diff options
author | mh27603 <none@none> | 2007-07-16 10:30:27 -0700 |
---|---|---|
committer | mh27603 <none@none> | 2007-07-16 10:30:27 -0700 |
commit | 5cff782560a1c3cf913ba5574a5123a299f3315e (patch) | |
tree | 0d22fab7021826f6ce98a3efcb9a1e42fa8d27bc /usr/src/uts/common/io/cpudrv.c | |
parent | c198d18e90b390e955c8766a91af6e2db1fccd57 (diff) | |
download | illumos-joyent-5cff782560a1c3cf913ba5574a5123a299f3315e.tar.gz |
PSARC/2004/826 Opteron Athlon64 Frequency Management
6358066 PSARC/2004/826 Opteron Athlon64 Frequency Management
6512756 Solaris should support Intel's Enhanced Speedstep
6335616 AMD64 CPU PwrMgmt needs Notify/_PPC for changes in P-states
--HG--
rename : usr/src/uts/sun4u/io/us_drv.c => usr/src/uts/common/io/cpudrv.c
rename : usr/src/uts/sun4u/io/ppm/ppm.c => usr/src/uts/common/io/ppm/ppm.c
rename : usr/src/uts/sun4u/io/ppm/ppm_subr.c => usr/src/uts/common/io/ppm/ppm_subr.c
rename : usr/src/uts/sun4u/sys/us_drv.h => usr/src/uts/common/sys/cpudrv.h
rename : usr/src/uts/sun4u/sys/ppmvar.h => usr/src/uts/common/sys/ppmvar.h
rename : usr/src/uts/sun4u/io/ppm.c => usr/src/uts/sun4u/io/ppm_xgsubr.c
Diffstat (limited to 'usr/src/uts/common/io/cpudrv.c')
-rw-r--r-- | usr/src/uts/common/io/cpudrv.c | 1135 |
1 files changed, 1135 insertions, 0 deletions
diff --git a/usr/src/uts/common/io/cpudrv.c b/usr/src/uts/common/io/cpudrv.c new file mode 100644 index 0000000000..ed261ba9a3 --- /dev/null +++ b/usr/src/uts/common/io/cpudrv.c @@ -0,0 +1,1135 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2007 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +/* + * CPU Device driver. The driver is not DDI-compliant. + * + * The driver supports following features: + * - Power management. + */ + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/errno.h> +#include <sys/modctl.h> +#include <sys/kmem.h> +#include <sys/conf.h> +#include <sys/cmn_err.h> +#include <sys/stat.h> +#include <sys/debug.h> +#include <sys/systm.h> +#include <sys/ddi.h> +#include <sys/sunddi.h> + +#include <sys/machsystm.h> +#include <sys/x_call.h> +#include <sys/cpudrv.h> +#include <sys/cpudrv_plat.h> +#include <sys/msacct.h> + +/* + * CPU power management + * + * The supported power saving model is to slow down the CPU (on SPARC by + * dividing the CPU clock and on x86 by dropping down a P-state). + * Periodically we determine the amount of time the CPU is running + * idle thread and threads in user mode during the last quantum. If the idle + * thread was running less than its low water mark for current speed for + * number of consecutive sampling periods, or number of running threads in + * user mode are above its high water mark, we arrange to go to the higher + * speed. If the idle thread was running more than its high water mark without + * dropping a number of consecutive times below the mark, and number of threads + * running in user mode are below its low water mark, we arrange to go to the + * next lower speed. While going down, we go through all the speeds. While + * going up we go to the maximum speed to minimize impact on the user, but have + * provisions in the driver to go to other speeds. + * + * The driver does not have knowledge of a particular implementation of this + * scheme and will work with all CPUs supporting this model. On SPARC, the + * driver determines supported speeds by looking at 'clock-divisors' property + * created by OBP. On x86, the driver retrieves the supported speeds from + * ACPI. + */ + +/* + * Configuration function prototypes and data structures + */ +static int cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); +static int cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd); +static int cpudrv_power(dev_info_t *dip, int comp, int level); + +struct dev_ops cpudrv_ops = { + DEVO_REV, /* rev */ + 0, /* refcnt */ + nodev, /* getinfo */ + nulldev, /* identify */ + nulldev, /* probe */ + cpudrv_attach, /* attach */ + cpudrv_detach, /* detach */ + nodev, /* reset */ + (struct cb_ops *)NULL, /* cb_ops */ + (struct bus_ops *)NULL, /* bus_ops */ + cpudrv_power /* power */ +}; + +static struct modldrv modldrv = { + &mod_driverops, /* modops */ + "CPU Driver %I%", /* linkinfo */ + &cpudrv_ops, /* dev_ops */ +}; + +static struct modlinkage modlinkage = { + MODREV_1, /* rev */ + &modldrv, /* linkage */ + NULL +}; + +/* + * Function prototypes + */ +static int cpudrv_pm_init(cpudrv_devstate_t *cpudsp); +static void cpudrv_pm_free(cpudrv_devstate_t *cpudsp); +static int cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp); +static void cpudrv_pm_monitor_disp(void *arg); +static void cpudrv_pm_monitor(void *arg); + +/* + * Driver global variables + */ +uint_t cpudrv_debug = 0; +void *cpudrv_state; +static uint_t cpudrv_pm_idle_hwm = CPUDRV_PM_IDLE_HWM; +static uint_t cpudrv_pm_idle_lwm = CPUDRV_PM_IDLE_LWM; +static uint_t cpudrv_pm_idle_buf_zone = CPUDRV_PM_IDLE_BUF_ZONE; +static uint_t cpudrv_pm_idle_bhwm_cnt_max = CPUDRV_PM_IDLE_BHWM_CNT_MAX; +static uint_t cpudrv_pm_idle_blwm_cnt_max = CPUDRV_PM_IDLE_BLWM_CNT_MAX; +static uint_t cpudrv_pm_user_hwm = CPUDRV_PM_USER_HWM; + +/* + * cpudrv_direct_pm allows user applications to directly control the + * power state transitions (direct pm) without following the normal + * direct pm protocol. This is needed because the normal protocol + * requires that a device only be lowered when it is idle, and be + * brought up when it request to do so by calling pm_raise_power(). + * Ignoring this protocol is harmless for CPU (other than speed). + * Moreover it might be the case that CPU is never idle or wants + * to be at higher speed because of the addition CPU cycles required + * to run the user application. + * + * The driver will still report idle/busy status to the framework. Although + * framework will ignore this information for direct pm devices and not + * try to bring them down when idle, user applications can still use this + * information if they wants. + * + * In the future, provide an ioctl to control setting of this mode. In + * that case, this variable should move to the state structure and + * be protected by the lock in the state structure. + */ +int cpudrv_direct_pm = 0; + +/* + * Arranges for the handler function to be called at the interval suitable + * for current speed. + */ +#define CPUDRV_PM_MONITOR_INIT(cpudsp) { \ + ASSERT(mutex_owned(&(cpudsp)->lock)); \ + (cpudsp)->cpudrv_pm.timeout_id = timeout(cpudrv_pm_monitor_disp, \ + (cpudsp), (((cpudsp)->cpudrv_pm.cur_spd == NULL) ? \ + CPUDRV_PM_QUANT_CNT_OTHR : \ + (cpudsp)->cpudrv_pm.cur_spd->quant_cnt)); \ +} + +/* + * Arranges for the handler function not to be called back. + */ +#define CPUDRV_PM_MONITOR_FINI(cpudsp) { \ + timeout_id_t tmp_tid; \ + ASSERT(mutex_owned(&(cpudsp)->lock)); \ + ASSERT((cpudsp)->cpudrv_pm.timeout_id); \ + tmp_tid = (cpudsp)->cpudrv_pm.timeout_id; \ + (cpudsp)->cpudrv_pm.timeout_id = 0; \ + mutex_exit(&(cpudsp)->lock); \ + (void) untimeout(tmp_tid); \ + mutex_enter(&(cpudsp)->cpudrv_pm.timeout_lock); \ + while ((cpudsp)->cpudrv_pm.timeout_count != 0) \ + cv_wait(&(cpudsp)->cpudrv_pm.timeout_cv, \ + &(cpudsp)->cpudrv_pm.timeout_lock); \ + mutex_exit(&(cpudsp)->cpudrv_pm.timeout_lock); \ + mutex_enter(&(cpudsp)->lock); \ +} + +int +_init(void) +{ + int error; + + DPRINTF(D_INIT, (" _init: function called\n")); + if ((error = ddi_soft_state_init(&cpudrv_state, + sizeof (cpudrv_devstate_t), 0)) != 0) { + return (error); + } + + if ((error = mod_install(&modlinkage)) != 0) { + ddi_soft_state_fini(&cpudrv_state); + } + + /* + * Callbacks used by the PPM driver. + */ + CPUDRV_PM_SET_PPM_CALLBACKS(); + return (error); +} + +int +_fini(void) +{ + int error; + + DPRINTF(D_FINI, (" _fini: function called\n")); + if ((error = mod_remove(&modlinkage)) == 0) { + ddi_soft_state_fini(&cpudrv_state); + } + + return (error); +} + +int +_info(struct modinfo *modinfop) +{ + return (mod_info(&modlinkage, modinfop)); +} + +/* + * Driver attach(9e) entry point. + */ +static int +cpudrv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) +{ + int instance; + cpudrv_devstate_t *cpudsp; + extern pri_t maxclsyspri; + + instance = ddi_get_instance(dip); + + switch (cmd) { + case DDI_ATTACH: + DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: " + "DDI_ATTACH called\n", instance)); + if (ddi_soft_state_zalloc(cpudrv_state, instance) != + DDI_SUCCESS) { + cmn_err(CE_WARN, "cpudrv_attach: instance %d: " + "can't allocate state", instance); + CPUDRV_PM_DISABLE(); + return (DDI_FAILURE); + } + if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == + NULL) { + cmn_err(CE_WARN, "cpudrv_attach: instance %d: " + "can't get state", instance); + ddi_soft_state_free(cpudrv_state, instance); + CPUDRV_PM_DISABLE(); + return (DDI_FAILURE); + } + cpudsp->dip = dip; + + /* + * Find CPU number for this dev_info node. + */ + if (!cpudrv_pm_get_cpu_id(dip, &(cpudsp->cpu_id))) { + cmn_err(CE_WARN, "cpudrv_attach: instance %d: " + "can't convert dip to cpu_id", instance); + ddi_soft_state_free(cpudrv_state, instance); + CPUDRV_PM_DISABLE(); + return (DDI_FAILURE); + } + if (cpudrv_pm_init(cpudsp) != DDI_SUCCESS) { + ddi_soft_state_free(cpudrv_state, instance); + CPUDRV_PM_DISABLE(); + return (DDI_FAILURE); + } + if (cpudrv_pm_comp_create(cpudsp) != DDI_SUCCESS) { + ddi_soft_state_free(cpudrv_state, instance); + CPUDRV_PM_DISABLE(); + cpudrv_pm_free(cpudsp); + return (DDI_FAILURE); + } + if (ddi_prop_update_string(DDI_DEV_T_NONE, + dip, "pm-class", "CPU") != DDI_PROP_SUCCESS) { + ddi_soft_state_free(cpudrv_state, instance); + CPUDRV_PM_DISABLE(); + cpudrv_pm_free(cpudsp); + return (DDI_FAILURE); + } + + /* + * Taskq is used to dispatch routine to monitor CPU activities. + */ + cpudsp->cpudrv_pm.tq = taskq_create_instance( + "cpudrv_pm_monitor", + ddi_get_instance(dip), CPUDRV_PM_TASKQ_THREADS, + (maxclsyspri - 1), CPUDRV_PM_TASKQ_MIN, + CPUDRV_PM_TASKQ_MAX, TASKQ_PREPOPULATE|TASKQ_CPR_SAFE); + + mutex_init(&cpudsp->lock, NULL, MUTEX_DRIVER, NULL); + mutex_init(&cpudsp->cpudrv_pm.timeout_lock, NULL, MUTEX_DRIVER, + NULL); + cv_init(&cpudsp->cpudrv_pm.timeout_cv, NULL, CV_DEFAULT, NULL); + + /* + * Driver needs to assume that CPU is running at unknown speed + * at DDI_ATTACH and switch it to the needed speed. We assume + * that initial needed speed is full speed for us. + */ + /* + * We need to take the lock because cpudrv_pm_monitor() + * will start running in parallel with attach(). + */ + mutex_enter(&cpudsp->lock); + cpudsp->cpudrv_pm.cur_spd = NULL; + cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd; + /* + * We don't call pm_raise_power() directly from attach because + * driver attach for a slave CPU node can happen before the + * CPU is even initialized. We just start the monitoring + * system which understands unknown speed and moves CPU + * to targ_spd when it have been initialized. + */ + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + + CPUDRV_PM_INSTALL_TOPSPEED_CHANGE_HANDLER(cpudsp, dip); + + ddi_report_dev(dip); + return (DDI_SUCCESS); + + case DDI_RESUME: + DPRINTF(D_ATTACH, ("cpudrv_attach: instance %d: " + "DDI_RESUME called\n", instance)); + if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == + NULL) { + cmn_err(CE_WARN, "cpudrv_attach: instance %d: " + "can't get state", instance); + return (DDI_FAILURE); + } + mutex_enter(&cpudsp->lock); + /* + * Driver needs to assume that CPU is running at unknown speed + * at DDI_RESUME and switch it to the needed speed. We assume + * that the needed speed is full speed for us. + */ + cpudsp->cpudrv_pm.cur_spd = NULL; + cpudsp->cpudrv_pm.targ_spd = cpudsp->cpudrv_pm.head_spd; + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + CPUDRV_PM_REDEFINE_TOPSPEED(dip); + return (DDI_SUCCESS); + + default: + return (DDI_FAILURE); + } +} + +/* + * Driver detach(9e) entry point. + */ +static int +cpudrv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) +{ + int instance; + cpudrv_devstate_t *cpudsp; + cpudrv_pm_t *cpupm; + + instance = ddi_get_instance(dip); + + switch (cmd) { + case DDI_DETACH: + DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: " + "DDI_DETACH called\n", instance)); + /* + * If the only thing supported by the driver is power + * management, we can in future enhance the driver and + * framework that loads it to unload the driver when + * user has disabled CPU power management. + */ + return (DDI_FAILURE); + + case DDI_SUSPEND: + DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: " + "DDI_SUSPEND called\n", instance)); + if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == + NULL) { + cmn_err(CE_WARN, "cpudrv_detach: instance %d: " + "can't get state", instance); + return (DDI_FAILURE); + } + /* + * During a checkpoint-resume sequence, framework will + * stop interrupts to quiesce kernel activity. This will + * leave our monitoring system ineffective. Handle this + * by stopping our monitoring system and bringing CPU + * to full speed. In case we are in special direct pm + * mode, we leave the CPU at whatever speed it is. This + * is harmless other than speed. + */ + mutex_enter(&cpudsp->lock); + cpupm = &(cpudsp->cpudrv_pm); + + DPRINTF(D_DETACH, ("cpudrv_detach: instance %d: DDI_SUSPEND - " + "cur_spd %d, head_spd %d\n", instance, + cpupm->cur_spd->pm_level, cpupm->head_spd->pm_level)); + + CPUDRV_PM_MONITOR_FINI(cpudsp); + + if (!cpudrv_direct_pm && (cpupm->cur_spd != cpupm->head_spd)) { + if (cpupm->pm_busycnt < 1) { + if ((pm_busy_component(dip, CPUDRV_PM_COMP_NUM) + == DDI_SUCCESS)) { + cpupm->pm_busycnt++; + } else { + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + cmn_err(CE_WARN, "cpudrv_detach: " + "instance %d: can't busy CPU " + "component", instance); + return (DDI_FAILURE); + } + } + mutex_exit(&cpudsp->lock); + if (pm_raise_power(dip, CPUDRV_PM_COMP_NUM, + cpupm->head_spd->pm_level) != DDI_SUCCESS) { + mutex_enter(&cpudsp->lock); + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + cmn_err(CE_WARN, "cpudrv_detach: instance %d: " + "can't raise CPU power level", instance); + return (DDI_FAILURE); + } else { + return (DDI_SUCCESS); + } + } else { + mutex_exit(&cpudsp->lock); + return (DDI_SUCCESS); + } + + default: + return (DDI_FAILURE); + } +} + +/* + * Driver power(9e) entry point. + * + * Driver's notion of current power is set *only* in power(9e) entry point + * after actual power change operation has been successfully completed. + */ +/* ARGSUSED */ +static int +cpudrv_power(dev_info_t *dip, int comp, int level) +{ + int instance; + cpudrv_devstate_t *cpudsp; + cpudrv_pm_t *cpupm; + cpudrv_pm_spd_t *new_spd; + boolean_t is_ready; + int ret; + + instance = ddi_get_instance(dip); + + DPRINTF(D_POWER, ("cpudrv_power: instance %d: level %d\n", + instance, level)); + if ((cpudsp = ddi_get_soft_state(cpudrv_state, instance)) == NULL) { + cmn_err(CE_WARN, "cpudrv_power: instance %d: can't get state", + instance); + return (DDI_FAILURE); + } + + mutex_enter(&cpudsp->lock); + cpupm = &(cpudsp->cpudrv_pm); + + /* + * In normal operation, we fail if we are busy and request is + * to lower the power level. We let this go through if the driver + * is in special direct pm mode. On x86, we also let this through + * if the change is due to a request to throttle the max speed. + */ + if (!cpudrv_direct_pm && (cpupm->pm_busycnt >= 1) && + !cpudrv_pm_is_throttle_thread(cpupm)) { + if ((cpupm->cur_spd != NULL) && + (level < cpupm->cur_spd->pm_level)) { + mutex_exit(&cpudsp->lock); + return (DDI_FAILURE); + } + } + + for (new_spd = cpupm->head_spd; new_spd; new_spd = new_spd->down_spd) { + if (new_spd->pm_level == level) + break; + } + if (!new_spd) { + CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); + mutex_exit(&cpudsp->lock); + cmn_err(CE_WARN, "cpudrv_power: instance %d: " + "can't locate new CPU speed", instance); + return (DDI_FAILURE); + } + + /* + * We currently refuse to power manage if the CPU is not ready to + * take cross calls (cross calls fail silently if CPU is not ready + * for it). + * + * Additionally, for x86 platforms we cannot power manage + * any one instance, until all instances have been initialized. + * That's because we don't know what the CPU domains look like + * until all instances have been initialized. + */ + is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id); + if (!is_ready) { + DPRINTF(D_POWER, ("cpudrv_power: instance %d: " + "CPU not ready for x-calls\n", instance)); + } else if (!(is_ready = cpudrv_pm_all_instances_ready())) { + DPRINTF(D_POWER, ("cpudrv_power: instance %d: " + "waiting for all CPUs to be ready\n", instance)); + } + if (!is_ready) { + CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); + mutex_exit(&cpudsp->lock); + return (DDI_FAILURE); + } + + /* + * Execute CPU specific routine on the requested CPU to change its + * speed to normal-speed/divisor. + */ + if ((ret = cpudrv_pm_change_speed(cpudsp, new_spd)) != DDI_SUCCESS) { + cmn_err(CE_WARN, "cpudrv_power: cpudrv_pm_change_speed() " + "return = %d", ret); + mutex_exit(&cpudsp->lock); + return (DDI_FAILURE); + } + + /* + * Reset idle threshold time for the new power level. + */ + if ((cpupm->cur_spd != NULL) && (level < cpupm->cur_spd->pm_level)) { + if (pm_idle_component(dip, CPUDRV_PM_COMP_NUM) == + DDI_SUCCESS) { + if (cpupm->pm_busycnt >= 1) + cpupm->pm_busycnt--; + } else + cmn_err(CE_WARN, "cpudrv_power: instance %d: can't " + "idle CPU component", ddi_get_instance(dip)); + } + /* + * Reset various parameters because we are now running at new speed. + */ + cpupm->lastquan_mstate[CMS_IDLE] = 0; + cpupm->lastquan_mstate[CMS_SYSTEM] = 0; + cpupm->lastquan_mstate[CMS_USER] = 0; + cpupm->lastquan_lbolt = 0; + cpupm->cur_spd = new_spd; + CPUDRV_PM_RESET_THROTTLE_THREAD(cpupm); + mutex_exit(&cpudsp->lock); + + return (DDI_SUCCESS); +} + +/* + * Initialize the field that will be used for reporting + * the supported_frequencies_Hz cpu_info kstat. + */ +static void +set_supp_freqs(cpu_t *cp, cpudrv_pm_t *cpupm) +{ + char *supp_freqs; + char *sfptr; + uint64_t *speeds; + cpudrv_pm_spd_t *spd; + int i; +#define UINT64_MAX_STRING (sizeof ("18446744073709551615")) + + speeds = kmem_zalloc(cpupm->num_spd * sizeof (uint64_t), KM_SLEEP); + for (i = cpupm->num_spd - 1, spd = cpupm->head_spd; spd; + i--, spd = spd->down_spd) { + speeds[i] = + CPUDRV_PM_SPEED_HZ(cp->cpu_type_info.pi_clock, spd->speed); + } + + supp_freqs = kmem_zalloc((UINT64_MAX_STRING * cpupm->num_spd), + KM_SLEEP); + sfptr = supp_freqs; + for (i = 0; i < cpupm->num_spd; i++) { + if (i == cpupm->num_spd - 1) { + (void) sprintf(sfptr, "%"PRIu64, speeds[i]); + } else { + (void) sprintf(sfptr, "%"PRIu64":", speeds[i]); + sfptr = supp_freqs + strlen(supp_freqs); + } + } + cp->cpu_type_info.pi_supp_freqs = supp_freqs; + kmem_free(speeds, cpupm->num_spd * sizeof (uint64_t)); +} + +/* + * Initialize power management data. + */ +static int +cpudrv_pm_init(cpudrv_devstate_t *cpudsp) +{ + cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); + cpudrv_pm_spd_t *cur_spd; + cpudrv_pm_spd_t *prev_spd = NULL; + int *speeds; + uint_t nspeeds; + int idle_cnt_percent; + int user_cnt_percent; + int i; + + if (!cpudrv_pm_init_module(cpudsp)) + return (DDI_FAILURE); + + CPUDRV_PM_GET_SPEEDS(cpudsp, speeds, nspeeds); + if (nspeeds < 2) { + /* Need at least two speeds to power manage */ + CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds); + cpudrv_pm_free_module(cpudsp); + return (DDI_FAILURE); + } + cpupm->num_spd = nspeeds; + + /* + * Calculate the watermarks and other parameters based on the + * supplied speeds. + * + * One of the basic assumption is that for X amount of CPU work, + * if CPU is slowed down by a factor of N, the time it takes to + * do the same work will be N * X. + * + * The driver declares that a CPU is idle and ready for slowed down, + * if amount of idle thread is more than the current speed idle_hwm + * without dropping below idle_hwm a number of consecutive sampling + * intervals and number of running threads in user mode are below + * user_lwm. We want to set the current user_lwm such that if we + * just switched to the next slower speed with no change in real work + * load, the amount of user threads at the slower speed will be such + * that it falls below the slower speed's user_hwm. If we didn't do + * that then we will just come back to the higher speed as soon as we + * go down even with no change in work load. + * The user_hwm is a fixed precentage and not calculated dynamically. + * + * We bring the CPU up if idle thread at current speed is less than + * the current speed idle_lwm for a number of consecutive sampling + * intervals or user threads are above the user_hwm for the current + * speed. + */ + for (i = 0; i < nspeeds; i++) { + cur_spd = kmem_zalloc(sizeof (cpudrv_pm_spd_t), KM_SLEEP); + cur_spd->speed = speeds[i]; + if (i == 0) { /* normal speed */ + cpupm->head_spd = cur_spd; + cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_NORMAL; + cur_spd->idle_hwm = + (cpudrv_pm_idle_hwm * cur_spd->quant_cnt) / 100; + /* can't speed anymore */ + cur_spd->idle_lwm = 0; + cur_spd->user_hwm = UINT_MAX; + } else { + cur_spd->quant_cnt = CPUDRV_PM_QUANT_CNT_OTHR; + ASSERT(prev_spd != NULL); + prev_spd->down_spd = cur_spd; + cur_spd->up_spd = cpupm->head_spd; + + /* + * Let's assume CPU is considered idle at full speed + * when it is spending I% of time in running the idle + * thread. At full speed, CPU will be busy (100 - I) % + * of times. This % of busyness increases by factor of + * N as CPU slows down. CPU that is idle I% of times + * in full speed, it is idle (100 - ((100 - I) * N)) % + * of times in N speed. The idle_lwm is a fixed + * percentage. A large value of N may result in + * idle_hwm to go below idle_lwm. We need to make sure + * that there is at least a buffer zone seperation + * between the idle_lwm and idle_hwm values. + */ + idle_cnt_percent = CPUDRV_PM_IDLE_CNT_PERCENT( + cpudrv_pm_idle_hwm, speeds, i); + idle_cnt_percent = max(idle_cnt_percent, + (cpudrv_pm_idle_lwm + cpudrv_pm_idle_buf_zone)); + cur_spd->idle_hwm = + (idle_cnt_percent * cur_spd->quant_cnt) / 100; + cur_spd->idle_lwm = + (cpudrv_pm_idle_lwm * cur_spd->quant_cnt) / 100; + + /* + * The lwm for user threads are determined such that + * if CPU slows down, the load of work in the + * new speed would still keep the CPU at or below the + * user_hwm in the new speed. This is to prevent + * the quick jump back up to higher speed. + */ + cur_spd->user_hwm = (cpudrv_pm_user_hwm * + cur_spd->quant_cnt) / 100; + user_cnt_percent = CPUDRV_PM_USER_CNT_PERCENT( + cpudrv_pm_user_hwm, speeds, i); + prev_spd->user_lwm = + (user_cnt_percent * prev_spd->quant_cnt) / 100; + } + prev_spd = cur_spd; + } + /* Slowest speed. Can't slow down anymore */ + cur_spd->idle_hwm = UINT_MAX; + cur_spd->user_lwm = -1; +#ifdef DEBUG + DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: head_spd spd %d, " + "num_spd %d\n", ddi_get_instance(cpudsp->dip), + cpupm->head_spd->speed, cpupm->num_spd)); + for (cur_spd = cpupm->head_spd; cur_spd; cur_spd = cur_spd->down_spd) { + DPRINTF(D_PM_INIT, ("cpudrv_pm_init: instance %d: speed %d, " + "down_spd spd %d, idle_hwm %d, user_lwm %d, " + "up_spd spd %d, idle_lwm %d, user_hwm %d, " + "quant_cnt %d\n", ddi_get_instance(cpudsp->dip), + cur_spd->speed, + (cur_spd->down_spd ? cur_spd->down_spd->speed : 0), + cur_spd->idle_hwm, cur_spd->user_lwm, + (cur_spd->up_spd ? cur_spd->up_spd->speed : 0), + cur_spd->idle_lwm, cur_spd->user_hwm, + cur_spd->quant_cnt)); + } +#endif /* DEBUG */ + CPUDRV_PM_FREE_SPEEDS(speeds, nspeeds); + return (DDI_SUCCESS); +} + +/* + * Free CPU power management data. + */ +static void +cpudrv_pm_free(cpudrv_devstate_t *cpudsp) +{ + cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); + cpudrv_pm_spd_t *cur_spd, *next_spd; + + cur_spd = cpupm->head_spd; + while (cur_spd) { + next_spd = cur_spd->down_spd; + kmem_free(cur_spd, sizeof (cpudrv_pm_spd_t)); + cur_spd = next_spd; + } + bzero(cpupm, sizeof (cpudrv_pm_t)); + cpudrv_pm_free_module(cpudsp); +} + +/* + * Create pm-components property. + */ +static int +cpudrv_pm_comp_create(cpudrv_devstate_t *cpudsp) +{ + cpudrv_pm_t *cpupm = &(cpudsp->cpudrv_pm); + cpudrv_pm_spd_t *cur_spd; + char **pmc; + int size; + char name[] = "NAME=CPU Speed"; + int i, j; + uint_t comp_spd; + int result = DDI_FAILURE; + + pmc = kmem_zalloc((cpupm->num_spd + 1) * sizeof (char *), KM_SLEEP); + size = CPUDRV_PM_COMP_SIZE(); + if (cpupm->num_spd > CPUDRV_PM_COMP_MAX_VAL) { + cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: " + "number of speeds exceeded limits", + ddi_get_instance(cpudsp->dip)); + kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *)); + return (result); + } + + for (i = cpupm->num_spd, cur_spd = cpupm->head_spd; i > 0; + i--, cur_spd = cur_spd->down_spd) { + cur_spd->pm_level = i; + pmc[i] = kmem_zalloc((size * sizeof (char)), KM_SLEEP); + comp_spd = CPUDRV_PM_COMP_SPEED(cpupm, cur_spd); + if (comp_spd > CPUDRV_PM_COMP_MAX_VAL) { + cmn_err(CE_WARN, "cpudrv_pm_comp_create: " + "instance %d: speed exceeded limits", + ddi_get_instance(cpudsp->dip)); + for (j = cpupm->num_spd; j >= i; j--) { + kmem_free(pmc[j], size * sizeof (char)); + } + kmem_free(pmc, (cpupm->num_spd + 1) * + sizeof (char *)); + return (result); + } + CPUDRV_PM_COMP_SPRINT(pmc[i], cpupm, cur_spd, comp_spd) + DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: " + "instance %d: pm-components power level %d string '%s'\n", + ddi_get_instance(cpudsp->dip), i, pmc[i])); + } + pmc[0] = kmem_zalloc(sizeof (name), KM_SLEEP); + (void) strcat(pmc[0], name); + DPRINTF(D_PM_COMP_CREATE, ("cpudrv_pm_comp_create: instance %d: " + "pm-components component name '%s'\n", + ddi_get_instance(cpudsp->dip), pmc[0])); + + if (ddi_prop_update_string_array(DDI_DEV_T_NONE, cpudsp->dip, + "pm-components", pmc, cpupm->num_spd + 1) == DDI_PROP_SUCCESS) { + result = DDI_SUCCESS; + } else { + cmn_err(CE_WARN, "cpudrv_pm_comp_create: instance %d: " + "can't create pm-components property", + ddi_get_instance(cpudsp->dip)); + } + + for (i = cpupm->num_spd; i > 0; i--) { + kmem_free(pmc[i], size * sizeof (char)); + } + kmem_free(pmc[0], sizeof (name)); + kmem_free(pmc, (cpupm->num_spd + 1) * sizeof (char *)); + return (result); +} + +/* + * Mark a component idle. + */ +#define CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm) { \ + if ((cpupm)->pm_busycnt >= 1) { \ + if (pm_idle_component((dip), CPUDRV_PM_COMP_NUM) == \ + DDI_SUCCESS) { \ + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \ + "instance %d: pm_idle_component called\n", \ + ddi_get_instance((dip)))); \ + (cpupm)->pm_busycnt--; \ + } else { \ + cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \ + "can't idle CPU component", \ + ddi_get_instance((dip))); \ + } \ + } \ +} + +/* + * Marks a component busy in both PM framework and driver state structure. + */ +#define CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm) { \ + if ((cpupm)->pm_busycnt < 1) { \ + if (pm_busy_component((dip), CPUDRV_PM_COMP_NUM) == \ + DDI_SUCCESS) { \ + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: " \ + "instance %d: pm_busy_component called\n", \ + ddi_get_instance((dip)))); \ + (cpupm)->pm_busycnt++; \ + } else { \ + cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: " \ + "can't busy CPU component", \ + ddi_get_instance((dip))); \ + } \ + } \ +} + +/* + * Marks a component busy and calls pm_raise_power(). + */ +#define CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, new_level) { \ + /* \ + * Mark driver and PM framework busy first so framework doesn't try \ + * to bring CPU to lower speed when we need to be at higher speed. \ + */ \ + CPUDRV_PM_MONITOR_PM_BUSY_COMP((dip), (cpupm)); \ + mutex_exit(&(cpudsp)->lock); \ + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " \ + "pm_raise_power called to %d\n", ddi_get_instance((dip)), \ + (new_level))); \ + if (pm_raise_power((dip), CPUDRV_PM_COMP_NUM, (new_level)) != \ + DDI_SUCCESS) { \ + cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't " \ + "raise CPU power level", ddi_get_instance((dip))); \ + } \ + mutex_enter(&(cpudsp)->lock); \ +} + +/* + * In order to monitor a CPU, we need to hold cpu_lock to access CPU + * statistics. Holding cpu_lock is not allowed from a callout routine. + * We dispatch a taskq to do that job. + */ +static void +cpudrv_pm_monitor_disp(void *arg) +{ + cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg; + + /* + * We are here because the last task has scheduled a timeout. + * The queue should be empty at this time. + */ + mutex_enter(&cpudsp->cpudrv_pm.timeout_lock); + if (!taskq_dispatch(cpudsp->cpudrv_pm.tq, cpudrv_pm_monitor, arg, + TQ_NOSLEEP)) { + mutex_exit(&cpudsp->cpudrv_pm.timeout_lock); + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor_disp: failed to " + "dispatch the cpudrv_pm_monitor taskq\n")); + mutex_enter(&cpudsp->lock); + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + return; + } + cpudsp->cpudrv_pm.timeout_count++; + mutex_exit(&cpudsp->cpudrv_pm.timeout_lock); +} + +/* + * Get current CPU microstate times and scale them. We should probably be + * using get_cpu_mstate() to get this data, but bugs in some of the ISRs + * have led to inflated system times and prevented CPUs from being power + * managed. We can probably safely ignore time spent in ISRs when + * determining idleness. + */ +static void +cpudrv_get_cpu_mstate(cpu_t *cpu, hrtime_t *times) +{ + int i; + + for (i = 0; i < NCMSTATES; i++) { + times[i] = cpu->cpu_acct[i]; + scalehrtime(×[i]); + } +} + +/* + * Monitors each CPU for the amount of time idle thread was running in the + * last quantum and arranges for the CPU to go to the lower or higher speed. + * Called at the time interval appropriate for the current speed. The + * time interval for normal speed is CPUDRV_PM_QUANT_CNT_NORMAL. The time + * interval for other speeds (including unknown speed) is + * CPUDRV_PM_QUANT_CNT_OTHR. + */ +static void +cpudrv_pm_monitor(void *arg) +{ + cpudrv_devstate_t *cpudsp = (cpudrv_devstate_t *)arg; + cpudrv_pm_t *cpupm; + cpudrv_pm_spd_t *cur_spd, *new_spd; + cpu_t *cp; + dev_info_t *dip; + uint_t idle_cnt, user_cnt, system_cnt; + clock_t lbolt_cnt; + hrtime_t msnsecs[NCMSTATES]; + boolean_t is_ready; + +#define GET_CPU_MSTATE_CNT(state, cnt) \ + msnsecs[state] = NSEC_TO_TICK(msnsecs[state]); \ + if (cpupm->lastquan_mstate[state] > msnsecs[state]) \ + msnsecs[state] = cpupm->lastquan_mstate[state]; \ + cnt = msnsecs[state] - cpupm->lastquan_mstate[state]; \ + cpupm->lastquan_mstate[state] = msnsecs[state] + + mutex_enter(&cpudsp->lock); + cpupm = &(cpudsp->cpudrv_pm); + if (cpupm->timeout_id == 0) { + mutex_exit(&cpudsp->lock); + goto do_return; + } + cur_spd = cpupm->cur_spd; + dip = cpudsp->dip; + + /* + * We assume that a CPU is initialized and has a valid cpu_t + * structure, if it is ready for cross calls. If this changes, + * additional checks might be needed. + * + * Additionally, for x86 platforms we cannot power manage + * any one instance, until all instances have been initialized. + * That's because we don't know what the CPU domains look like + * until all instances have been initialized. + */ + is_ready = CPUDRV_PM_XCALL_IS_READY(cpudsp->cpu_id); + if (!is_ready) { + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " + "CPU not ready for x-calls\n", ddi_get_instance(dip))); + } else if (!(is_ready = cpudrv_pm_all_instances_ready())) { + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " + "waiting for all CPUs to be ready\n", + ddi_get_instance(dip))); + } + if (!is_ready) { + /* + * Make sure that we are busy so that framework doesn't + * try to bring us down in this situation. + */ + CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + goto do_return; + } + + /* + * Make sure that we are still not at unknown power level. + */ + if (cur_spd == NULL) { + DPRINTF(D_PM_MONITOR, ("cpudrv_pm_monitor: instance %d: " + "cur_spd is unknown\n", ddi_get_instance(dip))); + CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, + cpupm->targ_spd->pm_level); + /* + * We just changed the speed. Wait till at least next + * call to this routine before proceeding ahead. + */ + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + goto do_return; + } + + mutex_enter(&cpu_lock); + if ((cp = cpu_get(cpudsp->cpu_id)) == NULL) { + mutex_exit(&cpu_lock); + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + cmn_err(CE_WARN, "cpudrv_pm_monitor: instance %d: can't get " + "cpu_t", ddi_get_instance(dip)); + goto do_return; + } + if (cp->cpu_type_info.pi_supp_freqs == NULL) + set_supp_freqs(cp, cpupm); + + cpudrv_get_cpu_mstate(cp, msnsecs); + GET_CPU_MSTATE_CNT(CMS_IDLE, idle_cnt); + GET_CPU_MSTATE_CNT(CMS_USER, user_cnt); + GET_CPU_MSTATE_CNT(CMS_SYSTEM, system_cnt); + + /* + * We can't do anything when we have just switched to a state + * because there is no valid timestamp. + */ + if (cpupm->lastquan_lbolt == 0) { + cpupm->lastquan_lbolt = lbolt; + mutex_exit(&cpu_lock); + CPUDRV_PM_MONITOR_INIT(cpudsp); + mutex_exit(&cpudsp->lock); + goto do_return; + } + + /* + * Various watermarks are based on this routine being called back + * exactly at the requested period. This is not guaranteed + * because this routine is called from a taskq that is dispatched + * from a timeout routine. Handle this by finding out how many + * ticks have elapsed since the last call (lbolt_cnt) and adjusting + * the idle_cnt based on the delay added to the requested period + * by timeout and taskq. + */ + lbolt_cnt = lbolt - cpupm->lastquan_lbolt; + cpupm->lastquan_lbolt = lbolt; + mutex_exit(&cpu_lock); + /* + * Time taken between recording the current counts and + * arranging the next call of this routine is an error in our + * calculation. We minimize the error by calling + * CPUDRV_PM_MONITOR_INIT() here instead of end of this routine. + */ + CPUDRV_PM_MONITOR_INIT(cpudsp); + DPRINTF(D_PM_MONITOR_VERBOSE, ("cpudrv_pm_monitor: instance %d: " + "idle count %d, user count %d, system count %d, pm_level %d, " + "pm_busycnt %d\n", ddi_get_instance(dip), idle_cnt, user_cnt, + system_cnt, cur_spd->pm_level, cpupm->pm_busycnt)); + +#ifdef DEBUG + /* + * Notify that timeout and taskq has caused delays and we need to + * scale our parameters accordingly. + * + * To get accurate result, don't turn on other DPRINTFs with + * the following DPRINTF. PROM calls generated by other + * DPRINTFs changes the timing. + */ + if (lbolt_cnt > cur_spd->quant_cnt) { + DPRINTF(D_PM_MONITOR_DELAY, ("cpudrv_pm_monitor: instance %d: " + "lbolt count %ld > quantum_count %u\n", + ddi_get_instance(dip), lbolt_cnt, cur_spd->quant_cnt)); + } +#endif /* DEBUG */ + + /* + * Adjust counts based on the delay added by timeout and taskq. + */ + idle_cnt = (idle_cnt * cur_spd->quant_cnt) / lbolt_cnt; + user_cnt = (user_cnt * cur_spd->quant_cnt) / lbolt_cnt; + if ((user_cnt > cur_spd->user_hwm) || (idle_cnt < cur_spd->idle_lwm && + cur_spd->idle_blwm_cnt >= cpudrv_pm_idle_blwm_cnt_max)) { + cur_spd->idle_blwm_cnt = 0; + cur_spd->idle_bhwm_cnt = 0; + /* + * In normal situation, arrange to go to next higher speed. + * If we are running in special direct pm mode, we just stay + * at the current speed. + */ + if (cur_spd == cur_spd->up_spd || cpudrv_direct_pm) { + CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); + } else { + new_spd = cur_spd->up_spd; + CPUDRV_PM_MONITOR_PM_BUSY_AND_RAISE(dip, cpudsp, cpupm, + new_spd->pm_level); + } + } else if ((user_cnt <= cur_spd->user_lwm) && + (idle_cnt >= cur_spd->idle_hwm) || !CPU_ACTIVE(cp)) { + cur_spd->idle_blwm_cnt = 0; + cur_spd->idle_bhwm_cnt = 0; + /* + * Arrange to go to next lower speed by informing our idle + * status to the power management framework. + */ + CPUDRV_PM_MONITOR_PM_IDLE_COMP(dip, cpupm); + } else { + /* + * If we are between the idle water marks and have not + * been here enough consecutive times to be considered + * busy, just increment the count and return. + */ + if ((idle_cnt < cur_spd->idle_hwm) && + (idle_cnt >= cur_spd->idle_lwm) && + (cur_spd->idle_bhwm_cnt < cpudrv_pm_idle_bhwm_cnt_max)) { + cur_spd->idle_blwm_cnt = 0; + cur_spd->idle_bhwm_cnt++; + mutex_exit(&cpudsp->lock); + goto do_return; + } + if (idle_cnt < cur_spd->idle_lwm) { + cur_spd->idle_blwm_cnt++; + cur_spd->idle_bhwm_cnt = 0; + } + /* + * Arranges to stay at the current speed. + */ + CPUDRV_PM_MONITOR_PM_BUSY_COMP(dip, cpupm); + } + mutex_exit(&cpudsp->lock); +do_return: + mutex_enter(&cpupm->timeout_lock); + ASSERT(cpupm->timeout_count > 0); + cpupm->timeout_count--; + cv_signal(&cpupm->timeout_cv); + mutex_exit(&cpupm->timeout_lock); +} |