diff options
author | Robert Mustacchi <rm@fingolfin.org> | 2022-02-28 09:46:53 +0000 |
---|---|---|
committer | Robert Mustacchi <rm@fingolfin.org> | 2022-07-20 15:48:24 +0000 |
commit | 71815ce76261aa773c97600750fdce92334d1990 (patch) | |
tree | 3585ce8ffb6f3db3198f1d218191a3b36ee1918c /usr/src/common | |
parent | 1bcd6a1a4eeaf2fd7a90ce8b8cebd4f34baf049f (diff) | |
download | illumos-joyent-71815ce76261aa773c97600750fdce92334d1990.tar.gz |
14727 Want AMD Unified Memory Controller Driver
Reviewed by: Keith M Wesolowski <wesolows@oxide.computer>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: C Fraire <cfraire@me.com>
Approved by: Garrett D'Amore <garrett@damore.org>
Diffstat (limited to 'usr/src/common')
-rw-r--r-- | usr/src/common/bitext/bitext.c | 171 | ||||
-rw-r--r-- | usr/src/common/mc/zen_umc/zen_fabric_utils.c | 97 | ||||
-rw-r--r-- | usr/src/common/mc/zen_umc/zen_umc_decode.c | 1619 | ||||
-rw-r--r-- | usr/src/common/mc/zen_umc/zen_umc_dump.c | 717 |
4 files changed, 2604 insertions, 0 deletions
diff --git a/usr/src/common/bitext/bitext.c b/usr/src/common/bitext/bitext.c new file mode 100644 index 0000000000..cfd74b6925 --- /dev/null +++ b/usr/src/common/bitext/bitext.c @@ -0,0 +1,171 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2022 Oxide Computer Company + */ + +/* + * Various functions for manipulating regions of bits in standard sized + * integers. Meant to be a replacement for the extant BITX macro and provide + * additional functionality. See bitx64(9F), bitdel64(9F), and bitset64(9f) for + * more information. + */ + +#include <sys/debug.h> +#include <sys/stdint.h> + +uint8_t +bitx8(uint8_t reg, uint_t high, uint_t low) +{ + uint8_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 8); + ASSERT3U(low, <, 8); + + mask = (1 << (high - low + 1)) - 1; + return ((reg >> low) & mask); +} + +uint16_t +bitx16(uint16_t reg, uint_t high, uint_t low) +{ + uint16_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 16); + ASSERT3U(low, <, 16); + + mask = (1 << (high - low + 1)) - 1; + return ((reg >> low) & mask); +} + + +uint32_t +bitx32(uint32_t reg, uint_t high, uint_t low) +{ + uint32_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 32); + ASSERT3U(low, <, 32); + + mask = (1UL << (high - low + 1)) - 1; + + return ((reg >> low) & mask); +} + +uint64_t +bitx64(uint64_t reg, uint_t high, uint_t low) +{ + uint64_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 64); + ASSERT3U(low, <, 64); + + mask = (1ULL << (high - low + 1)) - 1ULL; + return ((reg >> low) & mask); +} + +uint8_t +bitset8(uint8_t reg, uint_t high, uint_t low, uint8_t val) +{ + uint8_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 8); + ASSERT3U(low, <, 8); + + mask = (1 << (high - low + 1)) - 1; + ASSERT0(~mask & val); + + reg &= ~(mask << low); + reg |= val << low; + + return (reg); +} + +uint16_t +bitset16(uint16_t reg, uint_t high, uint_t low, uint16_t val) +{ + uint16_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 16); + ASSERT3U(low, <, 16); + + mask = (1 << (high - low + 1)) - 1; + ASSERT0(~mask & val); + + reg &= ~(mask << low); + reg |= val << low; + + return (reg); +} + +uint32_t +bitset32(uint32_t reg, uint_t high, uint_t low, uint32_t val) +{ + uint32_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 32); + ASSERT3U(low, <, 32); + + mask = (1UL << (high - low + 1)) - 1; + ASSERT0(~mask & val); + + reg &= ~(mask << low); + reg |= val << low; + + return (reg); +} + +uint64_t +bitset64(uint64_t reg, uint_t high, uint_t low, uint64_t val) +{ + uint64_t mask; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 64); + ASSERT3U(low, <, 64); + + mask = (1ULL << (high - low + 1)) - 1ULL; + ASSERT0(~mask & val); + + reg &= ~(mask << low); + reg |= val << low; + + return (reg); +} + +uint64_t +bitdel64(uint64_t val, uint_t high, uint_t low) +{ + uint64_t high_val = 0; + uint64_t low_val = 0; + + ASSERT3U(high, >=, low); + ASSERT3U(high, <, 64); + ASSERT3U(low, <, 64); + + if (low != 0) { + low_val = bitx64(val, low - 1, 0); + } + + if (high != 63) { + high_val = bitx64(val, 63, high + 1); + } + + return ((high_val << low) | low_val); +} diff --git a/usr/src/common/mc/zen_umc/zen_fabric_utils.c b/usr/src/common/mc/zen_umc/zen_fabric_utils.c new file mode 100644 index 0000000000..d4db7875f2 --- /dev/null +++ b/usr/src/common/mc/zen_umc/zen_fabric_utils.c @@ -0,0 +1,97 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2022 Oxide Computer Company + */ + +/* + * A collection of utility functions for interacting with fabric IDs. + */ + +#include "zen_umc.h" + +/* + * Validate whether a fabric ID actually represents a valid ID for a given data + * fabric. + */ +boolean_t +zen_fabric_id_valid_fabid(const df_fabric_decomp_t *decomp, + const uint32_t fabid) +{ + uint32_t mask = decomp->dfd_node_mask | decomp->dfd_comp_mask; + return ((fabid & ~mask) == 0); +} + +/* + * Validate whether the parts of a fabric ID (e.g. the socket, die, and + * component) are in fact valid for a given data fabric. + */ +boolean_t +zen_fabric_id_valid_parts(const df_fabric_decomp_t *decomp, const uint32_t sock, + const uint32_t die, const uint32_t comp) +{ + uint32_t node; + + if (((sock << decomp->dfd_sock_shift) & ~decomp->dfd_sock_mask) != 0) { + return (B_FALSE); + } + if (((die << decomp->dfd_die_shift) & ~decomp->dfd_die_mask) != 0) { + return (B_FALSE); + } + if ((comp & ~decomp->dfd_comp_mask) != 0) { + return (B_FALSE); + } + + node = die << decomp->dfd_die_shift; + node |= sock << decomp->dfd_sock_shift; + + if (((node << decomp->dfd_node_shift) & ~decomp->dfd_node_mask) != 0) { + return (B_FALSE); + } + + return (B_TRUE); +} + +/* + * Take apart a fabric ID into its constituent parts. The decomposition + * information has the die and socket information relative to the node ID. + */ +void +zen_fabric_id_decompose(const df_fabric_decomp_t *decomp, const uint32_t fabid, + uint32_t *sockp, uint32_t *diep, uint32_t *compp) +{ + uint32_t node; + + ASSERT(zen_fabric_id_valid_fabid(decomp, fabid)); + + *compp = (fabid & decomp->dfd_comp_mask) >> decomp->dfd_comp_shift; + node = (fabid & decomp->dfd_node_mask) >> decomp->dfd_node_shift; + *diep = (node & decomp->dfd_die_mask) >> decomp->dfd_die_shift; + *sockp = (node & decomp->dfd_sock_mask) >> decomp->dfd_sock_shift; +} + +/* + * Compose a fabric ID from its constituent parts: the socket, die, and fabric. + */ +void +zen_fabric_id_compose(const df_fabric_decomp_t *decomp, const uint32_t sock, + const uint32_t die, const uint32_t comp, uint32_t *fabidp) +{ + uint32_t node; + + ASSERT(zen_fabric_id_valid_parts(decomp, sock, die, comp)); + + node = die << decomp->dfd_die_shift; + node |= sock << decomp->dfd_sock_shift; + *fabidp = (node << decomp->dfd_node_shift) | + (comp << decomp->dfd_comp_shift); +} diff --git a/usr/src/common/mc/zen_umc/zen_umc_decode.c b/usr/src/common/mc/zen_umc/zen_umc_decode.c new file mode 100644 index 0000000000..acf03868cd --- /dev/null +++ b/usr/src/common/mc/zen_umc/zen_umc_decode.c @@ -0,0 +1,1619 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2022 Oxide Computer Company + */ + +/* + * Zen UMC Decoding logic. See zen_umc.c for an overview of everything. This + * implements shared userland/kernel decoding. + */ + +#include "zen_umc.h" + +#ifndef _KERNEL +#include <strings.h> +#endif + +/* + * Address constants. + */ +#define ZEN_UMC_TOM2_START 0x100000000ULL +#define ZEN_UMC_TOM2_RSVD_BEGIN 0xfd00000000ULL +#define ZEN_UMC_TOM2_RSVD_END 0x10000000000ULL + +/* + * COD based hashing constants. + */ +#define ZEN_UMC_COD_NBITS 3 +#define ZEN_UMC_NPS_MOD_NBITS 3 + +/* + * We want to apply some initial heuristics to determine if a physical address + * is DRAM before we proceed because of the MMIO hole and related. The DRAM + * ranges can overlap with these system reserved ranges so we have to manually + * check these. Effectively this means that we have a few valid ranges: + * + * o [ 0, TOM ) + * o [ 4 GiB, TOM2 ) + * + * However, the above 4 GiB runs into trouble depending on size. There is a 12 + * GiB system reserved address region right below 1 TiB. So it really turns + * into the following when we have more than 1 TiB of DRAM: + * + * o [ 0, TOM ) + * o [ 4 GiB, 1 TiB - 12 GiB ) + * o [ 1 TiB, TOM2 ) + * + * Note, this does not currently scan MTRRs or MMIO rules for what might be + * redirected to MMIO. + */ +static boolean_t +zen_umc_decode_is_dram(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + if (dec->dec_pa < umc->umc_tom) { + return (B_TRUE); + } + + if (dec->dec_pa >= umc->umc_tom2) { + dec->dec_fail = ZEN_UMC_DECODE_F_OUTSIDE_DRAM; + return (B_FALSE); + } + + /* + * If the address is in the reserved hole around 1 TiB, do not proceed. + */ + if (dec->dec_pa >= ZEN_UMC_TOM2_RSVD_BEGIN && + dec->dec_pa < ZEN_UMC_TOM2_RSVD_END) { + dec->dec_fail = ZEN_UMC_DECODE_F_OUTSIDE_DRAM; + return (B_FALSE); + } + + /* + * Now that we've validated we're not in the hole, check to see if we're + * actually in a valid region for TOM2. + */ + if (dec->dec_pa >= ZEN_UMC_TOM2_START && + dec->dec_pa < umc->umc_tom2) { + return (B_TRUE); + } + + /* + * At this point we have eliminated all known DRAM regions described by + * TOM and TOM2, so we have to conclude that whatever we're looking at + * is now not part of DRAM. + */ + dec->dec_fail = ZEN_UMC_DECODE_F_OUTSIDE_DRAM; + return (B_FALSE); +} + +/* + * In our first stop on decoding, we need to go through and take a physical + * address and figure out what the corresponding initial DF rule that applies + * is. This rule will then be used to figure out which target on the data fabric + * we should be going to and what interleaving rules apply. + * + * Our DRAM rule may reflect that the DRAM hole is active. In this case the + * specified range in the rule will be larger than the actual amount of DRAM + * present. MMIO accesses take priority over DRAM accesses in the core and + * therefore the MMIO portion of the rule is not actually decoded. When trying + * to match a rule we do not need to worry about that and can just look whether + * our physical address matches a rule. We will take into account whether + * hoisting should adjust the address when we translate from a system address to + * a normal address (e.g. an address in the channel) which will be done in a + * subsequent step. If an address is in the hole, that has already been + * accounted for. + * + * While gathering information, we have all the DRAM rules for a given CCM that + * corresponds to a CPU core. This allows us to review all DRAM rules in one + * place rather than walking through what's been assigned to each UMC instance, + * which only has the rules that are directed towards that particular channel + * and matter for determining channel offsets. + */ +static boolean_t +zen_umc_decode_find_df_rule(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + const zen_umc_df_t *df = &umc->umc_dfs[0]; + + for (uint_t i = 0; i < df->zud_dram_nrules; i++) { + const df_dram_rule_t *rule = &df->zud_rules[i]; + + /* + * If this rule is not enabled, skip it. + */ + if ((rule->ddr_flags & DF_DRAM_F_VALID) == 0) + continue; + + if (dec->dec_pa >= rule->ddr_base && + dec->dec_pa < rule->ddr_limit) { + dec->dec_df_ruleno = i; + dec->dec_df_rule = rule; + dec->dec_df_rulesrc = df; + return (B_TRUE); + } + } + + dec->dec_fail = ZEN_UMC_DECODE_F_NO_DF_RULE; + return (B_FALSE); +} + +/* + * This function takes care of the common logic of adjusting an address by the + * base value in the rule and determining if we need to apply the DRAM hole or + * not. This function is used in two different places: + * + * o As part of adjusting the system address to construct the interleave + * address for DFv4 and Zen 3 based 6-channel hashing (see + * zen_umc_determine_ileave_addr() below). + * o As part of adjusting the system address at the beginning of normalization + * to a channel address. + * + * One thing to highlight is that the same adjustment we make in the first case + * applies to a subset of things for interleaving; however, it applies to + * everything when normalizing. + */ +static boolean_t +zen_umc_adjust_dram_addr(const zen_umc_t *umc, zen_umc_decoder_t *dec, + uint64_t *addrp, zen_umc_decode_failure_t errno) +{ + const uint64_t init_addr = *addrp; + const df_dram_rule_t *rule = dec->dec_df_rule; + const zen_umc_df_t *df = dec->dec_df_rulesrc; + uint64_t mod_addr = init_addr; + + ASSERT3U(init_addr, >=, rule->ddr_base); + ASSERT3U(init_addr, <, rule->ddr_limit); + mod_addr -= rule->ddr_base; + + /* + * Determine if the hole applies to this rule. + */ + if ((rule->ddr_flags & DF_DRAM_F_HOLE) != 0 && + (df->zud_flags & ZEN_UMC_DF_F_HOLE_VALID) != 0 && + init_addr >= ZEN_UMC_TOM2_START) { + uint64_t hole_size; + hole_size = ZEN_UMC_TOM2_START - + umc->umc_dfs[0].zud_hole_base; + if (mod_addr < hole_size) { + dec->dec_fail = errno; + dec->dec_fail_data = dec->dec_df_ruleno; + return (B_FALSE); + } + + mod_addr -= hole_size; + } + + *addrp = mod_addr; + return (B_TRUE); +} + +/* + * Take care of constructing the address we need to use for determining the + * interleaving target fabric id. See the big theory statement in zen_umc.c for + * more on this. + */ +static boolean_t +zen_umc_determine_ileave_addr(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + const df_dram_rule_t *rule = dec->dec_df_rule; + + if (umc->umc_df_rev <= DF_REV_3 && + rule->ddr_chan_ileave != DF_CHAN_ILEAVE_6CH) { + dec->dec_ilv_pa = dec->dec_pa; + return (B_TRUE); + } + + dec->dec_ilv_pa = dec->dec_pa; + if (!zen_umc_adjust_dram_addr(umc, dec, &dec->dec_ilv_pa, + ZEN_UMC_DECODE_F_ILEAVE_UNDERFLOW)) { + return (B_FALSE); + } + + return (B_TRUE); +} + +/* + * This is a simple interleaving case where we simply extract bits. No hashing + * required! Per zen_umc.c, from lowest to highest, we have channel, die, and + * then socket bits. + */ +static boolean_t +zen_umc_decode_ileave_nohash(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint32_t nchan_bit, ndie_bit, nsock_bit, addr_bit; + const df_dram_rule_t *rule = dec->dec_df_rule; + + nsock_bit = rule->ddr_sock_ileave_bits; + ndie_bit = rule->ddr_die_ileave_bits; + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_1CH: + nchan_bit = 0; + break; + case DF_CHAN_ILEAVE_2CH: + nchan_bit = 1; + break; + case DF_CHAN_ILEAVE_4CH: + nchan_bit = 2; + break; + case DF_CHAN_ILEAVE_8CH: + nchan_bit = 3; + break; + case DF_CHAN_ILEAVE_16CH: + nchan_bit = 4; + break; + case DF_CHAN_ILEAVE_32CH: + nchan_bit = 5; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + /* + * Zero all of these out in case no bits are dedicated to this purpose. + * In those cases, then the value for this is always zero. + */ + dec->dec_ilv_sock = dec->dec_ilv_die = dec->dec_ilv_chan = 0; + addr_bit = rule->ddr_addr_start; + if (nchan_bit > 0) { + dec->dec_ilv_chan = bitx64(dec->dec_ilv_pa, + addr_bit + nchan_bit - 1, addr_bit); + addr_bit += nchan_bit; + } + + if (ndie_bit > 0) { + dec->dec_ilv_die = bitx64(dec->dec_ilv_pa, + addr_bit + ndie_bit - 1, addr_bit); + addr_bit += ndie_bit; + } + + if (nsock_bit > 0) { + dec->dec_ilv_sock = bitx64(dec->dec_ilv_pa, + addr_bit + nsock_bit - 1, addr_bit); + addr_bit += nsock_bit; + } + + return (B_TRUE); +} + +/* + * Perform the Zen 2/Zen 3 "COD" based hashing. See the zen_umc.c interleaving + * section of the big theory statement for an overview of how this works. + */ +static boolean_t +zen_umc_decode_ileave_cod(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint32_t nchan_bit; + const df_dram_rule_t *rule = dec->dec_df_rule; + /* + * The order of bits here is defined by AMD. Yes, we do use the rule's + * address bit first and then skip to bit 12 for the second hash bit. + */ + const uint32_t addr_bits[3] = { rule->ddr_addr_start, 12, 13 }; + + if (rule->ddr_sock_ileave_bits != 0 || rule->ddr_die_ileave_bits != 0) { + dec->dec_fail = ZEN_UMC_DECODE_F_COD_BAD_ILEAVE; + dec->dec_fail_data = dec->dec_df_ruleno; + return (B_FALSE); + } + + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_COD4_2CH: + nchan_bit = 1; + break; + case DF_CHAN_ILEAVE_COD2_4CH: + nchan_bit = 2; + break; + case DF_CHAN_ILEAVE_COD1_8CH: + nchan_bit = 3; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + dec->dec_ilv_sock = dec->dec_ilv_die = dec->dec_ilv_chan = 0; + + /* + * Proceed to calculate the address hash based on the number of bits + * that we have been told to use based on the DF rule. Use the flags in + * the rule to determine which additional address ranges to hash in. + */ + for (uint_t i = 0; i < nchan_bit; i++) { + uint8_t hash = 0; + + hash = bitx64(dec->dec_ilv_pa, addr_bits[i], addr_bits[i]); + if ((rule->ddr_flags & DF_DRAM_F_HASH_16_18) != 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 16 + i, 16 + i); + hash ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_21_23) != 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 21 + i, 21 + i); + hash ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_30_32) != 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 30 + i, 30 + i); + hash ^= val; + } + + dec->dec_ilv_chan |= hash << i; + } + + return (B_TRUE); +} + +/* + * This implements the standard NPS hash for power of 2 based channel + * configurations that is found in DFv4. For more information, please see the + * interleaving portion of the zen_umc.c big theory statement. + */ +static boolean_t +zen_umc_decode_ileave_nps(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint32_t nchan_bit, nsock_bit; + const df_dram_rule_t *rule = dec->dec_df_rule; + /* + * The order of bits here is defined by AMD. Yes, this is start with the + * defined address bit and then skip to bit 12. + */ + const uint32_t addr_bits[4] = { rule->ddr_addr_start, 12, 13, 14 }; + + if (rule->ddr_die_ileave_bits != 0) { + dec->dec_fail = ZEN_UMC_DECODE_F_NPS_BAD_ILEAVE; + dec->dec_fail_data = dec->dec_df_ruleno; + return (B_FALSE); + } + + nsock_bit = rule->ddr_sock_ileave_bits; + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_NPS4_2CH: + nchan_bit = 1; + break; + case DF_CHAN_ILEAVE_NPS2_4CH: + nchan_bit = 2; + break; + case DF_CHAN_ILEAVE_NPS1_8CH: + nchan_bit = 3; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + ASSERT3U(nchan_bit + nsock_bit, <=, 4); + dec->dec_ilv_sock = dec->dec_ilv_die = dec->dec_ilv_chan = 0; + + for (uint_t i = 0; i < nchan_bit + nsock_bit; i++) { + uint8_t hash = 0; + + hash = bitx64(dec->dec_ilv_pa, addr_bits[i], addr_bits[i]); + if ((rule->ddr_flags & DF_DRAM_F_HASH_16_18) != 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 16 + i, 16 + i); + hash ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_21_23) != 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 21 + i, 21 + i); + hash ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_30_32) != 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 30 + i, 30 + i); + hash ^= val; + } + + /* + * If this is the first bit and we're not doing socket + * interleaving, then we need to add bit 14 to the running hash. + */ + if (i == 0 && nsock_bit == 0) { + uint8_t val = bitx64(dec->dec_ilv_pa, 14, 14); + hash ^= val; + } + + /* + * If socket interleaving is going on we need to store the first + * bit as the socket hash and then redirect the remaining bits + * to the channel, taking into account that the shift will be + * adjusted as a result. + */ + if (nsock_bit > 0) { + if (i == 0) { + dec->dec_ilv_sock = hash; + } else { + dec->dec_ilv_chan |= hash << (i - 1); + } + } else { + dec->dec_ilv_chan |= hash << i; + } + } + + return (B_TRUE); +} + +/* + * This implements the logic to perform the Zen 3 6ch special hash. It's worth + * calling out that unlike all other hash functions, this does not support the + * use of the DF_DRAM_F_HASH_16_18 flag. + */ +static void +zen_umc_decode_hash_zen3_6ch(const df_dram_rule_t *rule, uint64_t pa, + uint8_t hashes[3]) +{ + uint32_t addr_bit = rule->ddr_addr_start; + /* + * Yes, we use these in a weird order. No, there is no 64K. + */ + const uint32_t bits_2M[3] = { 23, 21, 22 }; + const uint32_t bits_1G[3] = { 32, 30, 31 }; + + hashes[0] = hashes[1] = hashes[2] = 0; + for (uint_t i = 0; i < ZEN_UMC_COD_NBITS; i++) { + hashes[i] = bitx64(pa, addr_bit + i, addr_bit + i); + if (i == 0) { + uint8_t val = bitx64(pa, addr_bit + 3, addr_bit + 3); + hashes[i] ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_21_23) != 0) { + uint8_t val = bitx64(pa, bits_2M[i], bits_2M[i]); + hashes[i] ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_30_32) != 0) { + uint8_t val = bitx64(pa, bits_1G[i], bits_1G[i]); + hashes[i] ^= val; + } + } +} + +/* + * Perform Zen 3 6-channel hashing. This is pretty weird compared to others. See + * the zen_umc.c big theory statement for the thorny details. + */ +static boolean_t +zen_umc_decode_ileave_zen3_6ch(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t hashes[3] = { 0 }; + const df_dram_rule_t *rule = dec->dec_df_rule; + uint32_t addr_bit = rule->ddr_addr_start; + + if (rule->ddr_sock_ileave_bits != 0 || rule->ddr_die_ileave_bits != 0) { + dec->dec_fail = ZEN_UMC_DECODE_F_COD_BAD_ILEAVE; + dec->dec_fail_data = dec->dec_df_ruleno; + return (B_FALSE); + } + + zen_umc_decode_hash_zen3_6ch(rule, dec->dec_ilv_pa, hashes); + dec->dec_ilv_sock = dec->dec_ilv_die = dec->dec_ilv_chan = 0; + dec->dec_ilv_chan = hashes[0]; + if (hashes[1] == 1 && hashes[2] == 1) { + uint64_t mod_addr = dec->dec_ilv_pa >> (addr_bit + 3); + dec->dec_ilv_chan |= (mod_addr % 3) << 1; + } else { + dec->dec_ilv_chan |= hashes[1] << 1; + dec->dec_ilv_chan |= hashes[2] << 2; + } + + return (B_TRUE); +} + +/* + * This is the standard hash function for the non-power of two based NPS hashes. + * See the big theory statement for more information. Unlike the normal NPS hash + * which uses bit 14 conditionally based on socket interleaving, here it is + * always used. + */ +static void +zen_umc_decode_hash_nps_mod(const df_dram_rule_t *rule, uint64_t pa, + uint8_t hashes[3]) +{ + const uint32_t addr_bits[3] = { rule->ddr_addr_start, 12, 13 }; + + for (uint_t i = 0; i < ZEN_UMC_NPS_MOD_NBITS; i++) { + hashes[i] = bitx64(pa, addr_bits[i], addr_bits[i]); + if (i == 0) { + uint8_t val = bitx64(pa, 14, 14); + hashes[i] ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_16_18) != 0) { + uint8_t val = bitx64(pa, 16 + i, 16 + i); + hashes[i] ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_21_23) != 0) { + uint8_t val = bitx64(pa, 21 + i, 21 + i); + hashes[i] ^= val; + } + + if ((rule->ddr_flags & DF_DRAM_F_HASH_30_32) != 0) { + uint8_t val = bitx64(pa, 30 + i, 30 + i); + hashes[i] ^= val; + } + } +} + +/* + * See the big theory statement in zen_umc.c which describes the rules for this + * computation. This is a little less weird than the Zen 3 one, but still, + * unique. + */ +static boolean_t +zen_umc_decode_ileave_nps_mod(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t hashes[3] = { 0 }; + uint32_t nsock_bit, chan_mod; + const df_dram_rule_t *rule = dec->dec_df_rule; + + if (rule->ddr_die_ileave_bits != 0) { + dec->dec_fail = ZEN_UMC_DECODE_F_NPS_BAD_ILEAVE; + dec->dec_fail_data = dec->dec_df_ruleno; + return (B_FALSE); + } + + nsock_bit = rule->ddr_sock_ileave_bits; + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_NPS4_3CH: + case DF_CHAN_ILEAVE_NPS2_6CH: + case DF_CHAN_ILEAVE_NPS1_12CH: + chan_mod = 3; + break; + case DF_CHAN_ILEAVE_NPS2_5CH: + case DF_CHAN_ILEAVE_NPS1_10CH: + chan_mod = 5; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + dec->dec_ilv_sock = dec->dec_ilv_die = dec->dec_ilv_chan = 0; + zen_umc_decode_hash_nps_mod(rule, dec->dec_ilv_pa, hashes); + + if (nsock_bit > 0) { + ASSERT3U(nsock_bit, ==, 1); + dec->dec_ilv_sock = hashes[0]; + } + + dec->dec_ilv_chan = bitx64(dec->dec_ilv_pa, 63, 14) % chan_mod; + if (hashes[0] == 1) { + dec->dec_ilv_chan = (dec->dec_ilv_chan + 1) % chan_mod; + } + + /* + * Use the remaining hash bits based on the number of channels. There is + * nothing else to do for 3/5 channel configs. + */ + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_NPS4_3CH: + case DF_CHAN_ILEAVE_NPS2_5CH: + break; + case DF_CHAN_ILEAVE_NPS2_6CH: + case DF_CHAN_ILEAVE_NPS1_10CH: + dec->dec_ilv_chan += hashes[2] * chan_mod; + break; + case DF_CHAN_ILEAVE_NPS1_12CH: + dec->dec_ilv_chan += ((hashes[2] << 1) | hashes[1]) * chan_mod; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + return (B_TRUE); +} + +/* + * Our next task is to attempt to translate the PA and the DF rule from a system + * address into a normalized address and a particular DRAM channel that it's + * targeting. There are several things that we need to take into account here + * when performing interleaving and translation: + * + * o The DRAM Hole modifying our base address + * o The various interleave bits + * o Potentially hashing based on channel and global settings + * o Potential CS re-targeting registers (only on some systems) + * o Finally, the question of how to adjust for the DRAM hole and the base + * address changes based on the DF generation and channel configuration. This + * influences what address we start interleaving with. + * + * Note, this phase does not actually construct the normalized (e.g. channel) + * address. That's done in a subsequent step. For more background, please see + * the 'Data Fabric Interleaving' section of the zen_umc.c big theory statement. + */ +static boolean_t +zen_umc_decode_sysaddr_to_csid(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint32_t sock, die, chan, remap_ruleset; + const df_dram_rule_t *rule = dec->dec_df_rule; + const zen_umc_cs_remap_t *remap; + + /* + * First, we must determine what the actual address used for + * interleaving is. This varies based on the interleaving and DF + * generation. + */ + if (!zen_umc_determine_ileave_addr(umc, dec)) { + return (B_FALSE); + } + + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_1CH: + case DF_CHAN_ILEAVE_2CH: + case DF_CHAN_ILEAVE_4CH: + case DF_CHAN_ILEAVE_8CH: + case DF_CHAN_ILEAVE_16CH: + case DF_CHAN_ILEAVE_32CH: + if (!zen_umc_decode_ileave_nohash(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_COD4_2CH: + case DF_CHAN_ILEAVE_COD2_4CH: + case DF_CHAN_ILEAVE_COD1_8CH: + if (!zen_umc_decode_ileave_cod(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_NPS4_2CH: + case DF_CHAN_ILEAVE_NPS2_4CH: + case DF_CHAN_ILEAVE_NPS1_8CH: + if (!zen_umc_decode_ileave_nps(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_6CH: + if (!zen_umc_decode_ileave_zen3_6ch(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_NPS4_3CH: + case DF_CHAN_ILEAVE_NPS2_6CH: + case DF_CHAN_ILEAVE_NPS1_12CH: + case DF_CHAN_ILEAVE_NPS2_5CH: + case DF_CHAN_ILEAVE_NPS1_10CH: + if (!zen_umc_decode_ileave_nps_mod(umc, dec)) { + return (B_FALSE); + } + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + /* + * At this point we have dealt with decoding the interleave into the + * logical elements that it contains. We need to transform that back + * into a fabric ID, so we can add it to the base fabric ID in our rule. + * After that, we need to see if there is any CS remapping going on. If + * there is, we will replace the component part of the decomposed fabric + * ID. With that done, we can then transform the components back into + * our target fabric ID, which indicates which UMC we're after. + */ + zen_fabric_id_compose(&umc->umc_decomp, dec->dec_ilv_sock, + dec->dec_ilv_die, dec->dec_ilv_chan, &dec->dec_ilv_fabid); + dec->dec_log_fabid = dec->dec_ilv_fabid + rule->ddr_dest_fabid; + + /* + * If there's no remapping to do, then we're done. Simply assign the + * logical ID as our target. + */ + zen_fabric_id_decompose(&umc->umc_decomp, dec->dec_log_fabid, &sock, + &die, &chan); + if ((rule->ddr_flags & DF_DRAM_F_REMAP_EN) == 0) { + dec->dec_targ_fabid = dec->dec_log_fabid; + return (B_TRUE); + } + + /* + * The DF contains multiple remapping tables. We must figure out which + * of these to actually use. There are two different ways that this can + * work. The first way is the one added in DFv4 and is used since then. + * In that case, the DRAM rule includes both that remapping was enabled + * and which of the multiple mapping tables to use. + * + * This feature also exists prior to DFv4, but only in Milan. In that + * world, indicated by the DF_DRAM_F_REMAP_SOCK flag, there is one table + * in each DF per-socket. Based on the destination socket from the data + * fabric ID, you pick the actual table to use. + * + * Once the table has been selected, we maintain the socket and die + * portions of the fabric ID as constants and replace the component with + * the one the remapping table indicates. + * + * Technically each DF has its own copy of the remapping tables. To make + * this work we rely on the following assumption: a given DF node has to + * be able to fully route all DRAM rules to a target. That is, a given + * DF node doesn't really forward a system address to the remote die for + * further interleave processing and therefore we must have enough + * information here to map it totally from the same DF that we got the + * CCM rules from in the first place, DF 0. + */ + if ((rule->ddr_flags & DF_DRAM_F_REMAP_SOCK) != 0) { + remap_ruleset = sock; + } else { + remap_ruleset = rule->ddr_remap_ent; + } + + if (remap_ruleset >= dec->dec_df_rulesrc->zud_cs_nremap) { + dec->dec_fail = ZEN_UMC_DECODE_F_BAD_REMAP_SET; + dec->dec_fail_data = remap_ruleset; + return (B_FALSE); + } + + remap = &dec->dec_df_rulesrc->zud_remap[remap_ruleset]; + if (chan >= remap->csr_nremaps) { + dec->dec_fail = ZEN_UMC_DECODE_F_BAD_REMAP_ENTRY; + dec->dec_fail_data = chan; + return (B_FALSE); + } + + dec->dec_remap_comp = remap->csr_remaps[chan]; + if ((dec->dec_remap_comp & ~umc->umc_decomp.dfd_comp_mask) != 0) { + dec->dec_fail = ZEN_UMC_DECODE_F_REMAP_HAS_BAD_COMP; + dec->dec_fail_data = dec->dec_remap_comp; + return (B_FALSE); + } + + zen_fabric_id_compose(&umc->umc_decomp, sock, die, dec->dec_remap_comp, + &dec->dec_targ_fabid); + + return (B_TRUE); +} + +/* + * Our next step here is to actually take our target ID and find the + * corresponding DF, UMC, and actual rule that was used. Note, we don't + * decompose the ID and look things up that way for a few reasons. While each + * UMC should map linearly to its instance/component ID, there are suggestions + * that they can be renumbered. This makes it simplest to just walk over + * everything (and there aren't that many things to walk over either). + */ +static boolean_t +zen_umc_decode_find_umc_rule(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + for (uint_t dfno = 0; dfno < umc->umc_ndfs; dfno++) { + const zen_umc_df_t *df = &umc->umc_dfs[dfno]; + for (uint_t umcno = 0; umcno < df->zud_nchan; umcno++) { + const zen_umc_chan_t *chan = &df->zud_chan[umcno]; + + if (chan->chan_fabid != dec->dec_targ_fabid) { + continue; + } + + /* + * At this point we have found the UMC that we were + * looking for. Snapshot that and then figure out which + * rule index of it corresponds to our mapping so we can + * properly determine an offset. We will still use the + * primary CCM rule for all other calculations. + */ + dec->dec_umc_chan = chan; + for (uint32_t ruleno = 0; ruleno < chan->chan_nrules; + ruleno++) { + const df_dram_rule_t *rule = + &chan->chan_rules[ruleno]; + if ((rule->ddr_flags & DF_DRAM_F_VALID) == 0) { + continue; + } + + if (dec->dec_pa >= rule->ddr_base && + dec->dec_pa < rule->ddr_limit) { + dec->dec_umc_ruleno = ruleno; + return (B_TRUE); + } + } + + dec->dec_fail = ZEN_UMC_DECODE_F_UMC_DOESNT_HAVE_PA; + return (B_FALSE); + } + } + + dec->dec_fail = ZEN_UMC_DECODE_F_CANNOT_MAP_FABID; + return (B_FALSE); +} + +/* + * Non-hashing interleave modes system address normalization logic. See the + * zen_umc.c big theory statement for more information. + */ +static boolean_t +zen_umc_decode_normalize_nohash(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint_t nbits = 0; + const df_dram_rule_t *rule = dec->dec_df_rule; + + nbits += rule->ddr_sock_ileave_bits; + nbits += rule->ddr_die_ileave_bits; + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_1CH: + break; + case DF_CHAN_ILEAVE_2CH: + nbits += 1; + break; + case DF_CHAN_ILEAVE_4CH: + nbits += 2; + break; + case DF_CHAN_ILEAVE_8CH: + nbits += 3; + break; + case DF_CHAN_ILEAVE_16CH: + nbits += 4; + break; + case DF_CHAN_ILEAVE_32CH: + nbits += 5; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + /* + * If we have a really simple configuration (e.g. no interleaving at + * all), then make sure that we do not actually do anything here. + */ + if (nbits > 0) { + dec->dec_norm_addr = bitdel64(dec->dec_norm_addr, + rule->ddr_addr_start + nbits - 1, rule->ddr_addr_start); + } + + return (B_TRUE); +} + +/* + * COD/NPS system address normalization logic. See the zen_umc.c big theory + * statement for more information. + */ +static boolean_t +zen_umc_decode_normalize_hash(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint_t nbits = 0; + const df_dram_rule_t *rule = dec->dec_df_rule; + + /* + * NPS hashes allow for socket interleaving, COD hashes do not. Add + * socket interleaving, skip die. + */ + nbits += rule->ddr_sock_ileave_bits; + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_COD4_2CH: + case DF_CHAN_ILEAVE_NPS4_2CH: + nbits += 1; + break; + case DF_CHAN_ILEAVE_COD2_4CH: + case DF_CHAN_ILEAVE_NPS2_4CH: + nbits += 2; + break; + case DF_CHAN_ILEAVE_COD1_8CH: + case DF_CHAN_ILEAVE_NPS1_8CH: + nbits += 3; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + } + + /* + * Always remove high order bits before low order bits so we don't have + * to adjust the bits we need to remove. + */ + if (nbits > 1) { + uint_t start = 12; + uint_t end = start + (nbits - 2); + dec->dec_norm_addr = bitdel64(dec->dec_norm_addr, end, start); + } + + dec->dec_norm_addr = bitdel64(dec->dec_norm_addr, rule->ddr_addr_start, + rule->ddr_addr_start); + return (B_TRUE); +} + +/* + * Now it's time to perform normalization of our favorite interleaving type. + * Please see the comments in zen_umc.c on this to understand what we're doing + * here and why. + */ +static boolean_t +zen_umc_decode_normalize_zen3_6ch(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t hashes[3] = { 0 }; + uint_t start, end; + const df_dram_rule_t *rule = dec->dec_df_rule; + + /* + * As per the theory statement, we always remove the hash bits here from + * the starting address. Because this is a 6-channel config, that turns + * into 3. Perform the hash again first. + */ + zen_umc_decode_hash_zen3_6ch(rule, dec->dec_norm_addr, hashes); + start = rule->ddr_addr_start; + end = rule->ddr_addr_start + ZEN_UMC_COD_NBITS - 1; + dec->dec_norm_addr = bitdel64(dec->dec_norm_addr, end, start); + + /* + * This is the case the theory statement warned about. This gets + * normalized to the top of the DIMM's range (its two upper most bits + * are set). + */ + if (hashes[1] == 1 && hashes[2] == 1) { + uint_t start = 14 - ZEN_UMC_COD_NBITS + + dec->dec_umc_chan->chan_np2_space0; + dec->dec_norm_addr = bitset64(dec->dec_norm_addr, start + 1, + start, 0x3); + } + + return (B_TRUE); +} + +/* + * Based on the algorithm of sorts described in zen_umc.c, we have a few + * different phases of extraction and combination. This isn't quite like the + * others where we simply delete bits. + */ +static boolean_t +zen_umc_decode_normalize_nps_mod(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint64_t low, high, mid; + uint_t nbits, chan_mod, sock_bits, nmid_bits; + uint_t mid_start, mid_end; + uint8_t hashes[3] = { 0 }; + const df_dram_rule_t *rule = dec->dec_df_rule; + + sock_bits = rule->ddr_sock_ileave_bits; + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_NPS4_3CH: + chan_mod = 3; + nbits = 1; + break; + case DF_CHAN_ILEAVE_NPS2_5CH: + chan_mod = 5; + nbits = 1; + break; + case DF_CHAN_ILEAVE_NPS2_6CH: + chan_mod = 3; + nbits = 2; + break; + case DF_CHAN_ILEAVE_NPS1_10CH: + chan_mod = 5; + nbits = 2; + break; + case DF_CHAN_ILEAVE_NPS1_12CH: + chan_mod = 3; + nbits = 3; + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + /* + * First extract the low bit range that we're using which is everything + * below the starting interleave address. We also always extract the + * high bits, which are always [63:14] and divide it by the modulus. + * Note, we apply the hash after any such division if needed. It becomes + * the new least significant bit. + */ + low = bitx64(dec->dec_norm_addr, rule->ddr_addr_start - 1, 0); + high = bitx64(dec->dec_norm_addr, 63, 14) / chan_mod; + zen_umc_decode_hash_nps_mod(rule, dec->dec_norm_addr, hashes); + if (sock_bits == 0) { + high = (high << 1) | hashes[0]; + } + + /* + * Now for the weirdest bit here, extracting the middle bits. Recall + * this hash uses bit 8, then 13, then 12 (the hash order is still 8, + * 12, 13, but it uses the hashes[2] before hashes[1] in + * zen_umc_decode_ileave_nps_mod()). So if we're only using 1 interleave + * bit, we just remove bit 8 (assuming that is our starting address) and + * our range is [13:9]. If we're using two, our range becomes [12:9], + * and if three, [11:9]. The 6 - nbits below comes from the fact that in + * a 1 bit interleave we have 5 bits. Because our mid_start/mid_end + * range is inclusive, we subtract one at the end from mid_end. + */ + nmid_bits = 6 - nbits; + mid_start = rule->ddr_addr_start + 1; + mid_end = mid_start + nmid_bits - 1; + mid = bitx64(dec->dec_norm_addr, mid_end, mid_start); + + /* + * Because we've been removing bits, we don't use any of the start and + * ending ranges we calculated above for shifts, as that was what we + * needed from the original address. + */ + dec->dec_norm_addr = low | (mid << rule->ddr_addr_start) | (high << + (rule->ddr_addr_start + nmid_bits)); + + return (B_TRUE); +} + +/* + * Now we need to go through and try to construct a normalized address using all + * the information that we've gathered to date. To do this we need to take into + * account all of the following transformations on the address that need to + * occur. We apply modifications to the address in the following order: + * + * o The base address of the rule + * o DRAM hole changes + * o Normalization of the address due to interleaving (more fun) + * o The DRAM offset register of the rule + */ +static boolean_t +zen_umc_decode_sysaddr_to_norm(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + const zen_umc_chan_t *chan = dec->dec_umc_chan; + const df_dram_rule_t *rule = dec->dec_df_rule; + + dec->dec_norm_addr = dec->dec_pa; + if (!zen_umc_adjust_dram_addr(umc, dec, &dec->dec_norm_addr, + ZEN_UMC_DECODE_F_CALC_NORM_UNDERFLOW)) { + return (B_FALSE); + } + + /* + * Now for the most annoying part of this whole thing, normalizing based + * on our actual interleave format. The reason for this is that when + * interleaving is going on, it actually is removing bits that are just + * being used to direct it somewhere; however, it's actually generally + * speaking the same value in each location. See the big theory + * statement in zen_umc.c for more information. + */ + switch (rule->ddr_chan_ileave) { + case DF_CHAN_ILEAVE_1CH: + case DF_CHAN_ILEAVE_2CH: + case DF_CHAN_ILEAVE_4CH: + case DF_CHAN_ILEAVE_8CH: + case DF_CHAN_ILEAVE_16CH: + case DF_CHAN_ILEAVE_32CH: + if (!zen_umc_decode_normalize_nohash(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_COD4_2CH: + case DF_CHAN_ILEAVE_COD2_4CH: + case DF_CHAN_ILEAVE_COD1_8CH: + case DF_CHAN_ILEAVE_NPS4_2CH: + case DF_CHAN_ILEAVE_NPS2_4CH: + case DF_CHAN_ILEAVE_NPS1_8CH: + if (!zen_umc_decode_normalize_hash(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_6CH: + if (!zen_umc_decode_normalize_zen3_6ch(umc, dec)) { + return (B_FALSE); + } + break; + case DF_CHAN_ILEAVE_NPS4_3CH: + case DF_CHAN_ILEAVE_NPS2_6CH: + case DF_CHAN_ILEAVE_NPS1_12CH: + case DF_CHAN_ILEAVE_NPS2_5CH: + case DF_CHAN_ILEAVE_NPS1_10CH: + if (!zen_umc_decode_normalize_nps_mod(umc, dec)) { + return (B_FALSE); + } + break; + default: + dec->dec_fail = ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP; + dec->dec_fail_data = rule->ddr_chan_ileave; + return (B_FALSE); + } + + /* + * Determine if this rule has an offset to apply. Note, there is never + * an offset for rule 0, hence the index into this is one less than the + * actual rule number. Unlike other transformations these offsets + * describe the start of a normalized range. Therefore we need to + * actually add this value instead of subtract. + */ + if (dec->dec_umc_ruleno > 0) { + uint32_t offno = dec->dec_umc_ruleno - 1; + const chan_offset_t *offset = &chan->chan_offsets[offno]; + + if (offset->cho_valid) { + dec->dec_norm_addr += offset->cho_offset; + } + } + + return (B_TRUE); +} + +/* + * This applies the formula that determines a chip-select actually matches which + * is defined as (address & ~mask) == (base & ~mask) in the PPR. There is both a + * primary and secondary mask here. We need to pay attention to which is used + * (if any) for later on. + */ +static boolean_t +zen_umc_decoder_cs_matches(const umc_cs_t *cs, const uint64_t norm, + boolean_t *matched_sec) +{ + if (cs->ucs_base.udb_valid != 0) { + uint64_t imask = ~cs->ucs_base_mask; + if ((norm & imask) == (cs->ucs_base.udb_base & imask)) { + *matched_sec = B_FALSE; + return (B_TRUE); + } + } + + if (cs->ucs_sec.udb_valid != 0) { + uint64_t imask = ~cs->ucs_sec_mask; + if ((norm & imask) == (cs->ucs_sec.udb_base & imask)) { + *matched_sec = B_TRUE; + return (B_TRUE); + } + } + + return (B_FALSE); +} + +/* + * Go through with our normalized address and map it to a given chip-select. + * This as a side effect indicates which DIMM we're going out on as well. Note, + * the final DIMM can change due to chip-select hashing; however, we use this + * DIMM for determining all of the actual address translations. + */ +static boolean_t +zen_umc_decode_find_cs(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + const zen_umc_chan_t *chan = dec->dec_umc_chan; + + for (uint_t dimmno = 0; dimmno < ZEN_UMC_MAX_DIMMS; dimmno++) { + const umc_dimm_t *dimm = &chan->chan_dimms[dimmno]; + + if ((dimm->ud_flags & UMC_DIMM_F_VALID) == 0) + continue; + + for (uint_t csno = 0; csno < ZEN_UMC_MAX_CS_PER_DIMM; csno++) { + const umc_cs_t *cs = &dimm->ud_cs[csno]; + boolean_t is_sec = B_FALSE; + + if (zen_umc_decoder_cs_matches(cs, dec->dec_norm_addr, + &is_sec)) { + dec->dec_dimm = dimm; + dec->dec_cs = cs; + dec->dec_log_csno = dimmno * ZEN_UMC_MAX_DIMMS + + csno; + dec->dec_cs_sec = is_sec; + return (B_TRUE); + } + } + } + + dec->dec_fail = ZEN_UMC_DECODE_F_NO_CS_BASE_MATCH; + return (B_FALSE); +} + +/* + * Extract the column from the address. For once, something that is almost + * straightforward. + */ +static boolean_t +zen_umc_decode_cols(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint32_t cols = 0; + const umc_cs_t *cs = dec->dec_cs; + + for (uint_t i = 0; i < cs->ucs_ncol; i++) { + uint32_t index; + + index = cs->ucs_col_bits[i]; + cols |= bitx64(dec->dec_norm_addr, index, index) << i; + } + + dec->dec_dimm_col = cols; + return (B_TRUE); +} + +/* + * The row is split into two different regions. There's a low and high value, + * though the high value is only present in DDR4. Unlike the column, where each + * bit is spelled out, each set of row bits are contiguous (low and high are + * independent). + */ +static boolean_t +zen_umc_decode_rows(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint32_t row = 0; + uint8_t inv; + const umc_cs_t *cs = dec->dec_cs; + const uint_t total_bits = cs->ucs_nrow_lo + cs->ucs_nrow_hi; + const uint_t lo_end = cs->ucs_nrow_lo + cs->ucs_row_low_bit - 1; + + row = bitx64(dec->dec_norm_addr, lo_end, cs->ucs_row_low_bit); + if (cs->ucs_nrow_hi > 0) { + const uint_t hi_end = cs->ucs_nrow_hi + cs->ucs_row_hi_bit - 1; + const uint32_t hi = bitx64(dec->dec_norm_addr, hi_end, + cs->ucs_row_hi_bit); + + row |= hi << cs->ucs_nrow_lo; + } + + if (dec->dec_cs_sec) { + inv = cs->ucs_inv_msbs_sec; + } else { + inv = cs->ucs_inv_msbs; + } + + /* + * We need to potentially invert the top two bits of the row address + * based on the low two bits of the inverted register below. Note, inv + * only has two valid bits below. So we shift them into place to perform + * the XOR. See the big theory statement in zen_umc.c for more on why + * this works. + */ + inv = inv << (total_bits - 2); + row = row ^ inv; + + dec->dec_dimm_row = row; + return (B_TRUE); +} + +/* + * Several of the hash schemes ask us to go through and xor all the bits that + * are in an address to transform it into a single bit. This implements that for + * a uint32_t. This is basically a bitwise XOR reduce. + */ +static uint8_t +zen_umc_running_xor32(const uint32_t in) +{ + uint8_t run = 0; + + for (uint_t i = 0; i < sizeof (in) * NBBY; i++) { + run ^= bitx32(in, i, i); + } + + return (run); +} + +static uint8_t +zen_umc_running_xor64(const uint64_t in) +{ + uint8_t run = 0; + + for (uint_t i = 0; i < sizeof (in) * NBBY; i++) { + run ^= bitx64(in, i, i); + } + + return (run); +} + +/* + * Our goal here is to extract the number of banks and bank groups that are + * used, if any. + */ +static boolean_t +zen_umc_decode_banks(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t bank = 0; + const umc_cs_t *cs = dec->dec_cs; + const umc_chan_hash_t *hash = &dec->dec_umc_chan->chan_hash; + + /* + * Get an initial bank address bit and then perform any hashing if + * bank hashing is enabled. Note, the memory controller's nbanks is the + * total number of bank and bank group bits, hence why it's used for + * the loop counter. + */ + for (uint_t i = 0; i < cs->ucs_nbanks; i++) { + uint32_t row_hash, col_hash; + uint8_t row_xor, col_xor; + uint_t targ = cs->ucs_bank_bits[i]; + uint8_t val = bitx64(dec->dec_norm_addr, targ, targ); + const umc_bank_hash_t *bank_hash = &hash->uch_bank_hashes[i]; + + if ((hash->uch_flags & UMC_CHAN_HASH_F_BANK) == 0 || + !hash->uch_bank_hashes[i].ubh_en) { + bank |= val << i; + continue; + } + + /* + * See the big theory statement for more on this. Short form, + * bit-wise AND the row and column, then XOR shenanigans. + */ + row_hash = dec->dec_dimm_row & bank_hash->ubh_row_xor; + col_hash = dec->dec_dimm_col & bank_hash->ubh_col_xor; + row_xor = zen_umc_running_xor32(row_hash); + col_xor = zen_umc_running_xor32(col_hash); + bank |= (row_xor ^ col_xor ^ val) << i; + } + + /* + * The bank and bank group are conjoined in the register and bit + * definitions. Once we've calculated that, extract it. + */ + dec->dec_dimm_bank_group = bitx8(bank, cs->ucs_nbank_groups - 1, 0); + dec->dec_dimm_bank = bitx8(bank, cs->ucs_nbanks, cs->ucs_nbank_groups); + return (B_TRUE); +} + +/* + * Extract the sub-channel. If not a DDR5 based device, simply set it to zero + * and return. We can't forget to hash this if required. + */ +static boolean_t +zen_umc_decode_subchan(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t subchan; + uint32_t row_hash, col_hash, bank_hash; + uint8_t row_xor, col_xor, bank_xor; + const umc_cs_t *cs = dec->dec_cs; + const umc_chan_hash_t *hash = &dec->dec_umc_chan->chan_hash; + + switch (dec->dec_dimm->ud_type) { + case UMC_DIMM_T_DDR5: + case UMC_DIMM_T_LPDDR5: + break; + default: + dec->dec_dimm_subchan = 0; + return (B_TRUE); + } + + subchan = bitx64(dec->dec_norm_addr, cs->ucs_subchan, cs->ucs_subchan); + if ((hash->uch_flags & UMC_CHAN_HASH_F_PC) == 0 || + !hash->uch_pc_hash.uph_en) { + dec->dec_dimm_subchan = subchan; + return (B_TRUE); + } + + row_hash = dec->dec_dimm_row & hash->uch_pc_hash.uph_row_xor; + col_hash = dec->dec_dimm_col & hash->uch_pc_hash.uph_col_xor; + bank_hash = dec->dec_dimm_bank & hash->uch_pc_hash.uph_bank_xor; + row_xor = zen_umc_running_xor32(row_hash); + col_xor = zen_umc_running_xor32(col_hash); + bank_xor = zen_umc_running_xor32(bank_hash); + + dec->dec_dimm_subchan = subchan ^ row_xor ^ col_xor ^ bank_xor; + return (B_TRUE); +} + +/* + * Note that we have normalized the RM bits between the primary and secondary + * base/mask registers so that way even though the DDR5 controller always uses + * the same RM selection bits, it works in a uniform way for both DDR4 and DDR5. + */ +static boolean_t +zen_umc_decode_rank_mul(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t rm = 0; + const umc_cs_t *cs = dec->dec_cs; + const umc_chan_hash_t *hash = &dec->dec_umc_chan->chan_hash; + + for (uint_t i = 0; i < cs->ucs_nrm; i++) { + uint8_t index = cs->ucs_rm_bits[i]; + uint8_t bit = bitx64(dec->dec_norm_addr, index, index); + + if ((hash->uch_flags & UMC_CHAN_HASH_F_RM) != 0 && + hash->uch_rm_hashes[i].uah_en) { + uint64_t norm_mask = dec->dec_norm_addr & + hash->uch_rm_hashes[i].uah_addr_xor; + uint8_t norm_hash = zen_umc_running_xor64(norm_mask); + bit = bit ^ norm_hash; + } + + rm |= bit << i; + } + + dec->dec_dimm_rm = rm; + return (B_TRUE); +} + +/* + * Go through and determine the actual chip-select activated. This is subject to + * hashing. Note, we first constructed a logical chip-select value based on + * which of the four base/mask registers in the UMC we activated for the + * channel. That basically seeded the two bit value we start with. + */ +static boolean_t +zen_umc_decode_chipsel(const zen_umc_t *umc, zen_umc_decoder_t *dec) +{ + uint8_t csno = 0; + const umc_cs_t *cs = dec->dec_cs; + const umc_chan_hash_t *hash = &dec->dec_umc_chan->chan_hash; + + for (uint_t i = 0; i < ZEN_UMC_MAX_CS_BITS; i++) { + uint8_t bit = bitx8(dec->dec_log_csno, i, i); + if ((hash->uch_flags & UMC_CHAN_HASH_F_CS) != 0 && + hash->uch_cs_hashes[i].uah_en) { + uint64_t mask = dec->dec_norm_addr & + hash->uch_cs_hashes[i].uah_addr_xor; + uint8_t rxor = zen_umc_running_xor64(mask); + bit = bit ^ rxor; + } + csno |= bit << i; + } + + /* + * It is not entirely clear what the circumstances are that we need to + * apply the chip-select xor. Right now we always apply it. This only + * exists on a few DDR5 SoCs, it seems, and we zero out other cases to + * try and have a uniform and reasonable path. This tells us what the + * absolute chip-select is in the channel. We record this for debugging + * purposes and to derive the DIMM and CS. + */ + dec->dec_chan_csno = (csno ^ cs->ucs_cs_xor) & 0x3; + + /* + * Now that we actually know which chip-select we're targeting, go back + * and actual indicate which DIMM we'll go out to and what chip-select + * it is relative to the DIMM. This may have changed out due to CS + * hashing. As such we have to now snapshot our final DIMM and + * chip-select. + */ + dec->dec_dimm_no = dec->dec_chan_csno >> 1; + dec->dec_dimm_csno = dec->dec_chan_csno % 2; + return (B_TRUE); +} + +/* + * Initialize the decoder state. We do this by first zeroing it all and then + * setting various result addresses to the UINTXX_MAX that is appropriate. These + * work as better sentinel values than zero; however, we always zero the + * structure to be defensive, cover pointers, etc. + */ +static void +zen_umc_decoder_init(zen_umc_decoder_t *dec) +{ + bzero(dec, sizeof (*dec)); + + dec->dec_pa = dec->dec_ilv_pa = UINT64_MAX; + dec->dec_df_ruleno = UINT32_MAX; + dec->dec_ilv_sock = dec->dec_ilv_die = dec->dec_ilv_chan = + dec->dec_ilv_fabid = dec->dec_log_fabid = dec->dec_remap_comp = + dec->dec_targ_fabid = UINT32_MAX; + dec->dec_umc_ruleno = UINT32_MAX; + dec->dec_norm_addr = UINT64_MAX; + dec->dec_dimm_col = dec->dec_dimm_row = UINT32_MAX; + dec->dec_log_csno = dec->dec_dimm_bank = dec->dec_dimm_bank_group = + dec->dec_dimm_subchan = dec->dec_dimm_rm = dec->dec_chan_csno = + dec->dec_dimm_no = dec->dec_dimm_csno = UINT8_MAX; +} + +boolean_t +zen_umc_decode_pa(const zen_umc_t *umc, const uint64_t pa, + zen_umc_decoder_t *dec) +{ + zen_umc_decoder_init(dec); + dec->dec_pa = pa; + + /* + * Before we proceed through decoding, the first thing we should try to + * do is verify that this is even something that could be DRAM. + */ + if (!zen_umc_decode_is_dram(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * The very first thing that we need to do is find a data fabric rule + * that corresponds to this memory address. This will be used to + * determine which set of rules for interleave and related we actually + * should then use. + */ + if (!zen_umc_decode_find_df_rule(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * Now that we have a DF rule, we must take a more involved step of + * mapping to a given CS, e.g. a specific UMC channel. This will tell us + * the socket and die as well. This takes care of all the interleaving + * and remapping and produces a target fabric ID. + */ + if (!zen_umc_decode_sysaddr_to_csid(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * With that target ID known, now actually map this to a corresponding + * UMC. + */ + if (!zen_umc_decode_find_umc_rule(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * With the target and corresponding rules and offset information, + * actually perform normalization. + */ + if (!zen_umc_decode_sysaddr_to_norm(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * Finally, we somehow managed to actually construct a normalized + * address. Now we must begin the act of transforming this channel + * address into something that makes sense to address a DIMM. To start + * with determine which logical chip-select, which determines where we + * source all our data to use. + */ + if (!zen_umc_decode_find_cs(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * Now that we have the logical chip-select matched that we're sourcing + * our data from, the next this is a bit more involved: we need to + * extract the row, column, rank/rank multiplication, bank, and bank + * group out of all this, while taking into account all of our hashes. + * + * To do this, we begin by first calculating the row and column as those + * will be needed to determine some of our other values here. + */ + if (!zen_umc_decode_rows(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + if (!zen_umc_decode_cols(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * Now that we have the rows and columns we can go through and determine + * the bank and bank group. This depends on the above. + */ + if (!zen_umc_decode_banks(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * If we have a DDR5 generation DIMM then we need to consider the + * subchannel. This doesn't exist in DDR4 systems (the function handles + * this reality). Because of potential hashing, this needs to come after + * the row, column, and bank have all been determined. + */ + if (!zen_umc_decode_subchan(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * Time for the last two pieces here: the actual chip select used and + * then figuring out which rank, taking into account rank + * multiplication. Don't worry, these both have hashing opportunities. + */ + if (!zen_umc_decode_rank_mul(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + if (!zen_umc_decode_chipsel(umc, dec)) { + ASSERT3U(dec->dec_fail, !=, ZEN_UMC_DECODE_F_NONE); + return (B_FALSE); + } + + /* + * Somehow, that's it. + */ + return (B_TRUE); +} diff --git a/usr/src/common/mc/zen_umc/zen_umc_dump.c b/usr/src/common/mc/zen_umc/zen_umc_dump.c new file mode 100644 index 0000000000..da3c2cc095 --- /dev/null +++ b/usr/src/common/mc/zen_umc/zen_umc_dump.c @@ -0,0 +1,717 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2022 Oxide Computer Company + */ + +/* + * Dump and restore logic for external processing. Dump generally runs in kernel + * context from a well formed structure created by the driver. Restore is used + * in userland as part of testing and related. + * + * Note, there are a lot of fields in these structures that are not serialized + * because they are not used as part of the decoder (e.g. the various raw values + * which are captured to aid future debugging). + */ + +#include "zen_umc.h" +#ifndef _KERNEL +#include <string.h> +#include <strings.h> +#include <libnvpair.h> +#endif + +static nvlist_t * +zen_umc_dump_dram_rule(df_dram_rule_t *rule) +{ + nvlist_t *nvl; + + nvl = fnvlist_alloc(); + fnvlist_add_uint32(nvl, "ddr_flags", rule->ddr_flags); + fnvlist_add_uint64(nvl, "ddr_base", rule->ddr_base); + fnvlist_add_uint64(nvl, "ddr_limit", rule->ddr_limit); + fnvlist_add_uint16(nvl, "ddr_dest_fabid", rule->ddr_dest_fabid); + fnvlist_add_uint8(nvl, "ddr_sock_ileave_bits", + rule->ddr_sock_ileave_bits); + fnvlist_add_uint8(nvl, "ddr_die_ileave_bits", + rule->ddr_die_ileave_bits); + fnvlist_add_uint8(nvl, "ddr_addr_start", rule->ddr_addr_start); + fnvlist_add_uint8(nvl, "ddr_remap_ent", rule->ddr_remap_ent); + fnvlist_add_uint32(nvl, "ddr_chan_ileave", rule->ddr_chan_ileave); + + return (nvl); +} + +static nvlist_t * +zen_umc_dump_cs(umc_cs_t *cs) +{ + nvlist_t *nvl = fnvlist_alloc(); + nvlist_t *base = fnvlist_alloc(); + nvlist_t *sec = fnvlist_alloc(); + + fnvlist_add_uint64(base, "udb_base", cs->ucs_base.udb_base); + fnvlist_add_uint8(base, "udb_valid", cs->ucs_base.udb_valid); + fnvlist_add_nvlist(nvl, "ucs_base", base); + nvlist_free(base); + fnvlist_add_uint64(sec, "udb_base", cs->ucs_sec.udb_base); + fnvlist_add_uint8(sec, "udb_valid", cs->ucs_sec.udb_valid); + fnvlist_add_nvlist(nvl, "ucs_sec", sec); + nvlist_free(sec); + fnvlist_add_uint64(nvl, "ucs_base_mask", cs->ucs_base_mask); + fnvlist_add_uint64(nvl, "ucs_sec_mask", cs->ucs_sec_mask); + fnvlist_add_uint8(nvl, "ucs_nrow_lo", cs->ucs_nrow_lo); + fnvlist_add_uint8(nvl, "ucs_nrow_hi", cs->ucs_nrow_hi); + fnvlist_add_uint8(nvl, "ucs_nbank_groups", cs->ucs_nbank_groups); + fnvlist_add_uint8(nvl, "ucs_cs_xor", cs->ucs_cs_xor); + fnvlist_add_uint8(nvl, "ucs_row_hi_bit", cs->ucs_row_hi_bit); + fnvlist_add_uint8(nvl, "ucs_row_low_bit", cs->ucs_row_low_bit); + fnvlist_add_uint8_array(nvl, "ucs_bank_bits", cs->ucs_bank_bits, + cs->ucs_nbanks); + fnvlist_add_uint8_array(nvl, "ucs_col_bits", cs->ucs_col_bits, + cs->ucs_ncol); + fnvlist_add_uint8(nvl, "ucs_inv_msbs", cs->ucs_inv_msbs); + fnvlist_add_uint8_array(nvl, "ucs_rm_bits", cs->ucs_rm_bits, + cs->ucs_nrm); + fnvlist_add_uint8(nvl, "ucs_inv_msbs_sec", cs->ucs_inv_msbs_sec); + fnvlist_add_uint8_array(nvl, "ucs_rm_bits_sec", cs->ucs_rm_bits_sec, + cs->ucs_nrm); + fnvlist_add_uint8(nvl, "ucs_subchan", cs->ucs_subchan); + + return (nvl); +} + +static nvlist_t * +zen_umc_dump_dimm(umc_dimm_t *dimm) +{ + nvlist_t *nvl = fnvlist_alloc(); + nvlist_t *cs[ZEN_UMC_MAX_CS_PER_DIMM]; + + fnvlist_add_uint32(nvl, "ud_flags", dimm->ud_flags); + fnvlist_add_uint32(nvl, "ud_width", dimm->ud_width); + fnvlist_add_uint32(nvl, "ud_type", dimm->ud_type); + fnvlist_add_uint32(nvl, "ud_kind", dimm->ud_kind); + fnvlist_add_uint32(nvl, "ud_dimmno", dimm->ud_dimmno); + + for (uint_t i = 0; i < ZEN_UMC_MAX_CS_PER_DIMM; i++) { + cs[i] = zen_umc_dump_cs(&dimm->ud_cs[i]); + } + fnvlist_add_nvlist_array(nvl, "ud_cs", cs, ZEN_UMC_MAX_CS_PER_DIMM); + for (uint_t i = 0; i < ZEN_UMC_MAX_CS_PER_DIMM; i++) { + nvlist_free(cs[i]); + } + + return (nvl); +} + +static nvlist_t * +zen_umc_dump_chan_hash(umc_chan_hash_t *hash) +{ + nvlist_t *nvl = fnvlist_alloc(); + + fnvlist_add_uint32(nvl, "uch_flags", hash->uch_flags); + + if (hash->uch_flags & UMC_CHAN_HASH_F_BANK) { + nvlist_t *banks[ZEN_UMC_MAX_CHAN_BANK_HASH]; + for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BANK_HASH; i++) { + banks[i] = fnvlist_alloc(); + + fnvlist_add_uint32(banks[i], "ubh_row_xor", + hash->uch_bank_hashes[i].ubh_row_xor); + fnvlist_add_uint32(banks[i], "ubh_col_xor", + hash->uch_bank_hashes[i].ubh_col_xor); + fnvlist_add_boolean_value(banks[i], "ubh_en", + hash->uch_bank_hashes[i].ubh_en); + } + fnvlist_add_nvlist_array(nvl, "uch_bank_hashes", banks, + ZEN_UMC_MAX_CHAN_BANK_HASH); + + for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BANK_HASH; i++) { + nvlist_free(banks[i]); + } + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_RM) { + nvlist_t *rm[ZEN_UMC_MAX_CHAN_RM_HASH]; + for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_RM_HASH; i++) { + rm[i] = fnvlist_alloc(); + + fnvlist_add_uint64(rm[i], "uah_addr_xor", + hash->uch_rm_hashes[i].uah_addr_xor); + fnvlist_add_boolean_value(rm[i], "uah_en", + hash->uch_rm_hashes[i].uah_en); + } + fnvlist_add_nvlist_array(nvl, "uch_rm_hashes", rm, + ZEN_UMC_MAX_CHAN_RM_HASH); + + for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_RM_HASH; i++) { + nvlist_free(rm[i]); + } + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_CS) { + nvlist_t *cs[ZEN_UMC_MAX_CHAN_CS_HASH]; + for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_CS_HASH; i++) { + cs[i] = fnvlist_alloc(); + + fnvlist_add_uint64(cs[i], "uah_addr_xor", + hash->uch_rm_hashes[i].uah_addr_xor); + fnvlist_add_boolean_value(cs[i], "uah_en", + hash->uch_rm_hashes[i].uah_en); + } + fnvlist_add_nvlist_array(nvl, "uch_cs_hashes", cs, + ZEN_UMC_MAX_CHAN_CS_HASH); + + for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_CS_HASH; i++) { + nvlist_free(cs[i]); + } + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_PC) { + nvlist_t *pc = fnvlist_alloc(); + + fnvlist_add_uint32(pc, "uph_row_xor", + hash->uch_pc_hash.uph_row_xor); + fnvlist_add_uint32(pc, "uph_col_xor", + hash->uch_pc_hash.uph_col_xor); + fnvlist_add_uint8(pc, "uph_bank_xor", + hash->uch_pc_hash.uph_bank_xor); + fnvlist_add_boolean_value(pc, "uph_en", + hash->uch_pc_hash.uph_en); + + fnvlist_add_nvlist(nvl, "uch_pch_hash", pc); + fnvlist_free(pc); + + } + + return (nvl); +} + +static nvlist_t * +zen_umc_dump_chan(zen_umc_chan_t *chan) +{ + nvlist_t *nvl, *hash; + nvlist_t *rules[ZEN_UMC_MAX_CS_RULES]; + nvlist_t *offsets[ZEN_UMC_MAX_DRAM_OFFSET]; + nvlist_t *dimms[ZEN_UMC_MAX_DIMMS]; + + nvl = fnvlist_alloc(); + fnvlist_add_uint32(nvl, "chan_flags", chan->chan_flags); + fnvlist_add_uint32(nvl, "chan_fabid", chan->chan_fabid); + fnvlist_add_uint32(nvl, "chan_instid", chan->chan_instid); + fnvlist_add_uint32(nvl, "chan_logid", chan->chan_logid); + fnvlist_add_uint32(nvl, "chan_np2_space0", chan->chan_np2_space0); + + for (uint_t i = 0; i < chan->chan_nrules; i++) { + rules[i] = zen_umc_dump_dram_rule(&chan->chan_rules[i]); + } + + for (uint_t i = 0; i < chan->chan_nrules - 1; i++) { + offsets[i] = fnvlist_alloc(); + fnvlist_add_boolean_value(offsets[i], "cho_valid", + chan->chan_offsets[i].cho_valid); + fnvlist_add_uint64(offsets[i], "cho_offset", + chan->chan_offsets[i].cho_offset); + } + + for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) { + dimms[i] = zen_umc_dump_dimm(&chan->chan_dimms[i]); + } + + fnvlist_add_nvlist_array(nvl, "chan_rules", rules, chan->chan_nrules); + fnvlist_add_nvlist_array(nvl, "chan_offsets", offsets, + chan->chan_nrules - 1); + fnvlist_add_nvlist_array(nvl, "chan_dimms", dimms, ZEN_UMC_MAX_DIMMS); + hash = zen_umc_dump_chan_hash(&chan->chan_hash); + fnvlist_add_nvlist(nvl, "chan_hash", hash); + + for (uint_t i = 0; i < chan->chan_nrules; i++) { + nvlist_free(rules[i]); + } + + for (uint_t i = 0; i < chan->chan_nrules - 1; i++) { + nvlist_free(offsets[i]); + } + + for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) { + nvlist_free(dimms[i]); + } + + nvlist_free(hash); + + return (nvl); +} + +static nvlist_t * +zen_umc_dump_df(zen_umc_df_t *df) +{ + nvlist_t *nvl; + nvlist_t *rules[ZEN_UMC_MAX_DRAM_RULES]; + nvlist_t *remap[ZEN_UMC_MAX_CS_REMAPS]; + nvlist_t *chan[ZEN_UMC_MAX_UMCS]; + + nvl = fnvlist_alloc(); + fnvlist_add_uint32(nvl, "zud_flags", df->zud_flags); + fnvlist_add_uint32(nvl, "zud_dfno", df->zud_dfno); + fnvlist_add_uint32(nvl, "zud_ccm_inst", df->zud_ccm_inst); + fnvlist_add_uint64(nvl, "zud_hole_base", df->zud_hole_base); + + for (uint_t i = 0; i < df->zud_dram_nrules; i++) { + rules[i] = zen_umc_dump_dram_rule(&df->zud_rules[i]); + } + + for (uint_t i = 0; i < df->zud_cs_nremap; i++) { + remap[i] = fnvlist_alloc(); + fnvlist_add_uint16_array(remap[i], "csr_remaps", + df->zud_remap[i].csr_remaps, df->zud_remap[i].csr_nremaps); + } + + for (uint_t i = 0; i < df->zud_nchan; i++) { + chan[i] = zen_umc_dump_chan(&df->zud_chan[i]); + } + + fnvlist_add_nvlist_array(nvl, "zud_rules", rules, df->zud_dram_nrules); + fnvlist_add_nvlist_array(nvl, "zud_remap", remap, df->zud_cs_nremap); + fnvlist_add_nvlist_array(nvl, "zud_chan", chan, df->zud_nchan); + + for (uint_t i = 0; i < df->zud_dram_nrules; i++) { + nvlist_free(rules[i]); + } + + for (uint_t i = 0; i < df->zud_cs_nremap; i++) { + nvlist_free(remap[i]); + } + + for (uint_t i = 0; i < df->zud_nchan; i++) { + nvlist_free(chan[i]); + } + + return (nvl); +} + +nvlist_t * +zen_umc_dump_decoder(zen_umc_t *umc) +{ + nvlist_t *nvl, *umc_nvl, *decomp; + nvlist_t *dfs[ZEN_UMC_MAX_DFS]; + + nvl = fnvlist_alloc(); + fnvlist_add_uint32(nvl, "mc_dump_version", 0); + fnvlist_add_string(nvl, "mc_dump_driver", "zen_umc"); + + umc_nvl = fnvlist_alloc(); + fnvlist_add_uint64(umc_nvl, "umc_tom", umc->umc_tom); + fnvlist_add_uint64(umc_nvl, "umc_tom2", umc->umc_tom2); + fnvlist_add_uint32(umc_nvl, "umc_family", umc->umc_family); + fnvlist_add_uint32(umc_nvl, "umc_df_rev", umc->umc_df_rev); + + decomp = fnvlist_alloc(); + fnvlist_add_uint32(decomp, "dfd_sock_mask", + umc->umc_decomp.dfd_sock_mask); + fnvlist_add_uint32(decomp, "dfd_die_mask", + umc->umc_decomp.dfd_die_mask); + fnvlist_add_uint32(decomp, "dfd_node_mask", + umc->umc_decomp.dfd_node_mask); + fnvlist_add_uint32(decomp, "dfd_comp_mask", + umc->umc_decomp.dfd_comp_mask); + fnvlist_add_uint8(decomp, "dfd_sock_shift", + umc->umc_decomp.dfd_sock_shift); + fnvlist_add_uint8(decomp, "dfd_die_shift", + umc->umc_decomp.dfd_die_shift); + fnvlist_add_uint8(decomp, "dfd_node_shift", + umc->umc_decomp.dfd_node_shift); + fnvlist_add_uint8(decomp, "dfd_comp_shift", + umc->umc_decomp.dfd_comp_shift); + fnvlist_add_nvlist(umc_nvl, "umc_decomp", decomp); + nvlist_free(decomp); + + for (uint_t i = 0; i < umc->umc_ndfs; i++) { + dfs[i] = zen_umc_dump_df(&umc->umc_dfs[i]); + } + + fnvlist_add_nvlist_array(umc_nvl, "umc_dfs", dfs, umc->umc_ndfs); + fnvlist_add_nvlist(nvl, "zen_umc", umc_nvl); + for (uint_t i = 0; i < umc->umc_ndfs; i++) { + nvlist_free(dfs[i]); + } + + return (nvl); +} + +static boolean_t +zen_umc_restore_dram_rule(nvlist_t *nvl, df_dram_rule_t *rule) +{ + return (nvlist_lookup_pairs(nvl, 0, + "ddr_flags", DATA_TYPE_UINT32, &rule->ddr_flags, + "ddr_base", DATA_TYPE_UINT64, &rule->ddr_base, + "ddr_limit", DATA_TYPE_UINT64, &rule->ddr_limit, + "ddr_dest_fabid", DATA_TYPE_UINT16, &rule->ddr_dest_fabid, + "ddr_sock_ileave_bits", DATA_TYPE_UINT8, + &rule->ddr_sock_ileave_bits, + "ddr_die_ileave_bits", DATA_TYPE_UINT8, &rule->ddr_die_ileave_bits, + "ddr_addr_start", DATA_TYPE_UINT8, &rule->ddr_addr_start, + "ddr_remap_ent", DATA_TYPE_UINT8, &rule->ddr_remap_ent, + "ddr_chan_ileave", DATA_TYPE_UINT32, &rule->ddr_chan_ileave, + NULL) == 0); +} + +static boolean_t +zen_umc_restore_cs(nvlist_t *nvl, umc_cs_t *cs) +{ + nvlist_t *base, *sec; + uint8_t *bank_bits, *col_bits, *rm_bits, *rm_bits_sec; + uint_t nbanks, ncols, nrm, nrm_sec; + + if (nvlist_lookup_pairs(nvl, 0, + "ucs_base", DATA_TYPE_NVLIST, &base, + "ucs_sec", DATA_TYPE_NVLIST, &sec, + "ucs_base_mask", DATA_TYPE_UINT64, &cs->ucs_base_mask, + "ucs_sec_mask", DATA_TYPE_UINT64, &cs->ucs_sec_mask, + "ucs_nrow_lo", DATA_TYPE_UINT8, &cs->ucs_nrow_lo, + "ucs_nrow_hi", DATA_TYPE_UINT8, &cs->ucs_nrow_hi, + "ucs_nbank_groups", DATA_TYPE_UINT8, &cs->ucs_nbank_groups, + "ucs_cs_xor", DATA_TYPE_UINT8, &cs->ucs_cs_xor, + "ucs_row_hi_bit", DATA_TYPE_UINT8, &cs->ucs_row_hi_bit, + "ucs_row_low_bit", DATA_TYPE_UINT8, &cs->ucs_row_low_bit, + "ucs_bank_bits", DATA_TYPE_UINT8_ARRAY, &bank_bits, &nbanks, + "ucs_col_bits", DATA_TYPE_UINT8_ARRAY, &col_bits, &ncols, + "ucs_inv_msbs", DATA_TYPE_UINT8, &cs->ucs_inv_msbs, + "ucs_rm_bits", DATA_TYPE_UINT8_ARRAY, &rm_bits, &nrm, + "ucs_inv_msbs_sec", DATA_TYPE_UINT8, &cs->ucs_inv_msbs_sec, + "ucs_rm_bits_sec", DATA_TYPE_UINT8_ARRAY, &rm_bits_sec, &nrm_sec, + "ucs_subchan", DATA_TYPE_UINT8, &cs->ucs_subchan, + NULL) != 0) { + return (B_FALSE); + } + + if (nbanks > ZEN_UMC_MAX_BANK_BITS || + ncols > ZEN_UMC_MAX_COL_BITS || + nrm > ZEN_UMC_MAX_RM_BITS || + nrm != nrm_sec) { + return (B_FALSE); + } + + cs->ucs_nbanks = nbanks; + cs->ucs_ncol = ncols; + cs->ucs_nrm = nrm; + + bcopy(bank_bits, cs->ucs_bank_bits, cs->ucs_nbanks * + sizeof (uint8_t)); + bcopy(col_bits, cs->ucs_col_bits, cs->ucs_ncol * sizeof (uint8_t)); + bcopy(rm_bits, cs->ucs_rm_bits, cs->ucs_nrm * sizeof (uint8_t)); + bcopy(rm_bits_sec, cs->ucs_rm_bits_sec, cs->ucs_nrm * + sizeof (uint8_t)); + + if (nvlist_lookup_pairs(base, 0, + "udb_base", DATA_TYPE_UINT64, &cs->ucs_base.udb_base, + "udb_valid", DATA_TYPE_UINT8, &cs->ucs_base.udb_valid, + NULL) != 0) { + return (B_FALSE); + } + + if (nvlist_lookup_pairs(sec, 0, + "udb_base", DATA_TYPE_UINT64, &cs->ucs_sec.udb_base, + "udb_valid", DATA_TYPE_UINT8, &cs->ucs_sec.udb_valid, + NULL) != 0) { + return (B_FALSE); + } + + return (B_TRUE); +} + +static boolean_t +zen_umc_restore_dimm(nvlist_t *nvl, umc_dimm_t *dimm) +{ + nvlist_t **cs; + uint_t ncs; + + if (nvlist_lookup_pairs(nvl, 0, + "ud_flags", DATA_TYPE_UINT32, &dimm->ud_flags, + "ud_width", DATA_TYPE_UINT32, &dimm->ud_width, + "ud_type", DATA_TYPE_UINT32, &dimm->ud_type, + "ud_kind", DATA_TYPE_UINT32, &dimm->ud_kind, + "ud_dimmno", DATA_TYPE_UINT32, &dimm->ud_dimmno, + "ud_cs", DATA_TYPE_NVLIST_ARRAY, &cs, &ncs, + NULL) != 0) { + return (B_FALSE); + } + + if (ncs != ZEN_UMC_MAX_CS_PER_DIMM) { + return (B_FALSE); + } + + for (uint_t i = 0; i < ZEN_UMC_MAX_CS_PER_DIMM; i++) { + if (!zen_umc_restore_cs(cs[i], &dimm->ud_cs[i])) { + return (B_FALSE); + } + } + + return (B_TRUE); +} + +static boolean_t +zen_umc_restore_hash(nvlist_t *nvl, umc_chan_hash_t *hash) +{ + if (nvlist_lookup_uint32(nvl, "uch_flags", &hash->uch_flags) != 0) { + return (B_FALSE); + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_BANK) { + nvlist_t **banks; + uint_t nbanks; + + if (nvlist_lookup_nvlist_array(nvl, "uch_bank_hashes", &banks, + &nbanks) != 0) { + return (B_FALSE); + } + + if (nbanks != ZEN_UMC_MAX_CHAN_BANK_HASH) { + return (B_FALSE); + } + + for (uint_t i = 0; i < nbanks; i++) { + if (nvlist_lookup_pairs(banks[i], 0, + "ubh_row_xor", DATA_TYPE_UINT32, + &hash->uch_bank_hashes[i].ubh_row_xor, + "ubh_col_xor", DATA_TYPE_UINT32, + &hash->uch_bank_hashes[i].ubh_col_xor, + "ubh_en", DATA_TYPE_BOOLEAN_VALUE, + &hash->uch_bank_hashes[i].ubh_en, + NULL) != 0) { + return (B_FALSE); + } + } + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_RM) { + nvlist_t **rm; + uint_t nrm; + + if (nvlist_lookup_nvlist_array(nvl, "uch_rm_hashes", &rm, + &nrm) != 0) { + return (B_FALSE); + } + + if (nrm != ZEN_UMC_MAX_CHAN_RM_HASH) { + return (B_FALSE); + } + + for (uint_t i = 0; i < nrm; i++) { + if (nvlist_lookup_pairs(rm[i], 0, + "uah_addr_xor", DATA_TYPE_UINT64, + &hash->uch_rm_hashes[i].uah_addr_xor, + "uah_en", DATA_TYPE_BOOLEAN_VALUE, + &hash->uch_rm_hashes[i].uah_en, + NULL) != 0) { + return (B_FALSE); + } + } + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_CS) { + nvlist_t **cs; + uint_t ncs; + + if (nvlist_lookup_nvlist_array(nvl, "uch_cs_hashes", &cs, + &ncs) != 0) { + return (B_FALSE); + } + + if (ncs != ZEN_UMC_MAX_CHAN_CS_HASH) { + return (B_FALSE); + } + + for (uint_t i = 0; i < ncs; i++) { + if (nvlist_lookup_pairs(cs[i], 0, + "uah_addr_xor", DATA_TYPE_UINT64, + &hash->uch_cs_hashes[i].uah_addr_xor, + "uah_en", DATA_TYPE_BOOLEAN_VALUE, + &hash->uch_cs_hashes[i].uah_en, + NULL) != 0) { + return (B_FALSE); + } + } + } + + if (hash->uch_flags & UMC_CHAN_HASH_F_PC) { + nvlist_t *pc; + + if (nvlist_lookup_nvlist(nvl, "uch_pch_hash", &pc) != 0) { + return (B_FALSE); + } + + if (nvlist_lookup_pairs(pc, 0, + "uph_row_xor", DATA_TYPE_UINT32, + &hash->uch_pc_hash.uph_row_xor, + "uph_col_xor", DATA_TYPE_UINT32, + &hash->uch_pc_hash.uph_col_xor, + "uph_bank_xor", DATA_TYPE_UINT32, + &hash->uch_pc_hash.uph_bank_xor, + "uph_en", DATA_TYPE_BOOLEAN_VALUE, + &hash->uch_pc_hash.uph_en, + NULL) != 0) { + return (B_FALSE); + } + } + return (B_TRUE); +} + +static boolean_t +zen_umc_restore_chan(nvlist_t *nvl, zen_umc_chan_t *chan) +{ + uint_t noffsets, ndimms; + nvlist_t **rules, **offsets, **dimms, *hash; + + if (nvlist_lookup_pairs(nvl, 0, + "chan_flags", DATA_TYPE_UINT32, &chan->chan_flags, + "chan_fabid", DATA_TYPE_UINT32, &chan->chan_fabid, + "chan_instid", DATA_TYPE_UINT32, &chan->chan_instid, + "chan_logid", DATA_TYPE_UINT32, &chan->chan_logid, + "chan_rules", DATA_TYPE_NVLIST_ARRAY, &rules, &chan->chan_nrules, + "chan_np2_space0", DATA_TYPE_UINT32, &chan->chan_np2_space0, + "chan_offsets", DATA_TYPE_NVLIST_ARRAY, &offsets, &noffsets, + "chan_dimms", DATA_TYPE_NVLIST_ARRAY, &dimms, &ndimms, + "chan_hash", DATA_TYPE_NVLIST, &hash, + NULL) != 0) { + return (B_FALSE); + } + + if (chan->chan_nrules > ZEN_UMC_MAX_CS_RULES || + noffsets != chan->chan_nrules - 1 || ndimms != ZEN_UMC_MAX_DIMMS) { + return (B_FALSE); + } + + for (uint_t i = 0; i < chan->chan_nrules; i++) { + if (!zen_umc_restore_dram_rule(rules[i], + &chan->chan_rules[i])) { + return (B_FALSE); + } + } + + for (uint_t i = 0; i < chan->chan_nrules - 1; i++) { + chan_offset_t *coff = &chan->chan_offsets[i]; + + if (nvlist_lookup_pairs(offsets[i], 0, + "cho_valid", DATA_TYPE_BOOLEAN_VALUE, &coff->cho_valid, + "cho_offset", DATA_TYPE_UINT64, &coff->cho_offset, + NULL) != 0) { + return (B_FALSE); + } + } + + for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) { + if (!zen_umc_restore_dimm(dimms[i], &chan->chan_dimms[i])) { + return (B_FALSE); + } + } + + if (!zen_umc_restore_hash(hash, &chan->chan_hash)) { + return (B_FALSE); + } + + return (B_TRUE); +} + +static boolean_t +zen_umc_restore_df(nvlist_t *nvl, zen_umc_df_t *df) +{ + nvlist_t **rules, **chan, **remap; + + if (nvlist_lookup_pairs(nvl, 0, + "zud_flags", DATA_TYPE_UINT32, &df->zud_flags, + "zud_dfno", DATA_TYPE_UINT32, &df->zud_dfno, + "zud_ccm_inst", DATA_TYPE_UINT32, &df->zud_ccm_inst, + "zud_hole_base", DATA_TYPE_UINT64, &df->zud_hole_base, + "zud_rules", DATA_TYPE_NVLIST_ARRAY, &rules, &df->zud_dram_nrules, + "zud_remap", DATA_TYPE_NVLIST_ARRAY, &remap, &df->zud_cs_nremap, + "zud_chan", DATA_TYPE_NVLIST_ARRAY, &chan, &df->zud_nchan, + NULL != 0) || + df->zud_dram_nrules > ZEN_UMC_MAX_DRAM_RULES || + df->zud_cs_nremap > ZEN_UMC_MAX_CS_REMAPS || + df->zud_nchan > ZEN_UMC_MAX_UMCS) { + return (B_FALSE); + } + + for (uint_t i = 0; i < df->zud_dram_nrules; i++) { + if (!zen_umc_restore_dram_rule(rules[i], &df->zud_rules[i])) { + return (B_FALSE); + } + } + + for (uint_t i = 0; i < df->zud_cs_nremap; i++) { + uint16_t *u16p; + if (nvlist_lookup_uint16_array(remap[i], "csr_remaps", &u16p, + &df->zud_remap[i].csr_nremaps) != 0 || + df->zud_remap[i].csr_nremaps > ZEN_UMC_MAX_REMAP_ENTS) { + return (B_FALSE); + } + bcopy(u16p, df->zud_remap[i].csr_remaps, + df->zud_remap[i].csr_nremaps); + } + + for (uint_t i = 0; i < df->zud_nchan; i++) { + if (!zen_umc_restore_chan(chan[i], &df->zud_chan[i])) { + return (B_FALSE); + } + } + + return (B_TRUE); +} + +boolean_t +zen_umc_restore_decoder(nvlist_t *nvl, zen_umc_t *umc) +{ + uint32_t vers; + char *driver; + nvlist_t *umc_nvl, *decomp, **dfs; + bzero(umc, sizeof (zen_umc_t)); + + if (nvlist_lookup_pairs(nvl, 0, + "mc_dump_version", DATA_TYPE_UINT32, &vers, + "mc_dump_driver", DATA_TYPE_STRING, &driver, + NULL) != 0 || vers != 0 || strcmp(driver, "zen_umc") != 0 || + nvlist_lookup_nvlist(nvl, "zen_umc", &umc_nvl) != 0) { + return (B_FALSE); + } + + if (nvlist_lookup_pairs(umc_nvl, 0, + "umc_tom", DATA_TYPE_UINT64, &umc->umc_tom, + "umc_tom2", DATA_TYPE_UINT64, &umc->umc_tom2, + "umc_family", DATA_TYPE_UINT32, &umc->umc_family, + "umc_df_rev", DATA_TYPE_UINT32, &umc->umc_df_rev, + "umc_decomp", DATA_TYPE_NVLIST, &decomp, + "umc_dfs", DATA_TYPE_NVLIST_ARRAY, &dfs, &umc->umc_ndfs, + NULL) != 0 || umc->umc_ndfs > ZEN_UMC_MAX_DFS) { + return (B_FALSE); + } + + + if (nvlist_lookup_pairs(decomp, 0, + "dfd_sock_mask", DATA_TYPE_UINT32, &umc->umc_decomp.dfd_sock_mask, + "dfd_die_mask", DATA_TYPE_UINT32, &umc->umc_decomp.dfd_die_mask, + "dfd_node_mask", DATA_TYPE_UINT32, &umc->umc_decomp.dfd_node_mask, + "dfd_comp_mask", DATA_TYPE_UINT32, &umc->umc_decomp.dfd_comp_mask, + "dfd_sock_shift", DATA_TYPE_UINT8, &umc->umc_decomp.dfd_sock_shift, + "dfd_die_shift", DATA_TYPE_UINT8, &umc->umc_decomp.dfd_die_shift, + "dfd_node_shift", DATA_TYPE_UINT8, &umc->umc_decomp.dfd_node_shift, + "dfd_comp_shift", DATA_TYPE_UINT8, &umc->umc_decomp.dfd_comp_shift, + NULL) != 0) { + return (B_FALSE); + } + + for (uint_t i = 0; i < umc->umc_ndfs; i++) { + if (!zen_umc_restore_df(dfs[i], &umc->umc_dfs[i])) { + return (B_FALSE); + } + } + + return (B_TRUE); +} |