summaryrefslogtreecommitdiff
path: root/usr/src/boot/libsa/zfs/zfsimpl.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/boot/libsa/zfs/zfsimpl.c')
-rw-r--r--usr/src/boot/libsa/zfs/zfsimpl.c3791
1 files changed, 3791 insertions, 0 deletions
diff --git a/usr/src/boot/libsa/zfs/zfsimpl.c b/usr/src/boot/libsa/zfs/zfsimpl.c
new file mode 100644
index 0000000000..e83a8a3983
--- /dev/null
+++ b/usr/src/boot/libsa/zfs/zfsimpl.c
@@ -0,0 +1,3791 @@
+/*
+ * Copyright (c) 2007 Doug Rabson
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+
+/*
+ * Stand-alone ZFS file reader.
+ */
+
+#include <stdbool.h>
+#include <sys/endian.h>
+#include <sys/stat.h>
+#include <sys/stdint.h>
+#include <sys/list.h>
+#include <sys/zfs_bootenv.h>
+#include <inttypes.h>
+
+#include "zfsimpl.h"
+#include "zfssubr.c"
+
+
+struct zfsmount {
+ const spa_t *spa;
+ objset_phys_t objset;
+ uint64_t rootobj;
+};
+
+/*
+ * The indirect_child_t represents the vdev that we will read from, when we
+ * need to read all copies of the data (e.g. for scrub or reconstruction).
+ * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
+ * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
+ * ic_vdev is a child of the mirror.
+ */
+typedef struct indirect_child {
+ void *ic_data;
+ vdev_t *ic_vdev;
+} indirect_child_t;
+
+/*
+ * The indirect_split_t represents one mapped segment of an i/o to the
+ * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
+ * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
+ * For split blocks, there will be several of these.
+ */
+typedef struct indirect_split {
+ list_node_t is_node; /* link on iv_splits */
+
+ /*
+ * is_split_offset is the offset into the i/o.
+ * This is the sum of the previous splits' is_size's.
+ */
+ uint64_t is_split_offset;
+
+ vdev_t *is_vdev; /* top-level vdev */
+ uint64_t is_target_offset; /* offset on is_vdev */
+ uint64_t is_size;
+ int is_children; /* number of entries in is_child[] */
+
+ /*
+ * is_good_child is the child that we are currently using to
+ * attempt reconstruction.
+ */
+ int is_good_child;
+
+ indirect_child_t is_child[1]; /* variable-length */
+} indirect_split_t;
+
+/*
+ * The indirect_vsd_t is associated with each i/o to the indirect vdev.
+ * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
+ */
+typedef struct indirect_vsd {
+ boolean_t iv_split_block;
+ boolean_t iv_reconstruct;
+
+ list_t iv_splits; /* list of indirect_split_t's */
+} indirect_vsd_t;
+
+/*
+ * List of all vdevs, chained through v_alllink.
+ */
+static vdev_list_t zfs_vdevs;
+
+/*
+ * List of ZFS features supported for read
+ */
+static const char *features_for_read[] = {
+ "org.illumos:lz4_compress",
+ "com.delphix:hole_birth",
+ "com.delphix:extensible_dataset",
+ "com.delphix:embedded_data",
+ "org.open-zfs:large_blocks",
+ "org.illumos:sha512",
+ "org.illumos:skein",
+ "org.illumos:edonr",
+ "org.zfsonlinux:large_dnode",
+ "com.joyent:multi_vdev_crash_dump",
+ "com.delphix:spacemap_histogram",
+ "com.delphix:zpool_checkpoint",
+ "com.delphix:spacemap_v2",
+ "com.datto:encryption",
+ "com.datto:bookmark_v2",
+ "org.zfsonlinux:allocation_classes",
+ "com.datto:resilver_defer",
+ "com.delphix:device_removal",
+ "com.delphix:obsolete_counts",
+ NULL
+};
+
+/*
+ * List of all pools, chained through spa_link.
+ */
+static spa_list_t zfs_pools;
+
+static const dnode_phys_t *dnode_cache_obj;
+static uint64_t dnode_cache_bn;
+static char *dnode_cache_buf;
+
+static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
+static int zfs_get_root(const spa_t *spa, uint64_t *objid);
+static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
+static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
+ const char *name, uint64_t integer_size, uint64_t num_integers,
+ void *value);
+static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
+ dnode_phys_t *);
+static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
+ size_t);
+static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
+ size_t);
+static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t,
+ size_t);
+
+static void
+zfs_init(void)
+{
+ STAILQ_INIT(&zfs_vdevs);
+ STAILQ_INIT(&zfs_pools);
+
+ dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
+
+ zfs_init_crc();
+}
+
+static int
+nvlist_check_features_for_read(nvlist_t *nvl)
+{
+ nvlist_t *features = NULL;
+ nvs_data_t *data;
+ nvp_header_t *nvp;
+ nv_string_t *nvp_name;
+ int rc;
+
+ /*
+ * We may have all features disabled.
+ */
+ rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
+ DATA_TYPE_NVLIST, NULL, &features, NULL);
+ switch (rc) {
+ case 0:
+ break; /* Continue with checks */
+
+ case ENOENT:
+ return (0); /* All features are disabled */
+
+ default:
+ return (rc); /* Error while reading nvlist */
+ }
+
+ data = (nvs_data_t *)features->nv_data;
+ nvp = &data->nvl_pair; /* first pair in nvlist */
+
+ while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
+ int i, found;
+
+ nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof (*nvp));
+ found = 0;
+
+ for (i = 0; features_for_read[i] != NULL; i++) {
+ if (memcmp(nvp_name->nv_data, features_for_read[i],
+ nvp_name->nv_size) == 0) {
+ found = 1;
+ break;
+ }
+ }
+
+ if (!found) {
+ printf("ZFS: unsupported feature: %.*s\n",
+ nvp_name->nv_size, nvp_name->nv_data);
+ rc = EIO;
+ }
+ nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
+ }
+ nvlist_destroy(features);
+
+ return (rc);
+}
+
+static int
+vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
+ off_t offset, size_t size)
+{
+ size_t psize;
+ int rc;
+
+ if (vdev->v_phys_read == NULL)
+ return (ENOTSUP);
+
+ if (bp) {
+ psize = BP_GET_PSIZE(bp);
+ } else {
+ psize = size;
+ }
+
+ rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
+ if (rc == 0) {
+ if (bp != NULL)
+ rc = zio_checksum_verify(vdev->v_spa, bp, buf);
+ }
+
+ return (rc);
+}
+
+static int
+vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
+{
+ if (vdev->v_phys_write == NULL)
+ return (ENOTSUP);
+
+ return (vdev->v_phys_write(vdev, offset, buf, size));
+}
+
+typedef struct remap_segment {
+ vdev_t *rs_vd;
+ uint64_t rs_offset;
+ uint64_t rs_asize;
+ uint64_t rs_split_offset;
+ list_node_t rs_node;
+} remap_segment_t;
+
+static remap_segment_t *
+rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
+{
+ remap_segment_t *rs = malloc(sizeof (remap_segment_t));
+
+ if (rs != NULL) {
+ rs->rs_vd = vd;
+ rs->rs_offset = offset;
+ rs->rs_asize = asize;
+ rs->rs_split_offset = split_offset;
+ }
+
+ return (rs);
+}
+
+vdev_indirect_mapping_t *
+vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
+ uint64_t mapping_object)
+{
+ vdev_indirect_mapping_t *vim;
+ vdev_indirect_mapping_phys_t *vim_phys;
+ int rc;
+
+ vim = calloc(1, sizeof (*vim));
+ if (vim == NULL)
+ return (NULL);
+
+ vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
+ if (vim->vim_dn == NULL) {
+ free(vim);
+ return (NULL);
+ }
+
+ rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
+ if (rc != 0) {
+ free(vim->vim_dn);
+ free(vim);
+ return (NULL);
+ }
+
+ vim->vim_spa = spa;
+ vim->vim_phys = malloc(sizeof (*vim->vim_phys));
+ if (vim->vim_phys == NULL) {
+ free(vim->vim_dn);
+ free(vim);
+ return (NULL);
+ }
+
+ vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
+ *vim->vim_phys = *vim_phys;
+
+ vim->vim_objset = os;
+ vim->vim_object = mapping_object;
+ vim->vim_entries = NULL;
+
+ vim->vim_havecounts =
+ (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
+
+ return (vim);
+}
+
+/*
+ * Compare an offset with an indirect mapping entry; there are three
+ * possible scenarios:
+ *
+ * 1. The offset is "less than" the mapping entry; meaning the
+ * offset is less than the source offset of the mapping entry. In
+ * this case, there is no overlap between the offset and the
+ * mapping entry and -1 will be returned.
+ *
+ * 2. The offset is "greater than" the mapping entry; meaning the
+ * offset is greater than the mapping entry's source offset plus
+ * the entry's size. In this case, there is no overlap between
+ * the offset and the mapping entry and 1 will be returned.
+ *
+ * NOTE: If the offset is actually equal to the entry's offset
+ * plus size, this is considered to be "greater" than the entry,
+ * and this case applies (i.e. 1 will be returned). Thus, the
+ * entry's "range" can be considered to be inclusive at its
+ * start, but exclusive at its end: e.g. [src, src + size).
+ *
+ * 3. The last case to consider is if the offset actually falls
+ * within the mapping entry's range. If this is the case, the
+ * offset is considered to be "equal to" the mapping entry and
+ * 0 will be returned.
+ *
+ * NOTE: If the offset is equal to the entry's source offset,
+ * this case applies and 0 will be returned. If the offset is
+ * equal to the entry's source plus its size, this case does
+ * *not* apply (see "NOTE" above for scenario 2), and 1 will be
+ * returned.
+ */
+static int
+dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
+{
+ const uint64_t *key = v_key;
+ const vdev_indirect_mapping_entry_phys_t *array_elem =
+ v_array_elem;
+ uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
+
+ if (*key < src_offset) {
+ return (-1);
+ } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
+ return (0);
+ } else {
+ return (1);
+ }
+}
+
+/*
+ * Return array entry.
+ */
+static vdev_indirect_mapping_entry_phys_t *
+vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
+{
+ uint64_t size;
+ off_t offset = 0;
+ int rc;
+
+ if (vim->vim_phys->vimp_num_entries == 0)
+ return (NULL);
+
+ if (vim->vim_entries == NULL) {
+ uint64_t bsize;
+
+ bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ size = vim->vim_phys->vimp_num_entries *
+ sizeof (*vim->vim_entries);
+ if (size > bsize) {
+ size = bsize / sizeof (*vim->vim_entries);
+ size *= sizeof (*vim->vim_entries);
+ }
+ vim->vim_entries = malloc(size);
+ if (vim->vim_entries == NULL)
+ return (NULL);
+ vim->vim_num_entries = size / sizeof (*vim->vim_entries);
+ offset = index * sizeof (*vim->vim_entries);
+ }
+
+ /* We have data in vim_entries */
+ if (offset == 0) {
+ if (index >= vim->vim_entry_offset &&
+ index <= vim->vim_entry_offset + vim->vim_num_entries) {
+ index -= vim->vim_entry_offset;
+ return (&vim->vim_entries[index]);
+ }
+ offset = index * sizeof (*vim->vim_entries);
+ }
+
+ vim->vim_entry_offset = index;
+ size = vim->vim_num_entries * sizeof (*vim->vim_entries);
+ rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
+ size);
+ if (rc != 0) {
+ /* Read error, invalidate vim_entries. */
+ free(vim->vim_entries);
+ vim->vim_entries = NULL;
+ return (NULL);
+ }
+ index -= vim->vim_entry_offset;
+ return (&vim->vim_entries[index]);
+}
+
+/*
+ * Returns the mapping entry for the given offset.
+ *
+ * It's possible that the given offset will not be in the mapping table
+ * (i.e. no mapping entries contain this offset), in which case, the
+ * return value value depends on the "next_if_missing" parameter.
+ *
+ * If the offset is not found in the table and "next_if_missing" is
+ * B_FALSE, then NULL will always be returned. The behavior is intended
+ * to allow consumers to get the entry corresponding to the offset
+ * parameter, iff the offset overlaps with an entry in the table.
+ *
+ * If the offset is not found in the table and "next_if_missing" is
+ * B_TRUE, then the entry nearest to the given offset will be returned,
+ * such that the entry's source offset is greater than the offset
+ * passed in (i.e. the "next" mapping entry in the table is returned, if
+ * the offset is missing from the table). If there are no entries whose
+ * source offset is greater than the passed in offset, NULL is returned.
+ */
+static vdev_indirect_mapping_entry_phys_t *
+vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
+ uint64_t offset)
+{
+ ASSERT(vim->vim_phys->vimp_num_entries > 0);
+
+ vdev_indirect_mapping_entry_phys_t *entry;
+
+ uint64_t last = vim->vim_phys->vimp_num_entries - 1;
+ uint64_t base = 0;
+
+ /*
+ * We don't define these inside of the while loop because we use
+ * their value in the case that offset isn't in the mapping.
+ */
+ uint64_t mid;
+ int result;
+
+ while (last >= base) {
+ mid = base + ((last - base) >> 1);
+
+ entry = vdev_indirect_mapping_entry(vim, mid);
+ if (entry == NULL)
+ break;
+ result = dva_mapping_overlap_compare(&offset, entry);
+
+ if (result == 0) {
+ break;
+ } else if (result < 0) {
+ last = mid - 1;
+ } else {
+ base = mid + 1;
+ }
+ }
+ return (entry);
+}
+
+/*
+ * Given an indirect vdev and an extent on that vdev, it duplicates the
+ * physical entries of the indirect mapping that correspond to the extent
+ * to a new array and returns a pointer to it. In addition, copied_entries
+ * is populated with the number of mapping entries that were duplicated.
+ *
+ * Finally, since we are doing an allocation, it is up to the caller to
+ * free the array allocated in this function.
+ */
+vdev_indirect_mapping_entry_phys_t *
+vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
+ uint64_t asize, uint64_t *copied_entries)
+{
+ vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
+ vdev_indirect_mapping_t *vim = vd->v_mapping;
+ uint64_t entries = 0;
+
+ vdev_indirect_mapping_entry_phys_t *first_mapping =
+ vdev_indirect_mapping_entry_for_offset(vim, offset);
+ ASSERT3P(first_mapping, !=, NULL);
+
+ vdev_indirect_mapping_entry_phys_t *m = first_mapping;
+ while (asize > 0) {
+ uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
+ uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
+ uint64_t inner_size = MIN(asize, size - inner_offset);
+
+ offset += inner_size;
+ asize -= inner_size;
+ entries++;
+ m++;
+ }
+
+ size_t copy_length = entries * sizeof (*first_mapping);
+ duplicate_mappings = malloc(copy_length);
+ if (duplicate_mappings != NULL)
+ bcopy(first_mapping, duplicate_mappings, copy_length);
+ else
+ entries = 0;
+
+ *copied_entries = entries;
+
+ return (duplicate_mappings);
+}
+
+static vdev_t *
+vdev_lookup_top(spa_t *spa, uint64_t vdev)
+{
+ vdev_t *rvd;
+ vdev_list_t *vlist;
+
+ vlist = &spa->spa_root_vdev->v_children;
+ STAILQ_FOREACH(rvd, vlist, v_childlink)
+ if (rvd->v_id == vdev)
+ break;
+
+ return (rvd);
+}
+
+/*
+ * This is a callback for vdev_indirect_remap() which allocates an
+ * indirect_split_t for each split segment and adds it to iv_splits.
+ */
+static void
+vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
+ uint64_t size, void *arg)
+{
+ int n = 1;
+ zio_t *zio = arg;
+ indirect_vsd_t *iv = zio->io_vsd;
+
+ if (vd->v_read == vdev_indirect_read)
+ return;
+
+ if (vd->v_read == vdev_mirror_read)
+ n = vd->v_nchildren;
+
+ indirect_split_t *is =
+ malloc(offsetof(indirect_split_t, is_child[n]));
+ if (is == NULL) {
+ zio->io_error = ENOMEM;
+ return;
+ }
+ bzero(is, offsetof(indirect_split_t, is_child[n]));
+
+ is->is_children = n;
+ is->is_size = size;
+ is->is_split_offset = split_offset;
+ is->is_target_offset = offset;
+ is->is_vdev = vd;
+
+ /*
+ * Note that we only consider multiple copies of the data for
+ * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
+ * though they use the same ops as mirror, because there's only one
+ * "good" copy under the replacing/spare.
+ */
+ if (vd->v_read == vdev_mirror_read) {
+ int i = 0;
+ vdev_t *kid;
+
+ STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
+ is->is_child[i++].ic_vdev = kid;
+ }
+ } else {
+ is->is_child[0].ic_vdev = vd;
+ }
+
+ list_insert_tail(&iv->iv_splits, is);
+}
+
+static void
+vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
+{
+ list_t stack;
+ spa_t *spa = vd->v_spa;
+ zio_t *zio = arg;
+ remap_segment_t *rs;
+
+ list_create(&stack, sizeof (remap_segment_t),
+ offsetof(remap_segment_t, rs_node));
+
+ rs = rs_alloc(vd, offset, asize, 0);
+ if (rs == NULL) {
+ printf("vdev_indirect_remap: out of memory.\n");
+ zio->io_error = ENOMEM;
+ }
+ for (; rs != NULL; rs = list_remove_head(&stack)) {
+ vdev_t *v = rs->rs_vd;
+ uint64_t num_entries = 0;
+ /* vdev_indirect_mapping_t *vim = v->v_mapping; */
+ vdev_indirect_mapping_entry_phys_t *mapping =
+ vdev_indirect_mapping_duplicate_adjacent_entries(v,
+ rs->rs_offset, rs->rs_asize, &num_entries);
+
+ if (num_entries == 0)
+ zio->io_error = ENOMEM;
+
+ for (uint64_t i = 0; i < num_entries; i++) {
+ vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
+ uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
+ uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
+ uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
+ uint64_t inner_offset = rs->rs_offset -
+ DVA_MAPPING_GET_SRC_OFFSET(m);
+ uint64_t inner_size =
+ MIN(rs->rs_asize, size - inner_offset);
+ vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
+
+ if (dst_v->v_read == vdev_indirect_read) {
+ remap_segment_t *o;
+
+ o = rs_alloc(dst_v, dst_offset + inner_offset,
+ inner_size, rs->rs_split_offset);
+ if (o == NULL) {
+ printf("vdev_indirect_remap: "
+ "out of memory.\n");
+ zio->io_error = ENOMEM;
+ break;
+ }
+
+ list_insert_head(&stack, o);
+ }
+ vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
+ dst_offset + inner_offset,
+ inner_size, arg);
+
+ /*
+ * vdev_indirect_gather_splits can have memory
+ * allocation error, we can not recover from it.
+ */
+ if (zio->io_error != 0)
+ break;
+ rs->rs_offset += inner_size;
+ rs->rs_asize -= inner_size;
+ rs->rs_split_offset += inner_size;
+ }
+
+ free(mapping);
+ free(rs);
+ if (zio->io_error != 0)
+ break;
+ }
+
+ list_destroy(&stack);
+}
+
+static void
+vdev_indirect_map_free(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+ indirect_split_t *is;
+
+ while ((is = list_head(&iv->iv_splits)) != NULL) {
+ for (int c = 0; c < is->is_children; c++) {
+ indirect_child_t *ic = &is->is_child[c];
+ free(ic->ic_data);
+ }
+ list_remove(&iv->iv_splits, is);
+ free(is);
+ }
+ free(iv);
+}
+
+static int
+vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
+ off_t offset, size_t bytes)
+{
+ zio_t zio;
+ spa_t *spa = vdev->v_spa;
+ indirect_vsd_t *iv;
+ indirect_split_t *first;
+ int rc = EIO;
+
+ iv = calloc(1, sizeof (*iv));
+ if (iv == NULL)
+ return (ENOMEM);
+
+ list_create(&iv->iv_splits,
+ sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
+
+ bzero(&zio, sizeof (zio));
+ zio.io_spa = spa;
+ zio.io_bp = (blkptr_t *)bp;
+ zio.io_data = buf;
+ zio.io_size = bytes;
+ zio.io_offset = offset;
+ zio.io_vd = vdev;
+ zio.io_vsd = iv;
+
+ if (vdev->v_mapping == NULL) {
+ vdev_indirect_config_t *vic;
+
+ vic = &vdev->vdev_indirect_config;
+ vdev->v_mapping = vdev_indirect_mapping_open(spa,
+ &spa->spa_mos, vic->vic_mapping_object);
+ }
+
+ vdev_indirect_remap(vdev, offset, bytes, &zio);
+ if (zio.io_error != 0)
+ return (zio.io_error);
+
+ first = list_head(&iv->iv_splits);
+ if (first->is_size == zio.io_size) {
+ /*
+ * This is not a split block; we are pointing to the entire
+ * data, which will checksum the same as the original data.
+ * Pass the BP down so that the child i/o can verify the
+ * checksum, and try a different location if available
+ * (e.g. on a mirror).
+ *
+ * While this special case could be handled the same as the
+ * general (split block) case, doing it this way ensures
+ * that the vast majority of blocks on indirect vdevs
+ * (which are not split) are handled identically to blocks
+ * on non-indirect vdevs. This allows us to be less strict
+ * about performance in the general (but rare) case.
+ */
+ rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
+ zio.io_data, first->is_target_offset, bytes);
+ } else {
+ iv->iv_split_block = B_TRUE;
+ /*
+ * Read one copy of each split segment, from the
+ * top-level vdev. Since we don't know the
+ * checksum of each split individually, the child
+ * zio can't ensure that we get the right data.
+ * E.g. if it's a mirror, it will just read from a
+ * random (healthy) leaf vdev. We have to verify
+ * the checksum in vdev_indirect_io_done().
+ */
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ char *ptr = zio.io_data;
+
+ rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
+ ptr + is->is_split_offset, is->is_target_offset,
+ is->is_size);
+ }
+ if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
+ rc = ECKSUM;
+ else
+ rc = 0;
+ }
+
+ vdev_indirect_map_free(&zio);
+ if (rc == 0)
+ rc = zio.io_error;
+
+ return (rc);
+}
+
+static int
+vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
+ off_t offset, size_t bytes)
+{
+
+ return (vdev_read_phys(vdev, bp, buf,
+ offset + VDEV_LABEL_START_SIZE, bytes));
+}
+
+static int
+vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
+ void *buf __unused, off_t offset __unused, size_t bytes __unused)
+{
+
+ return (ENOTSUP);
+}
+
+static int
+vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
+ off_t offset, size_t bytes)
+{
+ vdev_t *kid;
+ int rc;
+
+ rc = EIO;
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
+ if (kid->v_state != VDEV_STATE_HEALTHY)
+ continue;
+ rc = kid->v_read(kid, bp, buf, offset, bytes);
+ if (!rc)
+ return (0);
+ }
+
+ return (rc);
+}
+
+static int
+vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
+ off_t offset, size_t bytes)
+{
+ vdev_t *kid;
+
+ /*
+ * Here we should have two kids:
+ * First one which is the one we are replacing and we can trust
+ * only this one to have valid data, but it might not be present.
+ * Second one is that one we are replacing with. It is most likely
+ * healthy, but we can't trust it has needed data, so we won't use it.
+ */
+ kid = STAILQ_FIRST(&vdev->v_children);
+ if (kid == NULL)
+ return (EIO);
+ if (kid->v_state != VDEV_STATE_HEALTHY)
+ return (EIO);
+ return (kid->v_read(kid, bp, buf, offset, bytes));
+}
+
+static vdev_t *
+vdev_find(uint64_t guid)
+{
+ vdev_t *vdev;
+
+ STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
+ if (vdev->v_guid == guid)
+ return (vdev);
+
+ return (0);
+}
+
+static vdev_t *
+vdev_create(uint64_t guid, vdev_read_t *vdev_read)
+{
+ vdev_t *vdev;
+ vdev_indirect_config_t *vic;
+
+ vdev = calloc(1, sizeof (vdev_t));
+ if (vdev != NULL) {
+ STAILQ_INIT(&vdev->v_children);
+ vdev->v_guid = guid;
+ vdev->v_read = vdev_read;
+
+ /*
+ * root vdev has no read function, we use this fact to
+ * skip setting up data we do not need for root vdev.
+ * We only point root vdev from spa.
+ */
+ if (vdev_read != NULL) {
+ vic = &vdev->vdev_indirect_config;
+ vic->vic_prev_indirect_vdev = UINT64_MAX;
+ STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
+ }
+ }
+
+ return (vdev);
+}
+
+static void
+vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
+{
+ uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
+ uint64_t is_log;
+
+ is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
+ is_log = 0;
+ (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
+ &is_offline, NULL);
+ (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
+ &is_removed, NULL);
+ (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
+ &is_faulted, NULL);
+ (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
+ NULL, &is_degraded, NULL);
+ (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
+ NULL, &isnt_present, NULL);
+ (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
+ &is_log, NULL);
+
+ if (is_offline != 0)
+ vdev->v_state = VDEV_STATE_OFFLINE;
+ else if (is_removed != 0)
+ vdev->v_state = VDEV_STATE_REMOVED;
+ else if (is_faulted != 0)
+ vdev->v_state = VDEV_STATE_FAULTED;
+ else if (is_degraded != 0)
+ vdev->v_state = VDEV_STATE_DEGRADED;
+ else if (isnt_present != 0)
+ vdev->v_state = VDEV_STATE_CANT_OPEN;
+
+ vdev->v_islog = is_log != 0;
+}
+
+static int
+vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
+{
+ uint64_t id, ashift, asize, nparity;
+ const char *path;
+ const char *type;
+ int len, pathlen;
+ char *name;
+ vdev_t *vdev;
+
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
+ NULL) ||
+ nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
+ NULL, &type, &len)) {
+ return (ENOENT);
+ }
+
+ if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
+ memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
+#ifdef ZFS_TEST
+ memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
+#endif
+ memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
+ memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
+ memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
+ memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
+ printf("ZFS: can only boot from disk, mirror, raidz1, "
+ "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
+ return (EIO);
+ }
+
+ if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
+ vdev = vdev_create(guid, vdev_mirror_read);
+ else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
+ vdev = vdev_create(guid, vdev_raidz_read);
+ else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
+ vdev = vdev_create(guid, vdev_replacing_read);
+ else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
+ vdev_indirect_config_t *vic;
+
+ vdev = vdev_create(guid, vdev_indirect_read);
+ if (vdev != NULL) {
+ vdev->v_state = VDEV_STATE_HEALTHY;
+ vic = &vdev->vdev_indirect_config;
+
+ nvlist_find(nvlist,
+ ZPOOL_CONFIG_INDIRECT_OBJECT,
+ DATA_TYPE_UINT64,
+ NULL, &vic->vic_mapping_object, NULL);
+ nvlist_find(nvlist,
+ ZPOOL_CONFIG_INDIRECT_BIRTHS,
+ DATA_TYPE_UINT64,
+ NULL, &vic->vic_births_object, NULL);
+ nvlist_find(nvlist,
+ ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
+ DATA_TYPE_UINT64,
+ NULL, &vic->vic_prev_indirect_vdev, NULL);
+ }
+ } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
+ vdev = vdev_create(guid, vdev_missing_read);
+ } else {
+ vdev = vdev_create(guid, vdev_disk_read);
+ }
+
+ if (vdev == NULL)
+ return (ENOMEM);
+
+ vdev_set_initial_state(vdev, nvlist);
+ vdev->v_id = id;
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
+ DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
+ vdev->v_ashift = ashift;
+
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
+ DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
+ vdev->v_psize = asize +
+ VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
+ }
+
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
+ DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
+ vdev->v_nparity = nparity;
+
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
+ DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
+ char prefix[] = "/dev/dsk/";
+
+ len = strlen(prefix);
+ if (len < pathlen && memcmp(path, prefix, len) == 0) {
+ path += len;
+ pathlen -= len;
+ }
+ name = malloc(pathlen + 1);
+ if (name != NULL) {
+ bcopy(path, name, pathlen);
+ name[pathlen] = '\0';
+ }
+ vdev->v_name = name;
+ vdev->v_phys_path = NULL;
+ vdev->v_devid = NULL;
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_PHYS_PATH,
+ DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
+ name = malloc(pathlen + 1);
+ if (name != NULL) {
+ bcopy(path, name, pathlen);
+ name[pathlen] = '\0';
+ vdev->v_phys_path = name;
+ }
+ }
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_DEVID,
+ DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
+ name = malloc(pathlen + 1);
+ if (name != NULL) {
+ bcopy(path, name, pathlen);
+ name[pathlen] = '\0';
+ vdev->v_devid = name;
+ }
+ }
+ } else {
+ name = NULL;
+ if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
+ if (vdev->v_nparity < 1 ||
+ vdev->v_nparity > 3) {
+ printf("ZFS: invalid raidz parity: %d\n",
+ vdev->v_nparity);
+ return (EIO);
+ }
+ (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
+ vdev->v_nparity, id);
+ } else {
+ (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
+ }
+ vdev->v_name = name;
+ }
+ *vdevp = vdev;
+ return (0);
+}
+
+/*
+ * Find slot for vdev. We return either NULL to signal to use
+ * STAILQ_INSERT_HEAD, or we return link element to be used with
+ * STAILQ_INSERT_AFTER.
+ */
+static vdev_t *
+vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
+{
+ vdev_t *v, *previous;
+
+ if (STAILQ_EMPTY(&top_vdev->v_children))
+ return (NULL);
+
+ previous = NULL;
+ STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
+ if (v->v_id > vdev->v_id)
+ return (previous);
+
+ if (v->v_id == vdev->v_id)
+ return (v);
+
+ if (v->v_id < vdev->v_id)
+ previous = v;
+ }
+ return (previous);
+}
+
+static size_t
+vdev_child_count(vdev_t *vdev)
+{
+ vdev_t *v;
+ size_t count;
+
+ count = 0;
+ STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
+ count++;
+ }
+ return (count);
+}
+
+/*
+ * Insert vdev into top_vdev children list. List is ordered by v_id.
+ */
+static void
+vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
+{
+ vdev_t *previous;
+ size_t count;
+
+ /*
+ * The top level vdev can appear in random order, depending how
+ * the firmware is presenting the disk devices.
+ * However, we will insert vdev to create list ordered by v_id,
+ * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
+ * as STAILQ does not have insert before.
+ */
+ previous = vdev_find_previous(top_vdev, vdev);
+
+ if (previous == NULL) {
+ STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
+ } else if (previous->v_id == vdev->v_id) {
+ /*
+ * This vdev was configured from label config,
+ * do not insert duplicate.
+ */
+ return;
+ } else {
+ STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
+ v_childlink);
+ }
+
+ count = vdev_child_count(top_vdev);
+ if (top_vdev->v_nchildren < count)
+ top_vdev->v_nchildren = count;
+}
+
+static int
+vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
+{
+ vdev_t *top_vdev, *vdev;
+ nvlist_t **kids = NULL;
+ int rc, nkids;
+
+ /* Get top vdev. */
+ top_vdev = vdev_find(top_guid);
+ if (top_vdev == NULL) {
+ rc = vdev_init(top_guid, nvlist, &top_vdev);
+ if (rc != 0)
+ return (rc);
+ top_vdev->v_spa = spa;
+ top_vdev->v_top = top_vdev;
+ vdev_insert(spa->spa_root_vdev, top_vdev);
+ }
+
+ /* Add children if there are any. */
+ rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
+ &nkids, &kids, NULL);
+ if (rc == 0) {
+ for (int i = 0; i < nkids; i++) {
+ uint64_t guid;
+
+ rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
+ DATA_TYPE_UINT64, NULL, &guid, NULL);
+ if (rc != 0)
+ goto done;
+
+ rc = vdev_init(guid, kids[i], &vdev);
+ if (rc != 0)
+ goto done;
+
+ vdev->v_spa = spa;
+ vdev->v_top = top_vdev;
+ vdev_insert(top_vdev, vdev);
+ }
+ } else {
+ /*
+ * When there are no children, nvlist_find() does return
+ * error, reset it because leaf devices have no children.
+ */
+ rc = 0;
+ }
+done:
+ if (kids != NULL) {
+ for (int i = 0; i < nkids; i++)
+ nvlist_destroy(kids[i]);
+ free(kids);
+ }
+
+ return (rc);
+}
+
+static int
+vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
+{
+ uint64_t pool_guid, top_guid;
+ nvlist_t *vdevs;
+ int rc;
+
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
+ NULL, &pool_guid, NULL) ||
+ nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
+ NULL, &top_guid, NULL) ||
+ nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
+ NULL, &vdevs, NULL)) {
+ printf("ZFS: can't find vdev details\n");
+ return (ENOENT);
+ }
+
+ rc = vdev_from_nvlist(spa, top_guid, vdevs);
+ nvlist_destroy(vdevs);
+ return (rc);
+}
+
+static void
+vdev_set_state(vdev_t *vdev)
+{
+ vdev_t *kid;
+ int good_kids;
+ int bad_kids;
+
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
+ vdev_set_state(kid);
+ }
+
+ /*
+ * A mirror or raidz is healthy if all its kids are healthy. A
+ * mirror is degraded if any of its kids is healthy; a raidz
+ * is degraded if at most nparity kids are offline.
+ */
+ if (STAILQ_FIRST(&vdev->v_children)) {
+ good_kids = 0;
+ bad_kids = 0;
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
+ if (kid->v_state == VDEV_STATE_HEALTHY)
+ good_kids++;
+ else
+ bad_kids++;
+ }
+ if (bad_kids == 0) {
+ vdev->v_state = VDEV_STATE_HEALTHY;
+ } else {
+ if (vdev->v_read == vdev_mirror_read) {
+ if (good_kids) {
+ vdev->v_state = VDEV_STATE_DEGRADED;
+ } else {
+ vdev->v_state = VDEV_STATE_OFFLINE;
+ }
+ } else if (vdev->v_read == vdev_raidz_read) {
+ if (bad_kids > vdev->v_nparity) {
+ vdev->v_state = VDEV_STATE_OFFLINE;
+ } else {
+ vdev->v_state = VDEV_STATE_DEGRADED;
+ }
+ }
+ }
+ }
+}
+
+static int
+vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
+{
+ vdev_t *vdev;
+ nvlist_t **kids = NULL;
+ int rc, nkids;
+
+ /* Update top vdev. */
+ vdev = vdev_find(top_guid);
+ if (vdev != NULL)
+ vdev_set_initial_state(vdev, nvlist);
+
+ /* Update children if there are any. */
+ rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
+ &nkids, &kids, NULL);
+ if (rc == 0) {
+ for (int i = 0; i < nkids; i++) {
+ uint64_t guid;
+
+ rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
+ DATA_TYPE_UINT64, NULL, &guid, NULL);
+ if (rc != 0)
+ break;
+
+ vdev = vdev_find(guid);
+ if (vdev != NULL)
+ vdev_set_initial_state(vdev, kids[i]);
+ }
+ } else {
+ rc = 0;
+ }
+ if (kids != NULL) {
+ for (int i = 0; i < nkids; i++)
+ nvlist_destroy(kids[i]);
+ free(kids);
+ }
+
+ return (rc);
+}
+
+static int
+vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
+{
+ uint64_t pool_guid, vdev_children;
+ nvlist_t *vdevs = NULL, **kids = NULL;
+ int rc, nkids;
+
+ if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
+ NULL, &pool_guid, NULL) ||
+ nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
+ NULL, &vdev_children, NULL) ||
+ nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
+ NULL, &vdevs, NULL)) {
+ printf("ZFS: can't find vdev details\n");
+ return (ENOENT);
+ }
+
+ /* Wrong guid?! */
+ if (spa->spa_guid != pool_guid) {
+ nvlist_destroy(vdevs);
+ return (EINVAL);
+ }
+
+ spa->spa_root_vdev->v_nchildren = vdev_children;
+
+ rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
+ &nkids, &kids, NULL);
+ nvlist_destroy(vdevs);
+
+ /*
+ * MOS config has at least one child for root vdev.
+ */
+ if (rc != 0)
+ return (rc);
+
+ for (int i = 0; i < nkids; i++) {
+ uint64_t guid;
+ vdev_t *vdev;
+
+ rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
+ NULL, &guid, NULL);
+ if (rc != 0)
+ break;
+ vdev = vdev_find(guid);
+ /*
+ * Top level vdev is missing, create it.
+ */
+ if (vdev == NULL)
+ rc = vdev_from_nvlist(spa, guid, kids[i]);
+ else
+ rc = vdev_update_from_nvlist(guid, kids[i]);
+ if (rc != 0)
+ break;
+ }
+ if (kids != NULL) {
+ for (int i = 0; i < nkids; i++)
+ nvlist_destroy(kids[i]);
+ free(kids);
+ }
+
+ /*
+ * Re-evaluate top-level vdev state.
+ */
+ vdev_set_state(spa->spa_root_vdev);
+
+ return (rc);
+}
+
+static spa_t *
+spa_find_by_guid(uint64_t guid)
+{
+ spa_t *spa;
+
+ STAILQ_FOREACH(spa, &zfs_pools, spa_link)
+ if (spa->spa_guid == guid)
+ return (spa);
+
+ return (NULL);
+}
+
+static spa_t *
+spa_find_by_name(const char *name)
+{
+ spa_t *spa;
+
+ STAILQ_FOREACH(spa, &zfs_pools, spa_link)
+ if (strcmp(spa->spa_name, name) == 0)
+ return (spa);
+
+ return (NULL);
+}
+
+static spa_t *
+spa_find_by_dev(struct zfs_devdesc *dev)
+{
+
+ if (dev->dd.d_dev->dv_type != DEVT_ZFS)
+ return (NULL);
+
+ if (dev->pool_guid == 0)
+ return (STAILQ_FIRST(&zfs_pools));
+
+ return (spa_find_by_guid(dev->pool_guid));
+}
+
+static spa_t *
+spa_create(uint64_t guid, const char *name)
+{
+ spa_t *spa;
+
+ if ((spa = calloc(1, sizeof (spa_t))) == NULL)
+ return (NULL);
+ if ((spa->spa_name = strdup(name)) == NULL) {
+ free(spa);
+ return (NULL);
+ }
+ spa->spa_guid = guid;
+ spa->spa_root_vdev = vdev_create(guid, NULL);
+ if (spa->spa_root_vdev == NULL) {
+ free(spa->spa_name);
+ free(spa);
+ return (NULL);
+ }
+ spa->spa_root_vdev->v_name = strdup("root");
+ STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
+
+ return (spa);
+}
+
+static const char *
+state_name(vdev_state_t state)
+{
+ static const char *names[] = {
+ "UNKNOWN",
+ "CLOSED",
+ "OFFLINE",
+ "REMOVED",
+ "CANT_OPEN",
+ "FAULTED",
+ "DEGRADED",
+ "ONLINE"
+ };
+ return (names[state]);
+}
+
+static int
+pager_printf(const char *fmt, ...)
+{
+ char line[80];
+ va_list args;
+
+ va_start(args, fmt);
+ vsnprintf(line, sizeof (line), fmt, args);
+ va_end(args);
+ return (pager_output(line));
+}
+
+#define STATUS_FORMAT " %s %s\n"
+
+static int
+print_state(int indent, const char *name, vdev_state_t state)
+{
+ int i;
+ char buf[512];
+
+ buf[0] = 0;
+ for (i = 0; i < indent; i++)
+ strcat(buf, " ");
+ strcat(buf, name);
+ return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
+}
+
+static int
+vdev_status(vdev_t *vdev, int indent)
+{
+ vdev_t *kid;
+ int ret;
+
+ if (vdev->v_islog) {
+ (void) pager_output(" logs\n");
+ indent++;
+ }
+
+ ret = print_state(indent, vdev->v_name, vdev->v_state);
+ if (ret != 0)
+ return (ret);
+
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
+ ret = vdev_status(kid, indent + 1);
+ if (ret != 0)
+ return (ret);
+ }
+ return (ret);
+}
+
+static int
+spa_status(spa_t *spa)
+{
+ static char bootfs[ZFS_MAXNAMELEN];
+ uint64_t rootid;
+ vdev_list_t *vlist;
+ vdev_t *vdev;
+ int good_kids, bad_kids, degraded_kids, ret;
+ vdev_state_t state;
+
+ ret = pager_printf(" pool: %s\n", spa->spa_name);
+ if (ret != 0)
+ return (ret);
+
+ if (zfs_get_root(spa, &rootid) == 0 &&
+ zfs_rlookup(spa, rootid, bootfs) == 0) {
+ if (bootfs[0] == '\0')
+ ret = pager_printf("bootfs: %s\n", spa->spa_name);
+ else
+ ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
+ bootfs);
+ if (ret != 0)
+ return (ret);
+ }
+ ret = pager_printf("config:\n\n");
+ if (ret != 0)
+ return (ret);
+ ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
+ if (ret != 0)
+ return (ret);
+
+ good_kids = 0;
+ degraded_kids = 0;
+ bad_kids = 0;
+ vlist = &spa->spa_root_vdev->v_children;
+ STAILQ_FOREACH(vdev, vlist, v_childlink) {
+ if (vdev->v_state == VDEV_STATE_HEALTHY)
+ good_kids++;
+ else if (vdev->v_state == VDEV_STATE_DEGRADED)
+ degraded_kids++;
+ else
+ bad_kids++;
+ }
+
+ state = VDEV_STATE_CLOSED;
+ if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
+ state = VDEV_STATE_HEALTHY;
+ else if ((good_kids + degraded_kids) > 0)
+ state = VDEV_STATE_DEGRADED;
+
+ ret = print_state(0, spa->spa_name, state);
+ if (ret != 0)
+ return (ret);
+
+ STAILQ_FOREACH(vdev, vlist, v_childlink) {
+ ret = vdev_status(vdev, 1);
+ if (ret != 0)
+ return (ret);
+ }
+ return (ret);
+}
+
+int
+spa_all_status(void)
+{
+ spa_t *spa;
+ int first = 1, ret = 0;
+
+ STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
+ if (!first) {
+ ret = pager_printf("\n");
+ if (ret != 0)
+ return (ret);
+ }
+ first = 0;
+ ret = spa_status(spa);
+ if (ret != 0)
+ return (ret);
+ }
+ return (ret);
+}
+
+uint64_t
+vdev_label_offset(uint64_t psize, int l, uint64_t offset)
+{
+ uint64_t label_offset;
+
+ if (l < VDEV_LABELS / 2)
+ label_offset = 0;
+ else
+ label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
+
+ return (offset + l * sizeof (vdev_label_t) + label_offset);
+}
+
+static int
+vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
+{
+ unsigned int seq1 = 0;
+ unsigned int seq2 = 0;
+ int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
+
+ if (cmp != 0)
+ return (cmp);
+
+ cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
+ if (cmp != 0)
+ return (cmp);
+
+ if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
+ seq1 = MMP_SEQ(ub1);
+
+ if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
+ seq2 = MMP_SEQ(ub2);
+
+ return (AVL_CMP(seq1, seq2));
+}
+
+static int
+uberblock_verify(uberblock_t *ub)
+{
+ if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
+ byteswap_uint64_array(ub, sizeof (uberblock_t));
+ }
+
+ if (ub->ub_magic != UBERBLOCK_MAGIC ||
+ !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
+ return (EINVAL);
+
+ return (0);
+}
+
+static int
+vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
+ size_t size)
+{
+ blkptr_t bp;
+ off_t off;
+
+ off = vdev_label_offset(vd->v_psize, l, offset);
+
+ BP_ZERO(&bp);
+ BP_SET_LSIZE(&bp, size);
+ BP_SET_PSIZE(&bp, size);
+ BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
+ BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
+ DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
+ ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
+
+ return (vdev_read_phys(vd, &bp, buf, off, size));
+}
+
+/*
+ * We do need to be sure we write to correct location.
+ * Our vdev label does consist of 4 fields:
+ * pad1 (8k), reserved.
+ * bootenv (8k), checksummed, previously reserved, may contain garbage.
+ * vdev_phys (112k), checksummed
+ * uberblock ring (128k), checksummed.
+ *
+ * Since bootenv area may contain garbage, we can not reliably read it, as
+ * we can get checksum errors.
+ * Next best thing is vdev_phys - it is just after bootenv. It still may
+ * be corrupted, but in such case we will miss this one write.
+ */
+static int
+vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
+{
+ uint64_t off, o_phys;
+ void *buf;
+ size_t size = VDEV_PHYS_SIZE;
+ int rc;
+
+ o_phys = offsetof(vdev_label_t, vl_vdev_phys);
+ off = vdev_label_offset(vd->v_psize, l, o_phys);
+
+ /* off should be 8K from bootenv */
+ if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
+ return (EINVAL);
+
+ buf = malloc(size);
+ if (buf == NULL)
+ return (ENOMEM);
+
+ /* Read vdev_phys */
+ rc = vdev_label_read(vd, l, buf, o_phys, size);
+ free(buf);
+ return (rc);
+}
+
+static int
+vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
+{
+ zio_checksum_info_t *ci;
+ zio_cksum_t cksum;
+ off_t off;
+ size_t size = VDEV_PAD_SIZE;
+ int rc;
+
+ if (vd->v_phys_write == NULL)
+ return (ENOTSUP);
+
+ off = vdev_label_offset(vd->v_psize, l, offset);
+
+ rc = vdev_label_write_validate(vd, l, offset);
+ if (rc != 0) {
+ return (rc);
+ }
+
+ ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
+ be->vbe_zbt.zec_magic = ZEC_MAGIC;
+ zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
+ ci->ci_func[0](be, size, NULL, &cksum);
+ be->vbe_zbt.zec_cksum = cksum;
+
+ return (vdev_write_phys(vd, be, off, size));
+}
+
+static int
+vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
+{
+ vdev_t *kid;
+ int rv = 0, rc;
+
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
+ if (kid->v_state != VDEV_STATE_HEALTHY)
+ continue;
+ rc = vdev_write_bootenv_impl(kid, be);
+ if (rv == 0)
+ rv = rc;
+ }
+
+ /*
+ * Non-leaf vdevs do not have v_phys_write.
+ */
+ if (vdev->v_phys_write == NULL)
+ return (rv);
+
+ for (int l = 0; l < VDEV_LABELS; l++) {
+ rc = vdev_label_write(vdev, l, be,
+ offsetof(vdev_label_t, vl_be));
+ if (rc != 0) {
+ printf("failed to write bootenv to %s label %d: %d\n",
+ vdev->v_name ? vdev->v_name : "unknown", l, rc);
+ rv = rc;
+ }
+ }
+ return (rv);
+}
+
+int
+vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
+{
+ vdev_boot_envblock_t *be;
+ nvlist_t nv, *nvp;
+ uint64_t version;
+ int rv;
+
+ if (nvl->nv_size > sizeof (be->vbe_bootenv))
+ return (E2BIG);
+
+ version = VB_RAW;
+ nvp = vdev_read_bootenv(vdev);
+ if (nvp != NULL) {
+ nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
+ &version, NULL);
+ nvlist_destroy(nvp);
+ }
+
+ be = calloc(1, sizeof (*be));
+ if (be == NULL)
+ return (ENOMEM);
+
+ be->vbe_version = version;
+ switch (version) {
+ case VB_RAW:
+ /*
+ * If there is no envmap, we will just wipe bootenv.
+ */
+ nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
+ be->vbe_bootenv, NULL);
+ rv = 0;
+ break;
+
+ case VB_NVLIST:
+ nv.nv_header = nvl->nv_header;
+ nv.nv_asize = nvl->nv_asize;
+ nv.nv_size = nvl->nv_size;
+
+ bcopy(&nv.nv_header, be->vbe_bootenv, sizeof (nv.nv_header));
+ nv.nv_data = (uint8_t *)be->vbe_bootenv + sizeof (nvs_header_t);
+ bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
+ rv = nvlist_export(&nv);
+ break;
+
+ default:
+ rv = EINVAL;
+ break;
+ }
+
+ if (rv == 0) {
+ be->vbe_version = htobe64(be->vbe_version);
+ rv = vdev_write_bootenv_impl(vdev, be);
+ }
+ free(be);
+ return (rv);
+}
+
+/*
+ * Read the bootenv area from pool label, return the nvlist from it.
+ * We return from first successful read.
+ */
+nvlist_t *
+vdev_read_bootenv(vdev_t *vdev)
+{
+ vdev_t *kid;
+ nvlist_t *benv;
+ vdev_boot_envblock_t *be;
+ char *command;
+ bool ok;
+ int rv;
+
+ STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
+ if (kid->v_state != VDEV_STATE_HEALTHY)
+ continue;
+
+ benv = vdev_read_bootenv(kid);
+ if (benv != NULL)
+ return (benv);
+ }
+
+ be = malloc(sizeof (*be));
+ if (be == NULL)
+ return (NULL);
+
+ rv = 0;
+ for (int l = 0; l < VDEV_LABELS; l++) {
+ rv = vdev_label_read(vdev, l, be,
+ offsetof(vdev_label_t, vl_be),
+ sizeof (*be));
+ if (rv == 0)
+ break;
+ }
+ if (rv != 0) {
+ free(be);
+ return (NULL);
+ }
+
+ be->vbe_version = be64toh(be->vbe_version);
+ switch (be->vbe_version) {
+ case VB_RAW:
+ /*
+ * if we have textual data in vbe_bootenv, create nvlist
+ * with key "envmap".
+ */
+ benv = nvlist_create(NV_UNIQUE_NAME);
+ if (benv != NULL) {
+ if (*be->vbe_bootenv == '\0') {
+ nvlist_add_uint64(benv, BOOTENV_VERSION,
+ VB_NVLIST);
+ break;
+ }
+ nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
+ be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
+ nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
+ }
+ break;
+
+ case VB_NVLIST:
+ benv = nvlist_import(be->vbe_bootenv, sizeof (be->vbe_bootenv));
+ break;
+
+ default:
+ command = (char *)be;
+ ok = false;
+
+ /* Check for legacy zfsbootcfg command string */
+ for (int i = 0; command[i] != '\0'; i++) {
+ if (iscntrl(command[i])) {
+ ok = false;
+ break;
+ } else {
+ ok = true;
+ }
+ }
+ benv = nvlist_create(NV_UNIQUE_NAME);
+ if (benv != NULL) {
+ if (ok)
+ nvlist_add_string(benv, FREEBSD_BOOTONCE,
+ command);
+ else
+ nvlist_add_uint64(benv, BOOTENV_VERSION,
+ VB_NVLIST);
+ }
+ break;
+ }
+ free(be);
+ return (benv);
+}
+
+static uint64_t
+vdev_get_label_asize(nvlist_t *nvl)
+{
+ nvlist_t *vdevs;
+ uint64_t asize;
+ const char *type;
+ int len;
+
+ asize = 0;
+ /* Get vdev tree */
+ if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
+ NULL, &vdevs, NULL) != 0)
+ return (asize);
+
+ /*
+ * Get vdev type. We will calculate asize for raidz, mirror and disk.
+ * For raidz, the asize is raw size of all children.
+ */
+ if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
+ NULL, &type, &len) != 0)
+ goto done;
+
+ if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
+ memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
+ memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
+ goto done;
+
+ if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
+ NULL, &asize, NULL) != 0)
+ goto done;
+
+ if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
+ nvlist_t **kids;
+ int nkids;
+
+ if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
+ DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
+ asize = 0;
+ goto done;
+ }
+
+ asize /= nkids;
+ for (int i = 0; i < nkids; i++)
+ nvlist_destroy(kids[i]);
+ free(kids);
+ }
+
+ asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
+done:
+ return (asize);
+}
+
+static nvlist_t *
+vdev_label_read_config(vdev_t *vd, uint64_t txg)
+{
+ vdev_phys_t *label;
+ uint64_t best_txg = 0;
+ uint64_t label_txg = 0;
+ uint64_t asize;
+ nvlist_t *nvl = NULL, *tmp;
+ int error;
+
+ label = malloc(sizeof (vdev_phys_t));
+ if (label == NULL)
+ return (NULL);
+
+ for (int l = 0; l < VDEV_LABELS; l++) {
+ if (vdev_label_read(vd, l, label,
+ offsetof(vdev_label_t, vl_vdev_phys),
+ sizeof (vdev_phys_t)))
+ continue;
+
+ tmp = nvlist_import(label->vp_nvlist,
+ sizeof (label->vp_nvlist));
+ if (tmp == NULL)
+ continue;
+
+ error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
+ DATA_TYPE_UINT64, NULL, &label_txg, NULL);
+ if (error != 0 || label_txg == 0) {
+ nvlist_destroy(nvl);
+ nvl = tmp;
+ goto done;
+ }
+
+ if (label_txg <= txg && label_txg > best_txg) {
+ best_txg = label_txg;
+ nvlist_destroy(nvl);
+ nvl = tmp;
+ tmp = NULL;
+
+ /*
+ * Use asize from pool config. We need this
+ * because we can get bad value from BIOS.
+ */
+ asize = vdev_get_label_asize(nvl);
+ if (asize != 0) {
+ vd->v_psize = asize;
+ }
+ }
+ nvlist_destroy(tmp);
+ }
+
+ if (best_txg == 0) {
+ nvlist_destroy(nvl);
+ nvl = NULL;
+ }
+done:
+ free(label);
+ return (nvl);
+}
+
+static void
+vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
+{
+ uberblock_t *buf;
+
+ buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
+ if (buf == NULL)
+ return;
+
+ for (int l = 0; l < VDEV_LABELS; l++) {
+ for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
+ if (vdev_label_read(vd, l, buf,
+ VDEV_UBERBLOCK_OFFSET(vd, n),
+ VDEV_UBERBLOCK_SIZE(vd)))
+ continue;
+ if (uberblock_verify(buf) != 0)
+ continue;
+
+ if (vdev_uberblock_compare(buf, ub) > 0)
+ *ub = *buf;
+ }
+ }
+ free(buf);
+}
+
+static int
+vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
+ spa_t **spap)
+{
+ vdev_t vtmp;
+ spa_t *spa;
+ vdev_t *vdev;
+ nvlist_t *nvl;
+ uint64_t val;
+ uint64_t guid, vdev_children;
+ uint64_t pool_txg, pool_guid;
+ const char *pool_name;
+ int rc, namelen;
+
+ /*
+ * Load the vdev label and figure out which
+ * uberblock is most current.
+ */
+ memset(&vtmp, 0, sizeof (vtmp));
+ vtmp.v_phys_read = _read;
+ vtmp.v_phys_write = _write;
+ vtmp.v_priv = priv;
+ vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
+ (uint64_t)sizeof (vdev_label_t));
+
+ /* Test for minimum device size. */
+ if (vtmp.v_psize < SPA_MINDEVSIZE)
+ return (EIO);
+
+ nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
+ if (nvl == NULL)
+ return (EIO);
+
+ if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
+ NULL, &val, NULL) != 0) {
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ if (!SPA_VERSION_IS_SUPPORTED(val)) {
+ printf("ZFS: unsupported ZFS version %u (should be %u)\n",
+ (unsigned)val, (unsigned)SPA_VERSION);
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ /* Check ZFS features for read */
+ rc = nvlist_check_features_for_read(nvl);
+ if (rc != 0) {
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
+ NULL, &val, NULL) != 0) {
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ if (val == POOL_STATE_DESTROYED) {
+ /* We don't boot only from destroyed pools. */
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
+ NULL, &pool_txg, NULL) != 0 ||
+ nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
+ NULL, &pool_guid, NULL) != 0 ||
+ nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
+ NULL, &pool_name, &namelen) != 0) {
+ /*
+ * Cache and spare devices end up here - just ignore
+ * them.
+ */
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ /*
+ * Create the pool if this is the first time we've seen it.
+ */
+ spa = spa_find_by_guid(pool_guid);
+ if (spa == NULL) {
+ char *name;
+
+ nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN,
+ DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
+ name = malloc(namelen + 1);
+ if (name == NULL) {
+ nvlist_destroy(nvl);
+ return (ENOMEM);
+ }
+ bcopy(pool_name, name, namelen);
+ name[namelen] = '\0';
+ spa = spa_create(pool_guid, name);
+ free(name);
+ if (spa == NULL) {
+ nvlist_destroy(nvl);
+ return (ENOMEM);
+ }
+ spa->spa_root_vdev->v_nchildren = vdev_children;
+ }
+ if (pool_txg > spa->spa_txg)
+ spa->spa_txg = pool_txg;
+
+ /*
+ * Get the vdev tree and create our in-core copy of it.
+ * If we already have a vdev with this guid, this must
+ * be some kind of alias (overlapping slices, dangerously dedicated
+ * disks etc).
+ */
+ if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
+ NULL, &guid, NULL) != 0) {
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+ vdev = vdev_find(guid);
+ /* Has this vdev already been inited? */
+ if (vdev && vdev->v_phys_read) {
+ nvlist_destroy(nvl);
+ return (EIO);
+ }
+
+ rc = vdev_init_from_label(spa, nvl);
+ nvlist_destroy(nvl);
+ if (rc != 0)
+ return (rc);
+
+ /*
+ * We should already have created an incomplete vdev for this
+ * vdev. Find it and initialise it with our read proc.
+ */
+ vdev = vdev_find(guid);
+ if (vdev != NULL) {
+ vdev->v_phys_read = _read;
+ vdev->v_phys_write = _write;
+ vdev->v_priv = priv;
+ vdev->v_psize = vtmp.v_psize;
+ /*
+ * If no other state is set, mark vdev healthy.
+ */
+ if (vdev->v_state == VDEV_STATE_UNKNOWN)
+ vdev->v_state = VDEV_STATE_HEALTHY;
+ } else {
+ printf("ZFS: inconsistent nvlist contents\n");
+ return (EIO);
+ }
+
+ if (vdev->v_islog)
+ spa->spa_with_log = vdev->v_islog;
+
+ /* Record boot vdev for spa. */
+ if (spa->spa_boot_vdev == NULL)
+ spa->spa_boot_vdev = vdev;
+
+ /*
+ * Re-evaluate top-level vdev state.
+ */
+ vdev_set_state(vdev->v_top);
+
+ /*
+ * Ok, we are happy with the pool so far. Lets find
+ * the best uberblock and then we can actually access
+ * the contents of the pool.
+ */
+ vdev_uberblock_load(vdev, &spa->spa_uberblock);
+
+ if (spap != NULL)
+ *spap = spa;
+ return (0);
+}
+
+static int
+ilog2(int n)
+{
+ int v;
+
+ for (v = 0; v < 32; v++)
+ if (n == (1 << v))
+ return (v);
+ return (-1);
+}
+
+static int
+zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
+{
+ blkptr_t gbh_bp;
+ zio_gbh_phys_t zio_gb;
+ char *pbuf;
+ int i;
+
+ /* Artificial BP for gang block header. */
+ gbh_bp = *bp;
+ BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
+ BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
+ BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
+ BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
+ for (i = 0; i < SPA_DVAS_PER_BP; i++)
+ DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
+
+ /* Read gang header block using the artificial BP. */
+ if (zio_read(spa, &gbh_bp, &zio_gb))
+ return (EIO);
+
+ pbuf = buf;
+ for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
+ blkptr_t *gbp = &zio_gb.zg_blkptr[i];
+
+ if (BP_IS_HOLE(gbp))
+ continue;
+ if (zio_read(spa, gbp, pbuf))
+ return (EIO);
+ pbuf += BP_GET_PSIZE(gbp);
+ }
+
+ if (zio_checksum_verify(spa, bp, buf))
+ return (EIO);
+ return (0);
+}
+
+static int
+zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
+{
+ int cpfunc = BP_GET_COMPRESS(bp);
+ uint64_t align, size;
+ void *pbuf;
+ int i, error;
+
+ /*
+ * Process data embedded in block pointer
+ */
+ if (BP_IS_EMBEDDED(bp)) {
+ ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
+
+ size = BPE_GET_PSIZE(bp);
+ ASSERT(size <= BPE_PAYLOAD_SIZE);
+
+ if (cpfunc != ZIO_COMPRESS_OFF)
+ pbuf = malloc(size);
+ else
+ pbuf = buf;
+
+ if (pbuf == NULL)
+ return (ENOMEM);
+
+ decode_embedded_bp_compressed(bp, pbuf);
+ error = 0;
+
+ if (cpfunc != ZIO_COMPRESS_OFF) {
+ error = zio_decompress_data(cpfunc, pbuf,
+ size, buf, BP_GET_LSIZE(bp));
+ free(pbuf);
+ }
+ if (error != 0)
+ printf("ZFS: i/o error - unable to decompress "
+ "block pointer data, error %d\n", error);
+ return (error);
+ }
+
+ error = EIO;
+
+ for (i = 0; i < SPA_DVAS_PER_BP; i++) {
+ const dva_t *dva = &bp->blk_dva[i];
+ vdev_t *vdev;
+ vdev_list_t *vlist;
+ uint64_t vdevid;
+ off_t offset;
+
+ if (!dva->dva_word[0] && !dva->dva_word[1])
+ continue;
+
+ vdevid = DVA_GET_VDEV(dva);
+ offset = DVA_GET_OFFSET(dva);
+ vlist = &spa->spa_root_vdev->v_children;
+ STAILQ_FOREACH(vdev, vlist, v_childlink) {
+ if (vdev->v_id == vdevid)
+ break;
+ }
+ if (!vdev || !vdev->v_read)
+ continue;
+
+ size = BP_GET_PSIZE(bp);
+ if (vdev->v_read == vdev_raidz_read) {
+ align = 1ULL << vdev->v_ashift;
+ if (P2PHASE(size, align) != 0)
+ size = P2ROUNDUP(size, align);
+ }
+ if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
+ pbuf = malloc(size);
+ else
+ pbuf = buf;
+
+ if (pbuf == NULL) {
+ error = ENOMEM;
+ break;
+ }
+
+ if (DVA_GET_GANG(dva))
+ error = zio_read_gang(spa, bp, pbuf);
+ else
+ error = vdev->v_read(vdev, bp, pbuf, offset, size);
+ if (error == 0) {
+ if (cpfunc != ZIO_COMPRESS_OFF)
+ error = zio_decompress_data(cpfunc, pbuf,
+ BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
+ else if (size != BP_GET_PSIZE(bp))
+ bcopy(pbuf, buf, BP_GET_PSIZE(bp));
+ }
+ if (buf != pbuf)
+ free(pbuf);
+ if (error == 0)
+ break;
+ }
+ if (error != 0)
+ printf("ZFS: i/o error - all block copies unavailable\n");
+
+ return (error);
+}
+
+static int
+dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
+ void *buf, size_t buflen)
+{
+ int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
+ int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ int nlevels = dnode->dn_nlevels;
+ int i, rc;
+
+ if (bsize > SPA_MAXBLOCKSIZE) {
+ printf("ZFS: I/O error - blocks larger than %llu are not "
+ "supported\n", SPA_MAXBLOCKSIZE);
+ return (EIO);
+ }
+
+ /*
+ * Note: bsize may not be a power of two here so we need to do an
+ * actual divide rather than a bitshift.
+ */
+ while (buflen > 0) {
+ uint64_t bn = offset / bsize;
+ int boff = offset % bsize;
+ int ibn;
+ const blkptr_t *indbp;
+ blkptr_t bp;
+
+ if (bn > dnode->dn_maxblkid) {
+ printf("warning: zfs bug: bn %llx > dn_maxblkid %llx\n",
+ (unsigned long long)bn,
+ (unsigned long long)dnode->dn_maxblkid);
+ /*
+ * zfs bug, will not return error
+ * return (EIO);
+ */
+ }
+
+ if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
+ goto cached;
+
+ indbp = dnode->dn_blkptr;
+ for (i = 0; i < nlevels; i++) {
+ /*
+ * Copy the bp from the indirect array so that
+ * we can re-use the scratch buffer for multi-level
+ * objects.
+ */
+ ibn = bn >> ((nlevels - i - 1) * ibshift);
+ ibn &= ((1 << ibshift) - 1);
+ bp = indbp[ibn];
+ if (BP_IS_HOLE(&bp)) {
+ memset(dnode_cache_buf, 0, bsize);
+ break;
+ }
+ rc = zio_read(spa, &bp, dnode_cache_buf);
+ if (rc)
+ return (rc);
+ indbp = (const blkptr_t *) dnode_cache_buf;
+ }
+ dnode_cache_obj = dnode;
+ dnode_cache_bn = bn;
+ cached:
+
+ /*
+ * The buffer contains our data block. Copy what we
+ * need from it and loop.
+ */
+ i = bsize - boff;
+ if (i > buflen) i = buflen;
+ memcpy(buf, &dnode_cache_buf[boff], i);
+ buf = ((char *)buf) + i;
+ offset += i;
+ buflen -= i;
+ }
+
+ return (0);
+}
+
+/*
+ * Lookup a value in a microzap directory.
+ */
+static int
+mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
+ uint64_t *value)
+{
+ const mzap_ent_phys_t *mze;
+ int chunks, i;
+
+ /*
+ * Microzap objects use exactly one block. Read the whole
+ * thing.
+ */
+ chunks = size / MZAP_ENT_LEN - 1;
+ for (i = 0; i < chunks; i++) {
+ mze = &mz->mz_chunk[i];
+ if (strcmp(mze->mze_name, name) == 0) {
+ *value = mze->mze_value;
+ return (0);
+ }
+ }
+
+ return (ENOENT);
+}
+
+/*
+ * Compare a name with a zap leaf entry. Return non-zero if the name
+ * matches.
+ */
+static int
+fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
+ const char *name)
+{
+ size_t namelen;
+ const zap_leaf_chunk_t *nc;
+ const char *p;
+
+ namelen = zc->l_entry.le_name_numints;
+
+ nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
+ p = name;
+ while (namelen > 0) {
+ size_t len;
+
+ len = namelen;
+ if (len > ZAP_LEAF_ARRAY_BYTES)
+ len = ZAP_LEAF_ARRAY_BYTES;
+ if (memcmp(p, nc->l_array.la_array, len))
+ return (0);
+ p += len;
+ namelen -= len;
+ nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
+ }
+
+ return (1);
+}
+
+/*
+ * Extract a uint64_t value from a zap leaf entry.
+ */
+static uint64_t
+fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
+{
+ const zap_leaf_chunk_t *vc;
+ int i;
+ uint64_t value;
+ const uint8_t *p;
+
+ vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
+ for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
+ value = (value << 8) | p[i];
+ }
+
+ return (value);
+}
+
+static void
+stv(int len, void *addr, uint64_t value)
+{
+ switch (len) {
+ case 1:
+ *(uint8_t *)addr = value;
+ return;
+ case 2:
+ *(uint16_t *)addr = value;
+ return;
+ case 4:
+ *(uint32_t *)addr = value;
+ return;
+ case 8:
+ *(uint64_t *)addr = value;
+ return;
+ }
+}
+
+/*
+ * Extract a array from a zap leaf entry.
+ */
+static void
+fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
+ uint64_t integer_size, uint64_t num_integers, void *buf)
+{
+ uint64_t array_int_len = zc->l_entry.le_value_intlen;
+ uint64_t value = 0;
+ uint64_t *u64 = buf;
+ char *p = buf;
+ int len = MIN(zc->l_entry.le_value_numints, num_integers);
+ int chunk = zc->l_entry.le_value_chunk;
+ int byten = 0;
+
+ if (integer_size == 8 && len == 1) {
+ *u64 = fzap_leaf_value(zl, zc);
+ return;
+ }
+
+ while (len > 0) {
+ struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
+ int i;
+
+ ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
+ for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
+ value = (value << 8) | la->la_array[i];
+ byten++;
+ if (byten == array_int_len) {
+ stv(integer_size, p, value);
+ byten = 0;
+ len--;
+ if (len == 0)
+ return;
+ p += integer_size;
+ }
+ }
+ chunk = la->la_next;
+ }
+}
+
+static int
+fzap_check_size(uint64_t integer_size, uint64_t num_integers)
+{
+
+ switch (integer_size) {
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ break;
+ default:
+ return (EINVAL);
+ }
+
+ if (integer_size * num_integers > ZAP_MAXVALUELEN)
+ return (E2BIG);
+
+ return (0);
+}
+
+static void
+zap_leaf_free(zap_leaf_t *leaf)
+{
+ free(leaf->l_phys);
+ free(leaf);
+}
+
+static int
+zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
+{
+ int bs = FZAP_BLOCK_SHIFT(zap);
+ int err;
+
+ *lp = malloc(sizeof (**lp));
+ if (*lp == NULL)
+ return (ENOMEM);
+
+ (*lp)->l_bs = bs;
+ (*lp)->l_phys = malloc(1 << bs);
+
+ if ((*lp)->l_phys == NULL) {
+ free(*lp);
+ return (ENOMEM);
+ }
+ err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
+ 1 << bs);
+ if (err != 0) {
+ zap_leaf_free(*lp);
+ }
+ return (err);
+}
+
+static int
+zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
+ uint64_t *valp)
+{
+ int bs = FZAP_BLOCK_SHIFT(zap);
+ uint64_t blk = idx >> (bs - 3);
+ uint64_t off = idx & ((1 << (bs - 3)) - 1);
+ uint64_t *buf;
+ int rc;
+
+ buf = malloc(1 << zap->zap_block_shift);
+ if (buf == NULL)
+ return (ENOMEM);
+ rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
+ buf, 1 << zap->zap_block_shift);
+ if (rc == 0)
+ *valp = buf[off];
+ free(buf);
+ return (rc);
+}
+
+static int
+zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
+{
+ if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
+ *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
+ return (0);
+ } else {
+ return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
+ idx, valp));
+ }
+}
+
+#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
+static int
+zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
+{
+ uint64_t idx, blk;
+ int err;
+
+ idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
+ err = zap_idx_to_blk(zap, idx, &blk);
+ if (err != 0)
+ return (err);
+ return (zap_get_leaf_byblk(zap, blk, lp));
+}
+
+#define CHAIN_END 0xffff /* end of the chunk chain */
+#define LEAF_HASH(l, h) \
+ ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
+ ((h) >> \
+ (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
+#define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
+
+static int
+zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
+ uint64_t integer_size, uint64_t num_integers, void *value)
+{
+ int rc;
+ uint16_t *chunkp;
+ struct zap_leaf_entry *le;
+
+ /*
+ * Make sure this chunk matches our hash.
+ */
+ if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
+ zl->l_phys->l_hdr.lh_prefix !=
+ hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
+ return (EIO);
+
+ rc = ENOENT;
+ for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
+ *chunkp != CHAIN_END; chunkp = &le->le_next) {
+ zap_leaf_chunk_t *zc;
+ uint16_t chunk = *chunkp;
+
+ le = ZAP_LEAF_ENTRY(zl, chunk);
+ if (le->le_hash != hash)
+ continue;
+ zc = &ZAP_LEAF_CHUNK(zl, chunk);
+ if (fzap_name_equal(zl, zc, name)) {
+ if (zc->l_entry.le_value_intlen > integer_size) {
+ rc = EINVAL;
+ } else {
+ fzap_leaf_array(zl, zc, integer_size,
+ num_integers, value);
+ rc = 0;
+ }
+ break;
+ }
+ }
+ return (rc);
+}
+
+/*
+ * Lookup a value in a fatzap directory.
+ */
+static int
+fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
+ const char *name, uint64_t integer_size, uint64_t num_integers,
+ void *value)
+{
+ int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ fat_zap_t z;
+ zap_leaf_t *zl;
+ uint64_t hash;
+ int rc;
+
+ if (zh->zap_magic != ZAP_MAGIC)
+ return (EIO);
+
+ if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
+ return (rc);
+
+ z.zap_block_shift = ilog2(bsize);
+ z.zap_phys = zh;
+ z.zap_spa = spa;
+ z.zap_dnode = dnode;
+
+ hash = zap_hash(zh->zap_salt, name);
+ rc = zap_deref_leaf(&z, hash, &zl);
+ if (rc != 0)
+ return (rc);
+
+ rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
+
+ zap_leaf_free(zl);
+ return (rc);
+}
+
+/*
+ * Lookup a name in a zap object and return its value as a uint64_t.
+ */
+static int
+zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
+ uint64_t integer_size, uint64_t num_integers, void *value)
+{
+ int rc;
+ zap_phys_t *zap;
+ size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+
+ zap = malloc(size);
+ if (zap == NULL)
+ return (ENOMEM);
+
+ rc = dnode_read(spa, dnode, 0, zap, size);
+ if (rc)
+ goto done;
+
+ switch (zap->zap_block_type) {
+ case ZBT_MICRO:
+ rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
+ break;
+ case ZBT_HEADER:
+ rc = fzap_lookup(spa, dnode, zap, name, integer_size,
+ num_integers, value);
+ break;
+ default:
+ printf("ZFS: invalid zap_type=%" PRIx64 "\n",
+ zap->zap_block_type);
+ rc = EIO;
+ }
+done:
+ free(zap);
+ return (rc);
+}
+
+/*
+ * List a microzap directory.
+ */
+static int
+mzap_list(const mzap_phys_t *mz, size_t size,
+ int (*callback)(const char *, uint64_t))
+{
+ const mzap_ent_phys_t *mze;
+ int chunks, i, rc;
+
+ /*
+ * Microzap objects use exactly one block. Read the whole
+ * thing.
+ */
+ rc = 0;
+ chunks = size / MZAP_ENT_LEN - 1;
+ for (i = 0; i < chunks; i++) {
+ mze = &mz->mz_chunk[i];
+ if (mze->mze_name[0]) {
+ rc = callback(mze->mze_name, mze->mze_value);
+ if (rc != 0)
+ break;
+ }
+ }
+
+ return (rc);
+}
+
+/*
+ * List a fatzap directory.
+ */
+static int
+fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
+ int (*callback)(const char *, uint64_t))
+{
+ int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ fat_zap_t z;
+ int i, j, rc;
+
+ if (zh->zap_magic != ZAP_MAGIC)
+ return (EIO);
+
+ z.zap_block_shift = ilog2(bsize);
+ z.zap_phys = zh;
+
+ /*
+ * This assumes that the leaf blocks start at block 1. The
+ * documentation isn't exactly clear on this.
+ */
+ zap_leaf_t zl;
+ zl.l_bs = z.zap_block_shift;
+ zl.l_phys = malloc(bsize);
+ if (zl.l_phys == NULL)
+ return (ENOMEM);
+
+ for (i = 0; i < zh->zap_num_leafs; i++) {
+ off_t off = ((off_t)(i + 1)) << zl.l_bs;
+ char name[256], *p;
+ uint64_t value;
+
+ if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
+ free(zl.l_phys);
+ return (EIO);
+ }
+
+ for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
+ zap_leaf_chunk_t *zc, *nc;
+ int namelen;
+
+ zc = &ZAP_LEAF_CHUNK(&zl, j);
+ if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
+ continue;
+ namelen = zc->l_entry.le_name_numints;
+ if (namelen > sizeof (name))
+ namelen = sizeof (name);
+
+ /*
+ * Paste the name back together.
+ */
+ nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
+ p = name;
+ while (namelen > 0) {
+ int len;
+ len = namelen;
+ if (len > ZAP_LEAF_ARRAY_BYTES)
+ len = ZAP_LEAF_ARRAY_BYTES;
+ memcpy(p, nc->l_array.la_array, len);
+ p += len;
+ namelen -= len;
+ nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
+ }
+
+ /*
+ * Assume the first eight bytes of the value are
+ * a uint64_t.
+ */
+ value = fzap_leaf_value(&zl, zc);
+
+ /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
+ rc = callback((const char *)name, value);
+ if (rc != 0) {
+ free(zl.l_phys);
+ return (rc);
+ }
+ }
+ }
+
+ free(zl.l_phys);
+ return (0);
+}
+
+static int zfs_printf(const char *name, uint64_t value __unused)
+{
+
+ printf("%s\n", name);
+
+ return (0);
+}
+
+/*
+ * List a zap directory.
+ */
+static int
+zap_list(const spa_t *spa, const dnode_phys_t *dnode)
+{
+ zap_phys_t *zap;
+ size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ int rc;
+
+ zap = malloc(size);
+ if (zap == NULL)
+ return (ENOMEM);
+
+ rc = dnode_read(spa, dnode, 0, zap, size);
+ if (rc == 0) {
+ if (zap->zap_block_type == ZBT_MICRO)
+ rc = mzap_list((const mzap_phys_t *)zap, size,
+ zfs_printf);
+ else
+ rc = fzap_list(spa, dnode, zap, zfs_printf);
+ }
+ free(zap);
+ return (rc);
+}
+
+static int
+objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
+ dnode_phys_t *dnode)
+{
+ off_t offset;
+
+ offset = objnum * sizeof (dnode_phys_t);
+ return (dnode_read(spa, &os->os_meta_dnode, offset,
+ dnode, sizeof (dnode_phys_t)));
+}
+
+/*
+ * Lookup a name in a microzap directory.
+ */
+static int
+mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
+{
+ const mzap_ent_phys_t *mze;
+ int chunks, i;
+
+ /*
+ * Microzap objects use exactly one block. Read the whole
+ * thing.
+ */
+ chunks = size / MZAP_ENT_LEN - 1;
+ for (i = 0; i < chunks; i++) {
+ mze = &mz->mz_chunk[i];
+ if (value == mze->mze_value) {
+ strcpy(name, mze->mze_name);
+ return (0);
+ }
+ }
+
+ return (ENOENT);
+}
+
+static void
+fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
+{
+ size_t namelen;
+ const zap_leaf_chunk_t *nc;
+ char *p;
+
+ namelen = zc->l_entry.le_name_numints;
+
+ nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
+ p = name;
+ while (namelen > 0) {
+ size_t len;
+ len = namelen;
+ if (len > ZAP_LEAF_ARRAY_BYTES)
+ len = ZAP_LEAF_ARRAY_BYTES;
+ memcpy(p, nc->l_array.la_array, len);
+ p += len;
+ namelen -= len;
+ nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
+ }
+
+ *p = '\0';
+}
+
+static int
+fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
+ char *name, uint64_t value)
+{
+ int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ fat_zap_t z;
+ uint64_t i;
+ int j, rc;
+
+ if (zh->zap_magic != ZAP_MAGIC)
+ return (EIO);
+
+ z.zap_block_shift = ilog2(bsize);
+ z.zap_phys = zh;
+
+ /*
+ * This assumes that the leaf blocks start at block 1. The
+ * documentation isn't exactly clear on this.
+ */
+ zap_leaf_t zl;
+ zl.l_bs = z.zap_block_shift;
+ zl.l_phys = malloc(bsize);
+ if (zl.l_phys == NULL)
+ return (ENOMEM);
+
+ for (i = 0; i < zh->zap_num_leafs; i++) {
+ off_t off = ((off_t)(i + 1)) << zl.l_bs;
+
+ rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
+ if (rc != 0)
+ goto done;
+
+ for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
+ zap_leaf_chunk_t *zc;
+
+ zc = &ZAP_LEAF_CHUNK(&zl, j);
+ if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
+ continue;
+ if (zc->l_entry.le_value_intlen != 8 ||
+ zc->l_entry.le_value_numints != 1)
+ continue;
+
+ if (fzap_leaf_value(&zl, zc) == value) {
+ fzap_name_copy(&zl, zc, name);
+ goto done;
+ }
+ }
+ }
+
+ rc = ENOENT;
+done:
+ free(zl.l_phys);
+ return (rc);
+}
+
+static int
+zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
+ uint64_t value)
+{
+ zap_phys_t *zap;
+ size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ int rc;
+
+ zap = malloc(size);
+ if (zap == NULL)
+ return (ENOMEM);
+
+ rc = dnode_read(spa, dnode, 0, zap, size);
+ if (rc == 0) {
+ if (zap->zap_block_type == ZBT_MICRO)
+ rc = mzap_rlookup((const mzap_phys_t *)zap, size,
+ name, value);
+ else
+ rc = fzap_rlookup(spa, dnode, zap, name, value);
+ }
+ free(zap);
+ return (rc);
+}
+
+static int
+zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
+{
+ char name[256];
+ char component[256];
+ uint64_t dir_obj, parent_obj, child_dir_zapobj;
+ dnode_phys_t child_dir_zap, dataset, dir, parent;
+ dsl_dir_phys_t *dd;
+ dsl_dataset_phys_t *ds;
+ char *p;
+ int len;
+
+ p = &name[sizeof (name) - 1];
+ *p = '\0';
+
+ if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
+ printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
+ return (EIO);
+ }
+ ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
+ dir_obj = ds->ds_dir_obj;
+
+ for (;;) {
+ if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
+ return (EIO);
+ dd = (dsl_dir_phys_t *)&dir.dn_bonus;
+
+ /* Actual loop condition. */
+ parent_obj = dd->dd_parent_obj;
+ if (parent_obj == 0)
+ break;
+
+ if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
+ &parent) != 0)
+ return (EIO);
+ dd = (dsl_dir_phys_t *)&parent.dn_bonus;
+ child_dir_zapobj = dd->dd_child_dir_zapobj;
+ if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
+ &child_dir_zap) != 0)
+ return (EIO);
+ if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
+ return (EIO);
+
+ len = strlen(component);
+ p -= len;
+ memcpy(p, component, len);
+ --p;
+ *p = '/';
+
+ /* Actual loop iteration. */
+ dir_obj = parent_obj;
+ }
+
+ if (*p != '\0')
+ ++p;
+ strcpy(result, p);
+
+ return (0);
+}
+
+static int
+zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
+{
+ char element[256];
+ uint64_t dir_obj, child_dir_zapobj;
+ dnode_phys_t child_dir_zap, dir;
+ dsl_dir_phys_t *dd;
+ const char *p, *q;
+
+ if (objset_get_dnode(spa, &spa->spa_mos,
+ DMU_POOL_DIRECTORY_OBJECT, &dir))
+ return (EIO);
+ if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
+ 1, &dir_obj))
+ return (EIO);
+
+ p = name;
+ for (;;) {
+ if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
+ return (EIO);
+ dd = (dsl_dir_phys_t *)&dir.dn_bonus;
+
+ while (*p == '/')
+ p++;
+ /* Actual loop condition #1. */
+ if (*p == '\0')
+ break;
+
+ q = strchr(p, '/');
+ if (q) {
+ memcpy(element, p, q - p);
+ element[q - p] = '\0';
+ p = q + 1;
+ } else {
+ strcpy(element, p);
+ p += strlen(p);
+ }
+
+ child_dir_zapobj = dd->dd_child_dir_zapobj;
+ if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
+ &child_dir_zap) != 0)
+ return (EIO);
+
+ /* Actual loop condition #2. */
+ if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
+ 1, &dir_obj) != 0)
+ return (ENOENT);
+ }
+
+ *objnum = dd->dd_head_dataset_obj;
+ return (0);
+}
+
+#pragma GCC diagnostic ignored "-Wstrict-aliasing"
+static int
+zfs_list_dataset(const spa_t *spa, uint64_t objnum)
+{
+ uint64_t dir_obj, child_dir_zapobj;
+ dnode_phys_t child_dir_zap, dir, dataset;
+ dsl_dataset_phys_t *ds;
+ dsl_dir_phys_t *dd;
+
+ if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
+ printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
+ return (EIO);
+ }
+ ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
+ dir_obj = ds->ds_dir_obj;
+
+ if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
+ printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
+ return (EIO);
+ }
+ dd = (dsl_dir_phys_t *)&dir.dn_bonus;
+
+ child_dir_zapobj = dd->dd_child_dir_zapobj;
+ if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
+ &child_dir_zap) != 0) {
+ printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
+ return (EIO);
+ }
+
+ return (zap_list(spa, &child_dir_zap) != 0);
+}
+
+int
+zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
+ int (*callback)(const char *, uint64_t))
+{
+ uint64_t dir_obj, child_dir_zapobj;
+ dnode_phys_t child_dir_zap, dir, dataset;
+ dsl_dataset_phys_t *ds;
+ dsl_dir_phys_t *dd;
+ zap_phys_t *zap;
+ size_t size;
+ int err;
+
+ err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
+ if (err != 0) {
+ printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
+ return (err);
+ }
+ ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
+ dir_obj = ds->ds_dir_obj;
+
+ err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
+ if (err != 0) {
+ printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
+ return (err);
+ }
+ dd = (dsl_dir_phys_t *)&dir.dn_bonus;
+
+ child_dir_zapobj = dd->dd_child_dir_zapobj;
+ err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
+ &child_dir_zap);
+ if (err != 0) {
+ printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
+ return (err);
+ }
+
+ size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ zap = malloc(size);
+ if (zap != NULL) {
+ err = dnode_read(spa, &child_dir_zap, 0, zap, size);
+ if (err != 0)
+ goto done;
+
+ if (zap->zap_block_type == ZBT_MICRO)
+ err = mzap_list((const mzap_phys_t *)zap, size,
+ callback);
+ else
+ err = fzap_list(spa, &child_dir_zap, zap, callback);
+ } else {
+ err = ENOMEM;
+ }
+done:
+ free(zap);
+ return (err);
+}
+
+/*
+ * Find the object set given the object number of its dataset object
+ * and return its details in *objset
+ */
+static int
+zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
+{
+ dnode_phys_t dataset;
+ dsl_dataset_phys_t *ds;
+
+ if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
+ printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
+ return (EIO);
+ }
+
+ ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
+ if (zio_read(spa, &ds->ds_bp, objset)) {
+ printf("ZFS: can't read object set for dataset %ju\n",
+ (uintmax_t)objnum);
+ return (EIO);
+ }
+
+ return (0);
+}
+
+/*
+ * Find the object set pointed to by the BOOTFS property or the root
+ * dataset if there is none and return its details in *objset
+ */
+static int
+zfs_get_root(const spa_t *spa, uint64_t *objid)
+{
+ dnode_phys_t dir, propdir;
+ uint64_t props, bootfs, root;
+
+ *objid = 0;
+
+ /*
+ * Start with the MOS directory object.
+ */
+ if (objset_get_dnode(spa, &spa->spa_mos,
+ DMU_POOL_DIRECTORY_OBJECT, &dir)) {
+ printf("ZFS: can't read MOS object directory\n");
+ return (EIO);
+ }
+
+ /*
+ * Lookup the pool_props and see if we can find a bootfs.
+ */
+ if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
+ sizeof (props), 1, &props) == 0 &&
+ objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
+ zap_lookup(spa, &propdir, "bootfs",
+ sizeof (bootfs), 1, &bootfs) == 0 && bootfs != 0) {
+ *objid = bootfs;
+ return (0);
+ }
+ /*
+ * Lookup the root dataset directory
+ */
+ if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
+ sizeof (root), 1, &root) ||
+ objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
+ printf("ZFS: can't find root dsl_dir\n");
+ return (EIO);
+ }
+
+ /*
+ * Use the information from the dataset directory's bonus buffer
+ * to find the dataset object and from that the object set itself.
+ */
+ dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
+ *objid = dd->dd_head_dataset_obj;
+ return (0);
+}
+
+static int
+zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mnt)
+{
+
+ mnt->spa = spa;
+
+ /*
+ * Find the root object set if not explicitly provided
+ */
+ if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
+ printf("ZFS: can't find root filesystem\n");
+ return (EIO);
+ }
+
+ if (zfs_mount_dataset(spa, rootobj, &mnt->objset)) {
+ printf("ZFS: can't open root filesystem\n");
+ return (EIO);
+ }
+
+ mnt->rootobj = rootobj;
+
+ return (0);
+}
+
+/*
+ * callback function for feature name checks.
+ */
+static int
+check_feature(const char *name, uint64_t value)
+{
+ int i;
+
+ if (value == 0)
+ return (0);
+ if (name[0] == '\0')
+ return (0);
+
+ for (i = 0; features_for_read[i] != NULL; i++) {
+ if (strcmp(name, features_for_read[i]) == 0)
+ return (0);
+ }
+ printf("ZFS: unsupported feature: %s\n", name);
+ return (EIO);
+}
+
+/*
+ * Checks whether the MOS features that are active are supported.
+ */
+static int
+check_mos_features(const spa_t *spa)
+{
+ dnode_phys_t dir;
+ zap_phys_t *zap;
+ uint64_t objnum;
+ size_t size;
+ int rc;
+
+ if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
+ &dir)) != 0)
+ return (rc);
+ if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
+ sizeof (objnum), 1, &objnum)) != 0) {
+ /*
+ * It is older pool without features. As we have already
+ * tested the label, just return without raising the error.
+ */
+ if (rc == ENOENT)
+ rc = 0;
+ return (rc);
+ }
+
+ if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
+ return (rc);
+
+ if (dir.dn_type != DMU_OTN_ZAP_METADATA)
+ return (EIO);
+
+ size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
+ zap = malloc(size);
+ if (zap == NULL)
+ return (ENOMEM);
+
+ if (dnode_read(spa, &dir, 0, zap, size)) {
+ free(zap);
+ return (EIO);
+ }
+
+ if (zap->zap_block_type == ZBT_MICRO)
+ rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
+ else
+ rc = fzap_list(spa, &dir, zap, check_feature);
+
+ free(zap);
+ return (rc);
+}
+
+static int
+load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
+{
+ dnode_phys_t dir;
+ size_t size;
+ int rc;
+ char *nv;
+
+ *value = NULL;
+ if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
+ return (rc);
+ if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
+ dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
+ return (EIO);
+ }
+
+ if (dir.dn_bonuslen != sizeof (uint64_t))
+ return (EIO);
+
+ size = *(uint64_t *)DN_BONUS(&dir);
+ nv = malloc(size);
+ if (nv == NULL)
+ return (ENOMEM);
+
+ rc = dnode_read(spa, &dir, 0, nv, size);
+ if (rc != 0) {
+ free(nv);
+ nv = NULL;
+ return (rc);
+ }
+ *value = nvlist_import(nv, size);
+ free(nv);
+ return (rc);
+}
+
+static int
+zfs_spa_init(spa_t *spa)
+{
+ dnode_phys_t dir;
+ uint64_t config_object;
+ nvlist_t *nvlist;
+ int rc;
+
+ if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
+ printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
+ return (EIO);
+ }
+ if (spa->spa_mos.os_type != DMU_OST_META) {
+ printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
+ return (EIO);
+ }
+
+ if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
+ &dir)) {
+ printf("ZFS: failed to read pool %s directory object\n",
+ spa->spa_name);
+ return (EIO);
+ }
+ /* this is allowed to fail, older pools do not have salt */
+ rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
+ sizeof (spa->spa_cksum_salt.zcs_bytes),
+ spa->spa_cksum_salt.zcs_bytes);
+
+ rc = check_mos_features(spa);
+ if (rc != 0) {
+ printf("ZFS: pool %s is not supported\n", spa->spa_name);
+ return (rc);
+ }
+
+ rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
+ sizeof (config_object), 1, &config_object);
+ if (rc != 0) {
+ printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
+ return (EIO);
+ }
+ rc = load_nvlist(spa, config_object, &nvlist);
+ if (rc != 0)
+ return (rc);
+
+ /*
+ * Update vdevs from MOS config. Note, we do skip encoding bytes
+ * here. See also vdev_label_read_config().
+ */
+ rc = vdev_init_from_nvlist(spa, nvlist);
+ nvlist_destroy(nvlist);
+ return (rc);
+}
+
+static int
+zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
+{
+
+ if (dn->dn_bonustype != DMU_OT_SA) {
+ znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
+
+ sb->st_mode = zp->zp_mode;
+ sb->st_uid = zp->zp_uid;
+ sb->st_gid = zp->zp_gid;
+ sb->st_size = zp->zp_size;
+ } else {
+ sa_hdr_phys_t *sahdrp;
+ int hdrsize;
+ size_t size = 0;
+ void *buf = NULL;
+
+ if (dn->dn_bonuslen != 0)
+ sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
+ else {
+ if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
+ blkptr_t *bp = DN_SPILL_BLKPTR(dn);
+ int error;
+
+ size = BP_GET_LSIZE(bp);
+ buf = malloc(size);
+ if (buf == NULL)
+ error = ENOMEM;
+ else
+ error = zio_read(spa, bp, buf);
+
+ if (error != 0) {
+ free(buf);
+ return (error);
+ }
+ sahdrp = buf;
+ } else {
+ return (EIO);
+ }
+ }
+ hdrsize = SA_HDR_SIZE(sahdrp);
+ sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
+ SA_MODE_OFFSET);
+ sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
+ SA_UID_OFFSET);
+ sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
+ SA_GID_OFFSET);
+ sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
+ SA_SIZE_OFFSET);
+ free(buf);
+ }
+
+ return (0);
+}
+
+static int
+zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
+{
+ int rc = 0;
+
+ if (dn->dn_bonustype == DMU_OT_SA) {
+ sa_hdr_phys_t *sahdrp = NULL;
+ size_t size = 0;
+ void *buf = NULL;
+ int hdrsize;
+ char *p;
+
+ if (dn->dn_bonuslen != 0) {
+ sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
+ } else {
+ blkptr_t *bp;
+
+ if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
+ return (EIO);
+ bp = DN_SPILL_BLKPTR(dn);
+
+ size = BP_GET_LSIZE(bp);
+ buf = malloc(size);
+ if (buf == NULL)
+ rc = ENOMEM;
+ else
+ rc = zio_read(spa, bp, buf);
+ if (rc != 0) {
+ free(buf);
+ return (rc);
+ }
+ sahdrp = buf;
+ }
+ hdrsize = SA_HDR_SIZE(sahdrp);
+ p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
+ memcpy(path, p, psize);
+ free(buf);
+ return (0);
+ }
+ /*
+ * Second test is purely to silence bogus compiler
+ * warning about accessing past the end of dn_bonus.
+ */
+ if (psize + sizeof (znode_phys_t) <= dn->dn_bonuslen &&
+ sizeof (znode_phys_t) <= sizeof (dn->dn_bonus)) {
+ memcpy(path, &dn->dn_bonus[sizeof (znode_phys_t)], psize);
+ } else {
+ rc = dnode_read(spa, dn, 0, path, psize);
+ }
+ return (rc);
+}
+
+struct obj_list {
+ uint64_t objnum;
+ STAILQ_ENTRY(obj_list) entry;
+};
+
+/*
+ * Lookup a file and return its dnode.
+ */
+static int
+zfs_lookup(const struct zfsmount *mnt, const char *upath, dnode_phys_t *dnode)
+{
+ int rc;
+ uint64_t objnum;
+ const spa_t *spa;
+ dnode_phys_t dn;
+ const char *p, *q;
+ char element[256];
+ char path[1024];
+ int symlinks_followed = 0;
+ struct stat sb;
+ struct obj_list *entry, *tentry;
+ STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
+
+ spa = mnt->spa;
+ if (mnt->objset.os_type != DMU_OST_ZFS) {
+ printf("ZFS: unexpected object set type %ju\n",
+ (uintmax_t)mnt->objset.os_type);
+ return (EIO);
+ }
+
+ if ((entry = malloc(sizeof (struct obj_list))) == NULL)
+ return (ENOMEM);
+
+ /*
+ * Get the root directory dnode.
+ */
+ rc = objset_get_dnode(spa, &mnt->objset, MASTER_NODE_OBJ, &dn);
+ if (rc) {
+ free(entry);
+ return (rc);
+ }
+
+ rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum);
+ if (rc) {
+ free(entry);
+ return (rc);
+ }
+ entry->objnum = objnum;
+ STAILQ_INSERT_HEAD(&on_cache, entry, entry);
+
+ rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn);
+ if (rc != 0)
+ goto done;
+
+ p = upath;
+ while (p && *p) {
+ rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn);
+ if (rc != 0)
+ goto done;
+
+ while (*p == '/')
+ p++;
+ if (*p == '\0')
+ break;
+ q = p;
+ while (*q != '\0' && *q != '/')
+ q++;
+
+ /* skip dot */
+ if (p + 1 == q && p[0] == '.') {
+ p++;
+ continue;
+ }
+ /* double dot */
+ if (p + 2 == q && p[0] == '.' && p[1] == '.') {
+ p += 2;
+ if (STAILQ_FIRST(&on_cache) ==
+ STAILQ_LAST(&on_cache, obj_list, entry)) {
+ rc = ENOENT;
+ goto done;
+ }
+ entry = STAILQ_FIRST(&on_cache);
+ STAILQ_REMOVE_HEAD(&on_cache, entry);
+ free(entry);
+ objnum = (STAILQ_FIRST(&on_cache))->objnum;
+ continue;
+ }
+ if (q - p + 1 > sizeof (element)) {
+ rc = ENAMETOOLONG;
+ goto done;
+ }
+ memcpy(element, p, q - p);
+ element[q - p] = 0;
+ p = q;
+
+ if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
+ goto done;
+ if (!S_ISDIR(sb.st_mode)) {
+ rc = ENOTDIR;
+ goto done;
+ }
+
+ rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
+ if (rc)
+ goto done;
+ objnum = ZFS_DIRENT_OBJ(objnum);
+
+ if ((entry = malloc(sizeof (struct obj_list))) == NULL) {
+ rc = ENOMEM;
+ goto done;
+ }
+ entry->objnum = objnum;
+ STAILQ_INSERT_HEAD(&on_cache, entry, entry);
+ rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn);
+ if (rc)
+ goto done;
+
+ /*
+ * Check for symlink.
+ */
+ rc = zfs_dnode_stat(spa, &dn, &sb);
+ if (rc)
+ goto done;
+ if (S_ISLNK(sb.st_mode)) {
+ if (symlinks_followed > 10) {
+ rc = EMLINK;
+ goto done;
+ }
+ symlinks_followed++;
+
+ /*
+ * Read the link value and copy the tail of our
+ * current path onto the end.
+ */
+ if (sb.st_size + strlen(p) + 1 > sizeof (path)) {
+ rc = ENAMETOOLONG;
+ goto done;
+ }
+ strcpy(&path[sb.st_size], p);
+
+ rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
+ if (rc != 0)
+ goto done;
+
+ /*
+ * Restart with the new path, starting either at
+ * the root or at the parent depending whether or
+ * not the link is relative.
+ */
+ p = path;
+ if (*p == '/') {
+ while (STAILQ_FIRST(&on_cache) !=
+ STAILQ_LAST(&on_cache, obj_list, entry)) {
+ entry = STAILQ_FIRST(&on_cache);
+ STAILQ_REMOVE_HEAD(&on_cache, entry);
+ free(entry);
+ }
+ } else {
+ entry = STAILQ_FIRST(&on_cache);
+ STAILQ_REMOVE_HEAD(&on_cache, entry);
+ free(entry);
+ }
+ objnum = (STAILQ_FIRST(&on_cache))->objnum;
+ }
+ }
+
+ *dnode = dn;
+done:
+ STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
+ free(entry);
+ return (rc);
+}