summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/cpudrv.c
diff options
context:
space:
mode:
authormh27603 <none@none>2007-07-16 10:30:27 -0700
committermh27603 <none@none>2007-07-16 10:30:27 -0700
commit5cff782560a1c3cf913ba5574a5123a299f3315e (patch)
tree0d22fab7021826f6ce98a3efcb9a1e42fa8d27bc /usr/src/uts/common/io/cpudrv.c
parentc198d18e90b390e955c8766a91af6e2db1fccd57 (diff)
downloadillumos-joyent-5cff782560a1c3cf913ba5574a5123a299f3315e.tar.gz
PSARC/2004/826 Opteron Athlon64 Frequency Management
6358066 PSARC/2004/826 Opteron Athlon64 Frequency Management 6512756 Solaris should support Intel's Enhanced Speedstep 6335616 AMD64 CPU PwrMgmt needs Notify/_PPC for changes in P-states --HG-- rename : usr/src/uts/sun4u/io/us_drv.c => usr/src/uts/common/io/cpudrv.c rename : usr/src/uts/sun4u/io/ppm/ppm.c => usr/src/uts/common/io/ppm/ppm.c rename : usr/src/uts/sun4u/io/ppm/ppm_subr.c => usr/src/uts/common/io/ppm/ppm_subr.c rename : usr/src/uts/sun4u/sys/us_drv.h => usr/src/uts/common/sys/cpudrv.h rename : usr/src/uts/sun4u/sys/ppmvar.h => usr/src/uts/common/sys/ppmvar.h rename : usr/src/uts/sun4u/io/ppm.c => usr/src/uts/sun4u/io/ppm_xgsubr.c
Diffstat (limited to 'usr/src/uts/common/io/cpudrv.c')
-rw-r--r--usr/src/uts/common/io/cpudrv.c1135
1 files changed, 1135 insertions, 0 deletions
diff --git a/usr/src/uts/common/io/cpudrv.c b/usr/src/uts/common/io/cpudrv.c
new file mode 100644
index 0000000000..ed261ba9a3
--- /dev/null
+++ b/usr/src/uts/common/io/cpudrv.c
@@ -0,0 +1,1135 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/*
+ * CPU Device driver. The driver is not DDI-compliant.
+ *
+ * The driver supports following features:
+ * - Power management.
+ */
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/errno.h>
+#include <sys/modctl.h>
+#include <sys/kmem.h>
+#include <sys/conf.h>
+#include <sys/cmn_err.h>
+#include <sys/stat.h>
+#include <sys/debug.h>
+#include <sys/systm.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+
+#include <sys/machsystm.h>
+#include <sys/x_call.h>
+#include <sys/cpudrv.h>
+#include <sys/cpudrv_plat.h>
+#include <sys/msacct.h>
+
+/*
+ * CPU power management
+ *
+ * The supported power saving model is to slow down the CPU (on SPARC by
+ * dividing the CPU clock and on x86 by dropping down a P-state).
+ * Periodically we determine the amount of time the CPU is running
+ * idle thread and threads in user mode during the last quantum. If the idle
+ * thread was running less than its low water mark for current speed for
+ * number of consecutive sampling periods, or number of running threads in
+ * user mode are above its high water mark, we arrange to go to the higher
+ * speed. If the idle thread was running more than its high water mark without
+ * dropping a number of consecutive times below the mark, and number of threads
+ * running in user mode are below its low water mark, we arrange to go to the
+ * next lower speed. While going down, we go through all the speeds. While
+ * going up we go to the maximum speed to minimize impact on the user, but have
+ * provisions in the driver to go to other speeds.
+ *
+ * The driver does not have knowledge of a particular implementation of this
+ * scheme and will work with all CPUs supporting this model. On SPARC, the
+ * driver determines supported speeds by looking at 'clock-divisors' property
+ * created by OBP. On x86, the driver retrieves the supported speeds from
+ * ACPI.
+ */
+
+/*
+ * Configuration function prototypes and data structures
+ */
+static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
+static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
+static int cpudrv_power(dev_info_t *dip, int comp, int level);
+
+struct dev_ops cpudrv_ops = {
+ DEVO_REV, /* rev */
+ 0, /* refcnt */
+ nodev, /* getinfo */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ cpudrv_attach, /* attach */
+ cpudrv_detach, /* detach */
+ nodev, /* reset */
+ (struct cb_ops *)NULL, /* cb_ops */
+ (struct bus_ops *)NULL, /* bus_ops */
+ cpudrv_power /* power */
+};
+
+static struct modldrv modldrv = {
+ &mod_driverops, /* modops */
+ "CPU Driver %I%", /* linkinfo */
+ &cpudrv_ops, /* dev_ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1, /* rev */
+ &modldrv, /* linkage */
+ NULL
+};
+
+/*
+ * Function prototypes
+ */
+static int cpudrv_pm_init(cpudrv_devstate_t *cpudsp);
+static void cpudrv_pm_free(cpudrv_devstate_t *cpudsp);
+static int cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp);
+static void cpudrv_pm_monitor_disp(void *arg);
+static void cpudrv_pm_monitor(void *arg);
+
+/*
+ * Driver global variables
+ */
+uint_t cpudrv_debug = 0;
+void *cpudrv_state;
+static uint_t cpudrv_pm_idle_hwm = CPUDRV_PM_IDLE_HWM;
+static uint_t cpudrv_pm_idle_lwm = CPUDRV_PM_IDLE_LWM;
+static uint_t cpudrv_pm_idle_buf_zone = CPUDRV_PM_IDLE_BUF_ZONE;
+static uint_t cpudrv_pm_idle_bhwm_cnt_max = CPUDRV_PM_IDLE_BHWM_CNT_MAX;
+static uint_t cpudrv_pm_idle_blwm_cnt_max = CPUDRV_PM_IDLE_BLWM_CNT_MAX;
+static uint_t cpudrv_pm_user_hwm = CPUDRV_PM_USER_HWM;
+
+/*
+ * cpudrv_direct_pm allows user applications to directly control the
+ * power state transitions (direct pm) without following the normal
+ * direct pm protocol. This is needed because the normal protocol
+ * requires that a device only be lowered when it is idle, and be
+ * brought up when it request to do so by calling pm_raise_power().
+ * Ignoring this protocol is harmless for CPU (other than speed).
+ * Moreover it might be the case that CPU is never idle or wants
+ * to be at higher speed because of the addition CPU cycles required
+ * to run the user application.
+ *
+ * The driver will still report idle/busy status to the framework. Although
+ * framework will ignore this information for direct pm devices and not
+ * try to bring them down when idle, user applications can still use this
+ * information if they wants.
+ *
+ * In the future, provide an ioctl to control setting of this mode. In
+ * that case, this variable should move to the state structure and
+ * be protected by the lock in the state structure.
+ */
+int cpudrv_direct_pm = 0;
+
+/*
+ * Arranges for the handler function to be called at the interval suitable
+ * for current speed.
+ */
+#define CPUDRV_PM_MONITOR_INIT(cpudsp) { \
+ ASSERT(mutex_owned(&(cpudsp)->lock)); \
+ (cpudsp)->cpudrv_pm.timeout_id = timeout(cpudrv_pm_monitor_disp, \
+ (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \
+ CPUDRV_PM_QUANT_CNT_OTHR : \
+ (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \
+}
+
+/*
+ * Arranges for the handler function not to be called back.
+ */
+#define CPUDRV_PM_MONITOR_FINI(cpudsp) { \
+ timeout_id_t tmp_tid; \
+ ASSERT(mutex_owned(&(cpudsp)->lock)); \
+ ASSERT((cpudsp)->cpudrv_pm.timeout_id); \
+ tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \
+ (cpudsp)->cpudrv_pm.timeout_id = 0; \
+ mutex_exit(&(cpudsp)->lock); \
+ (void) untimeout(tmp_tid); \
+ mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \
+ while ((cpudsp)->cpudrv_pm.timeout_count != 0) \
+ cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \
+ &(cpudsp)->cpudrv_pm.timeout_lock); \
+ mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \
+ mutex_enter(&(cpudsp)->lock); \
+}
+
+int
+_init(void)
+{
+ int error;
+
+ DPRINTF(D_INIT, (" _init: function called\n"));
+ if ((error = ddi_soft_state_init(&cpudrv_state,
+ sizeof (cpudrv_devstate_t), 0)) != 0) {
+ return (error);
+ }
+
+ if ((error = mod_install(&modlinkage)) != 0) {
+ ddi_soft_state_fini(&cpudrv_state);
+ }
+
+ /*
+ * Callbacks used by the PPM driver.
+ */
+ CPUDRV_PM_SET_PPM_CALLBACKS();
+ return (error);
+}
+
+int
+_fini(void)
+{
+ int error;
+
+ DPRINTF(D_FINI, (" _fini: function called\n"));
+ if ((error = mod_remove(&modlinkage)) == 0) {
+ ddi_soft_state_fini(&cpudrv_state);
+ }
+
+ return (error);
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+/*
+ * Driver attach(9e) entry point.
+ */
+static int
+cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
+{
+ int instance;
+ cpudrv_devstate_t *cpudsp;
+ extern pri_t maxclsyspri;
+
+ instance = ddi_get_instance(dip);
+
+ switch (cmd) {
+ case DDI_ATTACH:
+ DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
+ "DDI_ATTACH called\n", instance));
+ if (ddi_soft_state_zalloc(cpudrv_state, instance) !=
+ DDI_SUCCESS) {
+ cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
+ "can't allocate state", instance);
+ CPUDRV_PM_DISABLE();
+ return (DDI_FAILURE);
+ }
+ if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
+ NULL) {
+ cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
+ "can't get state", instance);
+ ddi_soft_state_free(cpudrv_state, instance);
+ CPUDRV_PM_DISABLE();
+ return (DDI_FAILURE);
+ }
+ cpudsp->dip = dip;
+
+ /*
+ * Find CPU number for this dev_info node.
+ */
+ if (!cpudrv_pm_get_cpu_id(dip, &(cpudsp->cpu_id))) {
+ cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
+ "can't convert dip to cpu_id", instance);
+ ddi_soft_state_free(cpudrv_state, instance);
+ CPUDRV_PM_DISABLE();
+ return (DDI_FAILURE);
+ }
+ if (cpudrv_pm_init(cpudsp) != DDI_SUCCESS) {
+ ddi_soft_state_free(cpudrv_state, instance);
+ CPUDRV_PM_DISABLE();
+ return (DDI_FAILURE);
+ }
+ if (cpudrv_pm_comp_create(cpudsp) != DDI_SUCCESS) {
+ ddi_soft_state_free(cpudrv_state, instance);
+ CPUDRV_PM_DISABLE();
+ cpudrv_pm_free(cpudsp);
+ return (DDI_FAILURE);
+ }
+ if (ddi_prop_update_string(DDI_DEV_T_NONE,
+ dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) {
+ ddi_soft_state_free(cpudrv_state, instance);
+ CPUDRV_PM_DISABLE();
+ cpudrv_pm_free(cpudsp);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Taskq is used to dispatch routine to monitor CPU activities.
+ */
+ cpudsp->cpudrv_pm.tq = taskq_create_instance(
+ "cpudrv_pm_monitor",
+ ddi_get_instance(dip), CPUDRV_PM_TASKQ_THREADS,
+ (maxclsyspri - 1), CPUDRV_PM_TASKQ_MIN,
+ CPUDRV_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE);
+
+ mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL);
+ mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL, MUTEX_DRIVER,
+ NULL);
+ cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL, CV_DEFAULT, NULL);
+
+ /*
+ * Driver needs to assume that CPU is running at unknown speed
+ * at DDI_ATTACH and switch it to the needed speed. We assume
+ * that initial needed speed is full speed for us.
+ */
+ /*
+ * We need to take the lock because cpudrv_pm_monitor()
+ * will start running in parallel with attach().
+ */
+ mutex_enter(&cpudsp->lock);
+ cpudsp->cpudrv_pm.cur_spd = NULL;
+ cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd;
+ /*
+ * We don't call pm_raise_power() directly from attach because
+ * driver attach for a slave CPU node can happen before the
+ * CPU is even initialized. We just start the monitoring
+ * system which understands unknown speed and moves CPU
+ * to targ_spd when it have been initialized.
+ */
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+
+ CPUDRV_PM_INSTALL_TOPSPEED_CHANGE_HANDLER(cpudsp, dip);
+
+ ddi_report_dev(dip);
+ return (DDI_SUCCESS);
+
+ case DDI_RESUME:
+ DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: "
+ "DDI_RESUME called\n", instance));
+ if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
+ NULL) {
+ cmn_err(CE_WARN, "cpudrv_attach: instance %d: "
+ "can't get state", instance);
+ return (DDI_FAILURE);
+ }
+ mutex_enter(&cpudsp->lock);
+ /*
+ * Driver needs to assume that CPU is running at unknown speed
+ * at DDI_RESUME and switch it to the needed speed. We assume
+ * that the needed speed is full speed for us.
+ */
+ cpudsp->cpudrv_pm.cur_spd = NULL;
+ cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd;
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ CPUDRV_PM_REDEFINE_TOPSPEED(dip);
+ return (DDI_SUCCESS);
+
+ default:
+ return (DDI_FAILURE);
+ }
+}
+
+/*
+ * Driver detach(9e) entry point.
+ */
+static int
+cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
+{
+ int instance;
+ cpudrv_devstate_t *cpudsp;
+ cpudrv_pm_t *cpupm;
+
+ instance = ddi_get_instance(dip);
+
+ switch (cmd) {
+ case DDI_DETACH:
+ DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
+ "DDI_DETACH called\n", instance));
+ /*
+ * If the only thing supported by the driver is power
+ * management, we can in future enhance the driver and
+ * framework that loads it to unload the driver when
+ * user has disabled CPU power management.
+ */
+ return (DDI_FAILURE);
+
+ case DDI_SUSPEND:
+ DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: "
+ "DDI_SUSPEND called\n", instance));
+ if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) ==
+ NULL) {
+ cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
+ "can't get state", instance);
+ return (DDI_FAILURE);
+ }
+ /*
+ * During a checkpoint-resume sequence, framework will
+ * stop interrupts to quiesce kernel activity. This will
+ * leave our monitoring system ineffective. Handle this
+ * by stopping our monitoring system and bringing CPU
+ * to full speed. In case we are in special direct pm
+ * mode, we leave the CPU at whatever speed it is. This
+ * is harmless other than speed.
+ */
+ mutex_enter(&cpudsp->lock);
+ cpupm = &(cpudsp->cpudrv_pm);
+
+ DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - "
+ "cur_spd %d, head_spd %d\n", instance,
+ cpupm->cur_spd->pm_level, cpupm->head_spd->pm_level));
+
+ CPUDRV_PM_MONITOR_FINI(cpudsp);
+
+ if (!cpudrv_direct_pm && (cpupm->cur_spd != cpupm->head_spd)) {
+ if (cpupm->pm_busycnt < 1) {
+ if ((pm_busy_component(dip, CPUDRV_PM_COMP_NUM)
+ == DDI_SUCCESS)) {
+ cpupm->pm_busycnt++;
+ } else {
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ cmn_err(CE_WARN, "cpudrv_detach: "
+ "instance %d: can't busy CPU "
+ "component", instance);
+ return (DDI_FAILURE);
+ }
+ }
+ mutex_exit(&cpudsp->lock);
+ if (pm_raise_power(dip, CPUDRV_PM_COMP_NUM,
+ cpupm->head_spd->pm_level) != DDI_SUCCESS) {
+ mutex_enter(&cpudsp->lock);
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ cmn_err(CE_WARN, "cpudrv_detach: instance %d: "
+ "can't raise CPU power level", instance);
+ return (DDI_FAILURE);
+ } else {
+ return (DDI_SUCCESS);
+ }
+ } else {
+ mutex_exit(&cpudsp->lock);
+ return (DDI_SUCCESS);
+ }
+
+ default:
+ return (DDI_FAILURE);
+ }
+}
+
+/*
+ * Driver power(9e) entry point.
+ *
+ * Driver's notion of current power is set *only* in power(9e) entry point
+ * after actual power change operation has been successfully completed.
+ */
+/* ARGSUSED */
+static int
+cpudrv_power(dev_info_t *dip, int comp, int level)
+{
+ int instance;
+ cpudrv_devstate_t *cpudsp;
+ cpudrv_pm_t *cpupm;
+ cpudrv_pm_spd_t *new_spd;
+ boolean_t is_ready;
+ int ret;
+
+ instance = ddi_get_instance(dip);
+
+ DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n",
+ instance, level));
+ if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) {
+ cmn_err(CE_WARN, "cpudrv_power: instance %d: can't get state",
+ instance);
+ return (DDI_FAILURE);
+ }
+
+ mutex_enter(&cpudsp->lock);
+ cpupm = &(cpudsp->cpudrv_pm);
+
+ /*
+ * In normal operation, we fail if we are busy and request is
+ * to lower the power level. We let this go through if the driver
+ * is in special direct pm mode. On x86, we also let this through
+ * if the change is due to a request to throttle the max speed.
+ */
+ if (!cpudrv_direct_pm && (cpupm->pm_busycnt >= 1) &&
+ !cpudrv_pm_is_throttle_thread(cpupm)) {
+ if ((cpupm->cur_spd != NULL) &&
+ (level < cpupm->cur_spd->pm_level)) {
+ mutex_exit(&cpudsp->lock);
+ return (DDI_FAILURE);
+ }
+ }
+
+ for (new_spd = cpupm->head_spd; new_spd; new_spd = new_spd->down_spd) {
+ if (new_spd->pm_level == level)
+ break;
+ }
+ if (!new_spd) {
+ CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm);
+ mutex_exit(&cpudsp->lock);
+ cmn_err(CE_WARN, "cpudrv_power: instance %d: "
+ "can't locate new CPU speed", instance);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * We currently refuse to power manage if the CPU is not ready to
+ * take cross calls (cross calls fail silently if CPU is not ready
+ * for it).
+ *
+ * Additionally, for x86 platforms we cannot power manage
+ * any one instance, until all instances have been initialized.
+ * That's because we don't know what the CPU domains look like
+ * until all instances have been initialized.
+ */
+ is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id);
+ if (!is_ready) {
+ DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
+ "CPU not ready for x-calls\n", instance));
+ } else if (!(is_ready = cpudrv_pm_all_instances_ready())) {
+ DPRINTF(D_POWER, ("cpudrv_power: instance %d: "
+ "waiting for all CPUs to be ready\n", instance));
+ }
+ if (!is_ready) {
+ CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm);
+ mutex_exit(&cpudsp->lock);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Execute CPU specific routine on the requested CPU to change its
+ * speed to normal-speed/divisor.
+ */
+ if ((ret = cpudrv_pm_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) {
+ cmn_err(CE_WARN, "cpudrv_power: cpudrv_pm_change_speed() "
+ "return = %d", ret);
+ mutex_exit(&cpudsp->lock);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Reset idle threshold time for the new power level.
+ */
+ if ((cpupm->cur_spd != NULL) && (level < cpupm->cur_spd->pm_level)) {
+ if (pm_idle_component(dip, CPUDRV_PM_COMP_NUM) ==
+ DDI_SUCCESS) {
+ if (cpupm->pm_busycnt >= 1)
+ cpupm->pm_busycnt--;
+ } else
+ cmn_err(CE_WARN, "cpudrv_power: instance %d: can't "
+ "idle CPU component", ddi_get_instance(dip));
+ }
+ /*
+ * Reset various parameters because we are now running at new speed.
+ */
+ cpupm->lastquan_mstate[CMS_IDLE] = 0;
+ cpupm->lastquan_mstate[CMS_SYSTEM] = 0;
+ cpupm->lastquan_mstate[CMS_USER] = 0;
+ cpupm->lastquan_lbolt = 0;
+ cpupm->cur_spd = new_spd;
+ CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm);
+ mutex_exit(&cpudsp->lock);
+
+ return (DDI_SUCCESS);
+}
+
+/*
+ * Initialize the field that will be used for reporting
+ * the supported_frequencies_Hz cpu_info kstat.
+ */
+static void
+set_supp_freqs(cpu_t *cp, cpudrv_pm_t *cpupm)
+{
+ char *supp_freqs;
+ char *sfptr;
+ uint64_t *speeds;
+ cpudrv_pm_spd_t *spd;
+ int i;
+#define UINT64_MAX_STRING (sizeof ("18446744073709551615"))
+
+ speeds = kmem_zalloc(cpupm->num_spd * sizeof (uint64_t), KM_SLEEP);
+ for (i = cpupm->num_spd - 1, spd = cpupm->head_spd; spd;
+ i--, spd = spd->down_spd) {
+ speeds[i] =
+ CPUDRV_PM_SPEED_HZ(cp->cpu_type_info.pi_clock, spd->speed);
+ }
+
+ supp_freqs = kmem_zalloc((UINT64_MAX_STRING * cpupm->num_spd),
+ KM_SLEEP);
+ sfptr = supp_freqs;
+ for (i = 0; i < cpupm->num_spd; i++) {
+ if (i == cpupm->num_spd - 1) {
+ (void) sprintf(sfptr, "%"PRIu64, speeds[i]);
+ } else {
+ (void) sprintf(sfptr, "%"PRIu64":", speeds[i]);
+ sfptr = supp_freqs + strlen(supp_freqs);
+ }
+ }
+ cp->cpu_type_info.pi_supp_freqs = supp_freqs;
+ kmem_free(speeds, cpupm->num_spd * sizeof (uint64_t));
+}
+
+/*
+ * Initialize power management data.
+ */
+static int
+cpudrv_pm_init(cpudrv_devstate_t *cpudsp)
+{
+ cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm);
+ cpudrv_pm_spd_t *cur_spd;
+ cpudrv_pm_spd_t *prev_spd = NULL;
+ int *speeds;
+ uint_t nspeeds;
+ int idle_cnt_percent;
+ int user_cnt_percent;
+ int i;
+
+ if (!cpudrv_pm_init_module(cpudsp))
+ return (DDI_FAILURE);
+
+ CPUDRV_PM_GET_SPEEDS(cpudsp, speeds, nspeeds);
+ if (nspeeds < 2) {
+ /* Need at least two speeds to power manage */
+ CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds);
+ cpudrv_pm_free_module(cpudsp);
+ return (DDI_FAILURE);
+ }
+ cpupm->num_spd = nspeeds;
+
+ /*
+ * Calculate the watermarks and other parameters based on the
+ * supplied speeds.
+ *
+ * One of the basic assumption is that for X amount of CPU work,
+ * if CPU is slowed down by a factor of N, the time it takes to
+ * do the same work will be N * X.
+ *
+ * The driver declares that a CPU is idle and ready for slowed down,
+ * if amount of idle thread is more than the current speed idle_hwm
+ * without dropping below idle_hwm a number of consecutive sampling
+ * intervals and number of running threads in user mode are below
+ * user_lwm. We want to set the current user_lwm such that if we
+ * just switched to the next slower speed with no change in real work
+ * load, the amount of user threads at the slower speed will be such
+ * that it falls below the slower speed's user_hwm. If we didn't do
+ * that then we will just come back to the higher speed as soon as we
+ * go down even with no change in work load.
+ * The user_hwm is a fixed precentage and not calculated dynamically.
+ *
+ * We bring the CPU up if idle thread at current speed is less than
+ * the current speed idle_lwm for a number of consecutive sampling
+ * intervals or user threads are above the user_hwm for the current
+ * speed.
+ */
+ for (i = 0; i < nspeeds; i++) {
+ cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP);
+ cur_spd->speed = speeds[i];
+ if (i == 0) { /* normal speed */
+ cpupm->head_spd = cur_spd;
+ cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_NORMAL;
+ cur_spd->idle_hwm =
+ (cpudrv_pm_idle_hwm * cur_spd->quant_cnt) / 100;
+ /* can't speed anymore */
+ cur_spd->idle_lwm = 0;
+ cur_spd->user_hwm = UINT_MAX;
+ } else {
+ cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_OTHR;
+ ASSERT(prev_spd != NULL);
+ prev_spd->down_spd = cur_spd;
+ cur_spd->up_spd = cpupm->head_spd;
+
+ /*
+ * Let's assume CPU is considered idle at full speed
+ * when it is spending I% of time in running the idle
+ * thread. At full speed, CPU will be busy (100 - I) %
+ * of times. This % of busyness increases by factor of
+ * N as CPU slows down. CPU that is idle I% of times
+ * in full speed, it is idle (100 - ((100 - I) * N)) %
+ * of times in N speed. The idle_lwm is a fixed
+ * percentage. A large value of N may result in
+ * idle_hwm to go below idle_lwm. We need to make sure
+ * that there is at least a buffer zone seperation
+ * between the idle_lwm and idle_hwm values.
+ */
+ idle_cnt_percent = CPUDRV_PM_IDLE_CNT_PERCENT(
+ cpudrv_pm_idle_hwm, speeds, i);
+ idle_cnt_percent = max(idle_cnt_percent,
+ (cpudrv_pm_idle_lwm + cpudrv_pm_idle_buf_zone));
+ cur_spd->idle_hwm =
+ (idle_cnt_percent * cur_spd->quant_cnt) / 100;
+ cur_spd->idle_lwm =
+ (cpudrv_pm_idle_lwm * cur_spd->quant_cnt) / 100;
+
+ /*
+ * The lwm for user threads are determined such that
+ * if CPU slows down, the load of work in the
+ * new speed would still keep the CPU at or below the
+ * user_hwm in the new speed. This is to prevent
+ * the quick jump back up to higher speed.
+ */
+ cur_spd->user_hwm = (cpudrv_pm_user_hwm *
+ cur_spd->quant_cnt) / 100;
+ user_cnt_percent = CPUDRV_PM_USER_CNT_PERCENT(
+ cpudrv_pm_user_hwm, speeds, i);
+ prev_spd->user_lwm =
+ (user_cnt_percent * prev_spd->quant_cnt) / 100;
+ }
+ prev_spd = cur_spd;
+ }
+ /* Slowest speed. Can't slow down anymore */
+ cur_spd->idle_hwm = UINT_MAX;
+ cur_spd->user_lwm = -1;
+#ifdef DEBUG
+ DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: head_spd spd %d, "
+ "num_spd %d\n", ddi_get_instance(cpudsp->dip),
+ cpupm->head_spd->speed, cpupm->num_spd));
+ for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) {
+ DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: speed %d, "
+ "down_spd spd %d, idle_hwm %d, user_lwm %d, "
+ "up_spd spd %d, idle_lwm %d, user_hwm %d, "
+ "quant_cnt %d\n", ddi_get_instance(cpudsp->dip),
+ cur_spd->speed,
+ (cur_spd->down_spd ? cur_spd->down_spd->speed : 0),
+ cur_spd->idle_hwm, cur_spd->user_lwm,
+ (cur_spd->up_spd ? cur_spd->up_spd->speed : 0),
+ cur_spd->idle_lwm, cur_spd->user_hwm,
+ cur_spd->quant_cnt));
+ }
+#endif /* DEBUG */
+ CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds);
+ return (DDI_SUCCESS);
+}
+
+/*
+ * Free CPU power management data.
+ */
+static void
+cpudrv_pm_free(cpudrv_devstate_t *cpudsp)
+{
+ cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm);
+ cpudrv_pm_spd_t *cur_spd, *next_spd;
+
+ cur_spd = cpupm->head_spd;
+ while (cur_spd) {
+ next_spd = cur_spd->down_spd;
+ kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t));
+ cur_spd = next_spd;
+ }
+ bzero(cpupm, sizeof (cpudrv_pm_t));
+ cpudrv_pm_free_module(cpudsp);
+}
+
+/*
+ * Create pm-components property.
+ */
+static int
+cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp)
+{
+ cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm);
+ cpudrv_pm_spd_t *cur_spd;
+ char **pmc;
+ int size;
+ char name[] = "NAME=CPU Speed";
+ int i, j;
+ uint_t comp_spd;
+ int result = DDI_FAILURE;
+
+ pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP);
+ size = CPUDRV_PM_COMP_SIZE();
+ if (cpupm->num_spd > CPUDRV_PM_COMP_MAX_VAL) {
+ cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: "
+ "number of speeds exceeded limits",
+ ddi_get_instance(cpudsp->dip));
+ kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
+ return (result);
+ }
+
+ for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0;
+ i--, cur_spd = cur_spd->down_spd) {
+ cur_spd->pm_level = i;
+ pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP);
+ comp_spd = CPUDRV_PM_COMP_SPEED(cpupm, cur_spd);
+ if (comp_spd > CPUDRV_PM_COMP_MAX_VAL) {
+ cmn_err(CE_WARN, "cpudrv_pm_comp_create: "
+ "instance %d: speed exceeded limits",
+ ddi_get_instance(cpudsp->dip));
+ for (j = cpupm->num_spd; j >= i; j--) {
+ kmem_free(pmc[j], size * sizeof (char));
+ }
+ kmem_free(pmc, (cpupm->num_spd + 1) *
+ sizeof (char *));
+ return (result);
+ }
+ CPUDRV_PM_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd)
+ DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: "
+ "instance %d: pm-components power level %d string '%s'\n",
+ ddi_get_instance(cpudsp->dip), i, pmc[i]));
+ }
+ pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP);
+ (void) strcat(pmc[0], name);
+ DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: instance %d: "
+ "pm-components component name '%s'\n",
+ ddi_get_instance(cpudsp->dip), pmc[0]));
+
+ if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip,
+ "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) {
+ result = DDI_SUCCESS;
+ } else {
+ cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: "
+ "can't create pm-components property",
+ ddi_get_instance(cpudsp->dip));
+ }
+
+ for (i = cpupm->num_spd; i > 0; i--) {
+ kmem_free(pmc[i], size * sizeof (char));
+ }
+ kmem_free(pmc[0], sizeof (name));
+ kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *));
+ return (result);
+}
+
+/*
+ * Mark a component idle.
+ */
+#define CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm) { \
+ if ((cpupm)->pm_busycnt >= 1) { \
+ if (pm_idle_component((dip), CPUDRV_PM_COMP_NUM) == \
+ DDI_SUCCESS) { \
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \
+ "instance %d: pm_idle_component called\n", \
+ ddi_get_instance((dip)))); \
+ (cpupm)->pm_busycnt--; \
+ } else { \
+ cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \
+ "can't idle CPU component", \
+ ddi_get_instance((dip))); \
+ } \
+ } \
+}
+
+/*
+ * Marks a component busy in both PM framework and driver state structure.
+ */
+#define CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm) { \
+ if ((cpupm)->pm_busycnt < 1) { \
+ if (pm_busy_component((dip), CPUDRV_PM_COMP_NUM) == \
+ DDI_SUCCESS) { \
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \
+ "instance %d: pm_busy_component called\n", \
+ ddi_get_instance((dip)))); \
+ (cpupm)->pm_busycnt++; \
+ } else { \
+ cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \
+ "can't busy CPU component", \
+ ddi_get_instance((dip))); \
+ } \
+ } \
+}
+
+/*
+ * Marks a component busy and calls pm_raise_power().
+ */
+#define CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_level) { \
+ /* \
+ * Mark driver and PM framework busy first so framework doesn't try \
+ * to bring CPU to lower speed when we need to be at higher speed. \
+ */ \
+ CPUDRV_PM_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \
+ mutex_exit(&(cpudsp)->lock); \
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " \
+ "pm_raise_power called to %d\n", ddi_get_instance((dip)), \
+ (new_level))); \
+ if (pm_raise_power((dip), CPUDRV_PM_COMP_NUM, (new_level)) != \
+ DDI_SUCCESS) { \
+ cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't " \
+ "raise CPU power level", ddi_get_instance((dip))); \
+ } \
+ mutex_enter(&(cpudsp)->lock); \
+}
+
+/*
+ * In order to monitor a CPU, we need to hold cpu_lock to access CPU
+ * statistics. Holding cpu_lock is not allowed from a callout routine.
+ * We dispatch a taskq to do that job.
+ */
+static void
+cpudrv_pm_monitor_disp(void *arg)
+{
+ cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg;
+
+ /*
+ * We are here because the last task has scheduled a timeout.
+ * The queue should be empty at this time.
+ */
+ mutex_enter(&cpudsp->cpudrv_pm.timeout_lock);
+ if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_pm_monitor, arg,
+ TQ_NOSLEEP)) {
+ mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor_disp: failed to "
+ "dispatch the cpudrv_pm_monitor taskq\n"));
+ mutex_enter(&cpudsp->lock);
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ return;
+ }
+ cpudsp->cpudrv_pm.timeout_count++;
+ mutex_exit(&cpudsp->cpudrv_pm.timeout_lock);
+}
+
+/*
+ * Get current CPU microstate times and scale them. We should probably be
+ * using get_cpu_mstate() to get this data, but bugs in some of the ISRs
+ * have led to inflated system times and prevented CPUs from being power
+ * managed. We can probably safely ignore time spent in ISRs when
+ * determining idleness.
+ */
+static void
+cpudrv_get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
+{
+ int i;
+
+ for (i = 0; i < NCMSTATES; i++) {
+ times[i] = cpu->cpu_acct[i];
+ scalehrtime(&times[i]);
+ }
+}
+
+/*
+ * Monitors each CPU for the amount of time idle thread was running in the
+ * last quantum and arranges for the CPU to go to the lower or higher speed.
+ * Called at the time interval appropriate for the current speed. The
+ * time interval for normal speed is CPUDRV_PM_QUANT_CNT_NORMAL. The time
+ * interval for other speeds (including unknown speed) is
+ * CPUDRV_PM_QUANT_CNT_OTHR.
+ */
+static void
+cpudrv_pm_monitor(void *arg)
+{
+ cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg;
+ cpudrv_pm_t *cpupm;
+ cpudrv_pm_spd_t *cur_spd, *new_spd;
+ cpu_t *cp;
+ dev_info_t *dip;
+ uint_t idle_cnt, user_cnt, system_cnt;
+ clock_t lbolt_cnt;
+ hrtime_t msnsecs[NCMSTATES];
+ boolean_t is_ready;
+
+#define GET_CPU_MSTATE_CNT(state, cnt) \
+ msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \
+ if (cpupm->lastquan_mstate[state] > msnsecs[state]) \
+ msnsecs[state] = cpupm->lastquan_mstate[state]; \
+ cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \
+ cpupm->lastquan_mstate[state] = msnsecs[state]
+
+ mutex_enter(&cpudsp->lock);
+ cpupm = &(cpudsp->cpudrv_pm);
+ if (cpupm->timeout_id == 0) {
+ mutex_exit(&cpudsp->lock);
+ goto do_return;
+ }
+ cur_spd = cpupm->cur_spd;
+ dip = cpudsp->dip;
+
+ /*
+ * We assume that a CPU is initialized and has a valid cpu_t
+ * structure, if it is ready for cross calls. If this changes,
+ * additional checks might be needed.
+ *
+ * Additionally, for x86 platforms we cannot power manage
+ * any one instance, until all instances have been initialized.
+ * That's because we don't know what the CPU domains look like
+ * until all instances have been initialized.
+ */
+ is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id);
+ if (!is_ready) {
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
+ "CPU not ready for x-calls\n", ddi_get_instance(dip)));
+ } else if (!(is_ready = cpudrv_pm_all_instances_ready())) {
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
+ "waiting for all CPUs to be ready\n",
+ ddi_get_instance(dip)));
+ }
+ if (!is_ready) {
+ /*
+ * Make sure that we are busy so that framework doesn't
+ * try to bring us down in this situation.
+ */
+ CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ goto do_return;
+ }
+
+ /*
+ * Make sure that we are still not at unknown power level.
+ */
+ if (cur_spd == NULL) {
+ DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: "
+ "cur_spd is unknown\n", ddi_get_instance(dip)));
+ CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
+ cpupm->targ_spd->pm_level);
+ /*
+ * We just changed the speed. Wait till at least next
+ * call to this routine before proceeding ahead.
+ */
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ goto do_return;
+ }
+
+ mutex_enter(&cpu_lock);
+ if ((cp = cpu_get(cpudsp->cpu_id)) == NULL) {
+ mutex_exit(&cpu_lock);
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't get "
+ "cpu_t", ddi_get_instance(dip));
+ goto do_return;
+ }
+ if (cp->cpu_type_info.pi_supp_freqs == NULL)
+ set_supp_freqs(cp, cpupm);
+
+ cpudrv_get_cpu_mstate(cp, msnsecs);
+ GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt);
+ GET_CPU_MSTATE_CNT(CMS_USER, user_cnt);
+ GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt);
+
+ /*
+ * We can't do anything when we have just switched to a state
+ * because there is no valid timestamp.
+ */
+ if (cpupm->lastquan_lbolt == 0) {
+ cpupm->lastquan_lbolt = lbolt;
+ mutex_exit(&cpu_lock);
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ mutex_exit(&cpudsp->lock);
+ goto do_return;
+ }
+
+ /*
+ * Various watermarks are based on this routine being called back
+ * exactly at the requested period. This is not guaranteed
+ * because this routine is called from a taskq that is dispatched
+ * from a timeout routine. Handle this by finding out how many
+ * ticks have elapsed since the last call (lbolt_cnt) and adjusting
+ * the idle_cnt based on the delay added to the requested period
+ * by timeout and taskq.
+ */
+ lbolt_cnt = lbolt - cpupm->lastquan_lbolt;
+ cpupm->lastquan_lbolt = lbolt;
+ mutex_exit(&cpu_lock);
+ /*
+ * Time taken between recording the current counts and
+ * arranging the next call of this routine is an error in our
+ * calculation. We minimize the error by calling
+ * CPUDRV_PM_MONITOR_INIT() here instead of end of this routine.
+ */
+ CPUDRV_PM_MONITOR_INIT(cpudsp);
+ DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_pm_monitor: instance %d: "
+ "idle count %d, user count %d, system count %d, pm_level %d, "
+ "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt,
+ system_cnt, cur_spd->pm_level, cpupm->pm_busycnt));
+
+#ifdef DEBUG
+ /*
+ * Notify that timeout and taskq has caused delays and we need to
+ * scale our parameters accordingly.
+ *
+ * To get accurate result, don't turn on other DPRINTFs with
+ * the following DPRINTF. PROM calls generated by other
+ * DPRINTFs changes the timing.
+ */
+ if (lbolt_cnt > cur_spd->quant_cnt) {
+ DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_pm_monitor: instance %d: "
+ "lbolt count %ld > quantum_count %u\n",
+ ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt));
+ }
+#endif /* DEBUG */
+
+ /*
+ * Adjust counts based on the delay added by timeout and taskq.
+ */
+ idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt;
+ user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt;
+ if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm &&
+ cur_spd->idle_blwm_cnt >= cpudrv_pm_idle_blwm_cnt_max)) {
+ cur_spd->idle_blwm_cnt = 0;
+ cur_spd->idle_bhwm_cnt = 0;
+ /*
+ * In normal situation, arrange to go to next higher speed.
+ * If we are running in special direct pm mode, we just stay
+ * at the current speed.
+ */
+ if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) {
+ CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
+ } else {
+ new_spd = cur_spd->up_spd;
+ CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm,
+ new_spd->pm_level);
+ }
+ } else if ((user_cnt <= cur_spd->user_lwm) &&
+ (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cp)) {
+ cur_spd->idle_blwm_cnt = 0;
+ cur_spd->idle_bhwm_cnt = 0;
+ /*
+ * Arrange to go to next lower speed by informing our idle
+ * status to the power management framework.
+ */
+ CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm);
+ } else {
+ /*
+ * If we are between the idle water marks and have not
+ * been here enough consecutive times to be considered
+ * busy, just increment the count and return.
+ */
+ if ((idle_cnt < cur_spd->idle_hwm) &&
+ (idle_cnt >= cur_spd->idle_lwm) &&
+ (cur_spd->idle_bhwm_cnt < cpudrv_pm_idle_bhwm_cnt_max)) {
+ cur_spd->idle_blwm_cnt = 0;
+ cur_spd->idle_bhwm_cnt++;
+ mutex_exit(&cpudsp->lock);
+ goto do_return;
+ }
+ if (idle_cnt < cur_spd->idle_lwm) {
+ cur_spd->idle_blwm_cnt++;
+ cur_spd->idle_bhwm_cnt = 0;
+ }
+ /*
+ * Arranges to stay at the current speed.
+ */
+ CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm);
+ }
+ mutex_exit(&cpudsp->lock);
+do_return:
+ mutex_enter(&cpupm->timeout_lock);
+ ASSERT(cpupm->timeout_count > 0);
+ cpupm->timeout_count--;
+ cv_signal(&cpupm->timeout_cv);
+ mutex_exit(&cpupm->timeout_lock);
+}