(hw, offset, data, false)); -} - -/* - * e1000_write_kmrn_reg_locked - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Write the data to PHY register at the offset using the kumeran interface. - * Assumes semaphore already acquired. - */ -s32 -e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_kmrn_reg(hw, offset, data, true)); -} - -/* - * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - * @hw: pointer to the HW structure - * - * Sets up Carrier-sense on Transmit and downshift values. - */ -s32 -e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_82577"); - - if (phy->reset_disable) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data); - if (ret_val) - goto out; - - phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - - /* Enable downshift */ - phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - - ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data); - if (ret_val) - goto out; - - /* Set number of link attempts before downshift */ - ret_val = phy->ops.read_reg(hw, I82577_CTRL_REG, &phy_data); - if (ret_val) - goto out; - phy_data &= ~I82577_CTRL_DOWNSHIFT_MASK; - ret_val = phy->ops.write_reg(hw, I82577_CTRL_REG, phy_data); - -out: - return (ret_val); -} - -/* - * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock - * and downshift values are set also. - */ -s32 -e1000_copper_link_setup_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_m88"); - - if (phy->reset_disable) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - /* For BM PHY this bit is downshift enable */ - if (phy->type != e1000_phy_bm) - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* - * Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* - * Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift on BM (disabled by default) */ - if (phy->type == e1000_phy_bm) - phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; - - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; - - if ((phy->type == e1000_phy_m88) && - (phy->revision < E1000_REVISION_4) && - (phy->id != BME1000_E_PHY_ID_R2)) { - /* - * Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = phy->ops.read_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - goto out; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((phy->revision == E1000_REVISION_2) && - (phy->id == M88E1111_I_PHY_ID)) { - /* 82573L PHY - set the downshift counter to 5x. */ - phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - } - ret_val = phy->ops.write_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - goto out; - } - - if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { - /* Set PHY page 0, register 29 to 0x0003 */ - ret_val = phy->ops.write_reg(hw, 29, 0x0003); - if (ret_val) - goto out; - - /* Set PHY page 0, register 30 to 0x0000 */ - ret_val = phy->ops.write_reg(hw, 30, 0x0000); - if (ret_val) - goto out; - } - - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - goto out; - } - - if (phy->type == e1000_phy_82578) { - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - goto out; - - /* 82578 PHY - set the downshift count to 1x. */ - phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; - phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - goto out; -} - -out: - return (ret_val); -} - -/* - * e1000_copper_link_setup_igp - Setup igp PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - * igp PHY's. - */ -s32 -e1000_copper_link_setup_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_copper_link_setup_igp"); - - if (phy->reset_disable) { - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - goto out; - } - - /* - * Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msec_delay(100); - - /* - * The NVM settings will configure LPLU in D3 for non-IGP1 PHYs. - */ - if (phy->type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D3\n"); - goto out; - } - } - - /* disable lplu d0 during driver init */ - if (hw->phy.ops.set_d0_lplu_state) { - ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D0\n"); - goto out; - } - } - /* Configure mdi-mdix settings */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (phy->mdix) { - case 1: - data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); - if (ret_val) - goto out; - - /* set auto-master slave resolution settings */ - if (hw->mac.autoneg) { - /* - * when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. - */ - if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - - /* Set auto Master/Slave resolution process */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - goto out; - - data &= ~CR_1000T_MS_ENABLE; - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - goto out; - } - - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - goto out; - - /* load defaults for future use */ - phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? - ((data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy->ms_type) { - case e1000_ms_force_master: - data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - data |= CR_1000T_MS_ENABLE; - data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - */ -s32 -e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - DEBUGFUNC("e1000_copper_link_autoneg"); - - /* - * Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* - * If autoneg_advertised is zero, we assume it was not defaulted by - * the calling code so we set to advertise full capability. - */ - if (phy->autoneg_advertised == 0) - phy->autoneg_advertised = phy->autoneg_mask; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - goto out; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* - * Restart auto-negotiation by setting the Auto Neg Enable bit and the - * Auto Neg Restart bit in the PHY control register. - */ - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - goto out; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - goto out; - - /* - * Does the user want to wait for Auto-Neg to complete here, or check - * at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = hw->mac.ops.wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for " - "autoneg to complete\n"); - goto out; - } - } - - hw->mac.get_link_status = true; - -out: - return (ret_val); -} - -/* - * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - * @hw: pointer to the HW structure - * - * Reads the MII auto-neg advertisement register and/or the 1000T control - * register and if the PHY is already setup for auto-negotiation, then - * return successful. Otherwise, setup advertisement and flow control to - * the appropriate values for the wanted auto-negotiation. - */ -s32 -e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg = 0; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - phy->autoneg_advertised &= phy->autoneg_mask; - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - goto out; - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = phy->ops.read_reg(hw, - PHY_1000T_CTRL, - &mii_1000t_ctrl_reg); - if (ret_val) - goto out; - } - - /* - * Need to parse both autoneg_advertised and fc and set up the - * appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise a - * plethora of combinations, we need to check each bit individually. - */ - - /* - * First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | - NWAY_AR_100TX_HD_CAPS | - NWAY_AR_10T_FD_CAPS | - NWAY_AR_10T_HD_CAPS); - mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - - DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (phy->autoneg_advertised & ADVERTISE_1000_HALF) { - /* EMPTY */ - DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* - * Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- - * negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* - * Flow control (Rx & Tx) is completely disabled by a software - * over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled, and Tx Flow control is - * disabled, by a software over-ride. - * - * Since there really isn't a way to advertise that we are - * capable of Rx Pause ONLY, we will advertise that we support - * both symmetric and asymmetric Rx PAUSE. Later (in - * e1000_config_fc_after_link_up) we will disable the hw's - * ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - goto out; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - ret_val = phy->ops.write_reg(hw, - PHY_1000T_CTRL, - mii_1000t_ctrl_reg); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_setup_copper_link_generic - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - */ -s32 -e1000_setup_copper_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_setup_copper_link_generic"); - - if (hw->mac.autoneg) { - /* - * Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - goto out; - } else { - /* - * PHY will be set to 10H, 10F, 100H or 100F depending on user - * settings. - */ - DEBUGOUT("Forcing Speed and Duplex\n"); - ret_val = hw->phy.ops.force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - goto out; - } - } - - /* - * Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000_phy_has_link_generic(hw, - COPPER_LINK_UP_LIMIT, - 10, - &link); - if (ret_val) - goto out; - - if (link) { - DEBUGOUT("Valid link established!!!\n"); - e1000_config_collision_dist_generic(hw); - ret_val = e1000_config_fc_after_link_up_generic(hw); - } else { - /* EMPTY */ - DEBUGOUT("Unable to establish link!!!\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - */ -s32 -e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - /* - * Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - goto out; - - DEBUGOUT1("IGP PSCR: %X\n", phy_data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) { - /* EMPTY */ - DEBUGOUT("Link taking longer than expected.\n"); - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Resets the PHY to commit the - * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on Tx must be set. Return successful upon - * successful completion, else return corresponding error code. - */ -s32 -e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); - - /* - * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; - - DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - /* Reset the phy to commit changes. */ - ret_val = hw->phy.ops.commit(hw); - if (ret_val) - goto out; - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) { - /* - * We didn't get link. Reset the DSP and cross our - * fingers. - */ - ret_val = phy->ops.write_reg(hw, - M88E1000_PHY_PAGE_SELECT, - 0x001d); - if (ret_val) - goto out; - ret_val = e1000_phy_reset_dsp_generic(hw); - if (ret_val) - goto out; - } - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - /* - * Resetting the phy means we need to re-force TX_CLK in the Extended - * PHY Specific Control Register to 25MHz clock from the reset value - * of 2.5MHz. - */ - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; - - /* - * In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - * @hw: pointer to the HW structure - * - * Forces the speed and duplex settings of the PHY. - * This is a function pointer entry point only called by - * PHY setup routines. - */ -s32 -e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); - - if (phy->type != e1000_phy_ife) { - ret_val = e1000_phy_force_speed_duplex_igp(hw); - goto out; - } - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); - if (ret_val) - goto out; - - /* Disable MDI-X support for 10/100 */ - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - data &= ~IFE_PMC_AUTO_MDIX; - data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); - if (ret_val) - goto out; - - DEBUGOUT1("IFE PMC: %X\n", data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, 100000, &link); - if (ret_val) - goto out; - - if (!link) { - /* EMPTY */ - DEBUGOUT("Link taking longer than expected.\n"); - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, 100000, &link); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - * @hw: pointer to the HW structure - * @phy_ctrl: pointer to current value of PHY_CONTROL - * - * Forces speed and duplex on the PHY by doing the following: disable flow - * control, force speed/duplex on the MAC, disable auto speed detection, - * disable auto-negotiation, configure duplex, configure speed, configure - * the collision distance, write configuration to CTRL register. The - * caller must write to the PHY_CONTROL register for these settings to - * take affect. - */ -void -e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl; - - DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); - - /* Turn off flow control when forcing speed/duplex */ - hw->fc.current_mode = e1000_fc_none; - - /* Force speed/duplex on the mac */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~E1000_CTRL_SPD_SEL; - - /* Disable Auto Speed Detection */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Disable autoneg on the phy */ - *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - - /* Forcing Full or Half Duplex? */ - if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { - ctrl &= ~E1000_CTRL_FD; - *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } else { - ctrl |= E1000_CTRL_FD; - *phy_ctrl |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } - - /* Forcing 10mb or 100mb? */ - if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { - ctrl |= E1000_CTRL_SPD_100; - *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - DEBUGOUT("Forcing 100mb\n"); - } else { - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - /* LINTED */ - *phy_ctrl |= MII_CR_SPEED_10; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb\n"); - } - - e1000_config_collision_dist_generic(hw); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); -} - -/* - * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - */ -s32 -e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_generic"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - goto out; - - if (!active) { - data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, - IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, - IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - } - -out: - return (ret_val); -} - -/* - * e1000_check_downshift_generic - Checks whether a downshift in speed occurred - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns 1 - * - * A downshift is detected by querying the PHY link health. - */ -s32 -e1000_check_downshift_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_downshift_generic"); - - switch (phy->type) { - case e1000_phy_m88: - case e1000_phy_gg82563: - case e1000_phy_bm: - case e1000_phy_82578: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; - break; - case e1000_phy_igp_2: - case e1000_phy_igp: - case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; - break; - default: - /* speed downshift not supported */ - phy->speed_downgraded = false; - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->speed_downgraded = (phy_data & mask) ? true : false; - -out: - return (ret_val); -} - -/* - * e1000_check_polarity_m88 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - */ -s32 -e1000_check_polarity_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); - - if (!ret_val) - phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return (ret_val); -} - -/* - * e1000_check_polarity_igp - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY port status register, and the - * current speed (since there is no polarity at 100Mbps). - */ -s32 -e1000_check_polarity_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_igp"); - - /* - * Polarity is determined based on the speed of our connection. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - goto out; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; - } else { - /* - * This really only applies to 10Mbps since there is no - * polarity for 100Mbps (always 0). - */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; - } - - ret_val = phy->ops.read_reg(hw, offset, &data); - - if (!ret_val) - phy->cable_polarity = (data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - -out: - return (ret_val); -} - -/* - * e1000_check_polarity_ife - Check cable polarity for IFE PHY - * @hw: pointer to the HW structure - * - * Polarity is determined on the polarity reversal feature being enabled. - */ -s32 -e1000_check_polarity_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_ife"); - - /* - * Polarity is determined based on the reversal feature being enabled. - */ - if (phy->polarity_correction) { - offset = IFE_PHY_EXTENDED_STATUS_CONTROL; - mask = IFE_PESC_POLARITY_REVERSED; - } else { - offset = IFE_PHY_SPECIAL_CONTROL; - mask = IFE_PSC_FORCE_POLARITY; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->cable_polarity = (phy_data & mask) - ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - - return (ret_val); -} - -/* - * e1000_wait_autoneg_generic - Wait for auto-neg completion - * @hw: pointer to the HW structure - * - * Waits for auto-negotiation to complete or for the auto-negotiation time - * limit to expire, which ever happens first. - */ -s32 -e1000_wait_autoneg_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_wait_autoneg_generic"); - - if (!(hw->phy.ops.read_reg)) - return (E1000_SUCCESS); - - /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ - for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_AUTONEG_COMPLETE) - break; - msec_delay(100); - } - - /* - * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation has - * completed. - */ - return (ret_val); -} - -/* - * e1000_phy_has_link_generic - Polls PHY for link - * @hw: pointer to the HW structure - * @iterations: number of times to poll for link - * @usec_interval: delay between polling attempts - * @success: pointer to whether polling was successful or not - * - * Polls the PHY status register for link, 'iterations' number of times. - */ -s32 -e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_phy_has_link_generic"); - - if (!(hw->phy.ops.read_reg)) - return (E1000_SUCCESS); - - for (i = 0; i < iterations; i++) { - /* - * Some PHYs require the PHY_STATUS register to be read twice - * due to the link bit being sticky. No harm doing it across - * the board. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) { - /* - * If the first read fails, another entity may have - * ownership of the resources, wait and try again to - * see if they have relinquished the resources yet. - */ - usec_delay(usec_interval); - } - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_LINK_STATUS) - break; - if (usec_interval >= 1000) - msec_delay_irq(usec_interval / 1000); - else - usec_delay(usec_interval); - } - - *success = (i < iterations) ? true : false; - - return (ret_val); -} - -/* - * e1000_get_cable_length_m88 - Determine cable length for m88 PHY - * @hw: pointer to the HW structure - * - * Reads the PHY specific status register to retrieve the cable length - * information. The cable length is determined by averaging the minimum and - * maximum values to get the "average" cable length. The m88 PHY has four - * possible cable length values, which are: - * Register Value Cable Length - * 0 < 50 meters - * 1 50 - 80 meters - * 2 80 - 110 meters - * 3 110 - 140 meters - * 4 > 140 meters - */ -s32 -e1000_get_cable_length_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - DEBUGFUNC("e1000_get_cable_length_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { - ret_val = E1000_ERR_PHY; - goto out; - } - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return (ret_val); -} - -/* - * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - */ -s32 -e1000_get_cable_length_igp_2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_data, i, agc_value = 0; - u16 cur_agc_index, max_agc_index = 0; - u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; - u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = - {IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D}; - - DEBUGFUNC("e1000_get_cable_length_igp_2"); - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - goto out; - - /* - * Getting bits 15:9, which represent the combination of - * coarse and fine gain values. The result is a number that - * can be put into the lookup table to obtain the approximate - * cable length. - */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0; - phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return (ret_val); -} - -/* - * e1000_get_phy_info_m88 - Retrieve PHY information - * @hw: pointer to the HW structure - * - * Valid for only copper links. Read the PHY status register (sticky read) - * to verify that link is up. Read the PHY special control register to - * determine the polarity and 10base-T extended distance. Read the PHY - * special status register to determine MDI/MDIx and current speed. If - * speed is 1000, then determine cable length, local and remote receiver. - */ -s32 -e1000_get_phy_info_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_m88"); - - if (hw->phy.media_type != e1000_media_type_copper) { - DEBUGOUT("Phy info is only valid for copper media\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) - ? true - : false; - - ret_val = e1000_check_polarity_m88(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - goto out; - - phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - /* Set values to "undefined" */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return (ret_val); -} - -/* - * e1000_get_phy_info_igp - Retrieve igp PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - */ -s32 -e1000_get_phy_info_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_igp"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_igp(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - goto out; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return (ret_val); -} - -/* - * e1000_phy_sw_reset_generic - PHY software reset - * @hw: pointer to the HW structure - * - * Does a software reset of the PHY by reading the PHY control register and - * setting/write the control register reset bit to the PHY. - */ -s32 -e1000_phy_sw_reset_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 phy_ctrl; - - DEBUGFUNC("e1000_phy_sw_reset_generic"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - goto out; - - phy_ctrl |= MII_CR_RESET; - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - goto out; - - usec_delay(1); - -out: - return (ret_val); -} - -/* - * e1000_phy_hw_reset_generic - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - */ -s32 -e1000_phy_hw_reset_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 ctrl; - - DEBUGFUNC("e1000_phy_hw_reset_generic"); - - ret_val = phy->ops.check_reset_block(hw); - if (ret_val) { - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = phy->ops.acquire(hw); - if (ret_val) - goto out; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - usec_delay(phy->reset_delay_us); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - usec_delay(150); - - phy->ops.release(hw); - - ret_val = phy->ops.get_cfg_done(hw); - -out: - return (ret_val); -} - -/* - * e1000_get_cfg_done_generic - Generic configuration done - * @hw: pointer to the HW structure - * - * Generic function to wait 10 milli-seconds for configuration to complete - * and return success. - */ -s32 -e1000_get_cfg_done_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_get_cfg_done_generic"); - UNREFERENCED_1PARAMETER(hw); - - msec_delay_irq(10); - - return (E1000_SUCCESS); -} - -/* - * e1000_phy_init_script_igp3 - Inits the IGP3 PHY - * @hw: pointer to the HW structure - * - * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - */ -s32 -e1000_phy_init_script_igp3(struct e1000_hw *hw) -{ - DEBUGOUT("Running IGP 3 PHY init script\n"); - - /* PHY init IGP 3 */ - /* Enable rise/fall, 10-mode work in class-A */ - hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); - /* Remove all caps from Replica path filter */ - hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); - /* Bias trimming for ADC, AFE and Driver (Default) */ - hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); - /* Increase Hybrid poly bias */ - hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); - /* Add 4% to TX amplitude in Giga mode */ - hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); - /* Disable trimming (TTT) */ - hw->phy.ops.write_reg(hw, 0x2011, 0x0000); - /* Poly DC correction to 94.6% + 2% for all channels */ - hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); - /* ABS DC correction to 95.9% */ - hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); - /* BG temp curve trim */ - hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); - /* Increasing ADC OPAMP stage 1 currents to max */ - hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); - /* Force 1000 ( required for enabling PHY regs configuration) */ - hw->phy.ops.write_reg(hw, 0x0000, 0x0140); - /* Set upd_freq to 6 */ - hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); - /* Disable NPDFE */ - hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); - /* Disable adaptive fixed FFE (Default) */ - hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); - /* Enable FFE hysteresis */ - hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); - /* Fixed FFE for short cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); - /* Fixed FFE for medium cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); - /* Fixed FFE for long cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); - /* Enable Adaptive Clip Threshold */ - hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); - /* AHT reset limit to 1 */ - hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); - /* Set AHT master delay to 127 msec */ - hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); - /* Set scan bits for AHT */ - hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); - /* Set AHT Preset bits */ - hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); - /* Change integ_factor of channel A to 3 */ - hw->phy.ops.write_reg(hw, 0x1895, 0x0003); - /* Change prop_factor of channels BCD to 8 */ - hw->phy.ops.write_reg(hw, 0x1796, 0x0008); - /* Change cg_icount + enable integbp for channels BCD */ - hw->phy.ops.write_reg(hw, 0x1798, 0xD008); - /* - * Change cg_icount + enable integbp + change prop_factor_master to 8 - * for channel A - */ - hw->phy.ops.write_reg(hw, 0x1898, 0xD918); - /* Disable AHT in Slave mode on channel A */ - hw->phy.ops.write_reg(hw, 0x187A, 0x0800); - /* - * Enable LPLU and disable AN to 1000 in non-D0a states, Enable - * SPD+B2B - */ - hw->phy.ops.write_reg(hw, 0x0019, 0x008D); - /* Enable restart AN on an1000_dis change */ - hw->phy.ops.write_reg(hw, 0x001B, 0x2080); - /* Enable wh_fifo read clock in 10/100 modes */ - hw->phy.ops.write_reg(hw, 0x0014, 0x0045); - /* Restart AN, Speed selection is 1000 */ - hw->phy.ops.write_reg(hw, 0x0000, 0x1340); - - return (E1000_SUCCESS); -} - -/* - * e1000_get_phy_type_from_id - Get PHY type from id - * @phy_id: phy_id read from the phy - * - * Returns the phy type from the id. - */ -enum e1000_phy_type -e1000_get_phy_type_from_id(u32 phy_id) -{ - enum e1000_phy_type phy_type = e1000_phy_unknown; - - switch (phy_id) { - case M88E1000_I_PHY_ID: - case M88E1000_E_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1011_I_PHY_ID: - phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ - phy_type = e1000_phy_igp_2; - break; - case GG82563_E_PHY_ID: - phy_type = e1000_phy_gg82563; - break; - case IGP03E1000_E_PHY_ID: - phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy_type = e1000_phy_ife; - break; - case BME1000_E_PHY_ID: - case BME1000_E_PHY_ID_R2: - phy_type = e1000_phy_bm; - break; - case I82578_E_PHY_ID: - phy_type = e1000_phy_82578; - break; - case I82577_E_PHY_ID: - phy_type = e1000_phy_82577; - break; - case I82579_E_PHY_ID: - phy_type = e1000_phy_82579; - break; - default: - phy_type = e1000_phy_unknown; - break; - } - return (phy_type); -} - -/* - * e1000_determine_phy_address - Determines PHY address. - * @hw: pointer to the HW structure - * - * This uses a trial and error method to loop through possible PHY - * addresses. It tests each by reading the PHY ID registers and - * checking for a match. - */ -s32 -e1000_determine_phy_address(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_PHY_TYPE; - u32 phy_addr = 0; - u32 i; - enum e1000_phy_type phy_type = e1000_phy_unknown; - - hw->phy.id = phy_type; - - for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { - hw->phy.addr = phy_addr; - i = 0; - - do { - (void) e1000_get_phy_id(hw); - phy_type = e1000_get_phy_type_from_id(hw->phy.id); - - /* - * If phy_type is valid, break - we found our - * PHY address - */ - if (phy_type != e1000_phy_unknown) { - ret_val = E1000_SUCCESS; - goto out; - } - msec_delay(1); - i++; - } while (i < 10); - } - -out: - return (ret_val); -} - -/* - * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address - * @page: page to access - * - * Returns the phy address for the page requested. - */ -static u32 -e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) -{ - u32 phy_addr = 2; - - if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) - phy_addr = 1; - - return (phy_addr); -} - -/* - * e1000_write_phy_reg_bm - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u32 page_select = 0; - u32 page = offset >> IGP_PAGE_SHIFT; - u32 page_shift = 0; - - DEBUGFUNC("e1000_write_phy_reg_bm"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, - offset, &data, false); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* - * Page select is register 31 for phy address 1 and 22 for phy - * address 2 and 3. Page select is shifted only for phy - * address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto out; - } - - ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return (ret_val); -} - -/* - * e1000_read_phy_reg_bm - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - */ -s32 -e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u32 page_select = 0; - u32 page = offset >> IGP_PAGE_SHIFT; - u32 page_shift = 0; - - DEBUGFUNC("e1000_read_phy_reg_bm"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, - offset, data, true); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* - * Page select is register 31 for phy address 1 and 22 for phy - * address 2 and 3. Page select is shifted only for phy - * address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto out; - } - - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return (ret_val); -} - -/* - * e1000_read_phy_reg_bm2 - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - */ -s32 -e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - DEBUGFUNC("e1000_write_phy_reg_bm2"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true); - goto out; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto out; - } - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return (ret_val); -} - -/* - * e1000_write_phy_reg_bm2 - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - DEBUGFUNC("e1000_write_phy_reg_bm2"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false); - goto out; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto out; - } - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -out: - hw->phy.ops.release(hw); - return (ret_val); -} - -/* - * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to read or write - * @read: determines if operation is read or write - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. Note that procedure to read the wakeup - * registers are different. It works as such: - * 1) Set page 769, register 17, bit 2 = 1 - * 2) Set page to 800 for host (801 if we were manageability) - * 3) Write the address using the address opcode (0x11) - * 4) Read or write the data using the data opcode (0x12) - * 5) Restore 769_17.2 to its original value - * - * Assumes semaphore already acquired. - */ -static s32 -e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, - u32 offset, u16 *data, bool read) -{ - s32 ret_val; - u16 reg = BM_PHY_REG_NUM(offset); - u16 phy_reg = 0; - - DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); - - /* Gig must be disabled for MDIO accesses to page 800 */ - if ((hw->mac.type == e1000_pchlan) && - (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & - E1000_PHY_CTRL_GBE_DISABLE))) { - /* EMPTY */ - DEBUGOUT("Attempting to access page 800 while gig enabled.\n"); - } - - /* All operations in this function are phy address 1 */ - hw->phy.addr = 1; - - /* Set page 769 */ - (void) e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, - (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); - - ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); - if (ret_val) { - DEBUGOUT("Could not read PHY page 769\n"); - goto out; - } - - /* First clear bit 4 to avoid a power state change */ - phy_reg &= ~(BM_WUC_HOST_WU_BIT); - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); - if (ret_val) { - DEBUGOUT("Could not clear PHY page 769 bit 4\n"); - goto out; - } - - /* Write bit 2 = 1, and clear bit 4 to 769_17 */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, - phy_reg | BM_WUC_ENABLE_BIT); - if (ret_val) { - DEBUGOUT("Could not write PHY page 769 bit 2\n"); - goto out; - } - - /* Select page 800 */ - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (BM_WUC_PAGE << IGP_PAGE_SHIFT)); - - /* Write the page 800 offset value using opcode 0x11 */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); - if (ret_val) { - DEBUGOUT("Could not write address opcode to page 800\n"); - goto out; - } - - if (read) { - /* Read the page 800 value using opcode 0x12 */ - ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - data); - } else { - /* Write the page 800 value using opcode 0x12 */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - *data); - } - - if (ret_val) { - DEBUGOUT("Could not access data value from page 800\n"); - goto out; - } - - /* - * Restore 769_17.2 to its original value Set page 769 - */ - (void) e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, - (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); - - /* Clear 769_17.2 */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); - if (ret_val) { - DEBUGOUT("Could not clear PHY page 769 bit 2\n"); - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - */ -void -e1000_power_up_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); -} - -/* - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - */ -void -e1000_power_down_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); - msec_delay(1); -} - -/* - * __e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphore before exiting. - */ -static s32 -__e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - - DEBUGFUNC("__e1000_read_phy_reg_hv"); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return (ret_val); - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, - data, true); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - data, true); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - u32 phy_addr = hw->phy.addr; - - hw->phy.addr = 1; - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, (page << IGP_PAGE_SHIFT)); - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data); -out: - if (!locked) - hw->phy.ops.release(hw); - - return (ret_val); -} - -/* - * e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores - * the retrieved information in data. Release the acquired semaphore - * before exiting. - */ -s32 -e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_phy_reg_hv(hw, offset, data, false)); -} - -/* - * e1000_read_phy_reg_hv_locked - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - */ -s32 -e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_phy_reg_hv(hw, offset, data, true)); -} - -/* - * __e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -static s32 -__e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - - DEBUGFUNC("__e1000_write_phy_reg_hv"); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return (ret_val); - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, - &data, false); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - &data, false); - goto out; - } - - hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - /* - * Workaround MDIO accesses being disabled after entering IEEE Power - * Down (whenever bit 11 of the PHY Control register is set) - */ - if ((hw->phy.type == e1000_phy_82578) && - (hw->phy.revision >= 1) && - (hw->phy.addr == 2) && - ((MAX_PHY_REG_ADDRESS & reg) == 0) && - (data & (1 << 11))) { - u16 data2 = 0x7EFF; - ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3, - &data2, false); - if (ret_val) - goto out; - } - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - u32 phy_addr = hw->phy.addr; - - hw->phy.addr = 1; - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, (page << IGP_PAGE_SHIFT)); - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); - -out: - if (!locked) - hw->phy.ops.release(hw); - - return (ret_val); -} - -/* - * e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register at the offset. - * Release the acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_phy_reg_hv(hw, offset, data, false)); -} - -/* - * e1000_write_phy_reg_hv_locked - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired. - */ -s32 -e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_phy_reg_hv(hw, offset, data, true)); -} - -/* - * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page - * @page: page to be accessed - */ -static u32 -e1000_get_phy_addr_for_hv_page(u32 page) -{ - u32 phy_addr = 2; - - if (page >= HV_INTC_FC_PAGE_START) - phy_addr = 1; - - return (phy_addr); -} - -/* - * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to be read or written - * @read: determines if operation is read or written - * - * Reads the PHY register at offset and stores the retreived information - * in data. Assumes semaphore already acquired. Note that the procedure - * to read these regs uses the address port and data port to read/write. - */ -static s32 -e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read) -{ - s32 ret_val; - u32 addr_reg = 0; - u32 data_reg = 0; - - DEBUGFUNC("e1000_access_phy_debug_regs_hv"); - - /* This takes care of the difference with desktop vs mobile phy */ - addr_reg = (hw->phy.type == e1000_phy_82578) ? - I82578_ADDR_REG : I82577_ADDR_REG; - data_reg = addr_reg + 1; - - /* All operations in this function are phy address 2 */ - hw->phy.addr = 2; - - /* masking with 0x3F to remove the page from offset */ - ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); - if (ret_val) { - DEBUGOUT("Could not write PHY the HV address register\n"); - goto out; - } - - /* Read or write the data value next */ - if (read) - ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); - else - ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); - - if (ret_val) { - DEBUGOUT("Could not read data value from HV data register\n"); - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_link_stall_workaround_hv - Si workaround - * @hw: pointer to the HW structure - * - * This function works around a Si bug where the link partner can get - * a link up indication before the PHY does. If small packets are sent - * by the link partner they can be placed in the packet buffer without - * being properly accounted for by the PHY and will stall preventing - * further packets from being received. The workaround is to clear the - * packet buffer after the PHY detects link up. - */ -s32 -e1000_link_stall_workaround_hv(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_link_stall_workaround_hv"); - - if (hw->phy.type != e1000_phy_82578) - goto out; - - /* Do not apply workaround if in PHY loopback bit 14 set */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); - if (data & PHY_CONTROL_LB) - goto out; - - /* check if link is up and at 1Gbps */ - ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); - if (ret_val) - goto out; - - data &= BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK; - - if (data != (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - goto out; - - msec_delay(200); - - /* flush the packets in the fifo buffer */ - ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, - HV_MUX_DATA_CTRL_GEN_TO_MAC | HV_MUX_DATA_CTRL_FORCE_SPEED); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, - HV_MUX_DATA_CTRL_GEN_TO_MAC); - -out: - return (ret_val); -} - -/* - * e1000_check_polarity_82577 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - */ -s32 -e1000_check_polarity_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - - if (!ret_val) - phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - */ -s32 -e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - /* - * Clear Auto-Crossover to force MDI manually. 82577 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX; - phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX; - - ret_val = phy->ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); - if (ret_val) - goto out; - - DEBUGOUT1("I82577_PHY_CTRL_2: %X\n", phy_data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, 100000, &link); - if (ret_val) - goto out; - - if (!link) { - /* EMPTY */ - DEBUGOUT("Link taking longer than expected.\n"); - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, 100000, &link); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_get_phy_info_82577 - Retrieve I82577 PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - */ -s32 -e1000_get_phy_info_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_82577"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_82577(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; - - if ((data & I82577_PHY_STATUS2_SPEED_MASK) == - I82577_PHY_STATUS2_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - goto out; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return (ret_val); -} - -/* - * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - * @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - */ -s32 -e1000_get_cable_length_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, length; - - DEBUGFUNC("e1000_get_cable_length_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); - if (ret_val) - goto out; - - length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> - I82577_DSTATUS_CABLE_LENGTH_SHIFT; - - if (length == E1000_CABLE_LENGTH_UNDEFINED) - ret_val = E1000_ERR_PHY; - - phy->cable_length = length; - -out: - return (ret_val); -} diff --git a/usr/src/uts/common/io/e1000g/e1000_phy.h b/usr/src/uts/common/io/e1000g/e1000_phy.h deleted file mode 100644 index 905ed96241..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_phy.h +++ /dev/null @@ -1,294 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_PHY_H_ -#define _E1000_PHY_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -void e1000_init_phy_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); -void e1000_null_phy_generic(struct e1000_hw *hw); -s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_check_downshift_generic(struct e1000_hw *hw); -s32 e1000_check_polarity_m88(struct e1000_hw *hw); -s32 e1000_check_polarity_igp(struct e1000_hw *hw); -s32 e1000_check_polarity_ife(struct e1000_hw *hw); -s32 e1000_check_reset_block_generic(struct e1000_hw *hw); -s32 e1000_copper_link_autoneg(struct e1000_hw *hw); -s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); -s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); -s32 e1000_get_cable_length_m88(struct e1000_hw *hw); -s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); -s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); -s32 e1000_get_phy_id(struct e1000_hw *hw); -s32 e1000_get_phy_info_igp(struct e1000_hw *hw); -s32 e1000_get_phy_info_m88(struct e1000_hw *hw); -s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); -void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); -s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); -s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); -s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); -s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); -s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); -s32 e1000_wait_autoneg_generic(struct e1000_hw *hw); -s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_phy_reset_dsp(struct e1000_hw *hw); -s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success); -s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); -enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); -s32 e1000_determine_phy_address(struct e1000_hw *hw); -s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); -void e1000_power_up_phy_copper(struct e1000_hw *hw); -void e1000_power_down_phy_copper(struct e1000_hw *hw); -s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw); -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); -s32 e1000_check_polarity_82577(struct e1000_hw *hw); -s32 e1000_get_phy_info_82577(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); -s32 e1000_get_cable_length_82577(struct e1000_hw *hw); - -#define E1000_MAX_PHY_ADDR 4 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ -#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ -#define IGP_PAGE_SHIFT 5 -#define PHY_REG_MASK 0x1F - -/* BM/HV Specific Registers */ -#define BM_PORT_CTRL_PAGE 769 -#define BM_PCIE_PAGE 770 -#define BM_WUC_PAGE 800 -#define BM_WUC_ADDRESS_OPCODE 0x11 -#define BM_WUC_DATA_OPCODE 0x12 -#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE -#define BM_WUC_ENABLE_REG 17 -#define BM_WUC_ENABLE_BIT (1 << 2) -#define BM_WUC_HOST_WU_BIT (1 << 4) - -#define PHY_UPPER_SHIFT 21 -#define BM_PHY_REG(page, reg) \ - (((reg) & MAX_PHY_REG_ADDRESS) |\ - (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\ - (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT))) -#define BM_PHY_REG_PAGE(offset) \ - ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) -#define BM_PHY_REG_NUM(offset) \ - ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ - (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ - ~MAX_PHY_REG_ADDRESS))) - -#define HV_INTC_FC_PAGE_START 768 -#define I82578_ADDR_REG 29 -#define I82577_ADDR_REG 16 -#define I82577_CFG_REG 22 -#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ -#define I82577_CTRL_REG 23 -#define I82577_CTRL_DOWNSHIFT_MASK (7 << 10) - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2 18 -#define I82577_PHY_LBK_CTRL 19 -#define I82577_PHY_STATUS_2 26 -#define I82577_PHY_DIAG_STATUS 31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 -#define I82577_PHY_STATUS2_MDIX 0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 -#define I82577_PHY_STATUS2_SPEED_100MBPS 0x0100 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400 -#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH 0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -/* BM PHY Copper Specific Control 1 */ -#define BM_CS_CTRL1 16 -#define BM_CS_CTRL1_ENERGY_DETECT 0x0300 /* Enable Energy Detect */ - -/* BM PHY Copper Specific Status */ -#define BM_CS_STATUS 17 -#define BM_CS_STATUS_ENERGY_DETECT 0x0010 /* Energy Detect Status */ -#define BM_CS_STATUS_LINK_UP 0x0400 -#define BM_CS_STATUS_RESOLVED 0x0800 -#define BM_CS_STATUS_SPEED_MASK 0xC000 -#define BM_CS_STATUS_SPEED_1000 0x8000 - -/* 82577 Mobile Phy Status Register */ -#define HV_M_STATUS 26 -#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000 -#define HV_M_STATUS_SPEED_MASK 0x0300 -#define HV_M_STATUS_SPEED_1000 0x0200 -#define HV_M_STATUS_LINK_UP 0x0040 - -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ - -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 - -/* Enable flexible speed on link-up */ -#define IGP01E1000_GMII_FLEX_SPD 0x0010 -#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ - -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 - -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 - -#define IGP02E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F -#define IGP02E1000_AGC_RANGE 15 - -#define IGP03E1000_PHY_MISC_CTRL 0x1B -#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */ - -#define E1000_CABLE_LENGTH_UNDEFINED 0xFF - -#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 -#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KMRNCTRLSTA_REN 0x00200000 -#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */ -#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ -#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ -#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ -#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ -#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ -#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7 -#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 -#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */ - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ - -/* IFE PHY Extended Status Control */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 - -/* IFE PHY Special Control */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 -#define IFE_PSC_FORCE_POLARITY 0x0020 -#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 - -/* IFE PHY Special Control and LED Control */ -#define IFE_PSCL_PROBE_MODE 0x0020 -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -/* IFE PHY MDIX Control */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_PHY_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000_regs.h b/usr/src/uts/common/io/e1000g/e1000_regs.h deleted file mode 100644 index 8e6353921e..0000000000 --- a/usr/src/uts/common/io/e1000g/e1000_regs.h +++ /dev/null @@ -1,383 +0,0 @@ -/* - * This file is provided under a CDDLv1 license. When using or - * redistributing this file, you may do so under this license. - * In redistributing this file this license must be included - * and no other modification of this header file is permitted. - * - * CDDL LICENSE SUMMARY - * - * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. - * - * The contents of this file are subject to the terms of Version - * 1.0 of the Common Development and Distribution License (the "License"). - * - * You should have received a copy of the License with this software. - * You can obtain a copy of the License at - * http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - */ - -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms of the CDDLv1. - */ - -/* - * Copyright (c) 2001-2010, Intel Corporation - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * 1. Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * - * 3. Neither the name of the Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived from - * this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_REGS_H_ -#define _E1000_REGS_H_ - -#ifdef __cplusplus -extern "C" { -#endif - -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FEXT 0x0002C /* Future Extended - RW */ -#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */ -#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ -#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ -#define E1000_SVCR 0x000F0 -#define E1000_SVT 0x000F4 -#define E1000_RCTL 0x00100 /* Rx Control - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ -#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */ -#define E1000_TCTL 0x00400 /* Tx Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ -#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ -#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ -#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ -#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ -#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n))) -#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ -#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ -/* Split and Replication Rx Control - RW */ -#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ -#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ -#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ -#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ -#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ -#define E1000_RXCTL(_n) (0x0C014 + (0x40 * (_n))) -#define E1000_RQDPC(_n) (0x0C030 + (0x40 * (_n))) -#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ -#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ -/* - * Convenience macros - * - * Note: "_n" is the queue number of the register to be written to. - * - * Example usage: - * E1000_RDBAL_REG(current_rx_queue) - */ -#define E1000_RDBAL(_n) \ - ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : (0x0C000 + ((_n) * 0x40))) -#define E1000_RDBAH(_n) \ - ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : (0x0C004 + ((_n) * 0x40))) -#define E1000_RDLEN(_n) \ - ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : (0x0C008 + ((_n) * 0x40))) -#define E1000_SRRCTL(_n) \ - ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : (0x0C00C + ((_n) * 0x40))) -#define E1000_RDH(_n) \ - ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : (0x0C010 + ((_n) * 0x40))) -#define E1000_RDT(_n) \ - ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : (0x0C018 + ((_n) * 0x40))) -#define E1000_RXDCTL(_n) \ - ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : (0x0C028 + ((_n) * 0x40))) -#define E1000_TDBAL(_n) \ - ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : (0x0E000 + ((_n) * 0x40))) -#define E1000_TDBAH(_n) \ - ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : (0x0E004 + ((_n) * 0x40))) -#define E1000_TDLEN(_n) \ - ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : (0x0E008 + ((_n) * 0x40))) -#define E1000_TDH(_n) \ - ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : (0x0E010 + ((_n) * 0x40))) -#define E1000_TDT(_n) \ - ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : (0x0E018 + ((_n) * 0x40))) -#define E1000_TXDCTL(_n) \ - ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : (0x0E028 + ((_n) * 0x40))) -#define E1000_TARC(_n) (0x03840 + (_n << 8)) -#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8)) -#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8)) -#define E1000_TDWBAL(_n) \ - ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : (0x0E038 + ((_n) * 0x40))) -#define E1000_TDWBAH(_n) \ - ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : (0x0E03C + ((_n) * 0x40))) -#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) -#define E1000_RAL(_i) \ - (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : (0x054E0 + ((_i - 16) * 8))) -#define E1000_RAH(_i) \ - (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : (0x054E4 + ((_i - 16) * 8))) -#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) -#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) -#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) -#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) -#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) -#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) -#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) -#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) -#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ -#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */ -#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */ -#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */ -#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */ -#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */ -#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ -#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ -#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -/* Interrupt Cause Rx Pkt Timer Expire Count */ -#define E1000_ICRXPTC 0x04104 -/* Interrupt Cause Rx Abs Timer Expire Count */ -#define E1000_ICRXATC 0x04108 -/* Interrupt Cause Tx Pkt Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C -/* Interrupt Cause Tx Abs Timer Expire Count */ -#define E1000_ICTXATC 0x04110 -/* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQEC 0x04118 -/* Interrupt Cause Tx Queue Min Thresh Count */ -#define E1000_ICTXQMTC 0x0411C -/* Interrupt Cause Rx Desc Min Thresh Count */ -#define E1000_ICRXDMTC 0x04120 -/* Interrupt Cause Receiver Overrun Count */ -#define E1000_ICRXOC 0x04124 - -#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */ - -#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ -#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ -#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ -#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ -#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ -#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ -#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ -#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ -#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ -#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ -#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ -#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ -#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ -#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ -#define E1000_LENERRS 0x04138 /* Length Errors Count */ -#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ -#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ -#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ -#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ -#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ -#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */ -#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */ -#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ -#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control */ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ -#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ -#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ - -#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MDPHYA 0x0003C /* PHY address - RW */ -#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ -#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ -#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ -#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ -#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -/* Driver-only SW semaphore (not used by BOOT agents) */ -#define E1000_SWSM2 0x05B58 -#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ -#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Interface Control */ - -/* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ -#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate Interrupt Ext */ -#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */ -/* MSI-X Allocation Register (_i) - RW */ -#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) -/* MSI-X Table entry addr low reg - RW */ -#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) -/* MSI-X Table entry addr upper reg - RW */ -#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) -/* MSI-X Table entry message reg - RW */ -#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) -/* MSI-X Table entry vector ctrl reg - RW */ -#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) -#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */ -#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ -#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ -#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */ -#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ - -#ifdef __cplusplus -} -#endif - -#endif /* _E1000_REGS_H_ */ diff --git a/usr/src/uts/common/io/e1000g/e1000g_main.c b/usr/src/uts/common/io/e1000g/e1000g_main.c index dcc7d87190..b05dd700ed 100644 --- a/usr/src/uts/common/io/e1000g/e1000g_main.c +++ b/usr/src/uts/common/io/e1000g/e1000g_main.c @@ -683,6 +683,7 @@ e1000g_regs_map(struct e1000g *Adapter) case e1000_ich10lan: case e1000_pchlan: case e1000_pch2lan: + case e1000_pch_lpt: rnumber = ICH_FLASH_REG_SET; /* get flash size */ @@ -889,6 +890,7 @@ e1000g_setup_max_mtu(struct e1000g *Adapter) break; /* pch2 can do jumbo frames up to 9K */ case e1000_pch2lan: + case e1000_pch_lpt: Adapter->max_mtu = MAXIMUM_MTU_9K; break; /* types with a special limit */ @@ -1451,6 +1453,8 @@ e1000g_init(struct e1000g *Adapter) pba = E1000_PBA_26K; } else if (hw->mac.type == e1000_pch2lan) { pba = E1000_PBA_26K; + } else if (hw->mac.type == e1000_pch_lpt) { + pba = E1000_PBA_26K; } else { /* * Total FIFO is 40K diff --git a/usr/src/uts/common/io/e1000g/e1000_osdep.c b/usr/src/uts/common/io/e1000g/e1000g_osdep.c index 12ae161a1d..3a2ed63b6e 100644 --- a/usr/src/uts/common/io/e1000g/e1000_osdep.c +++ b/usr/src/uts/common/io/e1000g/e1000g_osdep.c @@ -115,6 +115,46 @@ e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) } /* + * Write the given 16-bit value to pci-e config space at offset reg into the + * pci-e capability block. Note that this refers to the pci-e capability block + * in standard pci config space, not the block in pci-e extended config space. + */ +int32_t +e1000_write_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) +{ + uint8_t pcie_id = PCI_CAP_ID_PCI_E; + uint16_t pcie_cap; + int32_t status; + + /* locate the pci-e capability block */ + status = pci_lcap_locate(OS_DEP(hw)->cfg_handle, pcie_id, &pcie_cap); + if (status == DDI_SUCCESS) { + + /* write at given offset into block */ + pci_config_put16(OS_DEP(hw)->cfg_handle, + (off_t)(pcie_cap + reg), *value); + } + + return (status); +} + +/* + * e1000_rar_set_vmdq - Clear the RAR registers + */ +void +e1000_rar_clear(struct e1000_hw *hw, uint32_t index) +{ + + uint32_t rar_high; + + /* Make the hardware the Address invalid by setting the clear bit */ + rar_high = ~E1000_RAH_AV; + + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(hw); +} + +/* * For some hardware types, access to NVM & PHY need to be serialized by mutex. * The necessary mutexes will have been created by shared code. Here we destroy * that mutexes for just the hardware types that need it. diff --git a/usr/src/uts/common/io/e1000g/e1000g_workarounds.c b/usr/src/uts/common/io/e1000g/e1000g_workarounds.c new file mode 100644 index 0000000000..b035cd8097 --- /dev/null +++ b/usr/src/uts/common/io/e1000g/e1000g_workarounds.c @@ -0,0 +1,260 @@ +/* + * This file is provided under a CDDLv1 license. When using or + * redistributing this file, you may do so under this license. + * In redistributing this file this license must be included + * and no other modification of this header file is permitted. + * + * CDDL LICENSE SUMMARY + * + * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved. + * + * The contents of this file are subject to the terms of Version + * 1.0 of the Common Development and Distribution License (the "License"). + * + * You should have received a copy of the License with this software. + * You can obtain a copy of the License at + * http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + */ + +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms of the CDDLv1. + */ +#include "e1000_api.h" + +/* + * e1000_ttl_workaround_enabled_82541 - Returns current TTL workaround status + * @hw: pointer to the HW structure + * + * Returns the current status of the TTL workaround, as to whether the + * workaround is enabled or disabled. + */ +bool +e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + bool state = false; + + DEBUGFUNC("e1000_ttl_workaround_enabled_82541"); + + if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547)) + goto out; + + state = dev_spec->ttl_workaround; + +out: + return (state); +} + +/* + * e1000_fifo_workaround_82547 - Workaround for Tx fifo failure + * @hw: pointer to the HW structure + * @length: length of next outgoing frame + * + * Returns: E1000_ERR_FIFO_WRAP if the next packet cannot be transmitted yet + * E1000_SUCCESS if the next packet can be transmitted + * + * Workaround for the 82547 Tx fifo failure. + */ +s32 +e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + u32 tctl; + s32 ret_val = E1000_SUCCESS; + u16 fifo_pkt_len; + + DEBUGFUNC("e1000_fifo_workaround_82547"); + + if (hw->mac.type != e1000_82547) + goto out; + + /* + * Get the length as seen by the FIFO of the next real + * packet to be transmitted. + */ + fifo_pkt_len = E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE, + E1000_FIFO_GRANULARITY); + + if (fifo_pkt_len <= (E1000_FIFO_PAD_82547 + E1000_FIFO_HDR_SIZE)) + goto out; + + if ((dev_spec->tx_fifo_head + fifo_pkt_len) < + (dev_spec->tx_fifo_size + E1000_FIFO_PAD_82547)) + goto out; + + if (E1000_READ_REG(hw, E1000_TDT(0)) != + E1000_READ_REG(hw, E1000_TDH(0))) { + ret_val = -E1000_ERR_FIFO_WRAP; + goto out; + } + + if (E1000_READ_REG(hw, E1000_TDFT) != E1000_READ_REG(hw, E1000_TDFH)) { + ret_val = -E1000_ERR_FIFO_WRAP; + goto out; + } + + if (E1000_READ_REG(hw, E1000_TDFTS) != + E1000_READ_REG(hw, E1000_TDFHS)) { + ret_val = -E1000_ERR_FIFO_WRAP; + goto out; + } + + /* Disable the tx unit to avoid further pointer movement */ + tctl = E1000_READ_REG(hw, E1000_TCTL); + E1000_WRITE_REG(hw, E1000_TCTL, tctl & ~E1000_TCTL_EN); + + /* Reset the fifo pointers. */ + E1000_WRITE_REG(hw, E1000_TDFT, dev_spec->tx_fifo_start); + E1000_WRITE_REG(hw, E1000_TDFH, dev_spec->tx_fifo_start); + E1000_WRITE_REG(hw, E1000_TDFTS, dev_spec->tx_fifo_start); + E1000_WRITE_REG(hw, E1000_TDFHS, dev_spec->tx_fifo_start); + + /* Re-enabling tx unit */ + E1000_WRITE_REG(hw, E1000_TCTL, tctl); + E1000_WRITE_FLUSH(hw); + + dev_spec->tx_fifo_head = 0; + +out: + return (ret_val); +} + +/* + * e1000_update_tx_fifo_head - Update Tx fifo head pointer + * @hw: pointer to the HW structure + * @length: length of next outgoing frame + * + * Updates the SW calculated Tx FIFO head pointer. + */ +void +e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + + DEBUGFUNC("e1000_update_tx_fifo_head_82547"); + + if (hw->mac.type != e1000_82547) + return; + + dev_spec->tx_fifo_head += E1000_ROUNDUP(length + E1000_FIFO_HDR_SIZE, + E1000_FIFO_GRANULARITY); + + if (dev_spec->tx_fifo_head > dev_spec->tx_fifo_size) + dev_spec->tx_fifo_head -= dev_spec->tx_fifo_size; +} + +/* + * e1000_set_ttl_workaround_state_82541 - Enable/Disables TTL workaround + * @hw: pointer to the HW structure + * @state: boolean to enable/disable TTL workaround + * + * For 82541 or 82547 only silicon, allows the driver to enable/disable the + * TTL workaround. + */ +void +e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, bool state) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + + DEBUGFUNC("e1000_set_ttl_workaround_state_82541"); + + if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547)) + return; + + dev_spec->ttl_workaround = state; +} + +/* + * e1000_igp_ttl_workaround_82547 - Workaround for long TTL on 100HD hubs + * @hw: pointer to the HW structure + * + * Returns: E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS in any other case + * + * This function, specific to 82547 hardware only, needs to be called every + * second. It checks if a parallel detect fault has occurred. If a fault + * occurred, disable/enable the DSP reset mechanism up to 5 times (once per + * second). If link is established, stop the workaround and ensure the DSP + * reset is enabled. + */ +s32 +e1000_igp_ttl_workaround_82547(struct e1000_hw *hw) +{ + struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; + s32 ret_val = E1000_SUCCESS; + u16 phy_data = 0; + u16 dsp_value = DSP_RESET_ENABLE; + bool link; + + DEBUGFUNC("e1000_igp_ttl_workaround_82547"); + + /* The workaround needed only for B-0 silicon HW */ + if ((hw->mac.type != e1000_82541) && (hw->mac.type != e1000_82547)) + goto out; + + if (!(e1000_ttl_workaround_enabled_82541(hw))) + goto out; + + /* Check for link first */ + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + goto out; + + if (link) { + /* + * If link is established during the workaround, + * the DSP mechanism must be enabled. + */ + if (dev_spec->dsp_reset_counter) { + dev_spec->dsp_reset_counter = 0; + dsp_value = DSP_RESET_ENABLE; + } else { + ret_val = E1000_SUCCESS; + goto out; + } + } else { + if (dev_spec->dsp_reset_counter == 0) { + /* + * Workaround not activated, + * check if it needs activation + */ + ret_val = hw->phy.ops.read_reg(hw, + PHY_AUTONEG_EXP, + &phy_data); + if (ret_val) + goto out; + /* + * Activate the workaround if there was a + * parallel detect fault + */ + if (phy_data & NWAY_ER_PAR_DETECT_FAULT) { + dev_spec->dsp_reset_counter++; + } else { + ret_val = E1000_SUCCESS; + goto out; + } + } + + /* After 5 times, stop the workaround */ + if (dev_spec->dsp_reset_counter > E1000_MAX_DSP_RESETS) { + dev_spec->dsp_reset_counter = 0; + dsp_value = DSP_RESET_ENABLE; + } else { + if (dev_spec->dsp_reset_counter) { + dsp_value = (dev_spec->dsp_reset_counter & 1) + ? DSP_RESET_DISABLE + : DSP_RESET_ENABLE; + dev_spec->dsp_reset_counter++; + } + } + } + + ret_val = + hw->phy.ops.write_reg(hw, IGP01E1000_PHY_DSP_RESET, dsp_value); + +out: + return (ret_val); +} diff --git a/usr/src/uts/common/io/igb/igb_osdep.h b/usr/src/uts/common/io/igb/e1000_osdep.h index 54b5446c12..afe04ffb76 100644 --- a/usr/src/uts/common/io/igb/igb_osdep.h +++ b/usr/src/uts/common/io/igb/e1000_osdep.h @@ -75,6 +75,8 @@ extern "C" { #define false B_FALSE #define true B_TRUE +#define FALSE false +#define TRUE true #define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ #define PCI_COMMAND_REGISTER 0x04 @@ -132,6 +134,23 @@ extern "C" { #define E1000_READ_REG_ARRAY_DWORD(a, reg, offset) \ E1000_READ_REG_ARRAY(a, reg, offset) + +#define E1000_READ_FLASH_REG(hw, reg) \ + ddi_get32((OS_DEP(hw))->ich_flash_handle, \ + (uint32_t *)((uintptr_t)(hw)->flash_address + (reg))) + +#define E1000_READ_FLASH_REG16(hw, reg) \ + ddi_get16((OS_DEP(hw))->ich_flash_handle, \ + (uint16_t *)((uintptr_t)(hw)->flash_address + (reg))) + +#define E1000_WRITE_FLASH_REG(hw, reg, value) \ + ddi_put32((OS_DEP(hw))->ich_flash_handle, \ + (uint32_t *)((uintptr_t)(hw)->flash_address + (reg)), (value)) + +#define E1000_WRITE_FLASH_REG16(hw, reg, value) \ + ddi_put16((OS_DEP(hw))->ich_flash_handle, \ + (uint16_t *)((uintptr_t)(hw)->flash_address + (reg)), (value)) + #define UNREFERENCED_1PARAMETER(_p) _NOTE(ARGUNUSED(_p)) #define UNREFERENCED_2PARAMETER(_p, _q) _NOTE(ARGUNUSED(_p, _q)) #define UNREFERENCED_3PARAMETER(_p, _q, _r) _NOTE(ARGUNUSED(_p, _q, _r)) @@ -153,12 +172,42 @@ typedef uint32_t u32; typedef uint64_t u64; typedef boolean_t bool; +/* + * igb only uses the first two of the ddi_acc_handle_t, the latter end up coming + * from the common code for devices that igb doesn't support. For now, we end up + * bringing in those other two handles just for making life easier for sharin + * code. + */ struct igb_osdep { ddi_acc_handle_t reg_handle; ddi_acc_handle_t cfg_handle; + ddi_acc_handle_t ich_flash_handle; /* UNUSED */ + ddi_acc_handle_t io_reg_handle; /* UNUSED */ struct igb *igb; }; +/* Shared Code Mutex Defines */ +#define E1000_MUTEX kmutex_t +#define E1000_MUTEX_INIT(mutex) mutex_init(mutex, NULL, \ + MUTEX_DRIVER, NULL) +#define E1000_MUTEX_DESTROY(mutex) mutex_destroy(mutex) + +#define E1000_MUTEX_LOCK(mutex) mutex_enter(mutex) +#define E1000_MUTEX_TRYLOCK(mutex) mutex_tryenter(mutex) +#define E1000_MUTEX_UNLOCK(mutex) mutex_exit(mutex) + +#ifdef __sparc /* on SPARC, use only memory-mapped routines */ +#define E1000_WRITE_REG_IO E1000_WRITE_REG +#else /* on x86, use port io routines */ +#define E1000_WRITE_REG_IO(a, reg, val) { \ + ddi_put32((OS_DEP(a))->io_reg_handle, \ + (uint32_t *)(a)->io_base, \ + reg); \ + ddi_put32((OS_DEP(a))->io_reg_handle, \ + (uint32_t *)((a)->io_base + 4), \ + val); \ +} +#endif /* __sparc */ #ifdef __cplusplus } diff --git a/usr/src/uts/common/io/igb/igb_82575.c b/usr/src/uts/common/io/igb/igb_82575.c deleted file mode 100644 index f3f69474ec..0000000000 --- a/usr/src/uts/common/io/igb/igb_82575.c +++ /dev/null @@ -1,2145 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2007-2012 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - * Copyright 2013, Nexenta Systems, Inc. All rights reserved. - */ - -/* IntelVersion: 1.146.2.2 v3_3_14_3_BHSW1 */ - -/* - * 82575EB Gigabit Network Connection - * 82575EB Gigabit Backplane Connection - * 82575GB Gigabit Network Connection - * 82576 Gigabit Network Connection - * 82576 Quad Port Gigabit Mezzanine Adapter - */ - -#include "igb_api.h" - -static s32 e1000_init_phy_params_82575(struct e1000_hw *hw); -static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); -static s32 e1000_init_mac_params_82575(struct e1000_hw *hw); -static s32 e1000_acquire_phy_82575(struct e1000_hw *hw); -static void e1000_release_phy_82575(struct e1000_hw *hw); -static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); -static void e1000_release_nvm_82575(struct e1000_hw *hw); -static s32 e1000_check_for_link_82575(struct e1000_hw *hw); -static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); -static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -static s32 e1000_init_hw_82575(struct e1000_hw *hw); -static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); -static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 *data); -static s32 e1000_reset_hw_82575(struct e1000_hw *hw); -static s32 e1000_reset_hw_82580(struct e1000_hw *hw); -static s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, - u16 *data); -static s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, - u16 data); -static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, - bool active); -static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); -static s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); -static s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); -static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, - u32 offset, u16 data); -static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); -static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); -static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -static s32 e1000_get_phy_id_82575(struct e1000_hw *hw); -static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); -static bool e1000_sgmii_active_82575(struct e1000_hw *hw); -static s32 e1000_reset_init_script_82575(struct e1000_hw *hw); -static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); -static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); -static void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); -static s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); - -static s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -static s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -static s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); -static s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); -static void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); -static void e1000_clear_vfta_i350(struct e1000_hw *hw); - -static const u16 e1000_82580_rxpbs_table[] = - {36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140}; -#define E1000_82580_RXPBS_TABLE_SIZE \ - (sizeof (e1000_82580_rxpbs_table)/sizeof (u16)) - -/* - * e1000_init_phy_params_82575 - Init PHY func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_phy_params_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_init_phy_params_82575"); - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - goto out; - } - - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82575; - - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_phy_82575; - phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.get_cfg_done = e1000_get_cfg_done_82575; - phy->ops.release = e1000_release_phy_82575; - - if (e1000_sgmii_active_82575(hw)) { - phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; - phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; - phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; - } else if (hw->mac.type == e1000_82580) { - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.read_reg = e1000_read_phy_reg_82580; - phy->ops.write_reg = e1000_write_phy_reg_82580; - } else { - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.write_reg = e1000_write_phy_reg_igp; - } - - /* Set phy->phy_addr and phy->id. */ - ret_val = e1000_get_phy_id_82575(hw); - - /* Verify phy id and set remaining function pointers */ - switch (phy->id) { - case M88E1111_I_PHY_ID: - phy->type = e1000_phy_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - break; - case IGP03E1000_E_PHY_ID: - case IGP04E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; - break; - case I82580_I_PHY_ID: - case I350_I_PHY_ID: - phy->type = e1000_phy_82580; - phy->ops.check_polarity = e1000_check_polarity_82577; - phy->ops.force_speed_duplex = - e1000_phy_force_speed_duplex_82577; - phy->ops.get_cable_length = e1000_get_cable_length_82577; - phy->ops.get_info = e1000_get_phy_info_82577; - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_init_nvm_params_82575 - Init NVM func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_nvm_params_82575(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_82575"); - - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; - break; - } - - nvm->type = e1000_nvm_eeprom_spi; - - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - nvm->word_size = 1 << size; - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_82575; - nvm->ops.read = e1000_read_nvm_eerd; - nvm->ops.release = e1000_release_nvm_82575; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_82575; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_spi; - - /* override genric family function pointers for specific descendants */ - switch (hw->mac.type) { - case e1000_i350: - nvm->ops.validate = e1000_validate_nvm_checksum_i350; - nvm->ops.update = e1000_update_nvm_checksum_i350; - break; - default: - break; - } - - - return (E1000_SUCCESS); -} - -/* - * e1000_init_mac_params_82575 - Init MAC func ptrs. - * @hw: pointer to the HW structure - */ -static s32 -e1000_init_mac_params_82575(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - u32 ctrl_ext = 0; - - DEBUGFUNC("e1000_init_mac_params_82575"); - - /* Set media type */ - /* - * The 82575 uses bits 22:23 for link mode. The mode can be changed - * based on the EEPROM. We cannot rely upon device ID. There - * is no distinguishable difference between fiber and internal - * SerDes mode on the 82575. There can be an external PHY attached - * on the SGMII interface. For this, we'll set sgmii_active to true. - */ - hw->phy.media_type = e1000_media_type_copper; - dev_spec->sgmii_active = false; - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { - case E1000_CTRL_EXT_LINK_MODE_SGMII: - dev_spec->sgmii_active = true; - ctrl_ext |= E1000_CTRL_I2C_ENA; - break; - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: - hw->phy.media_type = e1000_media_type_internal_serdes; - ctrl_ext |= E1000_CTRL_I2C_ENA; - break; - default: - ctrl_ext &= ~E1000_CTRL_I2C_ENA; - break; - } - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - /* - * if using i2c make certain the MDICNFG register is cleared to prevent - * communications from being misrouted to the mdic registers - */ - if ((ctrl_ext & E1000_CTRL_I2C_ENA) && (hw->mac.type == e1000_82580)) - E1000_WRITE_REG(hw, E1000_MDICNFG, 0); - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set uta register count */ - mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES_82575; - if (mac->type == e1000_82576) - mac->rar_entry_count = E1000_RAR_ENTRIES_82576; - if (mac->type == e1000_82580) - mac->rar_entry_count = E1000_RAR_ENTRIES_82580; - if (mac->type == e1000_i350) { - mac->rar_entry_count = E1000_RAR_ENTRIES_I350; - /* Disable EEE default settings for i350 */ - dev_spec->eee_disable = B_TRUE; - } - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* Set if manageability features are enabled. */ - mac->arc_subsystem_valid = - (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) - ? true : false; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; - /* reset */ - if (mac->type == e1000_82580) - mac->ops.reset_hw = e1000_reset_hw_82580; - else - mac->ops.reset_hw = e1000_reset_hw_82575; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82575; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_generic; - /* physical interface link setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82575 - : e1000_setup_serdes_link_82575; - /* physical interface shutdown */ - mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_link_82575; - /* receive address register setting */ - mac->ops.rar_set = e1000_rar_set_generic; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82575; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - - if (hw->mac.type == e1000_i350) { - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_i350; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_i350; - } else { - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - } - /* setting MTA */ - mac->ops.mta_set = e1000_mta_set_generic; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_generic; - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_82575; - - /* set lan id for port to determine which phy lock to use */ - hw->mac.ops.set_lan_id(hw); - - return (E1000_SUCCESS); -} - -/* - * e1000_init_function_pointers_82575 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - */ -void -e1000_init_function_pointers_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82575"); - - hw->mac.ops.init_params = e1000_init_mac_params_82575; - hw->nvm.ops.init_params = e1000_init_nvm_params_82575; - hw->phy.ops.init_params = e1000_init_phy_params_82575; -} - -/* - * e1000_acquire_phy_82575 - Acquire rights to access PHY - * @hw: pointer to the HW structure - * - * Acquire access rights to the correct PHY. - */ -static s32 -e1000_acquire_phy_82575(struct e1000_hw *hw) -{ - u16 mask = E1000_SWFW_PHY0_SM; - - DEBUGFUNC("e1000_acquire_phy_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_SWFW_PHY1_SM; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_SWFW_PHY2_SM; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_SWFW_PHY3_SM; - - return (e1000_acquire_swfw_sync_82575(hw, mask)); -} - -/* - * e1000_release_phy_82575 - Release rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to release access rights to the correct PHY. - */ -static void -e1000_release_phy_82575(struct e1000_hw *hw) -{ - u16 mask = E1000_SWFW_PHY0_SM; - - DEBUGFUNC("e1000_release_phy_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_SWFW_PHY1_SM; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_SWFW_PHY2_SM; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_SWFW_PHY3_SM; - - e1000_release_swfw_sync_82575(hw, mask); -} - -/* - * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the serial gigabit media independent - * interface and stores the retrieved information in data. - */ -static s32 -e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val = -E1000_ERR_PARAM; - - DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); - - if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - DEBUGOUT1("PHY Address %u is out of range\n", offset); - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_i2c(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset using the serial gigabit - * media independent interface. - */ -static s32 -e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val = -E1000_ERR_PARAM; - - DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); - - if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_i2c(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_get_phy_id_82575 - Retrieve PHY addr and id - * @hw: pointer to the HW structure - * - * Retrieves the PHY address and ID for both PHY's which do and do not use - * sgmi interface. - */ -static s32 -e1000_get_phy_id_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - u32 ctrl_ext; - - DEBUGFUNC("e1000_get_phy_id_82575"); - - /* - * For SGMII PHYs, we try the list of possible addresses until - * we find one that works. For non-SGMII PHYs - * (e.g. integrated copper PHYs), an address of 1 should - * work. The result of this function should mean phy->phy_addr - * and phy->id are set correctly. - */ - if (!e1000_sgmii_active_82575(hw)) { - phy->addr = 1; - ret_val = e1000_get_phy_id(hw); - goto out; - } - - /* Power on sgmii phy if it is disabled */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); - E1000_WRITE_FLUSH(hw); - msec_delay(300); - - /* - * The address field in the I2CCMD register is 3 bits and 0 is invalid. - * Therefore, we need to test 1-7 - */ - for (phy->addr = 1; phy->addr < 8; phy->addr++) { - ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); - if (ret_val == E1000_SUCCESS) { - DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", - phy_id, - phy->addr); - /* - * At the time of this writing, The M88 part is - * the only supported SGMII PHY product. - */ - if (phy_id == M88_VENDOR) - break; - } else { - DEBUGOUT1("PHY address %u was unreadable\n", - phy->addr); - } - } - - /* A valid PHY type couldn't be found. */ - if (phy->addr == 8) { - phy->addr = 0; - ret_val = -E1000_ERR_PHY; - } else { - ret_val = e1000_get_phy_id(hw); - } - - /* restore previous sfp cage power state */ - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - -out: - return (ret_val); -} - -/* - * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset - * @hw: pointer to the HW structure - * - * Resets the PHY using the serial gigabit media independent interface. - */ -static s32 -e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); - - /* - * This isn't a true "hard" reset, but is the only reset - * available to us at this time. - */ - - DEBUGOUT("Soft resetting SGMII attached PHY...\n"); - - if (!(hw->phy.ops.write_reg)) - goto out; - - /* - * SFP documentation requires the following to configure the SPF module - * to work on SGMII. No further documentation is given. - */ - ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.commit(hw); - -out: - return (ret_val); -} - -/* - * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - */ -static s32 -e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82575"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - goto out; - - if (active) { - data |= IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, - IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else { - data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, - IGP02E1000_PHY_POWER_MGMT, - data); - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_acquire_nvm_82575 - Request for access to EEPROM - * @hw: pointer to the HW structure - * - * Acquire the necessary semaphores for exclusive access to the EEPROM. - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - */ -static s32 -e1000_acquire_nvm_82575(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_82575"); - - ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); - if (ret_val) - goto out; - - /* - * Check if there is some access - * error this access may hook on - */ - if (hw->mac.type == e1000_i350) { - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | - E1000_EECD_TIMEOUT)) { - /* Clear all access error flags */ - E1000_WRITE_REG(hw, E1000_EECD, eecd | - E1000_EECD_ERROR_CLR); - DEBUGOUT("Nvm bit banging access error " - "detected and cleared.\n"); - } - } - - ret_val = e1000_acquire_nvm_generic(hw); - - if (ret_val) - e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); - -out: - return (ret_val); -} - -/* - * e1000_release_nvm_82575 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit, - * then release the semaphores acquired. - */ -static void -e1000_release_nvm_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_82575"); - - e1000_release_nvm_generic(hw); - e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); -} - -/* - * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - */ -static s32 -e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 ret_val = E1000_SUCCESS; - s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ - - DEBUGFUNC("e1000_acquire_swfw_sync_82575"); - - while (i < timeout) { - if (e1000_get_hw_semaphore_generic(hw)) { - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* - * Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000_put_hw_semaphore_generic(hw); - msec_delay_irq(5); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_release_swfw_sync_82575 - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - */ -static void -e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - DEBUGFUNC("e1000_release_swfw_sync_82575"); - - while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) { - /* Empty */ - } - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - swfw_sync &= ~mask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); -} - -/* - * e1000_get_cfg_done_82575 - Read config done bit - * @hw: pointer to the HW structure - * - * Read the management control register for the config done bit for - * completion status. NOTE: silicon which is EEPROM-less will fail trying - * to read the config done bit, so an error is *ONLY* logged and returns - * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon - * would not be able to be reset or change link. - */ -static s32 -e1000_get_cfg_done_82575(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - u32 mask = E1000_NVM_CFG_DONE_PORT_0; - - DEBUGFUNC("e1000_get_cfg_done_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_NVM_CFG_DONE_PORT_1; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_NVM_CFG_DONE_PORT_2; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_NVM_CFG_DONE_PORT_3; - - while (timeout) { - if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) - break; - msec_delay(1); - timeout--; - } - if (!timeout) - DEBUGOUT("MNG configuration cycle has not completed.\n"); - - /* If EEPROM is not marked present, init the PHY manually */ - if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) && - (hw->phy.type == e1000_phy_igp_3)) - (void) e1000_phy_init_script_igp3(hw); - - return (ret_val); -} - -/* - * e1000_get_link_up_info_82575 - Get link speed/duplex info - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * This is a wrapper function, if using the serial gigabit media independent - * interface, use PCS to retrieve the link speed and duplex information. - * Otherwise, use the generic function to get the link speed and duplex info. - */ -static s32 -e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_link_up_info_82575"); - - if (hw->phy.media_type != e1000_media_type_copper) - ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, - duplex); - else - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, - duplex); - - return (ret_val); -} - -/* - * e1000_check_for_link_82575 - Check for link - * @hw: pointer to the HW structure - * - * If sgmii is enabled, then use the pcs register to determine link, otherwise - * use the generic interface for determining link. - */ -static s32 -e1000_check_for_link_82575(struct e1000_hw *hw) -{ - s32 ret_val; - u16 speed, duplex; - - DEBUGFUNC("e1000_check_for_link_82575"); - - /* SGMII link check is done through the PCS register. */ - if (hw->phy.media_type != e1000_media_type_copper) { - ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, - &duplex); - /* - * Use this flag to determine if link needs to be checked or - * not. If we have link clear the flag so that we do not - * continue to check for link. - */ - hw->mac.get_link_status = !hw->mac.serdes_has_link; - } else { - ret_val = e1000_check_for_copper_link_generic(hw); - } - - return (ret_val); -} - -/* - * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Using the physical coding sub-layer (PCS), retrieve the current speed and - * duplex, then store the values in the pointers provided. - */ -static s32 -e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, - u16 *speed, u16 *duplex) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 pcs; - - DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); - - /* Set up defaults for the return values of this function */ - mac->serdes_has_link = false; - *speed = 0; - *duplex = 0; - - /* - * Read the PCS Status register for link state. For non-copper mode, - * the status register is not accurate. The PCS status register is - * used instead. - */ - pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); - - /* - * The link up bit determines when link is up on autoneg. The sync ok - * gets set once both sides sync up and agree upon link. Stable link - * can be determined by checking for both link up and link sync ok - */ - if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { - mac->serdes_has_link = true; - - /* Detect and store PCS speed */ - if (pcs & E1000_PCS_LSTS_SPEED_1000) { - *speed = SPEED_1000; - } else if (pcs & E1000_PCS_LSTS_SPEED_100) { - *speed = SPEED_100; - } else { - *speed = SPEED_10; - } - - /* Detect and store PCS duplex */ - if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { - *duplex = FULL_DUPLEX; - } else { - *duplex = HALF_DUPLEX; - } - } - - return (E1000_SUCCESS); -} - -/* - * e1000_shutdown_serdes_link_82575 - Remove link during power down - * @hw: pointer to the HW structure - * - * In the case of serdes shut down sfp and PCS on driver unload - * when management pass thru is not enabled. - */ -void -e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) -{ - u32 reg; - u16 eeprom_data = 0; - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return; - - if (hw->bus.func == E1000_FUNC_0) - hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); - else if (hw->mac.type == e1000_82580) - hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + - NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, - &eeprom_data); - else if (hw->bus.func == E1000_FUNC_1) - hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); - - /* - * If APM is not enabled in the EEPROM and management interface is - * not enabled, then power down. - */ - if (!(eeprom_data & E1000_NVM_APME_82575) && - !e1000_enable_mng_pass_thru(hw)) { - /* Disable PCS to turn off link */ - reg = E1000_READ_REG(hw, E1000_PCS_CFG0); - reg &= ~E1000_PCS_CFG_PCS_EN; - E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); - - /* shutdown the laser */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg |= E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* flush the write to verify completion */ - E1000_WRITE_FLUSH(hw); - msec_delay(1); - } -} - -/* - * e1000_reset_hw_82575 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - */ -static s32 -e1000_reset_hw_82575(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw_82575"); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) { - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - } - - /* set the completion timeout for interface */ - ret_val = e1000_set_pcie_completion_timeout(hw); - if (ret_val) { - DEBUGOUT("PCI-E Set completion timeout has failed.\n"); - } - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - } - - /* If EEPROM is not present, run manual init scripts */ - if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) - (void) e1000_reset_init_script_82575(hw); - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - - return (ret_val); -} - -/* - * e1000_init_hw_82575 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - */ -static s32 -e1000_init_hw_82575(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - u16 i, rar_count = mac->rar_entry_count; - - DEBUGFUNC("e1000_init_hw_82575"); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - } - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address */ - e1000_init_rx_addrs_generic(hw, rar_count); - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Zero out the Unicast HASH table */ - DEBUGOUT("Zeroing the UTA\n"); - for (i = 0; i < mac->uta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82575(hw); - - return (ret_val); -} - -/* - * e1000_setup_copper_link_82575 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - */ -static s32 -e1000_setup_copper_link_82575(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_copper_link_82575"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - ret_val = e1000_setup_serdes_link_82575(hw); - if (ret_val) - goto out; - - if (e1000_sgmii_active_82575(hw) && !hw->phy.reset_disable) { - /* allow time for SFP cage time to power up phy */ - msec_delay(300); - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - goto out; - } - } - switch (hw->phy.type) { - case e1000_phy_m88: - ret_val = e1000_copper_link_setup_m88(hw); - break; - case e1000_phy_igp_3: - ret_val = e1000_copper_link_setup_igp(hw); - break; - case e1000_phy_82580: - ret_val = e1000_copper_link_setup_82577(hw); - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - if (ret_val) - goto out; - - ret_val = e1000_setup_copper_link_generic(hw); -out: - return (ret_val); -} - -/* - * e1000_setup_serdes_link_82575 - Setup link for serdes - * @hw: pointer to the HW structure - * - * Configure the physical coding sub-layer (PCS) link. The PCS link is - * used on copper connections where the serialized gigabit media independent - * interface (sgmii), or serdes fiber is being used. Configures the link - * for auto-negotiation or forces speed/duplex. - */ -static s32 -e1000_setup_serdes_link_82575(struct e1000_hw *hw) -{ - u32 ctrl_ext, ctrl_reg, reg; - bool pcs_autoneg; - - DEBUGFUNC("e1000_setup_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return (E1000_SUCCESS); - - /* - * On the 82575, SerDes loopback mode persists until it is - * explicitly turned off or a power cycle is performed. A read to - * the register does not indicate its status. Therefore, we ensure - * loopback mode is disabled during initialization. - */ - E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); - - /* power on the sfp cage if present */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); - ctrl_reg |= E1000_CTRL_SLU; - - if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { - /* set both sw defined pins */ - ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; - - /* Set switch control to serdes energy detect */ - reg = E1000_READ_REG(hw, E1000_CONNSW); - reg |= E1000_CONNSW_ENRGSRC; - E1000_WRITE_REG(hw, E1000_CONNSW, reg); - } - - reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - - /* default pcs_autoneg to the same setting as mac autoneg */ - pcs_autoneg = hw->mac.autoneg; - - switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { - case E1000_CTRL_EXT_LINK_MODE_SGMII: - /* sgmii mode lets the phy handle forcing speed/duplex */ - pcs_autoneg = true; - /* autoneg time out should be disabled for SGMII mode */ - reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); - break; - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - /* disable PCS autoneg and support parallel detect only */ - pcs_autoneg = false; - default: - /* - * non-SGMII modes only supports a speed of 1000/Full for the - * link so it is best to just force the MAC and let the pcs - * link either autoneg or be forced to 1000/Full - */ - ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | - E1000_CTRL_FD | E1000_CTRL_FRCDPX; - - /* set speed of 1000/Full if speed/duplex is forced */ - reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; - break; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); - - /* - * New SerDes mode allows for forcing speed or autonegotiating speed - * at 1gb. Autoneg should be default set by most drivers. This is the - * mode that will be compatible with older link partners and switches. - * However, both are supported by the hardware and some drivers/tools. - */ - - reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | - E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); - - /* - * We force flow control to prevent the CTRL register values from being - * overwritten by the autonegotiated flow control values - */ - reg |= E1000_PCS_LCTL_FORCE_FCTRL; - - if (pcs_autoneg) { - /* Set PCS register for autoneg */ - reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ - E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ - DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); - } else { - /* Set PCS register for forced link */ - reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ - DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); - } - - E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); - - if (!e1000_sgmii_active_82575(hw)) - (void) e1000_force_mac_fc_generic(hw); - - return (E1000_SUCCESS); -} - -/* - * e1000_valid_led_default_82575 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - */ -static s32 -e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_82575"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch (hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_82575_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT; - break; - } - } -out: - return (ret_val); -} - -/* - * e1000_sgmii_active_82575 - Return sgmii state - * @hw: pointer to the HW structure - * - * 82575 silicon has a serialized gigabit media independent interface (sgmii) - * which can be enabled for use in the embedded applications. Simply - * return the current state of the sgmii interface. - */ -static bool -e1000_sgmii_active_82575(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - return (dev_spec->sgmii_active); -} - -/* - * e1000_reset_init_script_82575 - Inits HW defaults after reset - * @hw: pointer to the HW structure - * - * Inits recommended HW defaults after a reset when there is no EEPROM - * detected. This is only for the 82575. - */ -static s32 -e1000_reset_init_script_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_reset_init_script_82575"); - - if (hw->mac.type == e1000_82575) { - DEBUGOUT("Running reset init script for 82575\n"); - /* SerDes configuration via SERDESCTRL */ - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, - 0x00, 0x0C); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, - 0x01, 0x78); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, - 0x1B, 0x23); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, - 0x23, 0x15); - - /* CCM configuration via CCMCTL register */ - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, - 0x14, 0x00); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, - 0x10, 0x00); - - /* PCIe lanes configuration */ - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, - 0x00, 0xEC); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, - 0x61, 0xDF); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, - 0x34, 0x05); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, - 0x2F, 0x81); - - /* PCIe PLL Configuration */ - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, - 0x02, 0x47); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, - 0x14, 0x00); - (void) e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, - 0x10, 0x00); - } - - return (E1000_SUCCESS); -} - -/* - * e1000_read_mac_addr_82575 - Read device MAC address - * @hw: pointer to the HW structure - */ -static s32 -e1000_read_mac_addr_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_mac_addr_82575"); - - /* - * If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_mac_addr_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_power_down_phy_copper_82575 - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - */ -static void -e1000_power_down_phy_copper_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - struct e1000_mac_info *mac = &hw->mac; - - if (!(phy->ops.check_reset_block)) - return; - - /* If the management interface is not enabled, then power down */ - if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); -} - -/* - * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - */ -static void -e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82575"); - - e1000_clear_hw_cntrs_base_generic(hw); - - (void) E1000_READ_REG(hw, E1000_PRC64); - (void) E1000_READ_REG(hw, E1000_PRC127); - (void) E1000_READ_REG(hw, E1000_PRC255); - (void) E1000_READ_REG(hw, E1000_PRC511); - (void) E1000_READ_REG(hw, E1000_PRC1023); - (void) E1000_READ_REG(hw, E1000_PRC1522); - (void) E1000_READ_REG(hw, E1000_PTC64); - (void) E1000_READ_REG(hw, E1000_PTC127); - (void) E1000_READ_REG(hw, E1000_PTC255); - (void) E1000_READ_REG(hw, E1000_PTC511); - (void) E1000_READ_REG(hw, E1000_PTC1023); - (void) E1000_READ_REG(hw, E1000_PTC1522); - - (void) E1000_READ_REG(hw, E1000_ALGNERRC); - (void) E1000_READ_REG(hw, E1000_RXERRC); - (void) E1000_READ_REG(hw, E1000_TNCRS); - (void) E1000_READ_REG(hw, E1000_CEXTERR); - (void) E1000_READ_REG(hw, E1000_TSCTC); - (void) E1000_READ_REG(hw, E1000_TSCTFC); - - (void) E1000_READ_REG(hw, E1000_MGTPRC); - (void) E1000_READ_REG(hw, E1000_MGTPDC); - (void) E1000_READ_REG(hw, E1000_MGTPTC); - - (void) E1000_READ_REG(hw, E1000_IAC); - (void) E1000_READ_REG(hw, E1000_ICRXOC); - - (void) E1000_READ_REG(hw, E1000_ICRXPTC); - (void) E1000_READ_REG(hw, E1000_ICRXATC); - (void) E1000_READ_REG(hw, E1000_ICTXPTC); - (void) E1000_READ_REG(hw, E1000_ICTXATC); - (void) E1000_READ_REG(hw, E1000_ICTXQEC); - (void) E1000_READ_REG(hw, E1000_ICTXQMTC); - (void) E1000_READ_REG(hw, E1000_ICRXDMTC); - - (void) E1000_READ_REG(hw, E1000_CBTMPC); - (void) E1000_READ_REG(hw, E1000_HTDPMC); - (void) E1000_READ_REG(hw, E1000_CBRMPC); - (void) E1000_READ_REG(hw, E1000_RPTHC); - (void) E1000_READ_REG(hw, E1000_HGPTC); - (void) E1000_READ_REG(hw, E1000_HTCBDPC); - (void) E1000_READ_REG(hw, E1000_HGORCL); - (void) E1000_READ_REG(hw, E1000_HGORCH); - (void) E1000_READ_REG(hw, E1000_HGOTCL); - (void) E1000_READ_REG(hw, E1000_HGOTCH); - (void) E1000_READ_REG(hw, E1000_LENERRS); - - /* This register should not be read in copper configurations */ - if ((hw->phy.media_type == e1000_media_type_internal_serdes) || - e1000_sgmii_active_82575(hw)) - (void) E1000_READ_REG(hw, E1000_SCVPC); -} - -/* - * e1000_rx_fifo_flush_82575 - Clean rx fifo after RX enable - * @hw: pointer to the HW structure - * - * After rx enable if managability is enabled then there is likely some - * bad data at the start of the fifo and possibly in the DMA fifo. This - * function clears the fifos and flushes any packets that came in as rx was - * being enabled. - */ -void -e1000_rx_fifo_flush_82575(struct e1000_hw *hw) -{ - u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; - int i, ms_wait; - - DEBUGFUNC("e1000_rx_fifo_workaround_82575"); - if (hw->mac.type != e1000_82575 || - !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) - return; - - /* Disable all RX queues */ - for (i = 0; i < 4; i++) { - rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); - E1000_WRITE_REG(hw, E1000_RXDCTL(i), - rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); - } - /* Poll all queues to verify they have shut down */ - for (ms_wait = 0; ms_wait < 10; ms_wait++) { - msec_delay(1); - rx_enabled = 0; - for (i = 0; i < 4; i++) - rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); - if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) - break; - } - - if (ms_wait == 10) - DEBUGOUT("Queue disable timed out after 10ms\n"); - - /* - * Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all - * incoming packets are rejected. Set enable and wait 2ms so that - * any packet that was coming in as RCTL.EN was set is flushed - */ - rfctl = E1000_READ_REG(hw, E1000_RFCTL); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); - - rlpml = E1000_READ_REG(hw, E1000_RLPML); - E1000_WRITE_REG(hw, E1000_RLPML, 0); - - rctl = E1000_READ_REG(hw, E1000_RCTL); - temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); - temp_rctl |= E1000_RCTL_LPE; - - E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); - E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); - E1000_WRITE_FLUSH(hw); - msec_delay(2); - - /* - * Enable RX queues that were previously enabled and restore our - * previous state - */ - for (i = 0; i < 4; i++) - E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - - E1000_WRITE_REG(hw, E1000_RLPML, rlpml); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); - - /* Flush receive errors generated by workaround */ - (void) E1000_READ_REG(hw, E1000_ROC); - (void) E1000_READ_REG(hw, E1000_RNBC); - (void) E1000_READ_REG(hw, E1000_MPC); -} - -/* - * e1000_set_pcie_completion_timeout - set pci-e completion timeout - * @hw: pointer to the HW structure - * - * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, - * however the hardware default for these parts is 500us to 1ms which is less - * than the 10ms recommended by the pci-e spec. To address this we need to - * increase the value to either 10ms to 200ms for capability version 1 config, - * or 16ms to 55ms for version 2. - */ -static s32 -e1000_set_pcie_completion_timeout(struct e1000_hw *hw) -{ - u32 gcr = E1000_READ_REG(hw, E1000_GCR); - s32 ret_val = E1000_SUCCESS; - u16 pcie_devctl2; - - /* only take action if timeout value is defaulted to 0 */ - if (gcr & E1000_GCR_CMPL_TMOUT_MASK) - goto out; - - /* - * if capababilities version is type 1 we can write the - * timeout of 10ms to 200ms through the GCR register - */ - if (!(gcr & E1000_GCR_CAP_VER2)) { - gcr |= E1000_GCR_CMPL_TMOUT_10ms; - goto out; - } - - /* - * for version 2 capabilities we need to write the config space - * directly in order to set the completion timeout value for - * 16ms to 55ms - */ - ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); - if (ret_val) - goto out; - - pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; - - ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); -out: - /* disable completion timeout resend */ - gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; - - E1000_WRITE_REG(hw, E1000_GCR, gcr); - return (ret_val); -} - -/* - * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * - * enables/disables L2 switch loopback functionality. - */ -void -e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) -{ - u32 dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); - - if (enable) - dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; - else - dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; - - E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); -} - -/* - * e1000_vmdq_set_replication_pf - enable or disable vmdq replication - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * - * enables/disables replication of packets across multiple pools. - */ -void -e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) -{ - u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); - - if (enable) - vt_ctl |= E1000_VT_CTL_VM_REPL_EN; - else - vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; - - E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); -} - -/* - * e1000_read_phy_reg_82580 - Read 82580 MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - */ -static s32 -e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) -{ - u32 mdicnfg = 0; - s32 ret_val; - - DEBUGFUNC("e1000_read_phy_reg_82580"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* - * We config the phy address in MDICNFG register now. Same bits - * as before. The values in MDIC can be written but will be - * ignored. This allows us to call the old function after - * configuring the PHY address in the new register - */ - mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT); - E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); - - ret_val = e1000_read_phy_reg_mdic(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_82580 - Write 82580 MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - */ -static s32 -e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) -{ - u32 mdicnfg = 0; - s32 ret_val; - - DEBUGFUNC("e1000_write_phy_reg_82580"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* - * We config the phy address in MDICNFG register now. Same bits - * as before. The values in MDIC can be written but will be - * ignored. This allows us to call the old function after - * configuring the PHY address in the new register - */ - mdicnfg = (hw->phy.addr << E1000_MDIC_PHY_SHIFT); - E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); - - ret_val = e1000_write_phy_reg_mdic(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_reset_hw_82580 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets function or entire device (all ports, etc.) - * to a known state. - */ -static s32 -e1000_reset_hw_82580(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - /* BH SW mailbox bit in SW_FW_SYNC */ - u16 swmbsw_mask = E1000_SW_SYNCH_MB; - u32 ctrl; - bool global_device_reset = hw->dev_spec._82575.global_device_reset; - - DEBUGFUNC("e1000_reset_hw_82580"); - - hw->dev_spec._82575.global_device_reset = false; - - /* Get current control state. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* Determine whether or not a global dev reset is requested */ - if (global_device_reset && - e1000_acquire_swfw_sync_82575(hw, swmbsw_mask)) - global_device_reset = false; - - if (global_device_reset && - !(E1000_READ_REG(hw, E1000_STATUS) & E1000_STAT_DEV_RST_SET)) - ctrl |= E1000_CTRL_DEV_RST; - else - ctrl |= E1000_CTRL_RST; - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Add delay to insure DEV_RST has time to complete */ - if (global_device_reset) - msec_delay(5); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - } - - /* If EEPROM is not present, run manual init scripts */ - if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) - (void) e1000_reset_init_script_82575(hw); - - /* clear global device reset status bit */ - E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - (void) E1000_READ_REG(hw, E1000_ICR); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - - /* Release semaphore */ - if (global_device_reset) - e1000_release_swfw_sync_82575(hw, swmbsw_mask); - - return (ret_val); -} - -/* - * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size - * @data: data received by reading RXPBS register - * - * The 82580 uses a table based approach for packet buffer allocation sizes. - * This function converts the retrieved value into the correct table value - * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 - * 0x0 36 72 144 1 2 4 8 16 - * 0x8 35 70 140 rsv rsv rsv rsv rsv - */ -u16 -e1000_rxpbs_adjust_82580(u32 data) -{ - u16 ret_val = 0; - - if (data < E1000_82580_RXPBS_TABLE_SIZE) - ret_val = e1000_82580_rxpbs_table[data]; - - return (ret_val); -} - -/* - * Due to a hw errata, if the host tries to configure the VFTA register - * while performing queries from the BMC or DMA, then the VFTA in some - * cases won't be written. - */ - -/* - * e1000_clear_vfta_i350 - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - */ -void -e1000_clear_vfta_i350(struct e1000_hw *hw) -{ - u32 offset; - int i; - - DEBUGFUNC("e1000_clear_vfta_350"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - for (i = 0; i < 10; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - - E1000_WRITE_FLUSH(hw); - } -} - -/* - * e1000_write_vfta_i350 - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - */ -void -e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) -{ - int i; - - DEBUGFUNC("e1000_write_vfta_350"); - - for (i = 0; i < 10; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_validate_nvm_checksum_with_offset - Validate EEPROM - * checksum - * @hw: pointer to the HW structure - * @offset: offset in words of the checksum protected region - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - */ -s32 -e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) -{ - s32 ret_val = E1000_SUCCESS; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); - - for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_update_nvm_checksum_with_offset - Update EEPROM - * checksum - * @hw: pointer to the HW structure - * @offset: offset in words of the checksum protected region - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - */ -s32 -e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); - - for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, - &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - -out: - return (ret_val); -} - -/* - * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM section checksum by reading/adding each word of - * the EEPROM and then verifies that the sum of the EEPROM is - * equal to 0xBABA. - */ -static s32 -e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 j; - u16 nvm_offset; - - DEBUGFUNC("e1000_validate_nvm_checksum_i350"); - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_update_nvm_checksum_i350 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM section checksums for all 4 ports by reading/adding - * each word of the EEPROM up to the checksum. Then calculates the EEPROM - * checksum and writes the value to the EEPROM. - */ -static s32 -e1000_update_nvm_checksum_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 j; - u16 nvm_offset; - - DEBUGFUNC("e1000_update_nvm_checksum_i350"); - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return (ret_val); -} - - - -/* - * e1000_set_eee_i350 - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE based on setting in dev_spec structure. - * - */ -s32 -e1000_set_eee_i350(struct e1000_hw *hw) -{ - - s32 ret_val = E1000_SUCCESS; - u32 ipcnfg, eeer; - - DEBUGFUNC("e1000_set_eee_i350"); - - if ((hw->mac.type < e1000_i350) || - (hw->phy.media_type != e1000_media_type_copper)) - goto out; - ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); - eeer = E1000_READ_REG(hw, E1000_EEER); - - /* enable or disable per user setting */ - if (!(hw->dev_spec._82575.eee_disable)) { - ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); - eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - - } else { - ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); - eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - } - E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); - E1000_WRITE_REG(hw, E1000_EEER, eeer); - ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); - eeer = E1000_READ_REG(hw, E1000_EEER); -out: - - return (ret_val); -} diff --git a/usr/src/uts/common/io/igb/igb_82575.h b/usr/src/uts/common/io/igb/igb_82575.h deleted file mode 100644 index 8afc0ca2cd..0000000000 --- a/usr/src/uts/common/io/igb/igb_82575.h +++ /dev/null @@ -1,476 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2007-2012 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.88.2.1 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_82575_H -#define _IGB_82575_H - -#ifdef __cplusplus -extern "C" { -#endif - -#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_DEF1_DEF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_ON2)) - -/* - * Receive Address Register Count - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * These entries are also used for MAC-based filtering. - */ -/* - * For 82576, there are an additional set of RARs that begin at an offset - * separate from the first set of RARs. - */ -#define E1000_RAR_ENTRIES_82575 16 -#define E1000_RAR_ENTRIES_82576 24 -#define E1000_RAR_ENTRIES_82580 24 -#define E1000_RAR_ENTRIES_I350 32 -#define E1000_SW_SYNCH_MB 0x00000100 -#define E1000_STAT_DEV_RST_SET 0x00100000 -#define E1000_CTRL_DEV_RST 0x20000000 - -#ifdef E1000_BIT_FIELDS -struct e1000_adv_data_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - u32 data; - struct { - u32 datalen :16; /* Data buffer length */ - u32 rsvd :4; - u32 dtyp :4; /* Descriptor type */ - u32 dcmd :8; /* Descriptor command */ - } config; - } lower; - union { - u32 data; - struct { - u32 status :4; /* Descriptor status */ - u32 idx :4; - u32 popts :6; /* Packet Options */ - u32 paylen :18; /* Payload length */ - } options; - } upper; -}; - -#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ -#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ -#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ -#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ -#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ -#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ -#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ -#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ -#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ -#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ -#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ -/* Extended Device Control */ -#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ - -struct e1000_adv_context_desc { - union { - u32 ip_config; - struct { - u32 iplen :9; - u32 maclen :7; - u32 vlan_tag :16; - } fields; - } ip_setup; - u32 seq_num; - union { - u64 l4_config; - struct { - u32 mkrloc :9; - u32 tucmd :11; - u32 dtyp :4; - u32 adv :8; - u32 rsvd :4; - u32 idx :4; - u32 l4len :8; - u32 mss :16; - } fields; - } l4_setup; -}; -#endif - -/* SRRCTL bit definitions */ -#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ -#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 -#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ -#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 -#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 -#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 -#define E1000_SRRCTL_TIMESTAMP 0x40000000 -#define E1000_SRRCTL_DROP_EN 0x80000000 - -#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F -#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 - -#define E1000_TX_HEAD_WB_ENABLE 0x1 -#define E1000_TX_SEQNUM_WB_ENABLE 0x2 - -#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 -#define E1000_MRQC_ENABLE_VMDQ 0x00000003 -#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x80000000 -#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 -#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 - -#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 -#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << E1000_VMRCTL_MIRROR_PORT_SHIFT) -#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) -#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) -#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) - -#define E1000_EICR_TX_QUEUE ( \ - E1000_EICR_TX_QUEUE0 | \ - E1000_EICR_TX_QUEUE1 | \ - E1000_EICR_TX_QUEUE2 | \ - E1000_EICR_TX_QUEUE3) - -#define E1000_EICR_RX_QUEUE ( \ - E1000_EICR_RX_QUEUE0 | \ - E1000_EICR_RX_QUEUE1 | \ - E1000_EICR_RX_QUEUE2 | \ - E1000_EICR_RX_QUEUE3) - -#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE -#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE - -#define EIMS_ENABLE_MASK ( \ - E1000_EIMS_RX_QUEUE | \ - E1000_EIMS_TX_QUEUE | \ - E1000_EIMS_TCP_TIMER | \ - E1000_EIMS_OTHER) - -/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ -#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ -#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ -#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ -#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ -#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ -#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ -#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ -#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ -#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ -#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ - -/* Receive Descriptor - Advanced */ -union e1000_adv_rx_desc { - struct { - __le64 pkt_addr; /* Packet buffer address */ - __le64 hdr_addr; /* Header buffer address */ - } read; - struct { - struct { - union { - __le32 data; - struct { - /* RSS type, Packet type */ - __le16 pkt_info; - /* Split Header, header buffer length */ - __le16 hdr_info; - } hs_rss; - } lo_dword; - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; /* Packet length */ - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F -#define E1000_RXDADV_RSSTYPE_SHIFT 12 -#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 -#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 -#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 -#define E1000_RXDADV_SPH 0x8000 -#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ -#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ -#define E1000_RXDADV_ERR_HBO 0x00800000 - -/* RSS Hash results */ -#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 -#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 -#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 -#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 -#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 -#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 -#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 -#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 -#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 -#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 - -/* RSS Packet Types as indicated in the receive descriptor */ -#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 -#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ -#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ -#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ -#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ -#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ -#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ -#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ -#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ - -#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ -#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ -#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ -#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ -#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ -#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ - -/* LinkSec results */ -/* Security Processing bit Indication */ -#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 -#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 -#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 -#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 -#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 - -#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 -#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 -#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 -#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 -#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 - -/* Transmit Descriptor - Advanced */ -union e1000_adv_tx_desc { - struct { - __le64 buffer_addr; /* Address of descriptor's data buf */ - __le32 cmd_type_len; - __le32 olinfo_status; - } read; - struct { - __le64 rsvd; /* Reserved */ - __le32 nxtseq_seed; - __le32 status; - } wb; -}; - -/* Adv Transmit Descriptor Config Masks */ -#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ -#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ -#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ -#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ -#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ -#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ -#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ -#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ -#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on packet */ -#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */ -#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */ -#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ -#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ -/* 1st&Last TSO-full iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 -#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ -#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ - -/* Context descriptors */ -struct e1000_adv_tx_context_desc { - __le32 vlan_macip_lens; - __le32 seqnum_seed; - __le32 type_tucmd_mlhl; - __le32 mss_l4len_idx; -}; - -#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ -#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ -#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ -#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ -#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ -#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ -#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ -/* IPSec Encrypt Enable for ESP */ -#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 -/* Req requires Markers and CRC */ -#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 -#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ -#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ -/* Adv ctxt IPSec SA IDX mask */ -#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF -/* Adv ctxt IPSec ESP len mask */ -#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF - -/* Additional Transmit Descriptor Control definitions */ -/* Enable specific Tx Queue */ -#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 -/* Tx Desc. write-back flushing */ -#define E1000_TXDCTL_SWFLSH 0x04000000 -/* Tx Queue Arbitration Priority 0=low, 1=high */ -#define E1000_TXDCTL_PRIORITY 0x08000000 - -/* Additional Receive Descriptor Control definitions */ -/* Enable specific Rx Queue */ -#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 -/* Rx Desc. write-back flushing */ -#define E1000_RXDCTL_SWFLSH 0x04000000 - -/* Direct Cache Access (DCA) definitions */ -#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ -#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ - -#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ -#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ - -#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ -#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ -#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */ -#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */ - -#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ -#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ -#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ - -#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ -#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ -#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ -#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ - -/* Additional interrupt register bit definitions */ -#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ -#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ -#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ - -/* ETQF register bit definitions */ -#define E1000_ETQF_FILTER_ENABLE (1 << 26) -#define E1000_ETQF_IMM_INT (1 << 29) -#define E1000_ETQF_1588 (1 << 30) -#define E1000_ETQF_QUEUE_ENABLE (1 << 31) -/* - * ETQF filter list: one static filter per filter consumer. This is - * to avoid filter collisions later. Add new filters - * here!! - * - * Current filters: - * EAPOL 802.1x (0x888e): Filter 0 - */ -#define E1000_ETQF_FILTER_EAPOL 0 - -#define E1000_FTQF_VF_BP 0x00008000 -#define E1000_FTQF_1588_TIME_STAMP 0x08000000 -#define E1000_FTQF_MASK 0xF0000000 -#define E1000_FTQF_MASK_PROTO_BP 0x10000000 -#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 -#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 -#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 - -#define E1000_NVM_APME_82575 0x0400 -#define MAX_NUM_VFS 8 - -/* Per VF MAC spoof control */ -#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF -/* Per VF VLAN spoof control */ -#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 -#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ -#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 -#define E1000_DTXSWC_LLE_SHIFT 16 -#define E1000_DTXSWC_VMDQ_LOOPBACK_EN ((u32)1 << 31) /* global VF LB enable */ - -/* Easy defines for setting default pool, would normally be left a zero */ -#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 -#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) - -/* Other useful VMD_CTL register defines */ -#define E1000_VT_CTL_IGNORE_MAC (1 << 28) -#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) -#define E1000_VT_CTL_VM_REPL_EN (1 << 30) - -/* Per VM Offload register setup */ -#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ -#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ -#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ -#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ -#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ -#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ -#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ -#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ -#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ -#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ - -#define E1000_VLVF_ARRAY_SIZE 32 -#define E1000_VLVF_VLANID_MASK 0x00000FFF -#define E1000_VLVF_POOLSEL_SHIFT 12 -#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) -#define E1000_VLVF_LVLAN 0x00100000 -#define E1000_VLVF_VLANID_ENABLE 0x80000000 - -#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ -#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ -#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ - -#define E1000_IOVCTL 0x05BBC -#define E1000_IOVCTL_REUSE_VFQ 0x00000001 - -#define E1000_RPLOLR_STRVLAN 0x40000000 -#define E1000_RPLOLR_STRCRC 0x80000000 - -#define E1000_DTXCTL_8023LL 0x0004 -#define E1000_DTXCTL_VLAN_ADDED 0x0008 -#define E1000_DTXCTL_OOS_ENABLE 0x0010 -#define E1000_DTXCTL_MDP_EN 0x0020 -#define E1000_DTXCTL_SPOOF_INT 0x0040 - -#define ALL_QUEUES 0xFFFF - -/* RX packet buffer size defines */ -#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F -void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); -void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); -u16 e1000_rxpbs_adjust_82580(u32 data); -s32 e1000_set_eee_i350(struct e1000_hw *hw); - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_82575_H */ diff --git a/usr/src/uts/common/io/igb/igb_api.c b/usr/src/uts/common/io/igb/igb_api.c deleted file mode 100644 index da3a428214..0000000000 --- a/usr/src/uts/common/io/igb/igb_api.c +++ /dev/null @@ -1,1159 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2007-2012 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.129.2.1 v3_3_14_3_BHSW1 */ - -#include "igb_api.h" - -/* - * e1000_init_mac_params - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the MAC - * set of functions. Called by drivers or by e1000_setup_init_funcs. - */ -s32 -e1000_init_mac_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mac.ops.init_params) { - ret_val = hw->mac.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("MAC Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("mac.init_mac_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return (ret_val); -} - -/* - * e1000_init_nvm_params - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the NVM - * set of functions. Called by drivers or by e1000_setup_init_funcs. - */ -s32 -e1000_init_nvm_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->nvm.ops.init_params) { - ret_val = hw->nvm.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("NVM Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("nvm.init_nvm_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return (ret_val); -} - -/* - * e1000_init_phy_params - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the PHY - * set of functions. Called by drivers or by e1000_setup_init_funcs. - */ -s32 -e1000_init_phy_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->phy.ops.init_params) { - ret_val = hw->phy.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("PHY Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("phy.init_phy_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return (ret_val); -} - -/* - * e1000_set_mac_type - Sets MAC type - * @hw: pointer to the HW structure - * - * This function sets the mac type of the adapter based on the - * device ID stored in the hw structure. - * MUST BE FIRST FUNCTION CALLED (explicitly or through - * e1000_setup_init_funcs()). - */ -s32 -e1000_set_mac_type(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82575EB_COPPER: - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82575GB_QUAD_COPPER: - mac->type = e1000_82575; - break; - case E1000_DEV_ID_82576: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_QUAD_COPPER_ET2: - case E1000_DEV_ID_82576_NS: - case E1000_DEV_ID_82576_NS_SERDES: - case E1000_DEV_ID_82576_SERDES_QUAD: - mac->type = e1000_82576; - break; - case E1000_DEV_ID_82580_COPPER: - case E1000_DEV_ID_82580_FIBER: - case E1000_DEV_ID_82580_SERDES: - case E1000_DEV_ID_82580_SGMII: - case E1000_DEV_ID_82580_COPPER_DUAL: - mac->type = e1000_82580; - break; - case E1000_DEV_ID_I350_COPPER: - case E1000_DEV_ID_I350_SERDES: - mac->type = e1000_i350; - break; - default: - /* Should never have loaded on this device */ - ret_val = -E1000_ERR_MAC_INIT; - break; - } - - return (ret_val); -} - -/* - * e1000_setup_init_funcs - Initializes function pointers - * @hw: pointer to the HW structure - * @init_device: true will initialize the rest of the function pointers - * getting the device ready for use. false will only set - * MAC type and the function pointers for the other init - * functions. Passing false will not generate any hardware - * reads or writes. - * - * This function must be called by a driver in order to use the rest - * of the 'shared' code files. Called by drivers only. - */ -s32 -e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) -{ - s32 ret_val; - - /* Can't do much good without knowing the MAC type. */ - ret_val = e1000_set_mac_type(hw); - if (ret_val) { - DEBUGOUT("ERROR: MAC type could not be set properly.\n"); - goto out; - } - - if (!hw->hw_addr) { - DEBUGOUT("ERROR: Registers not mapped\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Init function pointers to generic implementations. We do this first - * allowing a driver module to override it afterward. - */ - e1000_init_mac_ops_generic(hw); - e1000_init_phy_ops_generic(hw); - e1000_init_nvm_ops_generic(hw); - - /* - * Set up the init function pointers. These are functions within the - * adapter family file that sets up function pointers for the rest of - * the functions in that family. - */ - switch (hw->mac.type) { - case e1000_82575: - case e1000_82576: - case e1000_82580: - case e1000_i350: - e1000_init_function_pointers_82575(hw); - break; - default: - DEBUGOUT("Hardware not supported\n"); - ret_val = -E1000_ERR_CONFIG; - break; - } - - /* - * Initialize the rest of the function pointers. These require some - * register reads/writes in some cases. - */ - if (!(ret_val) && init_device) { - ret_val = e1000_init_mac_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_nvm_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_phy_params(hw); - if (ret_val) - goto out; - - } - -out: - return (ret_val); -} - -/* - * e1000_get_bus_info - Obtain bus information for adapter - * @hw: pointer to the HW structure - * - * This will obtain information about the HW bus for which the - * adapter is attached and stores it in the hw structure. This is a - * function pointer entry point called by drivers. - */ -s32 -e1000_get_bus_info(struct e1000_hw *hw) -{ - if (hw->mac.ops.get_bus_info) - return (hw->mac.ops.get_bus_info(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_clear_vfta - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * This clears the VLAN filter table on the adapter. This is a function - * pointer entry point called by drivers. - */ -void -e1000_clear_vfta(struct e1000_hw *hw) -{ - if (hw->mac.ops.clear_vfta) - hw->mac.ops.clear_vfta(hw); -} - -/* - * e1000_write_vfta - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: the 32-bit offset in which to write the value to. - * @value: the 32-bit value to write at location offset. - * - * This writes a 32-bit value to a 32-bit offset in the VLAN filter - * table. This is a function pointer entry point called by drivers. - */ -void -e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) -{ - if (hw->mac.ops.write_vfta) - hw->mac.ops.write_vfta(hw, offset, value); -} - -/* - * e1000_update_mc_addr_list - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - */ -void -e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count) -{ - if (hw->mac.ops.update_mc_addr_list) - hw->mac.ops.update_mc_addr_list(hw, - mc_addr_list, mc_addr_count); -} - -/* - * e1000_force_mac_fc - Force MAC flow control - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Currently no func pointer exists - * and all implementations are handled in the generic version of this - * function. - */ -s32 -e1000_force_mac_fc(struct e1000_hw *hw) -{ - return (e1000_force_mac_fc_generic(hw)); -} - -/* - * e1000_check_for_link - Check/Store link connection - * @hw: pointer to the HW structure - * - * This checks the link condition of the adapter and stores the - * results in the hw->mac structure. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_check_for_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_for_link) - return (hw->mac.ops.check_for_link(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_check_mng_mode - Check management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has manageability enabled. - * This is a function pointer entry point called by drivers. - */ -bool -e1000_check_mng_mode(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_mng_mode) - return (hw->mac.ops.check_mng_mode(hw)); - - return (false); -} - -/* - * e1000_mng_write_dhcp_info - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - */ -s32 -e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) -{ - return (e1000_mng_write_dhcp_info_generic(hw, buffer, length)); -} - -/* - * e1000_reset_hw - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. This is a function pointer - * entry point called by drivers. - */ -s32 -e1000_reset_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.reset_hw) - return (hw->mac.ops.reset_hw(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_init_hw - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. This is a function - * pointer entry point called by drivers. - */ -s32 -e1000_init_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.init_hw) - return (hw->mac.ops.init_hw(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_setup_link - Configures link and flow control - * @hw: pointer to the HW structure - * - * This configures link and flow control settings for the adapter. This - * is a function pointer entry point called by drivers. While modules can - * also call this, they probably call their own version of this function. - */ -s32 -e1000_setup_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_link) - return (hw->mac.ops.setup_link(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_get_speed_and_duplex - Returns current speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to a 16-bit value to store the speed - * @duplex: pointer to a 16-bit value to store the duplex. - * - * This returns the speed and duplex of the adapter in the two 'out' - * variables passed in. This is a function pointer entry point called - * by drivers. - */ -s32 -e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - if (hw->mac.ops.get_link_up_info) - return (hw->mac.ops.get_link_up_info(hw, speed, duplex)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_setup_led - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_setup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_led) - return (hw->mac.ops.setup_led(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_cleanup_led - Restores SW controllable LED - * @hw: pointer to the HW structure - * - * This restores the SW controllable LED to the value saved off by - * e1000_setup_led. This is a function pointer entry point called by drivers. - */ -s32 -e1000_cleanup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.cleanup_led) - return (hw->mac.ops.cleanup_led(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_blink_led - Blink SW controllable LED - * @hw: pointer to the HW structure - * - * This starts the adapter LED blinking. Request the LED to be setup first - * and cleaned up after. This is a function pointer entry point called by - * drivers. - */ -s32 -e1000_blink_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.blink_led) - return (hw->mac.ops.blink_led(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_id_led_init - store LED configurations in SW - * @hw: pointer to the HW structure - * - * Initializes the LED config in SW. This is a function pointer entry point - * called by drivers. - */ -s32 -e1000_id_led_init(struct e1000_hw *hw) -{ - if (hw->mac.ops.id_led_init) - return (hw->mac.ops.id_led_init(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_led_on - Turn on SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED on. This is a function pointer entry point - * called by drivers. - */ -s32 -e1000_led_on(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_on) - return (hw->mac.ops.led_on(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_led_off - Turn off SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED off. This is a function pointer entry point - * called by drivers. - */ -s32 -e1000_led_off(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_off) - return (hw->mac.ops.led_off(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_reset_adaptive - Reset adaptive IFS - * @hw: pointer to the HW structure - * - * Resets the adaptive IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -void -e1000_reset_adaptive(struct e1000_hw *hw) -{ - e1000_reset_adaptive_generic(hw); -} - -/* - * e1000_update_adaptive - Update adaptive IFS - * @hw: pointer to the HW structure - * - * Updates adapter IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -void -e1000_update_adaptive(struct e1000_hw *hw) -{ - e1000_update_adaptive_generic(hw); -} - -/* - * e1000_disable_pcie_master - Disable PCI-Express master access - * @hw: pointer to the HW structure - * - * Disables PCI-Express master access and verifies there are no pending - * requests. Currently no func pointer exists and all implementations are - * handled in the generic version of this function. - */ -s32 -e1000_disable_pcie_master(struct e1000_hw *hw) -{ - return (e1000_disable_pcie_master_generic(hw)); -} - -/* - * e1000_config_collision_dist - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - */ -void -e1000_config_collision_dist(struct e1000_hw *hw) -{ - if (hw->mac.ops.config_collision_dist) - hw->mac.ops.config_collision_dist(hw); -} - -/* - * e1000_rar_set - Sets a receive address register - * @hw: pointer to the HW structure - * @addr: address to set the RAR to - * @index: the RAR to set - * - * Sets a Receive Address Register (RAR) to the specified address. - */ -void -e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) -{ - if (hw->mac.ops.rar_set) - hw->mac.ops.rar_set(hw, addr, index); -} - -/* - * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state - * @hw: pointer to the HW structure - * - * Ensures that the MDI/MDIX SW state is valid. - */ -s32 -e1000_validate_mdi_setting(struct e1000_hw *hw) -{ - if (hw->mac.ops.validate_mdi_setting) - return (hw->mac.ops.validate_mdi_setting(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_mta_set - Sets multicast table bit - * @hw: pointer to the HW structure - * @hash_value: Multicast hash value. - * - * This sets the bit in the multicast table corresponding to the - * hash value. This is a function pointer entry point called by drivers. - */ -void -e1000_mta_set(struct e1000_hw *hw, u32 hash_value) -{ - if (hw->mac.ops.mta_set) - hw->mac.ops.mta_set(hw, hash_value); -} - -/* - * e1000_hash_mc_addr - Determines address location in multicast table - * @hw: pointer to the HW structure - * @mc_addr: Multicast address to hash. - * - * This hashes an address to determine its location in the multicast - * table. Currently no func pointer exists and all implementations - * are handled in the generic version of this function. - */ -u32 -e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - return (e1000_hash_mc_addr_generic(hw, mc_addr)); -} - -/* - * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -bool -e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) -{ - return (e1000_enable_tx_pkt_filtering_generic(hw)); -} - -/* - * e1000_mng_host_if_write - Writes to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - */ -s32 -e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, - u16 offset, u8 *sum) -{ - if (hw->mac.ops.mng_host_if_write) - return (hw->mac.ops.mng_host_if_write(hw, buffer, length, - offset, sum)); - - return (E1000_NOT_IMPLEMENTED); -} - -/* - * e1000_mng_write_cmd_header - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - */ -s32 -e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - if (hw->mac.ops.mng_write_cmd_header) - return (hw->mac.ops.mng_write_cmd_header(hw, hdr)); - - return (E1000_NOT_IMPLEMENTED); -} - -/* - * e1000_mng_enable_host_if - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - */ -s32 -e1000_mng_enable_host_if(struct e1000_hw *hw) -{ - if (hw->mac.ops.mng_enable_host_if) - return (hw->mac.ops.mng_enable_host_if(hw)); - - return (E1000_NOT_IMPLEMENTED); -} - -/* - * e1000_wait_autoneg - Waits for autonegotiation completion - * @hw: pointer to the HW structure - * - * Waits for autoneg to complete. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -s32 -e1000_wait_autoneg(struct e1000_hw *hw) -{ - if (hw->mac.ops.wait_autoneg) - return (hw->mac.ops.wait_autoneg(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_check_reset_block - Verifies PHY can be reset - * @hw: pointer to the HW structure - * - * Checks if the PHY is in a state that can be reset or if manageability - * has it tied up. This is a function pointer entry point called by drivers. - */ -s32 -e1000_check_reset_block(struct e1000_hw *hw) -{ - if (hw->phy.ops.check_reset_block) - return (hw->phy.ops.check_reset_block(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_read_phy_reg - Reads PHY register - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the buffer to store the 16-bit read. - * - * Reads the PHY register and returns the value in data. - * This is a function pointer entry point called by drivers. - */ -s32 -e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - if (hw->phy.ops.read_reg) - return (hw->phy.ops.read_reg(hw, offset, data)); - - return (E1000_SUCCESS); -} - -/* - * e1000_write_phy_reg - Writes PHY register - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - */ -s32 -e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - if (hw->phy.ops.write_reg) - return (hw->phy.ops.write_reg(hw, offset, data)); - - return (E1000_SUCCESS); -} - -/* - * e1000_release_phy - Generic release PHY - * @hw: pointer to the HW structure - * - * Return if silicon family does not require a semaphore when accessing the - * PHY. - */ -void -e1000_release_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.release) - hw->phy.ops.release(hw); -} - -/* - * e1000_acquire_phy - Generic acquire PHY - * @hw: pointer to the HW structure - * - * Return success if silicon family does not require a semaphore when - * accessing the PHY. - */ -s32 -e1000_acquire_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.acquire) - return (hw->phy.ops.acquire(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_read_kmrn_reg - Reads register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the location to store the 16-bit value read. - * - * Reads a register out of the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - */ -s32 -e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (e1000_read_kmrn_reg_generic(hw, offset, data)); -} - -/* - * e1000_write_kmrn_reg - Writes register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes a register to the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - */ -s32 -e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (e1000_write_kmrn_reg_generic(hw, offset, data)); -} - -/* - * e1000_get_cable_length - Retrieves cable length estimation - * @hw: pointer to the HW structure - * - * This function estimates the cable length and stores them in - * hw->phy.min_length and hw->phy.max_length. This is a function pointer - * entry point called by drivers. - */ -s32 -e1000_get_cable_length(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_cable_length) - return (hw->phy.ops.get_cable_length(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_get_phy_info - Retrieves PHY information from registers - * @hw: pointer to the HW structure - * - * This function gets some information from various PHY registers and - * populates hw->phy values with it. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_get_phy_info(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_info) - return (hw->phy.ops.get_info(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_phy_hw_reset - Hard PHY reset - * @hw: pointer to the HW structure - * - * Performs a hard PHY reset. This is a function pointer entry point called - * by drivers. - */ -s32 -e1000_phy_hw_reset(struct e1000_hw *hw) -{ - if (hw->phy.ops.reset) - return (hw->phy.ops.reset(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_phy_commit - Soft PHY reset - * @hw: pointer to the HW structure - * - * Performs a soft PHY reset on those that apply. This is a function pointer - * entry point called by drivers. - */ -s32 -e1000_phy_commit(struct e1000_hw *hw) -{ - if (hw->phy.ops.commit) - return (hw->phy.ops.commit(hw)); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_d0_lplu_state - Sets low power link up state for D0 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D0 - * and SmartSpeed is disabled when active is true, else clear lplu for D0 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - */ -s32 -e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d0_lplu_state) - return (hw->phy.ops.set_d0_lplu_state(hw, active)); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_d3_lplu_state - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - */ -s32 -e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d3_lplu_state) - return (hw->phy.ops.set_d3_lplu_state(hw, active)); - - return (E1000_SUCCESS); -} - -/* - * e1000_read_mac_addr - Reads MAC address - * @hw: pointer to the HW structure - * - * Reads the MAC address out of the adapter and stores it in the HW structure. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -s32 -e1000_read_mac_addr(struct e1000_hw *hw) -{ - if (hw->mac.ops.read_mac_addr) - return (hw->mac.ops.read_mac_addr(hw)); - - return (e1000_read_mac_addr_generic(hw)); -} - -/* - * e1000_read_pba_string - Read device part number string - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -s32 -e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) -{ - return (e1000_read_pba_string_generic(hw, pba_num, pba_num_size)); -} - -/* - * e1000_read_pba_length - Read device part number string length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - */ -s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) -{ - return e1000_read_pba_length_generic(hw, pba_num_size); -} - -/* - * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Validates the NVM checksum is correct. This is a function pointer entry - * point called by drivers. - */ -s32 -e1000_validate_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.validate) - return (hw->nvm.ops.validate(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Updates the NVM checksum. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -s32 -e1000_update_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.update) - return (hw->nvm.ops.update(hw)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_reload_nvm - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - */ -void -e1000_reload_nvm(struct e1000_hw *hw) -{ - if (hw->nvm.ops.reload) - hw->nvm.ops.reload(hw); -} - -/* - * e1000_read_nvm - Reads NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to read - * @data: pointer to the properly sized buffer for the data. - * - * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - */ -s32 -e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.read) - return (hw->nvm.ops.read(hw, offset, words, data)); - - return (-E1000_ERR_CONFIG); -} - -/* - * e1000_write_nvm - Writes to NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to write - * @data: pointer to the properly sized buffer for the data. - * - * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - */ -s32 -e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.write) - return (hw->nvm.ops.write(hw, offset, words, data)); - - return (E1000_SUCCESS); -} - -/* - * e1000_write_8bit_ctrl_reg - Writes 8bit Control register - * @hw: pointer to the HW structure - * @reg: 32bit register offset - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - */ -s32 -e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data) -{ - return (e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data)); -} - -/* - * e1000_power_up_phy - Restores link in case of PHY power down - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - */ -void -e1000_power_up_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_up) - hw->phy.ops.power_up(hw); - - (void) e1000_setup_link(hw); -} - -/* - * e1000_power_down_phy - Power down PHY - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - */ -void -e1000_power_down_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_down) - hw->phy.ops.power_down(hw); -} - -/* - * e1000_shutdown_fiber_serdes_link - Remove link during power down - * @hw: pointer to the HW structure - * - * Shutdown the optics and PCS on driver unload. - */ -void -e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.shutdown_serdes) - hw->mac.ops.shutdown_serdes(hw); -} diff --git a/usr/src/uts/common/io/igb/igb_api.h b/usr/src/uts/common/io/igb/igb_api.h deleted file mode 100644 index fe5af41526..0000000000 --- a/usr/src/uts/common/io/igb/igb_api.h +++ /dev/null @@ -1,158 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.53 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_API_H -#define _IGB_API_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include "igb_hw.h" - -extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); -extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); -extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); -extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); - -s32 e1000_set_mac_type(struct e1000_hw *hw); -s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); -s32 e1000_init_mac_params(struct e1000_hw *hw); -s32 e1000_init_nvm_params(struct e1000_hw *hw); -s32 e1000_init_phy_params(struct e1000_hw *hw); -s32 e1000_get_bus_info(struct e1000_hw *hw); -void e1000_clear_vfta(struct e1000_hw *hw); -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); -s32 e1000_force_mac_fc(struct e1000_hw *hw); -s32 e1000_check_for_link(struct e1000_hw *hw); -s32 e1000_reset_hw(struct e1000_hw *hw); -s32 e1000_init_hw(struct e1000_hw *hw); -s32 e1000_setup_link(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); -s32 e1000_disable_pcie_master(struct e1000_hw *hw); -void e1000_config_collision_dist(struct e1000_hw *hw); -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); -void e1000_mta_set(struct e1000_hw *hw, u32 hash_value); -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); -void e1000_update_mc_addr_list(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); -s32 e1000_setup_led(struct e1000_hw *hw); -s32 e1000_cleanup_led(struct e1000_hw *hw); -s32 e1000_check_reset_block(struct e1000_hw *hw); -s32 e1000_blink_led(struct e1000_hw *hw); -s32 e1000_led_on(struct e1000_hw *hw); -s32 e1000_led_off(struct e1000_hw *hw); -s32 e1000_id_led_init(struct e1000_hw *hw); -void e1000_reset_adaptive(struct e1000_hw *hw); -void e1000_update_adaptive(struct e1000_hw *hw); -s32 e1000_get_cable_length(struct e1000_hw *hw); -s32 e1000_validate_mdi_setting(struct e1000_hw *hw); -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data); -s32 e1000_get_phy_info(struct e1000_hw *hw); -void e1000_release_phy(struct e1000_hw *hw); -s32 e1000_acquire_phy(struct e1000_hw *hw); -s32 e1000_phy_hw_reset(struct e1000_hw *hw); -s32 e1000_phy_commit(struct e1000_hw *hw); -void e1000_power_up_phy(struct e1000_hw *hw); -void e1000_power_down_phy(struct e1000_hw *hw); -s32 e1000_read_mac_addr(struct e1000_hw *hw); -s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); -s32 e1000_read_pbe_length(struct e1000_hw *hw, u32 *pba_num_size); -void e1000_reload_nvm(struct e1000_hw *hw); -s32 e1000_update_nvm_checksum(struct e1000_hw *hw); -s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); -s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_wait_autoneg(struct e1000_hw *hw); -s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -bool e1000_check_mng_mode(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if(struct e1000_hw *hw); -s32 e1000_mng_host_if_write(struct e1000_hw *hw, - u8 *buffer, u16 length, u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, - u8 *buffer, u16 length); - -/* - * TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the Rx descriptor with EOP set - * error = the 8 bit error field of the Rx descriptor with EOP set - * length = the sum of all the length fields of the Rx descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = true; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = false; - * } - * ... - */ - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -#define TBI_ACCEPT(a, status, errors, length, last_byte, \ - min_frame_size, max_frame_size) \ - (e1000_tbi_sbp_enabled_82543(a) && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= (max_frame_size + 1))) : \ - (((length) > min_frame_size) && \ - ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_API_H */ diff --git a/usr/src/uts/common/io/igb/igb_defines.h b/usr/src/uts/common/io/igb/igb_defines.h deleted file mode 100644 index 91230531f8..0000000000 --- a/usr/src/uts/common/io/igb/igb_defines.h +++ /dev/null @@ -1,1586 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2007-2012 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.120.2.2 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_DEFINES_H -#define _IGB_DEFINES_H - -#ifdef __cplusplus -extern "C" { -#endif - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */ -#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */ -#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ -#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_FLX4 0x00100000 /* Flexible Filter 4 Enable */ -#define E1000_WUFC_FLX5 0x00200000 /* Flexible Filter 5 Enable */ -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ -/* - * For 82576 to utilize Extended filter masks in addition to - * existing (filter) masks - */ -#define E1000_WUFC_EXT_FLX_FILTERS 0x00300000 /* Ext. FLX filter mask */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC E1000_WUFC_LNKC -#define E1000_WUS_MAG E1000_WUFC_MAG -#define E1000_WUS_EX E1000_WUFC_EX -#define E1000_WUS_MC E1000_WUFC_MC -#define E1000_WUS_BC E1000_WUFC_BC -#define E1000_WUS_ARP E1000_WUFC_ARP -#define E1000_WUS_IPV4 E1000_WUFC_IPV4 -#define E1000_WUS_IPV6 E1000_WUFC_IPV6 -#define E1000_WUS_FLX0 E1000_WUFC_FLX0 -#define E1000_WUS_FLX1 E1000_WUFC_FLX1 -#define E1000_WUS_FLX2 E1000_WUFC_FLX2 -#define E1000_WUS_FLX3 E1000_WUFC_FLX3 -#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS - -/* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ - -/* Four Flexible Filters are supported */ -#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 -/* Two Extended Flexible Filters are supported (82576) */ -#define E1000_EXT_FLEXIBLE_FILTER_COUNT_MAX 2 -#define E1000_FHFT_LENGTH_OFFSET 0xFC /* Length byte in FHFT */ -#define E1000_FHFT_LENGTH_MASK 0x0FF /* Length in lower byte */ - -/* Each Flexible Filter is at most 128 (0x80) bytes in length */ -#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 - -#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX -#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX -#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX - -/* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ -#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -/* Reserved (bits 4,5) in >= 82575 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Definable Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Definable Pin 5 */ -#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Definable Pin 6 */ -#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */ -/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -/* Physical Func Reset Done Indication */ -#define E1000_CTRL_EXT_PFRSTD 0x00004000 -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -/* DMA Dynamic Clock Gating */ -#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_82580_MASK 0x01C00000 /* 82580 bit 24:22 */ -#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_EIAME 0x01000000 -#define E1000_CTRL_EXT_IRCA 0x00000001 -#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 -#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 -#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 -#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 -#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 -#define E1000_CTRL_EXT_CANC 0x04000000 /* Int delay cancellation */ -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ -/* IAME enable bit (27) was removed in >= 82575 */ -/* Interrupt acknowledge Auto-mask */ -#define E1000_CTRL_EXT_IAME 0x08000000 -/* Clear Interrupt timers after IMS clear */ -#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 -/* packet buffer parity error detection enabled */ -#define E1000_CRTL_EXT_PB_PAREN 0x01000000 -/* descriptor FIFO parity error detection enable */ -#define E1000_CTRL_EXT_DF_PAREN 0x02000000 -#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 -#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ -#define E1000_I2CCMD_REG_ADDR_SHIFT 16 -#define E1000_I2CCMD_REG_ADDR 0x00FF0000 -#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 -#define E1000_I2CCMD_PHY_ADDR 0x07000000 -#define E1000_I2CCMD_OPCODE_READ 0x08000000 -#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 -#define E1000_I2CCMD_RESET 0x10000000 -#define E1000_I2CCMD_READY 0x20000000 -#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000 -#define E1000_I2CCMD_ERROR 0x80000000 -#define E1000_MAX_SGMII_PHY_REG_ADDR 255 -#define E1000_I2CCMD_PHY_TIMEOUT 200 -#define E1000_IVAR_VALID 0x80 -#define E1000_GPIE_NSICR 0x00000001 -#define E1000_GPIE_MSIX_MODE 0x00000010 -#define E1000_GPIE_EIAME 0x40000000 -#define E1000_GPIE_PBA 0x80000000 - -/* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ -#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ -#define E1000_RXD_SPC_PRI_SHIFT 13 -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ -#define E1000_RXD_SPC_CFI_SHIFT 12 - -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - -#define E1000_MRQC_ENABLE_MASK 0x00000007 -#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 -#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 -#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 -#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -/* Enable Neighbor Discovery Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 -#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -/* Enable MAC address filtering */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 -/* Enable MNG packets to host memory */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 -/* Enable IP address filtering */ -#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 -#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ -#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ -#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ -#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ - -/* - * Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SWFW_SYNC Definitions */ -#define E1000_SWFW_EEP_SM 0x1 -#define E1000_SWFW_PHY0_SM 0x2 -#define E1000_SWFW_PHY1_SM 0x4 -#define E1000_SWFW_CSR_SM 0x8 -#define E1000_SWFW_PHY2_SM 0x20 -#define E1000_SWFW_PHY3_SM 0x40 - -/* FACTPS Definitions */ -#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */ -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /* Block new Master requests */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ -/* Defined polarity of Dock/Undock indication in SDP[0] */ -#define E1000_CTRL_D_UD_POLARITY 0x00004000 -/* Reset both PHY ports, through PHYRST_N pin */ -#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 -/* enable link status from external LINK_0 and LINK_1 pins */ -#define E1000_CTRL_EXT_LINK_EN 0x00010000 -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to ME */ -#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ - -/* - * Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ -#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 -#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 -#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR -#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA - -#define E1000_CONNSW_ENRGSRC 0x4 -#define E1000_PCS_CFG_PCS_EN 8 -#define E1000_PCS_LCTL_FLV_LINK_UP 1 -#define E1000_PCS_LCTL_FSV_10 0 -#define E1000_PCS_LCTL_FSV_100 2 -#define E1000_PCS_LCTL_FSV_1000 4 -#define E1000_PCS_LCTL_FDV_FULL 8 -#define E1000_PCS_LCTL_FSD 0x10 -#define E1000_PCS_LCTL_FORCE_LINK 0x20 -#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40 -#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 -#define E1000_PCS_LCTL_AN_ENABLE 0x10000 -#define E1000_PCS_LCTL_AN_RESTART 0x20000 -#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 -#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000 -#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000 -#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000 -#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000 -#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000 -#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 - -#define E1000_PCS_LSTS_LINK_OK 1 -#define E1000_PCS_LSTS_SPEED_10 0 -#define E1000_PCS_LSTS_SPEED_100 2 -#define E1000_PCS_LSTS_SPEED_1000 4 -#define E1000_PCS_LSTS_DUPLEX_FULL 8 -#define E1000_PCS_LSTS_SYNK_OK 0x10 -#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 -#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000 -#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000 -#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000 -#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000 - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -/* Change in Dock/Undock state. Clear on write '0'. */ -#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ -#define E1000_STATUS_DOCK_CI 0x00000800 -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ -#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ -#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ -#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ -#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ -/* BMC external code execution disabled */ -#define E1000_STATUS_BMC_LITE 0x01000000 -#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ -#define E1000_STATUS_FUSE_8 0x04000000 -#define E1000_STATUS_FUSE_9 0x08000000 -#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ -#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ - -/* Constants used to interpret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -#define PHY_FORCE_TIME 20 - -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ -#define ADVERTISE_1000_FULL 0x0020 - -/* 1000/H is not supported, nor spec-compliant. */ -#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ - ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) -#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \ - ADVERTISE_1000_FULL) -#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) - -#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX - -/* LED Control */ -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 -#define E1000_LEDCTL_LED1_MODE_SHIFT 8 -#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000 -#define E1000_LEDCTL_LED1_IVRT 0x00004000 -#define E1000_LEDCTL_LED1_BLINK 0x00008000 -#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 -#define E1000_LEDCTL_LED2_MODE_SHIFT 16 -#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 -#define E1000_LEDCTL_LED2_IVRT 0x00400000 -#define E1000_LEDCTL_LED2_BLINK 0x00800000 -#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 -#define E1000_LEDCTL_LED3_MODE_SHIFT 24 -#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 -#define E1000_LEDCTL_LED3_IVRT 0x40000000 -#define E1000_LEDCTL_LED3_BLINK 0x80000000 - -#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 -#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_ACTIVITY 0x3 -#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 -#define E1000_LEDCTL_MODE_LINK_10 0x5 -#define E1000_LEDCTL_MODE_LINK_100 0x6 -#define E1000_LEDCTL_MODE_LINK_1000 0x7 -#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 -#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 -#define E1000_LEDCTL_MODE_COLLISION 0xA -#define E1000_LEDCTL_MODE_BUS_SPEED 0xB -#define E1000_LEDCTL_MODE_BUS_SIZE 0xC -#define E1000_LEDCTL_MODE_PAUSED 0xD -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0=legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ -/* Extended desc bits for Linksec and timesync */ - -/* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ - -/* Transmit Arbitration Count */ -#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ - -/* SerDes Control */ -#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 - -/* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ -#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ - -/* Header split receive */ -#define E1000_RFCTL_ISCSI_DIS 0x00000001 -#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E -#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_NFS_VER_MASK 0x00000300 -#define E1000_RFCTL_NFS_VER_SHIFT 8 -#define E1000_RFCTL_IPV6_DIS 0x00000400 -#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_ACKD_DIS 0x00002000 -#define E1000_RFCTL_IPFRSP_DIS 0x00004000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 -#define E1000_RFCTL_LEF 0x00040000 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLD_SHIFT 12 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF -#define E1000_TIPG_IPGR1_MASK 0x000FFC00 -#define E1000_TIPG_IPGR2_MASK 0x3FF00000 - -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ - -#define ETHERNET_FCS_SIZE 4 -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 - -#define E1000_PHY_CTRL_SPD_EN 0x00000001 -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -/* PBA constants */ -#define E1000_PBA_6K 0x0006 /* 6KB */ -#define E1000_PBA_8K 0x0008 /* 8KB */ -#define E1000_PBA_10K 0x000A /* 10KB */ -#define E1000_PBA_12K 0x000C /* 12KB */ -#define E1000_PBA_14K 0x000E /* 14KB */ -#define E1000_PBA_16K 0x0010 /* 16KB */ -#define E1000_PBA_18K 0x0012 -#define E1000_PBA_20K 0x0014 -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_26K 0x001A -#define E1000_PBA_30K 0x001E -#define E1000_PBA_32K 0x0020 -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_35K 0x0023 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB */ -#define E1000_PBA_64K 0x0040 /* 64KB */ - -#define E1000_PBS_16K E1000_PBA_16K -#define E1000_PBS_24K E1000_PBA_24K - -#define IFS_MAX 80 -#define IFS_MIN 40 -#define IFS_RATIO 4 -#define IFS_STEP 10 -#define MIN_NUM_XMITS 1000 - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -/* Secondary driver semaphore bit */ -#define E1000_SWSM2_LOCK 0x00000002 - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_SRPD 0x00010000 -#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ -#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ -/* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_INT_ASSERTED 0x80000000 -#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* Q0 Rx desc FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* Q0 Tx desc FIFO parity error */ -#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity err */ -#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ -#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* Q1 Rx desc FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* Q1 Tx desc FIFO parity error */ -#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ -/* FW changed the status of DISSW bit in the FWSM */ -#define E1000_ICR_DSW 0x00000020 -/* LAN connected device generates an interrupt */ -#define E1000_ICR_PHYINT 0x00001000 -#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ -#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */ -#define E1000_ICR_FER 0x00400000 /* Fatal Error */ - -/* Extended Interrupt Cause Read */ -#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ -#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ -#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ -#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ -#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ -#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ -#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ -#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ -#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ -#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ -/* TCP Timer */ -#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ -#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ -#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ -#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ - -/* - * This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - */ -#define POLL_IMS_ENABLE_MASK ( \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ) - -/* - * This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_SRPD E1000_ICR_SRPD -#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ -/* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 -/* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 -/* host arb read buffer parity error */ -#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR -/* packet buffer parity error */ -#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR -/* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 -/* queue 1 Tx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 -#define E1000_IMS_DSW E1000_ICR_DSW -#define E1000_IMS_PHYINT E1000_ICR_PHYINT -#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_IMS_EPRST E1000_ICR_EPRST -#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ - -/* Extended Interrupt Mask Set */ -#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ -#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ -#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ -#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ -#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ -#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ -#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ -#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ -#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ -#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ - -/* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_ICS_SRPD E1000_ICR_SRPD -#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_ICS_DRSTA E1000_ICR_DRSTA /* Device Reset Aserted */ -/* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 -/* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 -/* host arb read buffer parity error */ -#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR -/* packet buffer parity error */ -#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR -/* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 -/* queue 1 Tx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 -#define E1000_ICS_DSW E1000_ICR_DSW -#define E1000_ICS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_ICS_PHYINT E1000_ICR_PHYINT -#define E1000_ICS_EPRST E1000_ICR_EPRST - -/* Extended Interrupt Cause Set */ -#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ -#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ -#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ -#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ -#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ -#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ -#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ -#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ -#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ -#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ - -#define E1000_EITR_ITR_INT_MASK 0x0000FFFF - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ -/* Enable the counting of descriptors still to be processed. */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* 802.1q VLAN Packet Size */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Receive Address */ -/* - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * Technically, we have 16 spots. However, we reserve one of these spots - * (RAR[15]) for our directed address used by controllers with - * manageability enabled, allowing us room for 15 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ -#define E1000_RAL_MAC_ADDR_LEN 4 -#define E1000_RAH_MAC_ADDR_LEN 2 -#define E1000_RAH_POOL_MASK 0x03FC0000 -#define E1000_RAH_POOL_1 0x00040000 - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_NVM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_INIT 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 -#define E1000_NOT_IMPLEMENTED 14 -#define E1000_ERR_MBX 15 -#define E1000_ERR_INVALID_ARGUMENT 16 -#define E1000_ERR_NO_SPACE 17 -#define E1000_ERR_NVM_PBA_SECTION 18 - -/* Loop limit on how long we wait for auto-negotiation to complete */ -#define FIBER_LINK_UP_LIMIT 50 -#define COPPER_LINK_UP_LIMIT 10 -#define PHY_AUTO_NEG_LIMIT 45 -#define PHY_FORCE_LIMIT 20 -/* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 -/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ -#define MDIO_OWNERSHIP_TIMEOUT 10 -/* Number of milliseconds for NVM auto read done after MAC reset. */ -#define AUTO_READ_DONE_TIMEOUT 10 - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ - -/* TUPLE Filtering Configuration */ -#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ -#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ -#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ -/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ -#define E1000_TTQF_PROTOCOL_TCP 0x0 -/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ -#define E1000_TTQF_PROTOCOL_UDP 0x1 -/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ -#define E1000_TTQF_PROTOCOL_SCTP 0x2 -#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ -#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ -#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ -#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ -#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ -#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ -#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ -#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ - -/* I350 EEE defines */ -#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ -#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ -#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ -#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ -#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ - - -/* PCI Express Control */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 -#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 -#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 -#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 -#define E1000_GCR_CAP_VER2 0x00040000 - -#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ - -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CONTROL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ - -/* NVM Control */ -#define E1000_EECD_SK 0x00000001 /* NVM Clock */ -#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* NVM Data In */ -#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ -#define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ -#define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* NVM Present */ -#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ -#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ -#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ -#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ -#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ - -/* NVM Addressing bits based on type 0=small, 1=large */ -#define E1000_EECD_ADDR_BITS 0x00000400 -#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_NVM_GRANT_ATTEMPTS -#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ -#endif -#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ -#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ -#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SECVAL_SHIFT 22 -#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) - -#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */ -#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */ -#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ -#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_NVM_RW_REG_START 1 /* Start operation */ -#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ -#define E1000_FLASH_UPDATES 2000 - -/* NVM Word Offsets */ -#define NVM_COMPAT 0x0003 -#define NVM_ID_LED_SETTINGS 0x0004 -#define NVM_VERSION 0x0005 -#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */ -#define NVM_PHY_CLASS_WORD 0x0007 -#define NVM_INIT_CONTROL1_REG 0x000A -#define NVM_INIT_CONTROL2_REG 0x000F -#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010 -#define NVM_INIT_CONTROL3_PORT_B 0x0014 -#define NVM_INIT_3GIO_3 0x001A -#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define NVM_INIT_CONTROL3_PORT_A 0x0024 -#define NVM_CFG 0x0012 -#define NVM_FLASH_VERSION 0x0032 -#define NVM_ALT_MAC_ADDR_PTR 0x0037 -#define NVM_CHECKSUM_REG 0x003F - -#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */ -#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */ -#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ -#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ - -#define NVM_82580_LAN_FUNC_OFFSET(a) (a ? (0x40 + (0x40 * a)) : 0) - -/* Mask bits for fields in Word 0x0f of the NVM */ -#define NVM_WORD0F_PAUSE_MASK 0x3000 -#define NVM_WORD0F_PAUSE 0x1000 -#define NVM_WORD0F_ASM_DIR 0x2000 -#define NVM_WORD0F_ANE 0x0800 -#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 -#define NVM_WORD0F_LPLU 0x0001 - -/* Mask bits for fields in Word 0x1a of the NVM */ -#define NVM_WORD1A_ASPM_MASK 0x000C - -/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ -#define NVM_SUM 0xBABA - -#define NVM_MAC_ADDR_OFFSET 0 -#define NVM_OEM_OFFSET_0 6 -#define NVM_OEM_OFFSET_1 7 -#define NVM_PBA_OFFSET_0 8 -#define NVM_PBA_OFFSET_1 9 -#define NVM_PBA_PTR_GUARD 0xFAFA -#define NVM_RESERVED_WORD 0xFFFF -#define NVM_PHY_CLASS_A 0x8000 -#define NVM_SERDES_AMPLITUDE_MASK 0x000F -#define NVM_SIZE_MASK 0x1C00 -#define NVM_SIZE_SHIFT 10 -#define NVM_WORD_SIZE_BASE_SHIFT 6 -#define NVM_SWDPIO_EXT_SHIFT 4 - -#define E1000_PBANUM_LENGTH 11 - -/* NVM Commands - Microwire */ -#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ -#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ -#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ -#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ - -/* NVM Commands - SPI */ -#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ -#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ -#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */ -#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ -#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */ - -/* SPI NVM Status Register */ -#define NVM_STATUS_RDY_SPI 0x01 -#define NVM_STATUS_WEN_SPI 0x02 -#define NVM_STATUS_BP0_SPI 0x04 -#define NVM_STATUS_BP1_SPI 0x08 -#define NVM_STATUS_WPEN_SPI 0x80 - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* PCI/PCI-X/PCI-EX Config space */ -#define PCI_HEADER_TYPE_REGISTER 0x0E -#define PCIE_LINK_STATUS 0x12 -#define PCIE_DEVICE_CONTROL2 0x28 - -#define PCI_HEADER_TYPE_MULTIFUNC 0x80 -#define PCIE_LINK_WIDTH_MASK 0x3F0 -#define PCIE_LINK_WIDTH_SHIFT 4 -#define PCIE_DEVICE_CONTROL2_16ms 0x0005 - -#ifndef ETH_ADDR_LEN -#define ETH_ADDR_LEN 6 -#endif - -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF - -/* Bit definitions for valid PHY IDs. */ -/* - * I = Integrated - * E = External - */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1011_I_REV_4 0x04 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define GG82563_E_PHY_ID 0x01410CA0 -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 -#define I82580_I_PHY_ID 0x015403A0 -#define I350_I_PHY_ID 0x015403B0 -#define IGP04E1000_E_PHY_ID 0x02A80391 -#define M88_VENDOR 0x0141 - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -/* 1=CLK125 low, 0=CLK125 toggling */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 -/* Auto crossover enabled all speeds */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 -/* - * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold - * 0=Normal 10BASE-T Rx Threshold - */ -#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080 -/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -/* - * 0 = <50M - * 1 = 50-80M - * 2 = 80-110M - * 3 = 110-140M - * 4 = >140M - */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -/* - * 1 = Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 -/* - * Number of times we will attempt to autonegotiate before downshifting if we - * are the slave - */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 - -/* - * Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL \ - GG82563_REG(0, 16) /* PHY Specific Control */ -#define GG82563_PHY_SPEC_STATUS \ - GG82563_REG(0, 17) /* PHY Specific Status */ -#define GG82563_PHY_INT_ENABLE \ - GG82563_REG(0, 18) /* Interrupt Enable */ -#define GG82563_PHY_SPEC_STATUS_2 \ - GG82563_REG(0, 19) /* PHY Specific Status 2 */ -#define GG82563_PHY_RX_ERR_CNTR \ - GG82563_REG(0, 21) /* Receive Error Counter */ -#define GG82563_PHY_PAGE_SELECT \ - GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 \ - GG82563_REG(0, 26) /* PHY Specific Control 2 */ -#define GG82563_PHY_PAGE_SELECT_ALT \ - GG82563_REG(0, 29) /* Alternate Page Select */ -#define GG82563_PHY_TEST_CLK_CTRL \ - GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */ - -#define GG82563_PHY_MAC_SPEC_CTRL \ - GG82563_REG(2, 21) /* MAC Specific Control Register */ -#define GG82563_PHY_MAC_SPEC_CTRL_2 \ - GG82563_REG(2, 26) /* MAC Specific Control 2 */ - -#define GG82563_PHY_DSP_DISTANCE \ - GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -#define GG82563_PHY_KMRN_MODE_CTRL \ - GG82563_REG(193, 16) /* Kumeran Mode Control */ -#define GG82563_PHY_PORT_RESET \ - GG82563_REG(193, 17) /* Port Reset */ -#define GG82563_PHY_REVISION_ID \ - GG82563_REG(193, 18) /* Revision ID */ -#define GG82563_PHY_DEVICE_ID \ - GG82563_REG(193, 19) /* Device ID */ -#define GG82563_PHY_PWR_MGMT_CTRL \ - GG82563_REG(193, 20) /* Power Management Control */ -#define GG82563_PHY_RATE_ADAPT_CTRL \ - GG82563_REG(193, 25) /* Rate Adaptation Control */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \ - GG82563_REG(194, 16) /* FIFO's Control/Status */ -#define GG82563_PHY_KMRN_CTRL \ - GG82563_REG(194, 17) /* Control */ -#define GG82563_PHY_INBAND_CTRL \ - GG82563_REG(194, 18) /* Inband Control */ -#define GG82563_PHY_KMRN_DIAGNOSTIC \ - GG82563_REG(194, 19) /* Diagnostic */ -#define GG82563_PHY_ACK_TIMEOUTS \ - GG82563_REG(194, 20) /* Acknowledge Timeouts */ -#define GG82563_PHY_ADV_ABILITY \ - GG82563_REG(194, 21) /* Advertised Ability */ -#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \ - GG82563_REG(194, 23) /* Link Partner Advertised Ability */ -#define GG82563_PHY_ADV_NEXT_PAGE \ - GG82563_REG(194, 24) /* Advertised Next Page */ -#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \ - GG82563_REG(194, 25) /* Link Partner Advertised Next page */ -#define GG82563_PHY_KMRN_MISC \ - GG82563_REG(194, 26) /* Misc. */ - -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 - -/* SerDes Control */ -#define E1000_GEN_CTL_READY 0x80000000 -#define E1000_GEN_CTL_ADDRESS_SHIFT 8 -#define E1000_GEN_POLL_TIMEOUT 640 - -/* LinkSec register fields */ -#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 -#define E1000_LSECTXCAP_SUM_SHIFT 16 -#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 -#define E1000_LSECRXCAP_SUM_SHIFT 16 - -#define E1000_LSECTXCTRL_EN_MASK 0x00000003 -#define E1000_LSECTXCTRL_DISABLE 0x0 -#define E1000_LSECTXCTRL_AUTH 0x1 -#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 -#define E1000_LSECTXCTRL_AISCI 0x00000020 -#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 -#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 - -#define E1000_LSECRXCTRL_EN_MASK 0x0000000C -#define E1000_LSECRXCTRL_EN_SHIFT 2 -#define E1000_LSECRXCTRL_DISABLE 0x0 -#define E1000_LSECRXCTRL_CHECK 0x1 -#define E1000_LSECRXCTRL_STRICT 0x2 -#define E1000_LSECRXCTRL_DROP 0x3 -#define E1000_LSECRXCTRL_PLSH 0x00000040 -#define E1000_LSECRXCTRL_RP 0x00000080 -#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 - -/* DMA Coalescing register fields */ - -/* DMA Coalescing Watchdog Timer */ -#define E1000_DMACR_DMACWT_MASK 0x00003FFF -/* DMA Coalescing Receive Threshold */ -#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 -#define E1000_DMACR_DMACTHR_SHIFT 16 -/* Lx when no PCIe transactions */ -#define E1000_DMACR_DMAC_LX_MASK 0x30000000 -#define E1000_DMACR_DMAC_LX_SHIFT 28 -/* Enable DMA Coalescing */ -#define E1000_DMACR_DMAC_EN 0x80000000 -/* DMA Coalescing Transmit Threshold */ -#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF -/* Time to LX request */ -#define E1000_DMCTLX_TTLX_MASK 0x00000FFF -/* Receive Traffic Rate Threshold */ -#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF -/* Rcv packet rate in current window */ -#define E1000_DMCRTRH_LRPRCW 0x80000000 -/* DMA Coal Rcv Traffic Current Cnt */ -#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF -/* Flow ctrl Rcv Threshold High val */ -#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 -#define E1000_FCRTC_RTH_COAL_SHIFT 4 -/* Lx power decision based on DMA coal */ -#define E1000_PCIEMISC_LX_DECISION 0x00000080 - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_DEFINES_H */ diff --git a/usr/src/uts/common/io/igb/igb_hw.h b/usr/src/uts/common/io/igb/igb_hw.h deleted file mode 100644 index dd88d96411..0000000000 --- a/usr/src/uts/common/io/igb/igb_hw.h +++ /dev/null @@ -1,692 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2007-2012 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.446.2.1 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_HW_H -#define _IGB_HW_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include "igb_osdep.h" -#include "igb_regs.h" -#include "igb_defines.h" - -struct e1000_hw; - -#define E1000_DEV_ID_82576 0x10C9 -#define E1000_DEV_ID_82576_FIBER 0x10E6 -#define E1000_DEV_ID_82576_SERDES 0x10E7 -#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 -#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 -#define E1000_DEV_ID_82576_NS 0x150A -#define E1000_DEV_ID_82576_NS_SERDES 0x1518 -#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D -#define E1000_DEV_ID_82575EB_COPPER 0x10A7 -#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 -#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 -#define E1000_DEV_ID_82580_COPPER 0x150E -#define E1000_DEV_ID_82580_FIBER 0x150F -#define E1000_DEV_ID_82580_SERDES 0x1510 -#define E1000_DEV_ID_82580_SGMII 0x1511 -#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 -#define E1000_DEV_ID_I350_COPPER 0x1521 -#define E1000_DEV_ID_I350_SERDES 0x1523 - -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 -#define E1000_REVISION_4 4 - -#define E1000_FUNC_0 0 -#define E1000_FUNC_1 1 -#define E1000_FUNC_2 2 -#define E1000_FUNC_3 3 - -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 - -enum e1000_mac_type { - e1000_undefined = 0, - e1000_82575, - e1000_82576, - e1000_82580, - e1000_i350, - e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ -}; - -enum e1000_media_type { - e1000_media_type_unknown = 0, - e1000_media_type_copper = 1, - e1000_media_type_fiber = 2, - e1000_media_type_internal_serdes = 3, - e1000_num_media_types -}; - -enum e1000_nvm_type { - e1000_nvm_unknown = 0, - e1000_nvm_none, - e1000_nvm_eeprom_spi, - e1000_nvm_eeprom_microwire, - e1000_nvm_flash_hw, - e1000_nvm_flash_sw -}; - -enum e1000_nvm_override { - e1000_nvm_override_none = 0, - e1000_nvm_override_spi_small, - e1000_nvm_override_spi_large, - e1000_nvm_override_microwire_small, - e1000_nvm_override_microwire_large -}; - -enum e1000_phy_type { - e1000_phy_unknown = 0, - e1000_phy_none, - e1000_phy_m88, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_82580, - e1000_phy_vf -}; - -enum e1000_bus_type { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_pci_express, - e1000_bus_type_reserved -}; - -enum e1000_bus_speed { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_2500, - e1000_bus_speed_5000, - e1000_bus_speed_reserved -}; - -enum e1000_bus_width { - e1000_bus_width_unknown = 0, - e1000_bus_width_pcie_x1, - e1000_bus_width_pcie_x2, - e1000_bus_width_pcie_x4 = 4, - e1000_bus_width_pcie_x8 = 8, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -}; - -enum e1000_1000t_rx_status { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -}; - -enum e1000_rev_polarity { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -}; - -enum e1000_fc_mode { - e1000_fc_none = 0, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full, - e1000_fc_default = 0xFF -}; - -enum e1000_ms_type { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -}; - -enum e1000_smart_speed { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -}; - -enum e1000_serdes_link_state { - e1000_serdes_link_down = 0, - e1000_serdes_link_autoneg_progress, - e1000_serdes_link_autoneg_complete, - e1000_serdes_link_forced_up -}; - -/* Receive Descriptor */ -struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; -}; - -/* Receive Descriptor - Extended */ -union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define MAX_PS_BUFFERS 4 -/* Receive Descriptor - Packet Split */ -union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - __le16 length[3]; /* length of buffers 1-3 */ - } upper; - __le64 reserved; - } wb; /* writeback */ -}; - -/* Transmit Descriptor */ -struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; -}; - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; - u8 cmd; - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; - } fields; - } upper; -}; - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 tor; - u64 tot; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; - u64 cbtmpc; - u64 htdpmc; - u64 cbrdpc; - u64 cbrmpc; - u64 rpthc; - u64 hgptc; - u64 htcbdpc; - u64 hgorc; - u64 hgotc; - u64 lenerrs; - u64 scvpc; - u64 hrmpc; - u64 doosync; -}; - -struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; -}; - -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; -}; - -/* Host Interface "Rev 1" */ -struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; - u8 checksum; -}; - -#define E1000_HI_MAX_DATA_LENGTH 252 -struct e1000_host_command_info { - struct e1000_host_command_header command_header; - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; -}; - -/* Host Interface "Rev 2" */ -struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; -}; - -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; -}; - -#include "igb_mac.h" -#include "igb_phy.h" -#include "igb_nvm.h" -#include "igb_manage.h" - -struct e1000_mac_operations { - /* Function pointers for the MAC. */ - s32 (*init_params)(struct e1000_hw *); - s32 (*id_led_init)(struct e1000_hw *); - s32 (*blink_led)(struct e1000_hw *); - s32 (*check_for_link)(struct e1000_hw *); - bool (*check_mng_mode)(struct e1000_hw *hw); - s32 (*cleanup_led)(struct e1000_hw *); - void (*clear_hw_cntrs)(struct e1000_hw *); - void (*clear_vfta)(struct e1000_hw *); - s32 (*get_bus_info)(struct e1000_hw *); - void (*set_lan_id)(struct e1000_hw *); - s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); - s32 (*led_on)(struct e1000_hw *); - s32 (*led_off)(struct e1000_hw *); - void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); - s32 (*reset_hw)(struct e1000_hw *); - s32 (*init_hw)(struct e1000_hw *); - void (*shutdown_serdes)(struct e1000_hw *); - s32 (*setup_link)(struct e1000_hw *); - s32 (*setup_physical_interface)(struct e1000_hw *); - s32 (*setup_led)(struct e1000_hw *); - void (*write_vfta)(struct e1000_hw *, u32, u32); - void (*mta_set)(struct e1000_hw *, u32); - void (*config_collision_dist)(struct e1000_hw *); - void (*rar_set)(struct e1000_hw *, u8*, u32); - s32 (*read_mac_addr)(struct e1000_hw *); - s32 (*validate_mdi_setting)(struct e1000_hw *); - s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*); - s32 (*mng_write_cmd_header)(struct e1000_hw *hw, - struct e1000_host_mng_command_header *); - s32 (*mng_enable_host_if)(struct e1000_hw *); - s32 (*wait_autoneg)(struct e1000_hw *); -}; - -struct e1000_phy_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*check_polarity)(struct e1000_hw *); - s32 (*check_reset_block)(struct e1000_hw *); - s32 (*commit)(struct e1000_hw *); - s32 (*force_speed_duplex)(struct e1000_hw *); - s32 (*get_cfg_done)(struct e1000_hw *hw); - s32 (*get_cable_length)(struct e1000_hw *); - s32 (*get_info)(struct e1000_hw *); - s32 (*read_reg)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); - void (*release)(struct e1000_hw *); - s32 (*reset)(struct e1000_hw *); - s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); - s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); - s32 (*write_reg)(struct e1000_hw *, u32, u16); - s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); - void (*power_up)(struct e1000_hw *); - void (*power_down)(struct e1000_hw *); -}; - -struct e1000_nvm_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*read)(struct e1000_hw *, u16, u16, u16 *); - void (*release)(struct e1000_hw *); - void (*reload)(struct e1000_hw *); - s32 (*update)(struct e1000_hw *); - s32 (*valid_led_default)(struct e1000_hw *, u16 *); - s32 (*validate)(struct e1000_hw *); - s32 (*write)(struct e1000_hw *, u16, u16, u16 *); -}; - -struct e1000_mac_info { - struct e1000_mac_operations ops; - u8 addr[6]; - u8 perm_addr[6]; - - enum e1000_mac_type type; - - u32 collision_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - u32 mc_filter_type; - u32 tx_packet_delta; - u32 txcw; - - u16 current_ifs_val; - u16 ifs_max_val; - u16 ifs_min_val; - u16 ifs_ratio; - u16 ifs_step_size; - u16 mta_reg_count; - u16 uta_reg_count; - - /* Maximum size of the MTA register table in all supported adapters */ -#define MAX_MTA_REG 128 - u32 mta_shadow[MAX_MTA_REG]; - u16 rar_entry_count; - - u8 forced_speed_duplex; - - bool adaptive_ifs; - bool arc_subsystem_valid; - bool asf_firmware_present; - bool autoneg; - bool autoneg_failed; - bool get_link_status; - bool in_ifs_mode; - enum e1000_serdes_link_state serdes_link_state; - bool serdes_has_link; - bool tx_pkt_filtering; -}; - -struct e1000_phy_info { - struct e1000_phy_operations ops; - enum e1000_phy_type type; - - enum e1000_1000t_rx_status local_rx; - enum e1000_1000t_rx_status remote_rx; - enum e1000_ms_type ms_type; - enum e1000_ms_type original_ms_type; - enum e1000_rev_polarity cable_polarity; - enum e1000_smart_speed smart_speed; - - u32 addr; - u32 id; - u32 reset_delay_us; /* in usec */ - u32 revision; - - enum e1000_media_type media_type; - - u16 autoneg_advertised; - u16 autoneg_mask; - u16 cable_length; - u16 max_cable_length; - u16 min_cable_length; - - u8 mdix; - - bool disable_polarity_correction; - bool is_mdix; - bool polarity_correction; - bool reset_disable; - bool speed_downgraded; - bool autoneg_wait_to_complete; -}; - -struct e1000_nvm_info { - struct e1000_nvm_operations ops; - enum e1000_nvm_type type; - enum e1000_nvm_override override; - - u32 flash_bank_size; - u32 flash_base_addr; - - u16 word_size; - u16 delay_usec; - u16 address_bits; - u16 opcode_bits; - u16 page_size; -}; - -struct e1000_bus_info { - enum e1000_bus_type type; - enum e1000_bus_speed speed; - enum e1000_bus_width width; - - u16 func; - u16 pci_cmd_word; -}; - -struct e1000_fc_info { - u32 high_water; /* Flow control high-water mark */ - u32 low_water; /* Flow control low-water mark */ - u16 pause_time; /* Flow control pause timer */ - bool send_xon; /* Flow control send XON */ - bool strict_ieee; /* Strict IEEE mode */ - enum e1000_fc_mode current_mode; /* FC mode in effect */ - enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ -}; - -struct e1000_dev_spec_82575 { - bool sgmii_active; - bool global_device_reset; - int eee_disable; -}; - -struct e1000_dev_spec_vf { - u32 vf_number; - u32 v2p_mailbox; -}; - -struct e1000_hw { - void *back; - - u8 *hw_addr; - u8 *flash_address; - unsigned long io_base; - - struct e1000_mac_info mac; - struct e1000_fc_info fc; - struct e1000_phy_info phy; - struct e1000_nvm_info nvm; - struct e1000_bus_info bus; - struct e1000_host_mng_dhcp_cookie mng_cookie; - - union { - struct e1000_dev_spec_82575 _82575; - struct e1000_dev_spec_vf vf; - } dev_spec; - - u16 device_id; - u16 subsystem_vendor_id; - u16 subsystem_device_id; - u16 vendor_id; - - u8 revision_id; -}; - -#include "igb_82575.h" - -/* These functions must be implemented by drivers */ -s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_HW_H */ diff --git a/usr/src/uts/common/io/igb/igb_mac.c b/usr/src/uts/common/io/igb/igb_mac.c deleted file mode 100644 index 90cf177acd..0000000000 --- a/usr/src/uts/common/io/igb/igb_mac.c +++ /dev/null @@ -1,2146 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.108 v3_3_14_3_BHSW1 */ - -#include "igb_api.h" - -static s32 e1000_set_default_fc_generic(struct e1000_hw *hw); -static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); -static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); -static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); -static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); - -/* - * e1000_init_mac_ops_generic - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - */ -void -e1000_init_mac_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - DEBUGFUNC("e1000_init_mac_ops_generic"); - - /* General Setup */ - mac->ops.init_params = e1000_null_ops_generic; - mac->ops.init_hw = e1000_null_ops_generic; - mac->ops.reset_hw = e1000_null_ops_generic; - mac->ops.setup_physical_interface = e1000_null_ops_generic; - mac->ops.get_bus_info = e1000_null_ops_generic; - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; - mac->ops.read_mac_addr = e1000_read_mac_addr_generic; - mac->ops.config_collision_dist = e1000_config_collision_dist_generic; - mac->ops.clear_hw_cntrs = e1000_null_mac_generic; - /* LED */ - mac->ops.cleanup_led = e1000_null_ops_generic; - mac->ops.setup_led = e1000_null_ops_generic; - mac->ops.blink_led = e1000_null_ops_generic; - mac->ops.led_on = e1000_null_ops_generic; - mac->ops.led_off = e1000_null_ops_generic; - /* LINK */ - mac->ops.setup_link = e1000_null_ops_generic; - mac->ops.get_link_up_info = e1000_null_link_info; - mac->ops.check_for_link = e1000_null_ops_generic; - mac->ops.wait_autoneg = e1000_wait_autoneg_generic; - /* Management */ - mac->ops.check_mng_mode = e1000_null_mng_mode; - mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic; - mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic; - mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic; - /* VLAN, MC, etc. */ - mac->ops.update_mc_addr_list = e1000_null_update_mc; - mac->ops.clear_vfta = e1000_null_mac_generic; - mac->ops.write_vfta = e1000_null_write_vfta; - mac->ops.mta_set = e1000_null_mta_set; - mac->ops.rar_set = e1000_rar_set_generic; - mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; -} - -/* - * e1000_null_ops_generic - No-op function, returns 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_ops_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_ops_generic"); - UNREFERENCED_1PARAMETER(hw); - return (E1000_SUCCESS); -} - -/* - * e1000_null_mac_generic - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_mac_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_mac_generic"); - UNREFERENCED_1PARAMETER(hw); -} - -/* - * e1000_null_link_info - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d) -{ - DEBUGFUNC("e1000_null_link_info"); - UNREFERENCED_3PARAMETER(hw, s, d); - return (E1000_SUCCESS); -} - -/* - * e1000_null_mng_mode - No-op function, return false - * @hw: pointer to the HW structure - */ -bool -e1000_null_mng_mode(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_mng_mode"); - UNREFERENCED_1PARAMETER(hw); - return (false); -} - -/* - * e1000_null_update_mc - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a) -{ - DEBUGFUNC("e1000_null_update_mc"); - UNREFERENCED_3PARAMETER(hw, h, a); -} - -/* - * e1000_null_write_vfta - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b) -{ - DEBUGFUNC("e1000_null_write_vfta"); - UNREFERENCED_3PARAMETER(hw, a, b); -} - -/* - * e1000_null_set_mta - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_mta_set(struct e1000_hw *hw, u32 a) -{ - DEBUGFUNC("e1000_null_mta_set"); - UNREFERENCED_2PARAMETER(hw, a); -} - -/* - * e1000_null_rar_set - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a) -{ - DEBUGFUNC("e1000_null_rar_set"); - UNREFERENCED_3PARAMETER(hw, h, a); -} - -/* - * e1000_get_bus_info_pcie_generic - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - */ -s32 -e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - u16 pcie_link_status; - - DEBUGFUNC("e1000_get_bus_info_pcie_generic"); - - bus->type = e1000_bus_type_pci_express; - bus->speed = e1000_bus_speed_2500; - - ret_val = e1000_read_pcie_cap_reg(hw, - PCIE_LINK_STATUS, &pcie_link_status); - if (ret_val) - bus->width = e1000_bus_width_unknown; - else - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); - - mac->ops.set_lan_id(hw); - - return (E1000_SUCCESS); -} - -/* - * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices - * - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading memory-mapped registers - * and swaps the port value if requested. - */ -static void -e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u32 reg; - - /* - * The status register reports the correct function number - * for the device regardless of function swap state. - */ - reg = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; -} - -/* - * e1000_set_lan_id_single_port - Set LAN id for a single port device - * @hw: pointer to the HW structure - * - * Sets the LAN function id to zero for a single port device. - */ -void -e1000_set_lan_id_single_port(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - bus->func = 0; -} - -/* - * e1000_clear_vfta_generic - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - */ -void -e1000_clear_vfta_generic(struct e1000_hw *hw) -{ - u32 offset; - - DEBUGFUNC("e1000_clear_vfta_generic"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - E1000_WRITE_FLUSH(hw); - } -} - -/* - * e1000_write_vfta_generic - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - */ -void -e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) -{ - DEBUGFUNC("e1000_write_vfta_generic"); - - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_init_rx_addrs_generic - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setups the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - */ -void -e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ADDR_LEN] = {0}; - - DEBUGFUNC("e1000_init_rx_addrs_generic"); - - /* Setup the receive address */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - hw->mac.ops.rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); - for (i = 1; i < rar_count; i++) - hw->mac.ops.rar_set(hw, mac_addr, i); -} - -/* - * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is found it is programmed into RAR0, replacing - * the permanent address that was installed into RAR0 by the Si on reset. - * This function will return SUCCESS unless it encounters an error while - * reading the EEPROM. - */ -s32 -e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val = E1000_SUCCESS; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ADDR_LEN]; - - DEBUGFUNC("e1000_check_alt_mac_addr_generic"); - - /* - * On newer models, the alternate mac address is supposed to be handled - * by hardware and software should just get out of the way. - */ - if (hw->mac.type >= e1000_82580) - return (E1000_SUCCESS); - - ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (nvm_alt_mac_addr_offset == 0xFFFF) { - /* There is no Alternate MAC Address */ - goto out; - } - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - if (hw->bus.func == E1000_FUNC_2) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; - if (hw->bus.func == E1000_FUNC_3) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (alt_mac_addr[0] & 0x01) { - DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); - goto out; - } - - /* - * We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - hw->mac.ops.rar_set(hw, alt_mac_addr, 0); - -out: - return (ret_val); -} - -/* - * e1000_rar_set_generic - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - */ -void -e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_generic"); - - /* - * HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* - * Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_mta_set_generic - Set multicast filter table address - * @hw: pointer to the HW structure - * @hash_value: determines the MTA register and bit to set - * - * The multicast table address is a register array of 32-bit registers. - * The hash_value is used to determine what register the bit is in, the - * current value is read, the new bit is OR'd in and the new value is - * written back into the register. - */ -void -e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value) -{ - u32 hash_bit, hash_reg, mta; - - DEBUGFUNC("e1000_mta_set_generic"); - /* - * The MTA is a register array of 32-bit registers. It is - * treated like an array of (32*mta_reg_count) bits. We want to - * set bit BitArray[hash_value]. So we figure out what register - * the bit is in, read it, OR in the new bit, then write - * back the new value. The (hw->mac.mta_reg_count - 1) serves as a - * mask to bits 31:5 of the hash value which gives us the - * register we're modifying. The hash bit within that register - * is determined by the lower 5 bits of the hash value. - */ - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); - - mta |= (1 << hash_bit); - - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_update_mc_addr_list_generic - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - */ -void -e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - DEBUGFUNC("e1000_update_mc_addr_list_generic"); - - /* clear mta_shadow */ - (void) memset(&hw->mac.mta_shadow, 0, sizeof (hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ADDR_LEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_hash_mc_addr_generic - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. See - * e1000_mta_set_generic() - */ -u32 -e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - DEBUGFUNC("e1000_hash_mc_addr_generic"); - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* - * For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* - * The portion of the address that is used for the hash table - * is determined by the mc_filter_type setting. - * The algorithm is such that there is a total of 8 bits of shifting. - * The bit_shift for a mc_filter_type of 0 represents the number of - * left-shifts where the MSB of mc_addr[5] would still fall within - * the hash_mask. Case 0 does this exactly. Since there are a total - * of 8 bits of shifting, then mc_addr[4] will shift right the - * remaining number of bits. Thus 8 - bit_shift. The rest of the - * cases are a variation of this algorithm...essentially raising the - * number of bits to shift mc_addr[5] left, while still keeping the - * 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an - * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), - * we can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return (hash_value); -} - -/* - * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - */ -void -e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); - - (void) E1000_READ_REG(hw, E1000_CRCERRS); - (void) E1000_READ_REG(hw, E1000_SYMERRS); - (void) E1000_READ_REG(hw, E1000_MPC); - (void) E1000_READ_REG(hw, E1000_SCC); - (void) E1000_READ_REG(hw, E1000_ECOL); - (void) E1000_READ_REG(hw, E1000_MCC); - (void) E1000_READ_REG(hw, E1000_LATECOL); - (void) E1000_READ_REG(hw, E1000_COLC); - (void) E1000_READ_REG(hw, E1000_DC); - (void) E1000_READ_REG(hw, E1000_SEC); - (void) E1000_READ_REG(hw, E1000_RLEC); - (void) E1000_READ_REG(hw, E1000_XONRXC); - (void) E1000_READ_REG(hw, E1000_XONTXC); - (void) E1000_READ_REG(hw, E1000_XOFFRXC); - (void) E1000_READ_REG(hw, E1000_XOFFTXC); - (void) E1000_READ_REG(hw, E1000_FCRUC); - (void) E1000_READ_REG(hw, E1000_GPRC); - (void) E1000_READ_REG(hw, E1000_BPRC); - (void) E1000_READ_REG(hw, E1000_MPRC); - (void) E1000_READ_REG(hw, E1000_GPTC); - (void) E1000_READ_REG(hw, E1000_GORCL); - (void) E1000_READ_REG(hw, E1000_GORCH); - (void) E1000_READ_REG(hw, E1000_GOTCL); - (void) E1000_READ_REG(hw, E1000_GOTCH); - (void) E1000_READ_REG(hw, E1000_RNBC); - (void) E1000_READ_REG(hw, E1000_RUC); - (void) E1000_READ_REG(hw, E1000_RFC); - (void) E1000_READ_REG(hw, E1000_ROC); - (void) E1000_READ_REG(hw, E1000_RJC); - (void) E1000_READ_REG(hw, E1000_TORL); - (void) E1000_READ_REG(hw, E1000_TORH); - (void) E1000_READ_REG(hw, E1000_TOTL); - (void) E1000_READ_REG(hw, E1000_TOTH); - (void) E1000_READ_REG(hw, E1000_TPR); - (void) E1000_READ_REG(hw, E1000_TPT); - (void) E1000_READ_REG(hw, E1000_MPTC); - (void) E1000_READ_REG(hw, E1000_BPTC); -} - -/* - * e1000_check_for_copper_link_generic - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - */ -s32 -e1000_check_for_copper_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link"); - - /* - * We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* - * First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) - goto out; /* No link detected */ - - mac->get_link_status = false; - - /* - * Check if there was DownShift, must be checked - * immediately after link-up - */ - (void) e1000_check_downshift_generic(hw); - - /* - * If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - e1000_config_collision_dist_generic(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - -out: - return (ret_val); -} - -/* - * e1000_check_for_fiber_link_generic - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - */ -s32 -e1000_check_for_fiber_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_fiber_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (mac->autoneg_failed == 0) { - mac->autoneg_failed = 1; - goto out; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - goto out; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - -out: - return (ret_val); -} - -/* - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - */ -s32 -e1000_check_for_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), - * we need to force link up. We also need to give auto-negotiation - * time to complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { - if (mac->autoneg_failed == 0) { - mac->autoneg_failed = 1; - goto out; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - goto out; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { - /* - * If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - forced.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - autoneg " - "completed sucessfully.\n"); - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - invalid" - "codewords detected in autoneg.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - no sync.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - autoneg failed\n"); - } - } - -out: - return (ret_val); -} - -/* - * e1000_setup_link_generic - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - */ -s32 -e1000_setup_link_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_link_generic"); - - /* - * In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (hw->phy.ops.check_reset_block) - if (hw->phy.ops.check_reset_block(hw)) - goto out; - - /* - * If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - goto out; - } - - /* - * Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - goto out; - - /* - * Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address,type and timer regs\n"); - E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - - ret_val = e1000_set_fc_watermarks_generic(hw); - -out: - return (ret_val); -} - -/* - * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes - * links. Upon successful setup, poll for link. - */ -s32 -e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - e1000_config_collision_dist_generic(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - goto out; - - /* - * Since auto-negotiation is enabled, take the link out of reset (the - * link will be in reset, because we previously reset the chip). This - * will restart auto-negotiation. If auto-negotiation is successful - * then the link-up status bit will be set and the flow control enable - * bits (RFCE and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - - /* - * For these adapters, the SW definable pin 1 is set when the optics - * detect a signal. If we have a signal, then poll for a "Link-Up" - * indication. - */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - } else { - DEBUGOUT("No signal detected\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_config_collision_dist_generic - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - */ -void -e1000_config_collision_dist_generic(struct e1000_hw *hw) -{ - u32 tctl; - - DEBUGFUNC("e1000_config_collision_dist_generic"); - - tctl = E1000_READ_REG(hw, E1000_TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/* - * e1000_poll_fiber_serdes_link_generic - Poll for link up - * @hw: pointer to the HW structure - * - * Polls for link up by reading the status register, if link fails to come - * up with auto-negotiation, then the link is forced if a signal is detected. - */ -s32 -e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 i, status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); - - /* - * If we have a signal (the cable is plugged in, or assumed true for - * serdes media) then poll for a "Link-Up" indication in the Device - * Status Register. Time-out if a link isn't seen in 500 milliseconds - * seconds (Auto-negotiation should complete in less than 500 - * milliseconds even if the other end is doing it in SW). - */ - for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { - msec_delay(10); - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == FIBER_LINK_UP_LIMIT) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - mac->autoneg_failed = 1; - /* - * AutoNeg failed to achieve a link, so we'll call - * mac->check_for_link. This routine will force the - * link up if we detect a signal. This will allow us to - * communicate with non-autonegotiating link partners. - */ - ret_val = hw->mac.ops.check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - goto out; - } - mac->autoneg_failed = 0; - } else { - mac->autoneg_failed = 0; - DEBUGOUT("Valid Link Found\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_commit_fc_settings_generic - Configure flow control - * @hw: pointer to the HW structure - * - * Write the flow control settings to the Transmit Config Word Register (TXCW) - * base on the flow control settings in e1000_mac_info. - */ -s32 -e1000_commit_fc_settings_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txcw; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_commit_fc_settings_generic"); - - /* - * Check for a software override of the flow control settings, and - * setup the device accordingly. If auto-negotiation is enabled, then - * software will have to set the "PAUSE" bits to the correct value in - * the Transmit Config Word Register (TXCW) and re-start auto- - * negotiation. However, if auto-negotiation is disabled, then - * software will have to manually configure the two flow control enable - * bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we - * do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled and Tx Flow control is disabled - * by a software over-ride. Since there really isn't a way to - * advertise that we are capable of Rx Pause ONLY, we will - * advertise that we support both symmetric and asymmetric RX - * PAUSE. Later, we will disable the adapter's ability to send - * PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is disabled, - * by a software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - E1000_WRITE_REG(hw, E1000_TXCW, txcw); - mac->txcw = txcw; - -out: - return (ret_val); -} - -/* - * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * transmission as well. - */ -s32 -e1000_set_fc_watermarks_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 fcrtl = 0, fcrth = 0; - - DEBUGFUNC("e1000_set_fc_watermarks_generic"); - - /* - * Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames is not enabled, then these - * registers will be set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* - * We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - if (hw->fc.send_xon) - fcrtl |= E1000_FCRTL_XONE; - - fcrth = hw->fc.high_water; - } - E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); - E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); - - return (ret_val); -} - -/* - * e1000_set_default_fc_generic - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - */ -s32 -e1000_set_default_fc_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 nvm_data; - - DEBUGFUNC("e1000_set_default_fc_generic"); - - /* - * Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); - - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - -out: - return (ret_val); -} - -/* - * e1000_force_mac_fc_generic - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - */ -s32 -e1000_force_mac_fc_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_force_mac_fc_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* - * Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and Tx flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - -out: - return (ret_val); -} - -/* - * e1000_config_fc_after_link_up_generic - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - */ -s32 -e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up_generic"); - - /* - * Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = e1000_force_mac_fc_generic(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = e1000_force_mac_fc_generic(hw); - } - - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - goto out; - } - - /* - * Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* - * Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - goto out; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - DEBUGOUT("Copper PHY and Auto Neg " - "has not completed.\n"); - goto out; - } - - /* - * The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (Address 4) and the Auto_Negotiation Base - * Page Ability Register (Address 5) to determine how - * flow control was negotiated. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - goto out; - ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - goto out; - - /* - * Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - * ------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - * ------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* - * Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\r\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = " - "RX PAUSE frames only.\r\n"); - } - } - /* - * For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - * ------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); - } - /* - * For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - * ------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); - } else { - /* - * Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\r\n"); - } - - /* - * Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - goto out; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* - * Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - */ -s32 -e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - u32 status; - - DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - return (E1000_SUCCESS); -} - -/* - * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Sets the speed and duplex to gigabit full duplex (the only possible option) - * for fiber/serdes links. - */ -s32 -e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, - u16 *speed, u16 *duplex) -{ - DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); - UNREFERENCED_1PARAMETER(hw); - - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - - return (E1000_SUCCESS); -} - -/* - * e1000_get_hw_semaphore_generic - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - */ -s32 -e1000_get_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - s32 ret_val = E1000_SUCCESS; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_generic"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_put_hw_semaphore_generic - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - */ -void -e1000_put_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/* - * e1000_get_auto_rd_done_generic - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - */ -s32 -e1000_get_auto_rd_done_generic(struct e1000_hw *hw) -{ - s32 i = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_get_auto_rd_done_generic"); - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) - break; - msec_delay(1); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - DEBUGOUT("Auto read by HW from NVM has not completed.\n"); - ret_val = -E1000_ERR_RESET; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_valid_led_default_generic - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - */ -s32 -e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - -out: - return (ret_val); -} - -/* - * e1000_id_led_init_generic - - * @hw: pointer to the HW structure - * - */ -s32 -e1000_id_led_init_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init_generic"); - - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - goto out; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - -out: - return (ret_val); -} - -/* - * e1000_setup_led_generic - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - */ -s32 -e1000_setup_led_generic(struct e1000_hw *hw) -{ - u32 ledctl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_led_generic"); - - if (hw->mac.ops.setup_led != e1000_setup_led_generic) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - if (hw->phy.media_type == e1000_media_type_fiber) { - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - hw->mac.ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | - E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } else if (hw->phy.media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - } - -out: - return (ret_val); -} - -/* - * e1000_cleanup_led_generic - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - */ -s32 -e1000_cleanup_led_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_cleanup_led_generic"); - - if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - -out: - return (ret_val); -} - -/* - * e1000_blink_led_generic - Blink LED - * @hw: pointer to the HW structure - * - * Blink the LEDs which are set to be on. - */ -s32 -e1000_blink_led_generic(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - DEBUGFUNC("e1000_blink_led_generic"); - - if (hw->phy.media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* - * set the blink bit for each LED that's "on" (0x0E) - * in ledctl_mode2 - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << - (i * 8)); - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); - - return (E1000_SUCCESS); -} - -/* - * e1000_led_on_generic - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - */ -s32 -e1000_led_on_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_on_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - break; - default: - break; - } - - return (E1000_SUCCESS); -} - -/* - * e1000_led_off_generic - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - */ -s32 -e1000_led_off_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_off_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return (E1000_SUCCESS); -} - -/* - * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities - * @hw: pointer to the HW structure - * @no_snoop: bitmap of snoop events - * - * Set the PCI-express register to snoop for events enabled in 'no_snoop'. - */ -void -e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) -{ - u32 gcr; - - DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - return; - - if (no_snoop) { - gcr = E1000_READ_REG(hw, E1000_GCR); - gcr &= ~(PCIE_NO_SNOOP_ALL); - gcr |= no_snoop; - E1000_WRITE_REG(hw, E1000_GCR, gcr); - } -} - -/* - * e1000_disable_pcie_master_generic - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns 0 (E1000_SUCCESS) if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - */ -s32 -e1000_disable_pcie_master_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_disable_pcie_master_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - goto out; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - while (timeout) { - if (!(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE)) - break; - usec_delay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Reset the Adaptive Interframe Spacing throttle to default values. - */ -void -e1000_reset_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_reset_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - mac->current_ifs_val = 0; - mac->ifs_min_val = IFS_MIN; - mac->ifs_max_val = IFS_MAX; - mac->ifs_step_size = IFS_STEP; - mac->ifs_ratio = IFS_RATIO; - - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); -} - -/* - * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Update the Adaptive Interframe Spacing Throttle value based on the - * time between transmitted packets and time between collisions. - */ -void -e1000_update_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_update_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { - if (mac->tx_packet_delta > MIN_NUM_XMITS) { - mac->in_ifs_mode = true; - if (mac->current_ifs_val < mac->ifs_max_val) { - if (!mac->current_ifs_val) - mac->current_ifs_val = mac->ifs_min_val; - else - mac->current_ifs_val += - mac->ifs_step_size; - E1000_WRITE_REG(hw, E1000_AIT, - mac->current_ifs_val); - } - } - } else { - if (mac->in_ifs_mode && - (mac->tx_packet_delta <= MIN_NUM_XMITS)) { - mac->current_ifs_val = 0; - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); - } - } -} - -/* - * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Verify that when not using auto-negotiation that MDI/MDIx is correctly - * set, which is forced to MDI mode only. - */ -static s32 -e1000_validate_mdi_setting_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_validate_mdi_setting_generic"); - - if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->phy.mdix = 1; - ret_val = -E1000_ERR_CONFIG; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register - * @hw: pointer to the HW structure - * @reg: 32bit register offset such as E1000_SCTL - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes an address/data control type register. There are several of these - * and they all have the format address << 8 | data and bit 31 is polled for - * completion. - */ -s32 -e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data) -{ - u32 i, regvalue = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); - - /* Set up the address and data */ - regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); - E1000_WRITE_REG(hw, reg, regvalue); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { - usec_delay(5); - regvalue = E1000_READ_REG(hw, reg); - if (regvalue & E1000_GEN_CTL_READY) - break; - } - if (!(regvalue & E1000_GEN_CTL_READY)) { - DEBUGOUT1("Reg %08x did not indicate ready\n", reg); - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return (ret_val); -} diff --git a/usr/src/uts/common/io/igb/igb_manage.c b/usr/src/uts/common/io/igb/igb_manage.c deleted file mode 100644 index d5f29c25f8..0000000000 --- a/usr/src/uts/common/io/igb/igb_manage.c +++ /dev/null @@ -1,393 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.27 v3_3_14_3_BHSW1 */ - -#include "igb_api.h" - -static u8 e1000_calculate_checksum(u8 *buffer, u32 length); - -/* - * e1000_calculate_checksum - Calculate checksum for buffer - * @buffer: pointer to EEPROM - * @length: size of EEPROM to calculate a checksum for - * - * Calculates the checksum for some buffer on a specified length. The - * checksum calculated is returned. - */ -static u8 e1000_calculate_checksum(u8 *buffer, u32 length) -{ - u32 i; - u8 sum = 0; - - DEBUGFUNC("e1000_calculate_checksum"); - - if (!buffer) - return (0); - - for (i = 0; i < length; i++) - sum += buffer[i]; - - return (u8) (0 - sum); -} - -/* - * e1000_mng_enable_host_if_generic - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - */ -s32 -e1000_mng_enable_host_if_generic(struct e1000_hw *hw) -{ - u32 hicr; - s32 ret_val = E1000_SUCCESS; - u8 i; - - DEBUGFUNC("e1000_mng_enable_host_if_generic"); - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if ((hicr & E1000_HICR_EN) == 0) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; - goto out; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay_irq(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - DEBUGOUT("Previous command timeout failed .\n"); - ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_check_mng_mode_generic - Generic check management mode - * @hw: pointer to the HW structure - * - * Reads the firmware semaphore register and returns true (>0) if - * manageability is enabled, else false (0). - */ -bool -e1000_check_mng_mode_generic(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_mng_mode_generic"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/* - * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - */ -bool -e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) -{ - struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; - u32 *buffer = (u32 *)&hw->mng_cookie; - u32 offset; - s32 ret_val, hdr_csum, csum; - u8 i, len; - bool tx_filter = true; - - DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); - - /* No manageability, no filtering */ - if (!hw->mac.ops.check_mng_mode(hw)) { - tx_filter = false; - goto out; - } - - /* - * If we can't read from the host interface for whatever - * reason, disable filtering. - */ - ret_val = hw->mac.ops.mng_enable_host_if(hw); - if (ret_val != E1000_SUCCESS) { - tx_filter = false; - goto out; - } - - /* Read in the header. Length and offset are in dwords. */ - len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; - offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; - for (i = 0; i < len; i++) { - *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, - E1000_HOST_IF, offset + i); - } - hdr_csum = hdr->checksum; - hdr->checksum = 0; - csum = e1000_calculate_checksum((u8 *)hdr, - E1000_MNG_DHCP_COOKIE_LENGTH); - /* - * If either the checksums or signature don't match, then - * the cookie area isn't considered valid, in which case we - * take the safe route of assuming Tx filtering is enabled. - */ - if (hdr_csum != csum) - goto out; - if (hdr->signature != E1000_IAMT_SIGNATURE) - goto out; - - /* Cookie area is valid, make the final check for filtering. */ - if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) - tx_filter = false; - -out: - hw->mac.tx_pkt_filtering = tx_filter; - return (tx_filter); -} - -/* - * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - */ -s32 -e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, - u16 length) -{ - struct e1000_host_mng_command_header hdr; - s32 ret_val; - u32 hicr; - - DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); - - hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; - hdr.command_length = length; - hdr.reserved1 = 0; - hdr.reserved2 = 0; - hdr.checksum = 0; - - /* Enable the host interface */ - ret_val = hw->mac.ops.mng_enable_host_if(hw); - if (ret_val) - goto out; - - /* Populate the host interface with the contents of "buffer". */ - ret_val = hw->mac.ops.mng_host_if_write(hw, buffer, length, - sizeof (hdr), &(hdr.checksum)); - if (ret_val) - goto out; - - /* Write the manageability command header */ - ret_val = hw->mac.ops.mng_write_cmd_header(hw, &hdr); - if (ret_val) - goto out; - - /* Tell the ARC a new command is pending. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - -out: - return (ret_val); -} - -/* - * e1000_mng_write_cmd_header_generic - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - */ -s32 -e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - u16 i, length = sizeof (struct e1000_host_mng_command_header); - - DEBUGFUNC("e1000_mng_write_cmd_header_generic"); - - /* Write the whole command header structure with new checksum. */ - - hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); - - length >>= 2; - /* Write the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, - *((u32 *)(uintptr_t)hdr + i)); - E1000_WRITE_FLUSH(hw); - } - - return (E1000_SUCCESS); -} - -/* - * e1000_mng_host_if_write_generic - Write to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - */ -s32 -e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum) -{ - u8 *tmp; - u8 *bufptr = buffer; - u32 data = 0; - s32 ret_val = E1000_SUCCESS; - u16 remaining, i, j, prev_bytes; - - DEBUGFUNC("e1000_mng_host_if_write_generic"); - - /* sum = only sum of the data and it is not checksum */ - - if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { - ret_val = -E1000_ERR_PARAM; - goto out; - } - - tmp = (u8 *)&data; - prev_bytes = offset & 0x3; - offset >>= 2; - - if (prev_bytes) { - data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); - for (j = prev_bytes; j < sizeof (u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); - length -= j - prev_bytes; - offset++; - } - - remaining = length & 0x3; - length -= remaining; - - /* Calculate length in DWORDs */ - length >>= 2; - - /* - * The device driver writes the relevant command block into the - * ram area. - */ - for (i = 0; i < length; i++) { - for (j = 0; j < sizeof (u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - offset + i, data); - } - if (remaining) { - for (j = 0; j < sizeof (u32); j++) { - if (j < remaining) - *(tmp + j) = *bufptr++; - else - *(tmp + j) = 0; - - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - offset + i, data); - } - -out: - return (ret_val); -} - -/* - * e1000_enable_mng_pass_thru - Enable processing of ARP's - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to allow ARPs to be processed by the host. - */ -bool -e1000_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - bool ret_val = false; - - DEBUGFUNC("e1000_enable_mng_pass_thru"); - - if (!hw->mac.asf_firmware_present) - goto out; - - manc = E1000_READ_REG(hw, E1000_MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN) || - !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) - goto out; - - if (hw->mac.arc_subsystem_valid) { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - factps = E1000_READ_REG(hw, E1000_FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { - ret_val = true; - goto out; - } - } else { - if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - ret_val = true; - goto out; - } - } - -out: - return (ret_val); -} diff --git a/usr/src/uts/common/io/igb/igb_manage.h b/usr/src/uts/common/io/igb/igb_manage.h deleted file mode 100644 index 116531e15f..0000000000 --- a/usr/src/uts/common/io/igb/igb_manage.h +++ /dev/null @@ -1,94 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.18 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_MANAGE_H -#define _IGB_MANAGE_H - -#ifdef __cplusplus -extern "C" { -#endif - -bool e1000_check_mng_mode_generic(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); -s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, - u8 *buffer, u16 length); -bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); - -enum e1000_mng_mode { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_if_only -}; - -#define E1000_FACTPS_MNGCG 0x20000000 - -#define E1000_FWSM_MODE_MASK 0xE -#define E1000_FWSM_MODE_SHIFT 1 - -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 - -#define E1000_VFTA_ENTRY_SHIFT 5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F - -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ -/* Process HI command limit */ -#define E1000_HI_COMMAND_TIMEOUT 500 - -#define E1000_HICR_EN 0x01 /* Enable bit - RO */ -/* Driver sets this bit when done to put command in RAM */ -#define E1000_HICR_C 0x02 -#define E1000_HICR_SV 0x04 /* Status Validity */ -#define E1000_HICR_FW_RESET_ENABLE 0x40 -#define E1000_HICR_FW_RESET 0x80 - -/* Intel(R) Active Management Technology signature */ -#define E1000_IAMT_SIGNATURE 0x544D4149 - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_MANAGE_H */ diff --git a/usr/src/uts/common/io/igb/igb_nvm.c b/usr/src/uts/common/io/igb/igb_nvm.c deleted file mode 100644 index 6f809a9338..0000000000 --- a/usr/src/uts/common/io/igb/igb_nvm.c +++ /dev/null @@ -1,1017 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.49 v3_3_14_3_BHSW1 */ - -#include "igb_api.h" - -static void e1000_stop_nvm(struct e1000_hw *hw); -static void e1000_reload_nvm_generic(struct e1000_hw *hw); - -/* - * e1000_init_nvm_ops_generic - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - */ -void -e1000_init_nvm_ops_generic(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - DEBUGFUNC("e1000_init_nvm_ops_generic"); - - /* Initialize function pointers */ - nvm->ops.init_params = e1000_null_ops_generic; - nvm->ops.acquire = e1000_null_ops_generic; - nvm->ops.read = e1000_null_read_nvm; - nvm->ops.release = e1000_null_nvm_generic; - nvm->ops.reload = e1000_reload_nvm_generic; - nvm->ops.update = e1000_null_ops_generic; - nvm->ops.valid_led_default = e1000_null_led_default; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.write = e1000_null_write_nvm; -} - -/* - * e1000_null_nvm_read - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) -{ - DEBUGFUNC("e1000_null_read_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return (E1000_SUCCESS); -} - -/* - * e1000_null_nvm_generic - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_nvm_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_nvm_generic"); - UNREFERENCED_1PARAMETER(hw); -} - -/* - * e1000_null_led_default - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_led_default(struct e1000_hw *hw, u16 *data) -{ - DEBUGFUNC("e1000_null_led_default"); - UNREFERENCED_2PARAMETER(hw, data); - return (E1000_SUCCESS); -} - -/* - * e1000_null_write_nvm - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c) -{ - DEBUGFUNC("e1000_null_write_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return (E1000_SUCCESS); -} - -/* - * e1000_raise_eec_clk - Raise EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Enable/Raise the EEPROM clock bit. - */ -static void -e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/* - * e1000_lower_eec_clk - Lower EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Clear/Lower the EEPROM clock bit. - */ -static void -e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/* - * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM - * @hw: pointer to the HW structure - * @data: data to send to the EEPROM - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the EEPROM. So, the value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ -static void -e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u32 mask; - - DEBUGFUNC("e1000_shift_out_eec_bits"); - - mask = 0x01 << (count - 1); - if (nvm->type == e1000_nvm_eeprom_microwire) - eecd &= ~E1000_EECD_DO; - else if (nvm->type == e1000_nvm_eeprom_spi) - eecd |= E1000_EECD_DO; - - do { - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - - mask >>= 1; - } while (mask); - - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/* - * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM - * @hw: pointer to the HW structure - * @count: number of bits to shift in - * - * In order to read a register from the EEPROM, we need to shift 'count' bits - * in from the EEPROM. Bits are "shifted in" by raising the clock input to - * the EEPROM (setting the SK bit), and then reading the value of the data out - * "DO" bit. During this "shifting in" process the data in "DI" bit should - * always be clear. - */ -static u16 -e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - DEBUGFUNC("e1000_shift_in_eec_bits"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data <<= 1; - e1000_raise_eec_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~E1000_EECD_DI; - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_eec_clk(hw, &eecd); - } - - return (data); -} - -/* - * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion - * @hw: pointer to the HW structure - * @ee_reg: EEPROM flag for polling - * - * Polls the EEPROM status bit for either read or write completion based - * upon the value of 'ee_reg'. - */ -s32 -e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) -{ - u32 attempts = 100000; - u32 i, reg = 0; - s32 ret_val = -E1000_ERR_NVM; - - DEBUGFUNC("e1000_poll_eerd_eewr_done"); - - for (i = 0; i < attempts; i++) { - if (ee_reg == E1000_NVM_POLL_READ) - reg = E1000_READ_REG(hw, E1000_EERD); - else - reg = E1000_READ_REG(hw, E1000_EEWR); - - if (reg & E1000_NVM_RW_REG_DONE) { - ret_val = E1000_SUCCESS; - break; - } - - usec_delay(5); - } - - return (ret_val); -} - -/* - * e1000_acquire_nvm_generic - Generic request for access to EEPROM - * @hw: pointer to the HW structure - * - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - */ -s32 -e1000_acquire_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_acquire_nvm_generic"); - - E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); - eecd = E1000_READ_REG(hw, E1000_EECD); - - while (timeout) { - if (eecd & E1000_EECD_GNT) - break; - usec_delay(5); - eecd = E1000_READ_REG(hw, E1000_EECD); - timeout--; - } - - if (!timeout) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - DEBUGOUT("Could not acquire NVM grant\n"); - ret_val = -E1000_ERR_NVM; - } - - return (ret_val); -} - -/* - * e1000_standby_nvm - Return EEPROM to standby state - * @hw: pointer to the HW structure - * - * Return the EEPROM to a standby state. - */ -static void -e1000_standby_nvm(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - - DEBUGFUNC("e1000_standby_nvm"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_lower_eec_clk(hw, &eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - } -} - -/* - * e1000_stop_nvm - Terminate EEPROM command - * @hw: pointer to the HW structure - * - * Terminates the current command by inverting the EEPROM's chip select pin. - */ -void -e1000_stop_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_stop_nvm"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - /* Pull CS high */ - eecd |= E1000_EECD_CS; - e1000_lower_eec_clk(hw, &eecd); - } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - } -} - -/* - * e1000_release_nvm_generic - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - */ -void -e1000_release_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_release_nvm_generic"); - - e1000_stop_nvm(hw); - - eecd = E1000_READ_REG(hw, E1000_EECD); - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/* - * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write - * @hw: pointer to the HW structure - * - * Setups the EEPROM for reading and writing. - */ -static s32 -e1000_ready_nvm_eeprom(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 ret_val = E1000_SUCCESS; - u16 timeout = 0; - u8 spi_stat_reg; - - DEBUGFUNC("e1000_ready_nvm_eeprom"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - usec_delay(1); - timeout = NVM_MAX_RETRY_SPI; - - /* - * Read "Status Register" repeatedly until the LSB is cleared. - * The EEPROM will signal that the command has been completed - * by clearing bit 0 of the internal status register. If it's - * not cleared within 'timeout', then error out. - */ - while (timeout) { - e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, - hw->nvm.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); - if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) - break; - - usec_delay(5); - e1000_standby_nvm(hw); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SPI NVM Status error\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - } - -out: - return (ret_val); -} - -/* - * e1000_read_nvm_microwire - Reads EEPROM's using microwire - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - */ -s32 -e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; - - DEBUGFUNC("e1000_read_nvm_microwire"); - - /* - * A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset + i), - nvm->address_bits); - - /* - * Read the data. For microwire, each word requires the - * overhead of setup and tear-down. - */ - data[i] = e1000_shift_in_eec_bits(hw, 16); - e1000_standby_nvm(hw); - } - -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_nvm_eerd - Reads EEPROM using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM using the EERD register. - */ -s32 -e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eerd = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_nvm_eerd"); - - /* - * A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_EERD, eerd); - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); - if (ret_val) - break; - - data[i] = (E1000_READ_REG(hw, E1000_EERD) >> - E1000_NVM_RW_REG_DATA); - } - -out: - return (ret_val); -} - -/* - * e1000_write_nvm_spi - Write to EEPROM using SPI - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - */ -s32 -e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_spi"); - - /* - * A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - while (widx < words) { - u8 write_opcode = NVM_WRITE_OPCODE_SPI; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_standby_nvm(hw); - - /* Send the WRITE ENABLE command (8 bit opcode) */ - e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, - nvm->opcode_bits); - - e1000_standby_nvm(hw); - - /* - * Some SPI eeproms use the 8th address bit embedded in the - * opcode - */ - if ((nvm->address_bits == 8) && (offset >= 128)) - write_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), - nvm->address_bits); - - /* Loop to allow for up to whole page write of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_eec_bits(hw, word_out, 16); - widx++; - - if ((((offset + widx) * 2) % nvm->page_size) == 0) { - e1000_standby_nvm(hw); - break; - } - } - } - - msec_delay(10); -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_nvm_microwire - Writes EEPROM using microwire - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using microwire interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - */ -s32 -e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u32 eecd; - u16 words_written = 0; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_microwire"); - - /* - * A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - - e1000_standby_nvm(hw); - - while (words_written < words) { - e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, - nvm->opcode_bits); - - e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), - nvm->address_bits); - - e1000_shift_out_eec_bits(hw, data[words_written], 16); - - e1000_standby_nvm(hw); - - for (widx = 0; widx < 200; widx++) { - eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & E1000_EECD_DO) - break; - usec_delay(50); - } - - if (widx == 200) { - DEBUGOUT("NVM Write did not complete\n"); - ret_val = -E1000_ERR_NVM; - goto release; - } - - e1000_standby_nvm(hw); - - words_written++; - } - - e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - -release: - nvm->ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_pba_string_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - */ -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 offset; - u16 length; - - DEBUGFUNC("e1000_read_pba_string_generic"); - - if (pba_num == NULL) { - DEBUGOUT("PBA string buffer was null\n"); - return (-E1000_ERR_INVALID_ARGUMENT); - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - - /* if nvm_data is not ptr guard the PBA must be in legacy format which - * means pba_ptr is actually our second data word for the PBA number - * and we can decode it into an ascii string - */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - DEBUGOUT("NVM PBA number is not stored as string\n"); - - /* make sure callers buffer is big enough to store the PBA */ - if (pba_num_size < E1000_PBANUM_LENGTH) { - DEBUGOUT("PBA string buffer too small\n"); - return (-E1000_ERR_NO_SPACE); - } - - /* extract hex string from data and pba_ptr */ - pba_num[0] = (nvm_data >> 12) & 0xF; - pba_num[1] = (nvm_data >> 8) & 0xF; - pba_num[2] = (nvm_data >> 4) & 0xF; - pba_num[3] = nvm_data & 0xF; - pba_num[4] = (pba_ptr >> 12) & 0xF; - pba_num[5] = (pba_ptr >> 8) & 0xF; - pba_num[6] = '-'; - pba_num[7] = 0; - pba_num[8] = (pba_ptr >> 4) & 0xF; - pba_num[9] = pba_ptr & 0xF; - - /* put a null character on the end of our string */ - pba_num[10] = '\0'; - - /* switch all the data but the '-' to hex char */ - for (offset = 0; offset < 10; offset++) { - if (pba_num[offset] < 0xA) - pba_num[offset] += '0'; - else if (pba_num[offset] < 0x10) - pba_num[offset] += 'A' - 0xA; - } - - return (E1000_SUCCESS); - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return (-E1000_ERR_NVM_PBA_SECTION); - } - /* check if pba_num buffer is big enough */ - if (pba_num_size < (((u32)length * 2) - 1)) { - DEBUGOUT("PBA string buffer too small\n"); - return (-E1000_ERR_NO_SPACE); - } - - /* trim pba length from start of string */ - pba_ptr++; - length--; - - for (offset = 0; offset < length; offset++) { - ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - pba_num[offset * 2] = (u8)(nvm_data >> 8); - pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); - } - pba_num[offset * 2] = '\0'; - - return (E1000_SUCCESS); -} - -/* - * e1000_read_pba_length_generic - Read device part number length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num_size. - */ -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 length; - - DEBUGFUNC("e1000_read_pba_length_generic"); - - if (pba_num_size == NULL) { - DEBUGOUT("PBA buffer size was null\n"); - return (-E1000_ERR_INVALID_ARGUMENT); - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - - /* if data is not ptr guard the PBA must be in legacy format */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - *pba_num_size = E1000_PBANUM_LENGTH; - return (E1000_SUCCESS); - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return (ret_val); - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return (-E1000_ERR_NVM_PBA_SECTION); - } - - /* Convert from length in u16 values to u8 chars, add 1 for NULL, - * and subtract 2 because length field is included in length. - */ - *pba_num_size = ((u32)length * 2) - 1; - - return (E1000_SUCCESS); -} - -/* - * e1000_read_mac_addr_generic - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - */ -s32 -e1000_read_mac_addr_generic(struct e1000_hw *hw) -{ - u32 rar_high; - u32 rar_low; - u16 i; - - rar_high = E1000_READ_REG(hw, E1000_RAH(0)); - rar_low = E1000_READ_REG(hw, E1000_RAL(0)); - - for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); - - for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return (E1000_SUCCESS); -} - -/* - * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - */ -s32 -e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_generic"); - - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_update_nvm_checksum_generic - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - */ -s32 -e1000_update_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum"); - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - -out: - return (ret_val); -} - -/* - * e1000_reload_nvm_generic - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - */ -void -e1000_reload_nvm_generic(struct e1000_hw *hw) -{ - u32 ctrl_ext; - - DEBUGFUNC("e1000_reload_nvm_generic"); - - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); -} diff --git a/usr/src/uts/common/io/igb/igb_nvm.h b/usr/src/uts/common/io/igb/igb_nvm.h deleted file mode 100644 index ceb42a4f10..0000000000 --- a/usr/src/uts/common/io/igb/igb_nvm.h +++ /dev/null @@ -1,72 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.18 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_NVM_H -#define _IGB_NVM_H - -#ifdef __cplusplus -extern "C" { -#endif - -void e1000_init_nvm_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -void e1000_null_nvm_generic(struct e1000_hw *hw); -s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); -s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); - -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size); -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); -s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); -s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); -void e1000_release_nvm_generic(struct e1000_hw *hw); - -#define E1000_STM_OPCODE 0xDB00 - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_NVM_H */ diff --git a/usr/src/uts/common/io/igb/igb_osdep.c b/usr/src/uts/common/io/igb/igb_osdep.c index 4ce7c0f020..2baad0f7d3 100644 --- a/usr/src/uts/common/io/igb/igb_osdep.c +++ b/usr/src/uts/common/io/igb/igb_osdep.c @@ -26,9 +26,24 @@ * Use is subject to license terms of the CDDL. */ -#include "igb_osdep.h" -#include "igb_api.h" +#include "e1000_osdep.h" +#include "e1000_api.h" +void +e1000_pci_set_mwi(struct e1000_hw *hw) +{ + uint16_t val = hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE; + + e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val); +} + +void +e1000_pci_clear_mwi(struct e1000_hw *hw) +{ + uint16_t val = hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE; + + e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val); +} void e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value) diff --git a/usr/src/uts/common/io/igb/igb_phy.c b/usr/src/uts/common/io/igb/igb_phy.c deleted file mode 100644 index e22b6483f2..0000000000 --- a/usr/src/uts/common/io/igb/igb_phy.c +++ /dev/null @@ -1,2826 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.161 v3_3_14_3_BHSW1 */ - -#include "igb_api.h" - -static s32 e1000_copper_link_autoneg(struct e1000_hw *hw); -static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); - -/* Cable length tables */ -static const u16 e1000_m88_cable_length_table[] = - { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; - -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof (e1000_m88_cable_length_table) / \ - sizeof (e1000_m88_cable_length_table[0])) - -static const u16 e1000_igp_2_cable_length_table[] = - { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, - 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, - 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, - 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, - 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, - 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, - 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, - 104, 109, 114, 118, 121, 124}; - -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof (e1000_igp_2_cable_length_table) / \ - sizeof (e1000_igp_2_cable_length_table[0])) - -/* - * e1000_init_phy_ops_generic - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - */ -void -e1000_init_phy_ops_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - DEBUGFUNC("e1000_init_phy_ops_generic"); - - /* Initialize function pointers */ - phy->ops.init_params = e1000_null_ops_generic; - phy->ops.acquire = e1000_null_ops_generic; - phy->ops.check_polarity = e1000_null_ops_generic; - phy->ops.check_reset_block = e1000_null_ops_generic; - phy->ops.commit = e1000_null_ops_generic; - phy->ops.force_speed_duplex = e1000_null_ops_generic; - phy->ops.get_cfg_done = e1000_null_ops_generic; - phy->ops.get_cable_length = e1000_null_ops_generic; - phy->ops.get_info = e1000_null_ops_generic; - phy->ops.read_reg = e1000_null_read_reg; - phy->ops.read_reg_locked = e1000_null_read_reg; - phy->ops.release = e1000_null_phy_generic; - phy->ops.reset = e1000_null_ops_generic; - phy->ops.set_d0_lplu_state = e1000_null_lplu_state; - phy->ops.set_d3_lplu_state = e1000_null_lplu_state; - phy->ops.write_reg = e1000_null_write_reg; - phy->ops.write_reg_locked = e1000_null_write_reg; - phy->ops.power_up = e1000_null_phy_generic; - phy->ops.power_down = e1000_null_phy_generic; -} - -/* - * e1000_null_read_reg - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - DEBUGFUNC("e1000_null_read_reg"); - UNREFERENCED_3PARAMETER(hw, offset, data); - return (E1000_SUCCESS); -} - -/* - * e1000_null_phy_generic - No-op function, return void - * @hw: pointer to the HW structure - */ -void -e1000_null_phy_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_null_phy_generic"); - UNREFERENCED_1PARAMETER(hw); -} - -/* - * e1000_null_lplu_state - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_lplu_state(struct e1000_hw *hw, bool active) -{ - DEBUGFUNC("e1000_null_lplu_state"); - UNREFERENCED_2PARAMETER(hw, active); - return (E1000_SUCCESS); -} - -/* - * e1000_null_write_reg - No-op function, return 0 - * @hw: pointer to the HW structure - */ -s32 -e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - DEBUGFUNC("e1000_null_write_reg"); - UNREFERENCED_3PARAMETER(hw, offset, data); - return (E1000_SUCCESS); -} - -/* - * e1000_check_reset_block_generic - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise - * return E1000_BLK_PHY_RESET (12). - */ -s32 -e1000_check_reset_block_generic(struct e1000_hw *hw) -{ - u32 manc; - - DEBUGFUNC("e1000_check_reset_block"); - - manc = E1000_READ_REG(hw, E1000_MANC); - - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : E1000_SUCCESS; -} - -/* - * e1000_get_phy_id - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - */ -s32 -e1000_get_phy_id(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - - DEBUGFUNC("e1000_get_phy_id"); - - if (!(phy->ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); - if (ret_val) - goto out; - - phy->id = (u32)(phy_id << 16); - usec_delay(20); - ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); - if (ret_val) - goto out; - - phy->id |= (u32)(phy_id & PHY_REVISION_MASK); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - -out: - return (ret_val); -} - -/* - * e1000_phy_reset_dsp_generic - Reset PHY DSP - * @hw: pointer to the HW structure - * - * Reset the digital signal processor. - */ -s32 -e1000_phy_reset_dsp_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_phy_reset_dsp_generic"); - - if (!(hw->phy.ops.write_reg)) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); - -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_mdic - Read MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - */ -s32 -e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_phy_reg_mdic"); - - /* - * Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - *data = (u16) mdic; - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_mdic - Write MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - */ -s32 -e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_mdic"); - - /* - * Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = (((u32)data) | - (offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* - * Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_i2c - Read PHY register using i2c - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the i2c interface and stores the - * retrieved information in data. - */ -s32 -e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, i2ccmd = 0; - - DEBUGFUNC("e1000_read_phy_reg_i2c"); - - /* - * Set up Op-code, Phy Address, and register address in the I2CCMD - * register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - (E1000_I2CCMD_OPCODE_READ)); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) - break; - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Read did not complete\n"); - return (-E1000_ERR_PHY); - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return (-E1000_ERR_PHY); - } - - /* Need to byte-swap the 16-bit value. */ - *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); - - return (E1000_SUCCESS); -} - -/* - * e1000_write_phy_reg_i2c - Write PHY register using i2c - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset using the i2c interface. - */ -s32 -e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, i2ccmd = 0; - u16 phy_data_swapped; - - DEBUGFUNC("e1000_write_phy_reg_i2c"); - - /* Swap the data bytes for the I2C interface */ - phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); - - /* - * Set up Op-code, Phy Address, and register address in the I2CCMD - * register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_WRITE | - phy_data_swapped); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) - break; - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Write did not complete\n"); - return (-E1000_ERR_PHY); - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return (-E1000_ERR_PHY); - } - - return (E1000_SUCCESS); -} - -/* - * e1000_read_phy_reg_m88 - Read m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - */ -s32 -e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_phy_reg_m88"); - - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_m88 - Write m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_m88"); - - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, data); - - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * __e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphores before exiting. - */ -static s32 -__e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_read_phy_reg_igp"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, data); - -release: - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores the - * retrieved information in data. - * Release the acquired semaphore before exiting. - */ -s32 -e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_phy_reg_igp(hw, offset, data, false)); -} - -/* - * e1000_read_phy_reg_igp_locked - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - */ -s32 -e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_phy_reg_igp(hw, offset, data, true)); -} - -/* - * __e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -static s32 -__e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_write_phy_reg_igp"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, (u16)offset); - if (ret_val) - goto release; - } - - ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, data); - -release: - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - */ -s32 -e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_phy_reg_igp(hw, offset, data, false)); -} - -/* - * e1000_write_phy_reg_igp_locked - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. - * Assumes semaphore already acquired. - */ -s32 -e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_phy_reg_igp(hw, offset, data, true)); -} - -/* - * __e1000_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then reads the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release any acquired semaphores before exiting. - */ -static s32 -__e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_read_kmrn_reg_generic"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - - usec_delay(2); - - kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_read_kmrn_reg_generic - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset using the - * kumeran interface. The information retrieved is stored in data. - * Release the acquired semaphore before exiting. - */ -s32 -e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_kmrn_reg(hw, offset, data, false)); -} - -/* - * e1000_read_kmrn_reg_locked - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the kumeran interface. The - * information retrieved is stored in data. - * Assumes semaphore already acquired. - */ -s32 -e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return (__e1000_read_kmrn_reg(hw, offset, data, true)); -} - -/* - * __e1000_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then write the data to PHY register - * at the offset using the kumeran interface. Release any acquired semaphores - * before exiting. - */ -static s32 -__e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, bool locked) -{ - u32 kmrnctrlsta; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_kmrn_reg_generic"); - - if (!locked) { - if (!(hw->phy.ops.acquire)) - goto out; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - - usec_delay(2); - - if (!locked) - hw->phy.ops.release(hw); - -out: - return (ret_val); -} - -/* - * e1000_write_kmrn_reg_generic - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to the PHY register at the offset - * using the kumeran interface. Release the acquired semaphore before exiting. - */ -s32 -e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_kmrn_reg(hw, offset, data, false)); -} - -/* - * e1000_write_kmrn_reg_locked - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Write the data to PHY register at the offset using the kumeran interface. - * Assumes semaphore already acquired. - */ -s32 -e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return (__e1000_write_kmrn_reg(hw, offset, data, true)); -} - -/* - * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - * @hw: pointer to the HW structure - * - * Sets up Carrier-sense on Transmit and downshift values. - */ -s32 -e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_82577"); - - if (phy->reset_disable) { - ret_val = E1000_SUCCESS; - goto out; - } - - if (phy->type == e1000_phy_82580) { - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - goto out; - } - } - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, I82577_CFG_REG, &phy_data); - if (ret_val) - goto out; - - phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - - /* Enable downshift */ - phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - - ret_val = phy->ops.write_reg(hw, I82577_CFG_REG, phy_data); - -out: - return (ret_val); -} - -/* - * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock - * and downshift values are set also. - */ -s32 -e1000_copper_link_setup_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_m88"); - - if (phy->reset_disable) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* - * Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* - * Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; - - if (phy->revision < E1000_REVISION_4) { - /* - * Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - goto out; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((phy->revision == E1000_REVISION_2) && - (phy->id == M88E1111_I_PHY_ID)) { - /* 82573L PHY - set the downshift counter to 5x. */ - phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - } - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - goto out; - } - - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_copper_link_setup_igp - Setup igp PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - * igp PHY's. - */ -s32 -e1000_copper_link_setup_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_copper_link_setup_igp"); - - if (phy->reset_disable) { - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - goto out; - } - - /* - * Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msec_delay(100); - - /* - * The NVM settings will configure LPLU in D3 for - * non-IGP1 PHYs. - */ - if (phy->type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D3\n"); - goto out; - } - } - - /* disable lplu d0 during driver init */ - if (hw->phy.ops.set_d0_lplu_state) { - ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D0\n"); - goto out; - } - } - /* Configure mdi-mdix settings */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (phy->mdix) { - case 1: - data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); - if (ret_val) - goto out; - - /* set auto-master slave resolution settings */ - if (hw->mac.autoneg) { - /* - * when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. - */ - if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, data); - if (ret_val) - goto out; - - /* Set auto Master/Slave resolution process */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - goto out; - - data &= ~CR_1000T_MS_ENABLE; - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - goto out; - } - - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - goto out; - - /* load defaults for future use */ - phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? - ((data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy->ms_type) { - case e1000_ms_force_master: - data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - data |= CR_1000T_MS_ENABLE; - data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - */ -static s32 -e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - DEBUGFUNC("e1000_copper_link_autoneg"); - - /* - * Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* - * If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (phy->autoneg_advertised == 0) - phy->autoneg_advertised = phy->autoneg_mask; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - goto out; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* - * Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - goto out; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - goto out; - - /* - * Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = hw->mac.ops.wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for " - "autoneg to complete\n"); - goto out; - } - } - - hw->mac.get_link_status = true; - -out: - return (ret_val); -} - -/* - * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - * @hw: pointer to the HW structure - * - * Reads the MII auto-neg advertisement register and/or the 1000T control - * register and if the PHY is already setup for auto-negotiation, then - * return successful. Otherwise, setup advertisement and flow control to - * the appropriate values for the wanted auto-negotiation. - */ -static s32 -e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg = 0; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - phy->autoneg_advertised &= phy->autoneg_mask; - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - goto out; - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, - &mii_1000t_ctrl_reg); - if (ret_val) - goto out; - } - - /* - * Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* - * First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | - NWAY_AR_100TX_HD_CAPS | - NWAY_AR_10T_FD_CAPS | - NWAY_AR_10T_HD_CAPS); - mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - - DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (phy->autoneg_advertised & ADVERTISE_1000_HALF) - DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* - * Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- - * negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* - * Flow control (Rx & Tx) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: - /* - * Rx Flow control is enabled, and Tx Flow control is - * disabled, by a software over-ride. - * - * Since there really isn't a way to advertise that we are - * capable of Rx Pause ONLY, we will advertise that we - * support both symmetric and asymmetric Rx PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - * hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: - /* - * Tx Flow control is enabled, and Rx Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: - /* - * Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - goto out; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - ret_val = phy->ops.write_reg(hw, - PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_setup_copper_link_generic - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - */ -s32 -e1000_setup_copper_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_setup_copper_link_generic"); - - if (hw->mac.autoneg) { - /* - * Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - goto out; - } else { - /* - * PHY will be set to 10H, 10F, 100H or 100F - * depending on user settings. - */ - DEBUGOUT("Forcing Speed and Duplex\n"); - ret_val = hw->phy.ops.force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - goto out; - } - } - - /* - * Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000_phy_has_link_generic(hw, - COPPER_LINK_UP_LIMIT, - 10, - &link); - if (ret_val) - goto out; - - if (link) { - DEBUGOUT("Valid link established!!!\n"); - e1000_config_collision_dist_generic(hw); - ret_val = e1000_config_fc_after_link_up_generic(hw); - } else { - DEBUGOUT("Unable to establish link!!!\n"); - } - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - */ -s32 -e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - /* - * Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - goto out; - - DEBUGOUT1("IGP PSCR: %X\n", phy_data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Resets the PHY to commit the - * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on Tx must be set. Return successful upon - * successful completion, else return corresponding error code. - */ -s32 -e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); - - /* - * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; - - DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - /* Reset the phy to commit changes. */ - ret_val = hw->phy.ops.commit(hw); - if (ret_val) - goto out; - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - goto out; - - if (!link) { - /* - * We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = phy->ops.write_reg(hw, - M88E1000_PHY_PAGE_SELECT, - 0x001d); - if (ret_val) - goto out; - ret_val = e1000_phy_reset_dsp_generic(hw); - if (ret_val) - goto out; - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - goto out; - } - - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - /* - * Resetting the phy means we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock from - * the reset value of 2.5MHz. - */ - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - goto out; - - /* - * In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - -out: - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - * @hw: pointer to the HW structure - * - * Forces the speed and duplex settings of the PHY. - * This is a function pointer entry point only called by - * PHY setup routines. - */ -s32 -e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); - - if (phy->type != e1000_phy_ife) { - ret_val = e1000_phy_force_speed_duplex_igp(hw); - goto out; - } - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); - if (ret_val) - goto out; - - /* Disable MDI-X support for 10/100 */ - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - goto out; - - data &= ~IFE_PMC_AUTO_MDIX; - data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); - if (ret_val) - goto out; - - DEBUGOUT1("IFE PMC: %X\n", data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, 100000, &link); - if (ret_val) - goto out; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, 100000, &link); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} -/* - * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - * @hw: pointer to the HW structure - * @phy_ctrl: pointer to current value of PHY_CONTROL - * - * Forces speed and duplex on the PHY by doing the following: disable flow - * control, force speed/duplex on the MAC, disable auto speed detection, - * disable auto-negotiation, configure duplex, configure speed, configure - * the collision distance, write configuration to CTRL register. The - * caller must write to the PHY_CONTROL register for these settings to - * take affect. - */ -void -e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl; - - DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); - - /* Turn off flow control when forcing speed/duplex */ - hw->fc.current_mode = e1000_fc_none; - - /* Force speed/duplex on the mac */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~E1000_CTRL_SPD_SEL; - - /* Disable Auto Speed Detection */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Disable autoneg on the phy */ - *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - - /* Forcing Full or Half Duplex? */ - if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { - ctrl &= ~E1000_CTRL_FD; - *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } else { - ctrl |= E1000_CTRL_FD; - *phy_ctrl |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } - - /* Forcing 10mb or 100mb? */ - if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { - ctrl |= E1000_CTRL_SPD_100; - *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - DEBUGOUT("Forcing 100mb\n"); - } else { - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - /* LINTED */ - *phy_ctrl |= MII_CR_SPEED_10; - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb\n"); - } - - e1000_config_collision_dist_generic(hw); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); -} - -/* - * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - */ -s32 -e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_generic"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - goto out; - - if (!active) { - data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, - IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, - IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - } - -out: - return (ret_val); -} - -/* - * e1000_check_downshift_generic - Checks whether a downshift in speed occurred - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns 1 - * - * A downshift is detected by querying the PHY link health. - */ -s32 -e1000_check_downshift_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_downshift_generic"); - - switch (phy->type) { - case e1000_phy_m88: - case e1000_phy_gg82563: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; - break; - case e1000_phy_igp_2: - case e1000_phy_igp: - case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; - break; - default: - /* speed downshift not supported */ - phy->speed_downgraded = false; - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->speed_downgraded = (phy_data & mask) ? true : false; - -out: - return (ret_val); -} - -/* - * e1000_check_polarity_m88 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - */ -s32 -e1000_check_polarity_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); - - if (!ret_val) - phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return (ret_val); -} - -/* - * e1000_check_polarity_igp - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY port status register, and the - * current speed (since there is no polarity at 100Mbps). - */ -s32 -e1000_check_polarity_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_igp"); - - /* - * Polarity is determined based on the speed of - * our connection. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - goto out; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; - } else { - /* - * This really only applies to 10Mbps since - * there is no polarity for 100Mbps (always 0). - */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; - } - - ret_val = phy->ops.read_reg(hw, offset, &data); - - if (!ret_val) - phy->cable_polarity = (data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - -out: - return (ret_val); -} - -/* - * e1000_check_polarity_ife - Check cable polarity for IFE PHY - * @hw: pointer to the HW structure - * - * Polarity is determined on the polarity reversal feature being enabled. - */ -s32 -e1000_check_polarity_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_ife"); - - /* - * Polarity is determined based on the reversal feature being enabled. - */ - if (phy->polarity_correction) { - offset = IFE_PHY_EXTENDED_STATUS_CONTROL; - mask = IFE_PESC_POLARITY_REVERSED; - } else { - offset = IFE_PHY_SPECIAL_CONTROL; - mask = IFE_PSC_FORCE_POLARITY; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->cable_polarity = (phy_data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return (ret_val); -} -/* - * e1000_wait_autoneg_generic - Wait for auto-neg completion - * @hw: pointer to the HW structure - * - * Waits for auto-negotiation to complete or for the auto-negotiation time - * limit to expire, which ever happens first. - */ -s32 -e1000_wait_autoneg_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_wait_autoneg_generic"); - - if (!(hw->phy.ops.read_reg)) - return (E1000_SUCCESS); - - /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ - for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_AUTONEG_COMPLETE) - break; - msec_delay(100); - } - - /* - * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation - * has completed. - */ - return (ret_val); -} - -/* - * e1000_phy_has_link_generic - Polls PHY for link - * @hw: pointer to the HW structure - * @iterations: number of times to poll for link - * @usec_interval: delay between polling attempts - * @success: pointer to whether polling was successful or not - * - * Polls the PHY status register for link, 'iterations' number of times. - */ -s32 -e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_phy_has_link_generic"); - - if (!(hw->phy.ops.read_reg)) - return (E1000_SUCCESS); - - for (i = 0; i < iterations; i++) { - /* - * Some PHYs require the PHY_STATUS register to be read - * twice due to the link bit being sticky. No harm doing - * it across the board. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) { - /* - * If the first read fails, another entity may have - * ownership of the resources, wait and try again to - * see if they have relinquished the resources yet. - */ - usec_delay(usec_interval); - } - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_LINK_STATUS) - break; - if (usec_interval >= 1000) - msec_delay_irq(usec_interval/1000); - else - usec_delay(usec_interval); - } - - *success = (i < iterations) ? true : false; - - return (ret_val); -} - -/* - * e1000_get_cable_length_m88 - Determine cable length for m88 PHY - * @hw: pointer to the HW structure - * - * Reads the PHY specific status register to retrieve the cable length - * information. The cable length is determined by averaging the minimum and - * maximum values to get the "average" cable length. The m88 PHY has four - * possible cable length values, which are: - * Register Value Cable Length - * 0 < 50 meters - * 1 50 - 80 meters - * 2 80 - 110 meters - * 3 110 - 140 meters - * 4 > 140 meters - */ -s32 -e1000_get_cable_length_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - DEBUGFUNC("e1000_get_cable_length_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + - phy->max_cable_length) / 2; - -out: - return (ret_val); -} - -/* - * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - */ -s32 -e1000_get_cable_length_igp_2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_data, i, agc_value = 0; - u16 cur_agc_index, max_agc_index = 0; - u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; - u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = - {IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D}; - - DEBUGFUNC("e1000_get_cable_length_igp_2"); - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - goto out; - - /* - * Getting bits 15:9, which represent the combination of - * coarse and fine gain values. The result is a number - * that can be put into the lookup table to obtain the - * approximate cable length. - */ - cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK; - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0; - phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return (ret_val); -} - -/* - * e1000_get_phy_info_m88 - Retrieve PHY information - * @hw: pointer to the HW structure - * - * Valid for only copper links. Read the PHY status register (sticky read) - * to verify that link is up. Read the PHY special control register to - * determine the polarity and 10base-T extended distance. Read the PHY - * special status register to determine MDI/MDIx and current speed. If - * speed is 1000, then determine cable length, local and remote receiver. - */ -s32 -e1000_get_phy_info_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_m88"); - - if (phy->media_type != e1000_media_type_copper) { - DEBUGOUT("Phy info is only valid for copper media\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - goto out; - - phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) - ? true : false; - - ret_val = e1000_check_polarity_m88(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - goto out; - - phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - /* Set values to "undefined" */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return (ret_val); -} - -/* - * e1000_get_phy_info_igp - Retrieve igp PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - */ -s32 -e1000_get_phy_info_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_igp"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_igp(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - ret_val = phy->ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - goto out; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return (ret_val); -} - -/* - * e1000_phy_sw_reset_generic - PHY software reset - * @hw: pointer to the HW structure - * - * Does a software reset of the PHY by reading the PHY control register and - * setting/write the control register reset bit to the PHY. - */ -s32 -e1000_phy_sw_reset_generic(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 phy_ctrl; - - DEBUGFUNC("e1000_phy_sw_reset_generic"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - goto out; - - phy_ctrl |= MII_CR_RESET; - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - goto out; - - usec_delay(1); - -out: - return (ret_val); -} - -/* - * e1000_phy_hw_reset_generic - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - */ -s32 -e1000_phy_hw_reset_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 ctrl; - - DEBUGFUNC("e1000_phy_hw_reset_generic"); - - ret_val = phy->ops.check_reset_block(hw); - if (ret_val) { - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = phy->ops.acquire(hw); - if (ret_val) - goto out; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - usec_delay(phy->reset_delay_us); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - usec_delay(150); - - phy->ops.release(hw); - - ret_val = phy->ops.get_cfg_done(hw); - -out: - return (ret_val); -} - -/* - * e1000_get_cfg_done_generic - Generic configuration done - * @hw: pointer to the HW structure - * - * Generic function to wait 10 milli-seconds for configuration to complete - * and return success. - */ -s32 -e1000_get_cfg_done_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_get_cfg_done_generic"); - UNREFERENCED_1PARAMETER(hw); - - msec_delay_irq(10); - - return (E1000_SUCCESS); -} - -/* - * e1000_phy_init_script_igp3 - Inits the IGP3 PHY - * @hw: pointer to the HW structure - * - * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - */ -s32 -e1000_phy_init_script_igp3(struct e1000_hw *hw) -{ - DEBUGOUT("Running IGP 3 PHY init script\n"); - - /* PHY init IGP 3 */ - /* Enable rise/fall, 10-mode work in class-A */ - (void) hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); - /* Remove all caps from Replica path filter */ - (void) hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); - /* Bias trimming for ADC, AFE and Driver (Default) */ - (void) hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); - /* Increase Hybrid poly bias */ - (void) hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); - /* Add 4% to Tx amplitude in Gig mode */ - (void) hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); - /* Disable trimming (TTT) */ - (void) hw->phy.ops.write_reg(hw, 0x2011, 0x0000); - /* Poly DC correction to 94.6% + 2% for all channels */ - (void) hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); - /* ABS DC correction to 95.9% */ - (void) hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); - /* BG temp curve trim */ - (void) hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); - /* Increasing ADC OPAMP stage 1 currents to max */ - (void) hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); - /* Force 1000 ( required for enabling PHY regs configuration) */ - (void) hw->phy.ops.write_reg(hw, 0x0000, 0x0140); - /* Set upd_freq to 6 */ - (void) hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); - /* Disable NPDFE */ - (void) hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); - /* Disable adaptive fixed FFE (Default) */ - (void) hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); - /* Enable FFE hysteresis */ - (void) hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); - /* Fixed FFE for short cable lengths */ - (void) hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); - /* Fixed FFE for medium cable lengths */ - (void) hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); - /* Fixed FFE for long cable lengths */ - (void) hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); - /* Enable Adaptive Clip Threshold */ - (void) hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); - /* AHT reset limit to 1 */ - (void) hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); - /* Set AHT master delay to 127 msec */ - (void) hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); - /* Set scan bits for AHT */ - (void) hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); - /* Set AHT Preset bits */ - (void) hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); - /* Change integ_factor of channel A to 3 */ - (void) hw->phy.ops.write_reg(hw, 0x1895, 0x0003); - /* Change prop_factor of channels BCD to 8 */ - (void) hw->phy.ops.write_reg(hw, 0x1796, 0x0008); - /* Change cg_icount + enable integbp for channels BCD */ - (void) hw->phy.ops.write_reg(hw, 0x1798, 0xD008); - /* - * Change cg_icount + enable integbp + change prop_factor_master - * to 8 for channel A - */ - (void) hw->phy.ops.write_reg(hw, 0x1898, 0xD918); - /* Disable AHT in Slave mode on channel A */ - (void) hw->phy.ops.write_reg(hw, 0x187A, 0x0800); - /* - * Enable LPLU and disable AN to 1000 in non-D0a states, - * Enable SPD+B2B - */ - (void) hw->phy.ops.write_reg(hw, 0x0019, 0x008D); - /* Enable restart AN on an1000_dis change */ - (void) hw->phy.ops.write_reg(hw, 0x001B, 0x2080); - /* Enable wh_fifo read clock in 10/100 modes */ - (void) hw->phy.ops.write_reg(hw, 0x0014, 0x0045); - /* Restart AN, Speed selection is 1000 */ - (void) hw->phy.ops.write_reg(hw, 0x0000, 0x1340); - - return (E1000_SUCCESS); -} - -/* - * e1000_get_phy_type_from_id - Get PHY type from id - * @phy_id: phy_id read from the phy - * - * Returns the phy type from the id. - */ -enum e1000_phy_type -e1000_get_phy_type_from_id(u32 phy_id) -{ - enum e1000_phy_type phy_type = e1000_phy_unknown; - - switch (phy_id) { - case M88E1000_I_PHY_ID: - case M88E1000_E_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1011_I_PHY_ID: - phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ - phy_type = e1000_phy_igp_2; - break; - case GG82563_E_PHY_ID: - phy_type = e1000_phy_gg82563; - break; - case IGP03E1000_E_PHY_ID: - phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy_type = e1000_phy_ife; - break; - case I82580_I_PHY_ID: - phy_type = e1000_phy_82580; - break; - default: - phy_type = e1000_phy_unknown; - break; - } - return (phy_type); -} - -/* - * e1000_determine_phy_address - Determines PHY address. - * @hw: pointer to the HW structure - * - * This uses a trial and error method to loop through possible PHY - * addresses. It tests each by reading the PHY ID registers and - * checking for a match. - */ -s32 -e1000_determine_phy_address(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_PHY_TYPE; - u32 phy_addr = 0; - u32 i; - enum e1000_phy_type phy_type = e1000_phy_unknown; - - hw->phy.id = phy_type; - - for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { - hw->phy.addr = phy_addr; - i = 0; - - do { - (void) e1000_get_phy_id(hw); - phy_type = e1000_get_phy_type_from_id(hw->phy.id); - - /* - * If phy_type is valid, break - we found our - * PHY address - */ - if (phy_type != e1000_phy_unknown) { - ret_val = E1000_SUCCESS; - goto out; - } - msec_delay(1); - i++; - } while (i < 10); - } - -out: - return (ret_val); -} -/* - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - */ -void -e1000_power_up_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - (void) hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - (void) hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); -} - -/* - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - */ -void -e1000_power_down_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - (void) hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - (void) hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); - msec_delay(1); -} - -/* - * e1000_check_polarity_82577 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - */ -s32 -e1000_check_polarity_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - - if (!ret_val) - phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal; - - return (ret_val); -} - -/* - * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - */ -s32 -e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - goto out; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - goto out; - - /* - * Clear Auto-Crossover to force MDI manually. 82577 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~I82577_PHY_CTRL2_AUTO_MDIX; - phy_data &= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX; - - ret_val = phy->ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); - if (ret_val) - goto out; - - DEBUGOUT1("I82577_PHY_CTRL_2: %X\n", phy_data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); - - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, - PHY_FORCE_LIMIT, - 100000, - &link); - if (ret_val) - goto out; - } - -out: - return (ret_val); -} - -/* - * e1000_get_phy_info_82577 - Retrieve I82577 PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - */ -s32 -e1000_get_phy_info_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_82577"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_82577(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - if (ret_val) - goto out; - - phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; - - if ((data & I82577_PHY_STATUS2_SPEED_MASK) == - I82577_PHY_STATUS2_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - goto out; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - -out: - return (ret_val); -} - -/* - * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - * @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - */ -s32 -e1000_get_cable_length_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, length; - - DEBUGFUNC("e1000_get_cable_length_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); - if (ret_val) - goto out; - - length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> - I82577_DSTATUS_CABLE_LENGTH_SHIFT; - - if (length == E1000_CABLE_LENGTH_UNDEFINED) - ret_val = -E1000_ERR_PHY; - - phy->cable_length = length; - -out: - - return (ret_val); -} diff --git a/usr/src/uts/common/io/igb/igb_phy.h b/usr/src/uts/common/io/igb/igb_phy.h deleted file mode 100644 index 39c78432b9..0000000000 --- a/usr/src/uts/common/io/igb/igb_phy.h +++ /dev/null @@ -1,212 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.81 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_PHY_H -#define _IGB_PHY_H - -#ifdef __cplusplus -extern "C" { -#endif - -void e1000_init_phy_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); -void e1000_null_phy_generic(struct e1000_hw *hw); -s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_check_downshift_generic(struct e1000_hw *hw); -s32 e1000_check_polarity_m88(struct e1000_hw *hw); -s32 e1000_check_polarity_igp(struct e1000_hw *hw); -s32 e1000_check_polarity_ife(struct e1000_hw *hw); -s32 e1000_check_reset_block_generic(struct e1000_hw *hw); -s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); -s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); -s32 e1000_get_cable_length_m88(struct e1000_hw *hw); -s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); -s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); -s32 e1000_get_phy_id(struct e1000_hw *hw); -s32 e1000_get_phy_info_igp(struct e1000_hw *hw); -s32 e1000_get_phy_info_m88(struct e1000_hw *hw); -s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); -void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); -s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); -s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); -s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); -s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); -s32 e1000_wait_autoneg_generic(struct e1000_hw *hw); -s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_phy_reset_dsp(struct e1000_hw *hw); -s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success); -s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); -enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); -s32 e1000_determine_phy_address(struct e1000_hw *hw); -void e1000_power_up_phy_copper(struct e1000_hw *hw); -void e1000_power_down_phy_copper(struct e1000_hw *hw); -s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); -s32 e1000_check_polarity_82577(struct e1000_hw *hw); -s32 e1000_get_phy_info_82577(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); -s32 e1000_get_cable_length_82577(struct e1000_hw *hw); - -#define E1000_MAX_PHY_ADDR 4 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ -#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ -#define IGP_PAGE_SHIFT 5 -#define PHY_REG_MASK 0x1F - -#define HV_INTC_FC_PAGE_START 768 -#define I82578_ADDR_REG 29 -#define I82577_ADDR_REG 16 -#define I82577_CFG_REG 22 -#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */ -#define I82577_CTRL_REG 23 - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2 18 -#define I82577_PHY_LBK_CTRL 19 -#define I82577_PHY_STATUS_2 26 -#define I82577_PHY_DIAG_STATUS 31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 -#define I82577_PHY_STATUS2_MDIX 0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 -#define I82577_PHY_STATUS2_SPEED_100MBPS 0x0100 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400 -#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH 0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ - -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 - -/* Enable flexible speed on link-up */ -#define IGP01E1000_GMII_FLEX_SPD 0x0010 -#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ - -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 - -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 - -#define IGP02E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F -#define IGP02E1000_AGC_RANGE 15 - -#define IGP03E1000_PHY_MISC_CTRL 0x1B -#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */ - -#define E1000_CABLE_LENGTH_UNDEFINED 0xFF - -#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 -#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KMRNCTRLSTA_REN 0x00200000 -#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ -#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ -#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ -#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ - -/* IFE PHY Extended Status Control */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 - -/* IFE PHY Special Control */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 -#define IFE_PSC_FORCE_POLARITY 0x0020 -#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 - -/* IFE PHY Special Control and LED Control */ -#define IFE_PSCL_PROBE_MODE 0x0020 -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -/* IFE PHY MDIX Control */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */ - -#ifdef __cplusplus -} -#endif - -#endif /* _IGB_PHY_H */ diff --git a/usr/src/uts/common/io/igb/igb_regs.h b/usr/src/uts/common/io/igb/igb_regs.h deleted file mode 100644 index b554ef6d23..0000000000 --- a/usr/src/uts/common/io/igb/igb_regs.h +++ /dev/null @@ -1,584 +0,0 @@ -/* - * CDDL HEADER START - * - * The contents of this file are subject to the terms of the - * Common Development and Distribution License (the "License"). - * You may not use this file except in compliance with the License. - * - * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE - * or http://www.opensolaris.org/os/licensing. - * See the License for the specific language governing permissions - * and limitations under the License. - * - * When distributing Covered Code, include this CDDL HEADER in each - * file and include the License file at usr/src/OPENSOLARIS.LICENSE. - * If applicable, add the following below this CDDL HEADER, with the - * fields enclosed by brackets "[]" replaced with your own identifying - * information: Portions Copyright [yyyy] [name of copyright owner] - * - * CDDL HEADER END - */ - -/* - * Copyright (c) 2007-2012 Intel Corporation. All rights reserved. - */ - -/* - * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. - */ - -/* IntelVersion: 1.82.2.1 v3_3_14_3_BHSW1 */ - -#ifndef _IGB_REGS_H -#define _IGB_REGS_H - -#ifdef __cplusplus -extern "C" { -#endif - -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ -#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ -#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ -#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ -#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ -#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FEXT 0x0002C /* Future Extended - RW */ -#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ -#define E1000_RCTL 0x00100 /* Rx Control - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ -#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ -#define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) -#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ -#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ -#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ -#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ -#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ -#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ -#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ -#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ -#define E1000_TCTL 0x00400 /* Tx Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ -#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ -#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ -#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ -#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ -#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ -#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ -#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ -#define E1000_ICR_V2 0x01500 /* Interrupt Cause - new location - RC */ -#define E1000_ICS_V2 0x01504 /* Interrupt Cause Set - new location - WO */ -/* Interrupt Mask Set/Read - new location - RW */ -#define E1000_IMS_V2 0x01508 -#define E1000_IMC_V2 0x0150C /* Interrupt Mask Clear - new location - WO */ -/* Interrupt Ack Auto Mask - new location - RW */ -#define E1000_IAM_V2 0x01510 -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n))) -#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ -#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ -/* Split and Replication Rx Control - RW */ -#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ -#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ -#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ -#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ -#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ -#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ -#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ -/* Same as RXPBS, renamed for newer adapters - RW */ -#define E1000_IRPBS 0x02404 -#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ -#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ -/* - * Convenience macros - * - * Note: "_n" is the queue number of the register to be written to. - * - * Example usage: - * E1000_RDBAL_REG(current_rx_queue) - */ -#define E1000_RDBAL(_n) ((_n) < 4 ? \ - (0x02800 + ((_n) * 0x100)) : \ - (0x0C000 + ((_n) * 0x40))) -#define E1000_RDBAH(_n) ((_n) < 4 ? \ - (0x02804 + ((_n) * 0x100)) : \ - (0x0C004 + ((_n) * 0x40))) -#define E1000_RDLEN(_n) ((_n) < 4 ? \ - (0x02808 + ((_n) * 0x100)) : \ - (0x0C008 + ((_n) * 0x40))) -#define E1000_SRRCTL(_n) ((_n) < 4 ? \ - (0x0280C + ((_n) * 0x100)) : \ - (0x0C00C + ((_n) * 0x40))) -#define E1000_RDH(_n) ((_n) < 4 ? \ - (0x02810 + ((_n) * 0x100)) : \ - (0x0C010 + ((_n) * 0x40))) -#define E1000_RXCTL(_n) ((_n) < 4 ? \ - (0x02814 + ((_n) * 0x100)) : \ - (0x0C014 + ((_n) * 0x40))) -#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) -#define E1000_RDT(_n) ((_n) < 4 ? \ - (0x02818 + ((_n) * 0x100)) : \ - (0x0C018 + ((_n) * 0x40))) -#define E1000_RXDCTL(_n) ((_n) < 4 ? \ - (0x02828 + ((_n) * 0x100)) : \ - (0x0C028 + ((_n) * 0x40))) -#define E1000_RQDPC(_n) ((_n) < 4 ? \ - (0x02830 + ((_n) * 0x100)) : \ - (0x0C030 + ((_n) * 0x40))) -#define E1000_TDBAL(_n) ((_n) < 4 ? \ - (0x03800 + ((_n) * 0x100)) : \ - (0x0E000 + ((_n) * 0x40))) -#define E1000_TDBAH(_n) ((_n) < 4 ? \ - (0x03804 + ((_n) * 0x100)) : \ - (0x0E004 + ((_n) * 0x40))) -#define E1000_TDLEN(_n) ((_n) < 4 ? \ - (0x03808 + ((_n) * 0x100)) : \ - (0x0E008 + ((_n) * 0x40))) -#define E1000_TDH(_n) ((_n) < 4 ? \ - (0x03810 + ((_n) * 0x100)) : \ - (0x0E010 + ((_n) * 0x40))) -#define E1000_TXCTL(_n) ((_n) < 4 ? \ - (0x03814 + ((_n) * 0x100)) : \ - (0x0E014 + ((_n) * 0x40))) -#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) -#define E1000_TDT(_n) ((_n) < 4 ? \ - (0x03818 + ((_n) * 0x100)) : \ - (0x0E018 + ((_n) * 0x40))) -#define E1000_TXDCTL(_n) ((_n) < 4 ? \ - (0x03828 + ((_n) * 0x100)) : \ - (0x0E028 + ((_n) * 0x40))) -#define E1000_TDWBAL(_n) ((_n) < 4 ? \ - (0x03838 + ((_n) * 0x100)) : \ - (0x0E038 + ((_n) * 0x40))) -#define E1000_TDWBAH(_n) ((_n) < 4 ? \ - (0x0383C + ((_n) * 0x100)) : \ - (0x0E03C + ((_n) * 0x40))) -#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) -#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) -#define E1000_RAL(_i) (((_i) <= 15) ? \ - (0x05400 + ((_i) * 8)) : \ - (0x054E0 + ((_i - 16) * 8))) -#define E1000_RAH(_i) (((_i) <= 15) ? \ - (0x05404 + ((_i) * 8)) : \ - (0x054E4 + ((_i - 16) * 8))) -#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) -#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) -#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) -#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) -#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) -#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) -#define E1000_PBSLAC 0x03100 /* Packet Buffer Slave Access Control */ -/* Packet Buffer DWORD (_n) */ -#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) -#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ -/* Same as TXPBS, renamed for newer adapters - RW */ -#define E1000_ITPBS 0x03404 -#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ -#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */ -#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */ -#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */ -#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */ -#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */ -#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ -#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ -#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ -#define E1000_DTXMXSZRQ 0x03540 /* DMA Tx Max Total Allow Size Requests - RW */ -#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ -#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ -#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ -#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ -#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ -#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ -#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ - -/* LinkSec Tx Untagged Packet Count - OutPktsUntagged */ -#define E1000_LSECTXUT 0x04300 -/* LinkSec Encrypted Tx Packets Count - OutPktsEncrypted */ -#define E1000_LSECTXPKTE 0x04304 -/* LinkSec Protected Tx Packet Count - OutPktsProtected */ -#define E1000_LSECTXPKTP 0x04308 -/* LinkSec Encrypted Tx Octets Count - OutOctetsEncrypted */ -#define E1000_LSECTXOCTE 0x0430C -/* LinkSec Protected Tx Octets Count - OutOctetsProtected */ -#define E1000_LSECTXOCTP 0x04310 -/* LinkSec Untagged non-Strict Rx Packet Count - InPktsUntagged/InPktsNoTag */ -#define E1000_LSECRXUT 0x04314 -/* LinkSec Rx Octets Decrypted Count - InOctetsDecrypted */ -#define E1000_LSECRXOCTD 0x0431C -/* LinkSec Rx Octets Validated - InOctetsValidated */ -#define E1000_LSECRXOCTV 0x04320 -/* LinkSec Rx Bad Tag - InPktsBadTag */ -#define E1000_LSECRXBAD 0x04324 -/* LinkSec Rx Packet No SCI Count - InPktsNoSci */ -#define E1000_LSECRXNOSCI 0x04328 -/* LinkSec Rx Packet Unknown SCI Count - InPktsUnknownSci */ -#define E1000_LSECRXUNSCI 0x0432C -/* LinkSec Rx Unchecked Packets Count - InPktsUnchecked */ -#define E1000_LSECRXUNCH 0x04330 -/* LinkSec Rx Delayed Packet Count - InPktsDelayed */ -#define E1000_LSECRXDELAY 0x04340 -/* LinkSec Rx Late Packets Count - InPktsLate */ -#define E1000_LSECRXLATE 0x04350 -/* LinkSec Rx Packet OK Count - InPktsOk */ -#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) -/* LinkSec Rx Invalid Count - InPktsInvalid */ -#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) -/* LinkSec Rx Not Valid Count - InPktsNotValid */ -#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) -/* LinkSec Rx Unused SA Count - InPktsUnusedSa */ -#define E1000_LSECRXUNSA 0x043C0 -/* LinkSec Rx Not Using SA Count - InPktsNotUsingSa */ -#define E1000_LSECRXNUSA 0x043D0 -/* LinkSec Tx Capabilities Register - RO */ -#define E1000_LSECTXCAP 0x0B000 -/* LinkSec Rx Capabilities Register - RO */ -#define E1000_LSECRXCAP 0x0B300 -#define E1000_LSECTXCTRL 0x0B004 /* LinkSec Tx Control - RW */ -#define E1000_LSECRXCTRL 0x0B304 /* LinkSec Rx Control - RW */ -#define E1000_LSECTXSCL 0x0B008 /* LinkSec Tx SCI Low - RW */ -#define E1000_LSECTXSCH 0x0B00C /* LinkSec Tx SCI High - RW */ -#define E1000_LSECTXSA 0x0B010 /* LinkSec Tx SA0 - RW */ -#define E1000_LSECTXPN0 0x0B018 /* LinkSec Tx SA PN 0 - RW */ -#define E1000_LSECTXPN1 0x0B01C /* LinkSec Tx SA PN 1 - RW */ -#define E1000_LSECRXSCL 0x0B3D0 /* LinkSec Rx SCI Low - RW */ -#define E1000_LSECRXSCH 0x0B3E0 /* LinkSec Rx SCI High - RW */ -/* LinkSec Tx 128-bit Key 0 - WO */ -#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) -/* LinkSec Tx 128-bit Key 1 - WO */ -#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) -/* LinkSec Rx SAs - RW */ -#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) -/* LinkSec Rx SAs - RW */ -#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) -/* - * LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit - * key - RW. - */ -#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) - -#define E1000_SSVPC 0x041A0 /* Switch Security Violation Packet Count */ -#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ -#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ -#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ -/* IPSec Rx IPv4/v6 Address - RW */ -#define E1000_IPSRXIPADDR(_n) (0x0B420+ (0x04 * (_n))) -/* IPSec Rx 128-bit Key - RW */ -#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) -#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ -#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ -/* IPSec Tx 128-bit Key - RW */ -#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) -#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ -#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ -#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ -#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ -#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ -#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ -#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ -#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ -#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ -#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ -#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ -#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ -#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ -#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ -#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ -#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ -#define E1000_LENERRS 0x04138 /* Length Errors Count */ -#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ -#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ -#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ -#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ -#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ -#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Page - RW */ -#define E1000_1GSTAT_RCV 0x04228 /* 1GSTAT Code Violation Packet Count - RW */ -#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ -#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control */ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -/* 2nd half of receive address array - RW Array */ -#define E1000_RA2 0x054E0 -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ -#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ -#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ -/* Flexible Host Filter Table */ -#define E1000_FHFT(_n) (0x09000 + (_n * 0x100)) -/* Ext Flexible Host Filter Table */ -#define E1000_FHFT_EXT(_n) (0x09A00 + (_n * 0x100)) - -#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MDPHYA 0x0003C /* PHY address - RW */ -#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ -/* Software-Firmware Synchronization - RW */ -#define E1000_SW_FW_SYNC 0x05B5C -#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ -#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ -#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -/* Function Active and Power State to MNG */ -#define E1000_FACTPS 0x05B30 -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -/* Driver-only SW semaphore (not used by BOOT agents) */ -#define E1000_SWSM2 0x05B58 -#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ -#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ -#define E1000_UFUSE 0x05B78 /* UFUSE - RO */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Interface Control */ - -/* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ -/* Immediate Interrupt Ext */ -#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) -#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */ -/* MSI-X Allocation Register (_i) - RW */ -#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) -/* MSI-X Table entry addr low reg 0 - RW */ -#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10)) -/* MSI-X Table entry addr upper reg 0 - RW */ -#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10)) -/* MSI-X Table entry message reg 0 - RW */ -#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10)) -/* MSI-X Table entry vector ctrl reg 0 - RW */ -#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10)) -#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */ -/* Redirection Table - RW Array */ -#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) -/* RSS Random Key - RW Array */ -#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ -/* VT Registers */ -#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ -#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ -#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ -#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ -#define E1000_VFRE 0x00C8C /* VF Receive Enables */ -#define E1000_VFTE 0x00C90 /* VF Transmit Enables */ -#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ -#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ -#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ -#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ -#define E1000_IOVTCL 0x05BBC /* IOV Control Register */ -#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ -/* These act per VF so an array friendly macro is used */ -#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) -#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) -#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) -#define E1000_VFVMBMEM(_n) (0x00800 + (_n)) -#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) -/* VLAN Virtual Machine Filter - RW */ -#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) -#define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) - -/* Filtering Registers */ -#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ -#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ -#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ -#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ -#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ -#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ -#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ - -#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ -#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ -#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ -#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ -#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ -/* Tx Desc plane TC Rate-scheduler config */ -#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) -/* Tx Packet plane TC Rate-Scheduler Config */ -#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler Config */ -#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) -/* Tx Desc Plane TC Rate-Scheduler Status */ -#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) -/* Tx Desc Plane TC Rate-Scheduler MMW */ -#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) -/* Tx Packet plane TC Rate-Scheduler Status */ -#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) -/* Tx Packet plane TC Rate-scheduler MMW */ -#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler Status */ -#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler MMW */ -#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) -/* Tx Desc plane VM Rate-Scheduler MMW */ -#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) -/* Tx BCN Rate-Scheduler MMW */ -#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) -#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ -#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ -#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ -#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ -#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ -#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ -#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ -#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ -#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ -#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ -#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ -#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ -#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ -#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ - -/* DMA Coalescing registers */ -#define E1000_DMACR 0x02508 /* Control Register */ -#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ -#define E1000_DMCTLX 0x02514 /* Time to Lx Request */ -#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ -#define E1000_DMCCNT 0x05DD4 /* Current RX Count */ -#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ -#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ - -/* PCIe Parity Status Register */ -#define E1000_PCIEERRSTS 0x05BA8 - -/* Energy Efficient Ethernet "EEE" registers */ -#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ -#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ -#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE" */ -#define E1000_EEE_SU 0x0E34 /* EEE Setup */ -#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ -#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ - -#ifdef __cplusplus -} -#endif -#endif /* _IGB_REGS_H */ diff --git a/usr/src/uts/common/io/igb/igb_sw.h b/usr/src/uts/common/io/igb/igb_sw.h index 6d4d1ce2e9..451ea0d614 100644 --- a/usr/src/uts/common/io/igb/igb_sw.h +++ b/usr/src/uts/common/io/igb/igb_sw.h @@ -69,8 +69,8 @@ extern "C" { #include <sys/fm/protocol.h> #include <sys/fm/util.h> #include <sys/fm/io/ddi.h> -#include "igb_api.h" -#include "igb_82575.h" +#include "e1000_api.h" +#include "e1000_82575.h" #define MODULE_NAME "igb" /* module name */ diff --git a/usr/src/uts/intel/e1000g/Makefile b/usr/src/uts/intel/e1000g/Makefile index 503e3f91dc..636a19ce35 100644 --- a/usr/src/uts/intel/e1000g/Makefile +++ b/usr/src/uts/intel/e1000g/Makefile @@ -40,6 +40,7 @@ UTSBASE = ../.. # MODULE = e1000g OBJECTS = $(E1000G_OBJS:%=$(OBJS_DIR)/%) +OBJECTS += $(E1000API_OBJS:%=$(OBJS_DIR)/%) LINTS = $(E1000G_OBJS:%.o=$(LINTS_DIR)/%.ln) ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE) CONF_SRCDIR = $(UTSBASE)/common/io/e1000g @@ -52,7 +53,12 @@ include $(UTSBASE)/intel/Makefile.intel CFLAGS += -D_KERNEL -Di386 -DNEWSTAT -DNOMUT -DRCVWORKAROUND \ -DINTEL_IP \ -DPAXSON -DBAY_CITY \ - -DTANAX_WORKAROUND -I$(UTSBASE)/common/io/e1000g + -DTANAX_WORKAROUND -I$(UTSBASE)/common/io/e1000g \ + -I$(UTSBASE)/common/io/e1000api + +LINTFLAGS += \ + -I$(UTSBASE)/common/io/e1000g \ + -I$(UTSBASE)/common/io/e1000api CFLAGS_CPP_COMMENTS = -xCC @@ -63,6 +69,7 @@ CERRWARN += -_gcc=-Wno-parentheses CERRWARN += -_gcc=-Wno-switch CERRWARN += -_gcc=-Wno-unused-label CERRWARN += -_gcc=-Wno-unused-variable +CERRWARN += -_cc=-erroff=E_STATEMENT_NOT_REACHED # # Define targets diff --git a/usr/src/uts/intel/igb/Makefile b/usr/src/uts/intel/igb/Makefile index b14088fedc..2d4a1f3556 100644 --- a/usr/src/uts/intel/igb/Makefile +++ b/usr/src/uts/intel/igb/Makefile @@ -40,6 +40,7 @@ UTSBASE = ../.. # MODULE = igb OBJECTS = $(IGB_OBJS:%=$(OBJS_DIR)/%) +OBJECTS += $(E1000API_OBJS:%=$(OBJS_DIR)/%) LINTS = $(IGB_OBJS:%.o=$(LINTS_DIR)/%.ln) ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE) CONF_SRCDIR = $(UTSBASE)/common/io/igb @@ -49,8 +50,16 @@ CONF_SRCDIR = $(UTSBASE)/common/io/igb # include $(UTSBASE)/intel/Makefile.intel +LINTFLAGS += \ + -I$(UTSBASE)/common/io/igb \ + -I$(UTSBASE)/common/io/e1000api + CERRWARN += -_gcc=-Wno-switch CERRWARN += -_gcc=-Wno-uninitialized +CERRWARN += -_cc=-erroff=E_STATEMENT_NOT_REACHED + +CFLAGS += -I$(UTSBASE)/common/io/e1000api +CFLAGS += -I$(UTSBASE)/common/io/igb # # Define targets diff --git a/usr/src/uts/sparc/e1000g/Makefile b/usr/src/uts/sparc/e1000g/Makefile index 66681a746b..87ce889f9d 100644 --- a/usr/src/uts/sparc/e1000g/Makefile +++ b/usr/src/uts/sparc/e1000g/Makefile @@ -40,6 +40,7 @@ UTSBASE = ../.. # MODULE = e1000g OBJECTS = $(E1000G_OBJS:%=$(OBJS_DIR)/%) +OBJECTS += $(E1000API_OBJS:%=$(OBJS_DIR)/%) LINTS = $(E1000G_OBJS:%.o=$(LINTS_DIR)/%.ln) ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE) CONF_SRCDIR = $(UTSBASE)/common/io/e1000g @@ -56,16 +57,23 @@ ALL_TARGET = $(BINARY) $(SRC_CONFFILE) LINT_TARGET = $(MODULE).lint INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE) +LINTFLAGS += \ + -I$(UTSBASE)/common/io/e1000g \ + -I$(UTSBASE)/common/io/e1000api + + CERRWARN += -_gcc=-Wno-uninitialized CERRWARN += -_gcc=-Wno-parentheses CERRWARN += -_gcc=-Wno-switch CERRWARN += -_gcc=-Wno-unused-label CERRWARN += -_gcc=-Wno-unused-variable +CERRWARN += -_cc=-erroff=E_STATEMENT_NOT_REACHED # # Override defaults # -INC_PATH += -I$(CONF_SRCDIR) +INC_PATH += -I$(CONF_SRCDIR) -I$(UTSBASE)/common/io/e1000api + # # lint pass one enforcement diff --git a/usr/src/uts/sparc/igb/Makefile b/usr/src/uts/sparc/igb/Makefile index ae55dfc864..51fb4cdfcc 100644 --- a/usr/src/uts/sparc/igb/Makefile +++ b/usr/src/uts/sparc/igb/Makefile @@ -40,6 +40,7 @@ UTSBASE = ../.. # MODULE = igb OBJECTS = $(IGB_OBJS:%=$(OBJS_DIR)/%) +OBJECTS += $(E1000API_OBJS:%=$(OBJS_DIR)/%) LINTS = $(IGB_OBJS:%.o=$(LINTS_DIR)/%.ln) ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE) CONF_SRCDIR = $(UTSBASE)/common/io/igb @@ -49,8 +50,13 @@ CONF_SRCDIR = $(UTSBASE)/common/io/igb # include $(UTSBASE)/sparc/Makefile.sparc +LINTFLAGS += \ + -I$(UTSBASE)/common/io/igb \ + -I$(UTSBASE)/common/io/e1000api + CERRWARN += -_gcc=-Wno-switch CERRWARN += -_gcc=-Wno-uninitialized +CERRWARN += -_cc=-erroff=E_STATEMENT_NOT_REACHED # # Define targets @@ -62,7 +68,7 @@ INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE) # # Override defaults # -INC_PATH += -I$(CONF_SRCDIR) +INC_PATH += -I$(CONF_SRCDIR) -I$(UTSBASE)/common/io/e1000api # # lint pass one enforcement |