diff options
Diffstat (limited to 'usr/src/boot/libsa/zfs/zfsimpl.c')
| -rw-r--r-- | usr/src/boot/libsa/zfs/zfsimpl.c | 3791 |
1 files changed, 3791 insertions, 0 deletions
diff --git a/usr/src/boot/libsa/zfs/zfsimpl.c b/usr/src/boot/libsa/zfs/zfsimpl.c new file mode 100644 index 0000000000..e83a8a3983 --- /dev/null +++ b/usr/src/boot/libsa/zfs/zfsimpl.c @@ -0,0 +1,3791 @@ +/* + * Copyright (c) 2007 Doug Rabson + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +#include <sys/cdefs.h> + +/* + * Stand-alone ZFS file reader. + */ + +#include <stdbool.h> +#include <sys/endian.h> +#include <sys/stat.h> +#include <sys/stdint.h> +#include <sys/list.h> +#include <sys/zfs_bootenv.h> +#include <inttypes.h> + +#include "zfsimpl.h" +#include "zfssubr.c" + + +struct zfsmount { + const spa_t *spa; + objset_phys_t objset; + uint64_t rootobj; +}; + +/* + * The indirect_child_t represents the vdev that we will read from, when we + * need to read all copies of the data (e.g. for scrub or reconstruction). + * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror), + * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs, + * ic_vdev is a child of the mirror. + */ +typedef struct indirect_child { + void *ic_data; + vdev_t *ic_vdev; +} indirect_child_t; + +/* + * The indirect_split_t represents one mapped segment of an i/o to the + * indirect vdev. For non-split (contiguously-mapped) blocks, there will be + * only one indirect_split_t, with is_split_offset==0 and is_size==io_size. + * For split blocks, there will be several of these. + */ +typedef struct indirect_split { + list_node_t is_node; /* link on iv_splits */ + + /* + * is_split_offset is the offset into the i/o. + * This is the sum of the previous splits' is_size's. + */ + uint64_t is_split_offset; + + vdev_t *is_vdev; /* top-level vdev */ + uint64_t is_target_offset; /* offset on is_vdev */ + uint64_t is_size; + int is_children; /* number of entries in is_child[] */ + + /* + * is_good_child is the child that we are currently using to + * attempt reconstruction. + */ + int is_good_child; + + indirect_child_t is_child[1]; /* variable-length */ +} indirect_split_t; + +/* + * The indirect_vsd_t is associated with each i/o to the indirect vdev. + * It is the "Vdev-Specific Data" in the zio_t's io_vsd. + */ +typedef struct indirect_vsd { + boolean_t iv_split_block; + boolean_t iv_reconstruct; + + list_t iv_splits; /* list of indirect_split_t's */ +} indirect_vsd_t; + +/* + * List of all vdevs, chained through v_alllink. + */ +static vdev_list_t zfs_vdevs; + +/* + * List of ZFS features supported for read + */ +static const char *features_for_read[] = { + "org.illumos:lz4_compress", + "com.delphix:hole_birth", + "com.delphix:extensible_dataset", + "com.delphix:embedded_data", + "org.open-zfs:large_blocks", + "org.illumos:sha512", + "org.illumos:skein", + "org.illumos:edonr", + "org.zfsonlinux:large_dnode", + "com.joyent:multi_vdev_crash_dump", + "com.delphix:spacemap_histogram", + "com.delphix:zpool_checkpoint", + "com.delphix:spacemap_v2", + "com.datto:encryption", + "com.datto:bookmark_v2", + "org.zfsonlinux:allocation_classes", + "com.datto:resilver_defer", + "com.delphix:device_removal", + "com.delphix:obsolete_counts", + NULL +}; + +/* + * List of all pools, chained through spa_link. + */ +static spa_list_t zfs_pools; + +static const dnode_phys_t *dnode_cache_obj; +static uint64_t dnode_cache_bn; +static char *dnode_cache_buf; + +static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf); +static int zfs_get_root(const spa_t *spa, uint64_t *objid); +static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result); +static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, + const char *name, uint64_t integer_size, uint64_t num_integers, + void *value); +static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t, + dnode_phys_t *); +static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *, + size_t); +static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t, + size_t); +static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, + size_t); + +static void +zfs_init(void) +{ + STAILQ_INIT(&zfs_vdevs); + STAILQ_INIT(&zfs_pools); + + dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE); + + zfs_init_crc(); +} + +static int +nvlist_check_features_for_read(nvlist_t *nvl) +{ + nvlist_t *features = NULL; + nvs_data_t *data; + nvp_header_t *nvp; + nv_string_t *nvp_name; + int rc; + + /* + * We may have all features disabled. + */ + rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ, + DATA_TYPE_NVLIST, NULL, &features, NULL); + switch (rc) { + case 0: + break; /* Continue with checks */ + + case ENOENT: + return (0); /* All features are disabled */ + + default: + return (rc); /* Error while reading nvlist */ + } + + data = (nvs_data_t *)features->nv_data; + nvp = &data->nvl_pair; /* first pair in nvlist */ + + while (nvp->encoded_size != 0 && nvp->decoded_size != 0) { + int i, found; + + nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof (*nvp)); + found = 0; + + for (i = 0; features_for_read[i] != NULL; i++) { + if (memcmp(nvp_name->nv_data, features_for_read[i], + nvp_name->nv_size) == 0) { + found = 1; + break; + } + } + + if (!found) { + printf("ZFS: unsupported feature: %.*s\n", + nvp_name->nv_size, nvp_name->nv_data); + rc = EIO; + } + nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size); + } + nvlist_destroy(features); + + return (rc); +} + +static int +vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf, + off_t offset, size_t size) +{ + size_t psize; + int rc; + + if (vdev->v_phys_read == NULL) + return (ENOTSUP); + + if (bp) { + psize = BP_GET_PSIZE(bp); + } else { + psize = size; + } + + rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize); + if (rc == 0) { + if (bp != NULL) + rc = zio_checksum_verify(vdev->v_spa, bp, buf); + } + + return (rc); +} + +static int +vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size) +{ + if (vdev->v_phys_write == NULL) + return (ENOTSUP); + + return (vdev->v_phys_write(vdev, offset, buf, size)); +} + +typedef struct remap_segment { + vdev_t *rs_vd; + uint64_t rs_offset; + uint64_t rs_asize; + uint64_t rs_split_offset; + list_node_t rs_node; +} remap_segment_t; + +static remap_segment_t * +rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset) +{ + remap_segment_t *rs = malloc(sizeof (remap_segment_t)); + + if (rs != NULL) { + rs->rs_vd = vd; + rs->rs_offset = offset; + rs->rs_asize = asize; + rs->rs_split_offset = split_offset; + } + + return (rs); +} + +vdev_indirect_mapping_t * +vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os, + uint64_t mapping_object) +{ + vdev_indirect_mapping_t *vim; + vdev_indirect_mapping_phys_t *vim_phys; + int rc; + + vim = calloc(1, sizeof (*vim)); + if (vim == NULL) + return (NULL); + + vim->vim_dn = calloc(1, sizeof (*vim->vim_dn)); + if (vim->vim_dn == NULL) { + free(vim); + return (NULL); + } + + rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn); + if (rc != 0) { + free(vim->vim_dn); + free(vim); + return (NULL); + } + + vim->vim_spa = spa; + vim->vim_phys = malloc(sizeof (*vim->vim_phys)); + if (vim->vim_phys == NULL) { + free(vim->vim_dn); + free(vim); + return (NULL); + } + + vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn); + *vim->vim_phys = *vim_phys; + + vim->vim_objset = os; + vim->vim_object = mapping_object; + vim->vim_entries = NULL; + + vim->vim_havecounts = + (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0); + + return (vim); +} + +/* + * Compare an offset with an indirect mapping entry; there are three + * possible scenarios: + * + * 1. The offset is "less than" the mapping entry; meaning the + * offset is less than the source offset of the mapping entry. In + * this case, there is no overlap between the offset and the + * mapping entry and -1 will be returned. + * + * 2. The offset is "greater than" the mapping entry; meaning the + * offset is greater than the mapping entry's source offset plus + * the entry's size. In this case, there is no overlap between + * the offset and the mapping entry and 1 will be returned. + * + * NOTE: If the offset is actually equal to the entry's offset + * plus size, this is considered to be "greater" than the entry, + * and this case applies (i.e. 1 will be returned). Thus, the + * entry's "range" can be considered to be inclusive at its + * start, but exclusive at its end: e.g. [src, src + size). + * + * 3. The last case to consider is if the offset actually falls + * within the mapping entry's range. If this is the case, the + * offset is considered to be "equal to" the mapping entry and + * 0 will be returned. + * + * NOTE: If the offset is equal to the entry's source offset, + * this case applies and 0 will be returned. If the offset is + * equal to the entry's source plus its size, this case does + * *not* apply (see "NOTE" above for scenario 2), and 1 will be + * returned. + */ +static int +dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem) +{ + const uint64_t *key = v_key; + const vdev_indirect_mapping_entry_phys_t *array_elem = + v_array_elem; + uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem); + + if (*key < src_offset) { + return (-1); + } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) { + return (0); + } else { + return (1); + } +} + +/* + * Return array entry. + */ +static vdev_indirect_mapping_entry_phys_t * +vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index) +{ + uint64_t size; + off_t offset = 0; + int rc; + + if (vim->vim_phys->vimp_num_entries == 0) + return (NULL); + + if (vim->vim_entries == NULL) { + uint64_t bsize; + + bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT; + size = vim->vim_phys->vimp_num_entries * + sizeof (*vim->vim_entries); + if (size > bsize) { + size = bsize / sizeof (*vim->vim_entries); + size *= sizeof (*vim->vim_entries); + } + vim->vim_entries = malloc(size); + if (vim->vim_entries == NULL) + return (NULL); + vim->vim_num_entries = size / sizeof (*vim->vim_entries); + offset = index * sizeof (*vim->vim_entries); + } + + /* We have data in vim_entries */ + if (offset == 0) { + if (index >= vim->vim_entry_offset && + index <= vim->vim_entry_offset + vim->vim_num_entries) { + index -= vim->vim_entry_offset; + return (&vim->vim_entries[index]); + } + offset = index * sizeof (*vim->vim_entries); + } + + vim->vim_entry_offset = index; + size = vim->vim_num_entries * sizeof (*vim->vim_entries); + rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries, + size); + if (rc != 0) { + /* Read error, invalidate vim_entries. */ + free(vim->vim_entries); + vim->vim_entries = NULL; + return (NULL); + } + index -= vim->vim_entry_offset; + return (&vim->vim_entries[index]); +} + +/* + * Returns the mapping entry for the given offset. + * + * It's possible that the given offset will not be in the mapping table + * (i.e. no mapping entries contain this offset), in which case, the + * return value value depends on the "next_if_missing" parameter. + * + * If the offset is not found in the table and "next_if_missing" is + * B_FALSE, then NULL will always be returned. The behavior is intended + * to allow consumers to get the entry corresponding to the offset + * parameter, iff the offset overlaps with an entry in the table. + * + * If the offset is not found in the table and "next_if_missing" is + * B_TRUE, then the entry nearest to the given offset will be returned, + * such that the entry's source offset is greater than the offset + * passed in (i.e. the "next" mapping entry in the table is returned, if + * the offset is missing from the table). If there are no entries whose + * source offset is greater than the passed in offset, NULL is returned. + */ +static vdev_indirect_mapping_entry_phys_t * +vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim, + uint64_t offset) +{ + ASSERT(vim->vim_phys->vimp_num_entries > 0); + + vdev_indirect_mapping_entry_phys_t *entry; + + uint64_t last = vim->vim_phys->vimp_num_entries - 1; + uint64_t base = 0; + + /* + * We don't define these inside of the while loop because we use + * their value in the case that offset isn't in the mapping. + */ + uint64_t mid; + int result; + + while (last >= base) { + mid = base + ((last - base) >> 1); + + entry = vdev_indirect_mapping_entry(vim, mid); + if (entry == NULL) + break; + result = dva_mapping_overlap_compare(&offset, entry); + + if (result == 0) { + break; + } else if (result < 0) { + last = mid - 1; + } else { + base = mid + 1; + } + } + return (entry); +} + +/* + * Given an indirect vdev and an extent on that vdev, it duplicates the + * physical entries of the indirect mapping that correspond to the extent + * to a new array and returns a pointer to it. In addition, copied_entries + * is populated with the number of mapping entries that were duplicated. + * + * Finally, since we are doing an allocation, it is up to the caller to + * free the array allocated in this function. + */ +vdev_indirect_mapping_entry_phys_t * +vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset, + uint64_t asize, uint64_t *copied_entries) +{ + vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL; + vdev_indirect_mapping_t *vim = vd->v_mapping; + uint64_t entries = 0; + + vdev_indirect_mapping_entry_phys_t *first_mapping = + vdev_indirect_mapping_entry_for_offset(vim, offset); + ASSERT3P(first_mapping, !=, NULL); + + vdev_indirect_mapping_entry_phys_t *m = first_mapping; + while (asize > 0) { + uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); + uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m); + uint64_t inner_size = MIN(asize, size - inner_offset); + + offset += inner_size; + asize -= inner_size; + entries++; + m++; + } + + size_t copy_length = entries * sizeof (*first_mapping); + duplicate_mappings = malloc(copy_length); + if (duplicate_mappings != NULL) + bcopy(first_mapping, duplicate_mappings, copy_length); + else + entries = 0; + + *copied_entries = entries; + + return (duplicate_mappings); +} + +static vdev_t * +vdev_lookup_top(spa_t *spa, uint64_t vdev) +{ + vdev_t *rvd; + vdev_list_t *vlist; + + vlist = &spa->spa_root_vdev->v_children; + STAILQ_FOREACH(rvd, vlist, v_childlink) + if (rvd->v_id == vdev) + break; + + return (rvd); +} + +/* + * This is a callback for vdev_indirect_remap() which allocates an + * indirect_split_t for each split segment and adds it to iv_splits. + */ +static void +vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset, + uint64_t size, void *arg) +{ + int n = 1; + zio_t *zio = arg; + indirect_vsd_t *iv = zio->io_vsd; + + if (vd->v_read == vdev_indirect_read) + return; + + if (vd->v_read == vdev_mirror_read) + n = vd->v_nchildren; + + indirect_split_t *is = + malloc(offsetof(indirect_split_t, is_child[n])); + if (is == NULL) { + zio->io_error = ENOMEM; + return; + } + bzero(is, offsetof(indirect_split_t, is_child[n])); + + is->is_children = n; + is->is_size = size; + is->is_split_offset = split_offset; + is->is_target_offset = offset; + is->is_vdev = vd; + + /* + * Note that we only consider multiple copies of the data for + * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even + * though they use the same ops as mirror, because there's only one + * "good" copy under the replacing/spare. + */ + if (vd->v_read == vdev_mirror_read) { + int i = 0; + vdev_t *kid; + + STAILQ_FOREACH(kid, &vd->v_children, v_childlink) { + is->is_child[i++].ic_vdev = kid; + } + } else { + is->is_child[0].ic_vdev = vd; + } + + list_insert_tail(&iv->iv_splits, is); +} + +static void +vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg) +{ + list_t stack; + spa_t *spa = vd->v_spa; + zio_t *zio = arg; + remap_segment_t *rs; + + list_create(&stack, sizeof (remap_segment_t), + offsetof(remap_segment_t, rs_node)); + + rs = rs_alloc(vd, offset, asize, 0); + if (rs == NULL) { + printf("vdev_indirect_remap: out of memory.\n"); + zio->io_error = ENOMEM; + } + for (; rs != NULL; rs = list_remove_head(&stack)) { + vdev_t *v = rs->rs_vd; + uint64_t num_entries = 0; + /* vdev_indirect_mapping_t *vim = v->v_mapping; */ + vdev_indirect_mapping_entry_phys_t *mapping = + vdev_indirect_mapping_duplicate_adjacent_entries(v, + rs->rs_offset, rs->rs_asize, &num_entries); + + if (num_entries == 0) + zio->io_error = ENOMEM; + + for (uint64_t i = 0; i < num_entries; i++) { + vdev_indirect_mapping_entry_phys_t *m = &mapping[i]; + uint64_t size = DVA_GET_ASIZE(&m->vimep_dst); + uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst); + uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst); + uint64_t inner_offset = rs->rs_offset - + DVA_MAPPING_GET_SRC_OFFSET(m); + uint64_t inner_size = + MIN(rs->rs_asize, size - inner_offset); + vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev); + + if (dst_v->v_read == vdev_indirect_read) { + remap_segment_t *o; + + o = rs_alloc(dst_v, dst_offset + inner_offset, + inner_size, rs->rs_split_offset); + if (o == NULL) { + printf("vdev_indirect_remap: " + "out of memory.\n"); + zio->io_error = ENOMEM; + break; + } + + list_insert_head(&stack, o); + } + vdev_indirect_gather_splits(rs->rs_split_offset, dst_v, + dst_offset + inner_offset, + inner_size, arg); + + /* + * vdev_indirect_gather_splits can have memory + * allocation error, we can not recover from it. + */ + if (zio->io_error != 0) + break; + rs->rs_offset += inner_size; + rs->rs_asize -= inner_size; + rs->rs_split_offset += inner_size; + } + + free(mapping); + free(rs); + if (zio->io_error != 0) + break; + } + + list_destroy(&stack); +} + +static void +vdev_indirect_map_free(zio_t *zio) +{ + indirect_vsd_t *iv = zio->io_vsd; + indirect_split_t *is; + + while ((is = list_head(&iv->iv_splits)) != NULL) { + for (int c = 0; c < is->is_children; c++) { + indirect_child_t *ic = &is->is_child[c]; + free(ic->ic_data); + } + list_remove(&iv->iv_splits, is); + free(is); + } + free(iv); +} + +static int +vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf, + off_t offset, size_t bytes) +{ + zio_t zio; + spa_t *spa = vdev->v_spa; + indirect_vsd_t *iv; + indirect_split_t *first; + int rc = EIO; + + iv = calloc(1, sizeof (*iv)); + if (iv == NULL) + return (ENOMEM); + + list_create(&iv->iv_splits, + sizeof (indirect_split_t), offsetof(indirect_split_t, is_node)); + + bzero(&zio, sizeof (zio)); + zio.io_spa = spa; + zio.io_bp = (blkptr_t *)bp; + zio.io_data = buf; + zio.io_size = bytes; + zio.io_offset = offset; + zio.io_vd = vdev; + zio.io_vsd = iv; + + if (vdev->v_mapping == NULL) { + vdev_indirect_config_t *vic; + + vic = &vdev->vdev_indirect_config; + vdev->v_mapping = vdev_indirect_mapping_open(spa, + &spa->spa_mos, vic->vic_mapping_object); + } + + vdev_indirect_remap(vdev, offset, bytes, &zio); + if (zio.io_error != 0) + return (zio.io_error); + + first = list_head(&iv->iv_splits); + if (first->is_size == zio.io_size) { + /* + * This is not a split block; we are pointing to the entire + * data, which will checksum the same as the original data. + * Pass the BP down so that the child i/o can verify the + * checksum, and try a different location if available + * (e.g. on a mirror). + * + * While this special case could be handled the same as the + * general (split block) case, doing it this way ensures + * that the vast majority of blocks on indirect vdevs + * (which are not split) are handled identically to blocks + * on non-indirect vdevs. This allows us to be less strict + * about performance in the general (but rare) case. + */ + rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp, + zio.io_data, first->is_target_offset, bytes); + } else { + iv->iv_split_block = B_TRUE; + /* + * Read one copy of each split segment, from the + * top-level vdev. Since we don't know the + * checksum of each split individually, the child + * zio can't ensure that we get the right data. + * E.g. if it's a mirror, it will just read from a + * random (healthy) leaf vdev. We have to verify + * the checksum in vdev_indirect_io_done(). + */ + for (indirect_split_t *is = list_head(&iv->iv_splits); + is != NULL; is = list_next(&iv->iv_splits, is)) { + char *ptr = zio.io_data; + + rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp, + ptr + is->is_split_offset, is->is_target_offset, + is->is_size); + } + if (zio_checksum_verify(spa, zio.io_bp, zio.io_data)) + rc = ECKSUM; + else + rc = 0; + } + + vdev_indirect_map_free(&zio); + if (rc == 0) + rc = zio.io_error; + + return (rc); +} + +static int +vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf, + off_t offset, size_t bytes) +{ + + return (vdev_read_phys(vdev, bp, buf, + offset + VDEV_LABEL_START_SIZE, bytes)); +} + +static int +vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused, + void *buf __unused, off_t offset __unused, size_t bytes __unused) +{ + + return (ENOTSUP); +} + +static int +vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf, + off_t offset, size_t bytes) +{ + vdev_t *kid; + int rc; + + rc = EIO; + STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { + if (kid->v_state != VDEV_STATE_HEALTHY) + continue; + rc = kid->v_read(kid, bp, buf, offset, bytes); + if (!rc) + return (0); + } + + return (rc); +} + +static int +vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf, + off_t offset, size_t bytes) +{ + vdev_t *kid; + + /* + * Here we should have two kids: + * First one which is the one we are replacing and we can trust + * only this one to have valid data, but it might not be present. + * Second one is that one we are replacing with. It is most likely + * healthy, but we can't trust it has needed data, so we won't use it. + */ + kid = STAILQ_FIRST(&vdev->v_children); + if (kid == NULL) + return (EIO); + if (kid->v_state != VDEV_STATE_HEALTHY) + return (EIO); + return (kid->v_read(kid, bp, buf, offset, bytes)); +} + +static vdev_t * +vdev_find(uint64_t guid) +{ + vdev_t *vdev; + + STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink) + if (vdev->v_guid == guid) + return (vdev); + + return (0); +} + +static vdev_t * +vdev_create(uint64_t guid, vdev_read_t *vdev_read) +{ + vdev_t *vdev; + vdev_indirect_config_t *vic; + + vdev = calloc(1, sizeof (vdev_t)); + if (vdev != NULL) { + STAILQ_INIT(&vdev->v_children); + vdev->v_guid = guid; + vdev->v_read = vdev_read; + + /* + * root vdev has no read function, we use this fact to + * skip setting up data we do not need for root vdev. + * We only point root vdev from spa. + */ + if (vdev_read != NULL) { + vic = &vdev->vdev_indirect_config; + vic->vic_prev_indirect_vdev = UINT64_MAX; + STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink); + } + } + + return (vdev); +} + +static void +vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist) +{ + uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present; + uint64_t is_log; + + is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0; + is_log = 0; + (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL, + &is_offline, NULL); + (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL, + &is_removed, NULL); + (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL, + &is_faulted, NULL); + (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, + NULL, &is_degraded, NULL); + (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, + NULL, &isnt_present, NULL); + (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL, + &is_log, NULL); + + if (is_offline != 0) + vdev->v_state = VDEV_STATE_OFFLINE; + else if (is_removed != 0) + vdev->v_state = VDEV_STATE_REMOVED; + else if (is_faulted != 0) + vdev->v_state = VDEV_STATE_FAULTED; + else if (is_degraded != 0) + vdev->v_state = VDEV_STATE_DEGRADED; + else if (isnt_present != 0) + vdev->v_state = VDEV_STATE_CANT_OPEN; + + vdev->v_islog = is_log != 0; +} + +static int +vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp) +{ + uint64_t id, ashift, asize, nparity; + const char *path; + const char *type; + int len, pathlen; + char *name; + vdev_t *vdev; + + if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id, + NULL) || + nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, + NULL, &type, &len)) { + return (ENOENT); + } + + if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && + memcmp(type, VDEV_TYPE_DISK, len) != 0 && +#ifdef ZFS_TEST + memcmp(type, VDEV_TYPE_FILE, len) != 0 && +#endif + memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 && + memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 && + memcmp(type, VDEV_TYPE_REPLACING, len) != 0 && + memcmp(type, VDEV_TYPE_HOLE, len) != 0) { + printf("ZFS: can only boot from disk, mirror, raidz1, " + "raidz2 and raidz3 vdevs, got: %.*s\n", len, type); + return (EIO); + } + + if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0) + vdev = vdev_create(guid, vdev_mirror_read); + else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) + vdev = vdev_create(guid, vdev_raidz_read); + else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0) + vdev = vdev_create(guid, vdev_replacing_read); + else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) { + vdev_indirect_config_t *vic; + + vdev = vdev_create(guid, vdev_indirect_read); + if (vdev != NULL) { + vdev->v_state = VDEV_STATE_HEALTHY; + vic = &vdev->vdev_indirect_config; + + nvlist_find(nvlist, + ZPOOL_CONFIG_INDIRECT_OBJECT, + DATA_TYPE_UINT64, + NULL, &vic->vic_mapping_object, NULL); + nvlist_find(nvlist, + ZPOOL_CONFIG_INDIRECT_BIRTHS, + DATA_TYPE_UINT64, + NULL, &vic->vic_births_object, NULL); + nvlist_find(nvlist, + ZPOOL_CONFIG_PREV_INDIRECT_VDEV, + DATA_TYPE_UINT64, + NULL, &vic->vic_prev_indirect_vdev, NULL); + } + } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) { + vdev = vdev_create(guid, vdev_missing_read); + } else { + vdev = vdev_create(guid, vdev_disk_read); + } + + if (vdev == NULL) + return (ENOMEM); + + vdev_set_initial_state(vdev, nvlist); + vdev->v_id = id; + if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT, + DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0) + vdev->v_ashift = ashift; + + if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE, + DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) { + vdev->v_psize = asize + + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; + } + + if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY, + DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0) + vdev->v_nparity = nparity; + + if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH, + DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { + char prefix[] = "/dev/dsk/"; + + len = strlen(prefix); + if (len < pathlen && memcmp(path, prefix, len) == 0) { + path += len; + pathlen -= len; + } + name = malloc(pathlen + 1); + if (name != NULL) { + bcopy(path, name, pathlen); + name[pathlen] = '\0'; + } + vdev->v_name = name; + vdev->v_phys_path = NULL; + vdev->v_devid = NULL; + if (nvlist_find(nvlist, ZPOOL_CONFIG_PHYS_PATH, + DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { + name = malloc(pathlen + 1); + if (name != NULL) { + bcopy(path, name, pathlen); + name[pathlen] = '\0'; + vdev->v_phys_path = name; + } + } + if (nvlist_find(nvlist, ZPOOL_CONFIG_DEVID, + DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) { + name = malloc(pathlen + 1); + if (name != NULL) { + bcopy(path, name, pathlen); + name[pathlen] = '\0'; + vdev->v_devid = name; + } + } + } else { + name = NULL; + if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { + if (vdev->v_nparity < 1 || + vdev->v_nparity > 3) { + printf("ZFS: invalid raidz parity: %d\n", + vdev->v_nparity); + return (EIO); + } + (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type, + vdev->v_nparity, id); + } else { + (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id); + } + vdev->v_name = name; + } + *vdevp = vdev; + return (0); +} + +/* + * Find slot for vdev. We return either NULL to signal to use + * STAILQ_INSERT_HEAD, or we return link element to be used with + * STAILQ_INSERT_AFTER. + */ +static vdev_t * +vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev) +{ + vdev_t *v, *previous; + + if (STAILQ_EMPTY(&top_vdev->v_children)) + return (NULL); + + previous = NULL; + STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) { + if (v->v_id > vdev->v_id) + return (previous); + + if (v->v_id == vdev->v_id) + return (v); + + if (v->v_id < vdev->v_id) + previous = v; + } + return (previous); +} + +static size_t +vdev_child_count(vdev_t *vdev) +{ + vdev_t *v; + size_t count; + + count = 0; + STAILQ_FOREACH(v, &vdev->v_children, v_childlink) { + count++; + } + return (count); +} + +/* + * Insert vdev into top_vdev children list. List is ordered by v_id. + */ +static void +vdev_insert(vdev_t *top_vdev, vdev_t *vdev) +{ + vdev_t *previous; + size_t count; + + /* + * The top level vdev can appear in random order, depending how + * the firmware is presenting the disk devices. + * However, we will insert vdev to create list ordered by v_id, + * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER + * as STAILQ does not have insert before. + */ + previous = vdev_find_previous(top_vdev, vdev); + + if (previous == NULL) { + STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink); + } else if (previous->v_id == vdev->v_id) { + /* + * This vdev was configured from label config, + * do not insert duplicate. + */ + return; + } else { + STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, + v_childlink); + } + + count = vdev_child_count(top_vdev); + if (top_vdev->v_nchildren < count) + top_vdev->v_nchildren = count; +} + +static int +vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist) +{ + vdev_t *top_vdev, *vdev; + nvlist_t **kids = NULL; + int rc, nkids; + + /* Get top vdev. */ + top_vdev = vdev_find(top_guid); + if (top_vdev == NULL) { + rc = vdev_init(top_guid, nvlist, &top_vdev); + if (rc != 0) + return (rc); + top_vdev->v_spa = spa; + top_vdev->v_top = top_vdev; + vdev_insert(spa->spa_root_vdev, top_vdev); + } + + /* Add children if there are any. */ + rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, + &nkids, &kids, NULL); + if (rc == 0) { + for (int i = 0; i < nkids; i++) { + uint64_t guid; + + rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, + DATA_TYPE_UINT64, NULL, &guid, NULL); + if (rc != 0) + goto done; + + rc = vdev_init(guid, kids[i], &vdev); + if (rc != 0) + goto done; + + vdev->v_spa = spa; + vdev->v_top = top_vdev; + vdev_insert(top_vdev, vdev); + } + } else { + /* + * When there are no children, nvlist_find() does return + * error, reset it because leaf devices have no children. + */ + rc = 0; + } +done: + if (kids != NULL) { + for (int i = 0; i < nkids; i++) + nvlist_destroy(kids[i]); + free(kids); + } + + return (rc); +} + +static int +vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist) +{ + uint64_t pool_guid, top_guid; + nvlist_t *vdevs; + int rc; + + if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, + NULL, &pool_guid, NULL) || + nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64, + NULL, &top_guid, NULL) || + nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, + NULL, &vdevs, NULL)) { + printf("ZFS: can't find vdev details\n"); + return (ENOENT); + } + + rc = vdev_from_nvlist(spa, top_guid, vdevs); + nvlist_destroy(vdevs); + return (rc); +} + +static void +vdev_set_state(vdev_t *vdev) +{ + vdev_t *kid; + int good_kids; + int bad_kids; + + STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { + vdev_set_state(kid); + } + + /* + * A mirror or raidz is healthy if all its kids are healthy. A + * mirror is degraded if any of its kids is healthy; a raidz + * is degraded if at most nparity kids are offline. + */ + if (STAILQ_FIRST(&vdev->v_children)) { + good_kids = 0; + bad_kids = 0; + STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { + if (kid->v_state == VDEV_STATE_HEALTHY) + good_kids++; + else + bad_kids++; + } + if (bad_kids == 0) { + vdev->v_state = VDEV_STATE_HEALTHY; + } else { + if (vdev->v_read == vdev_mirror_read) { + if (good_kids) { + vdev->v_state = VDEV_STATE_DEGRADED; + } else { + vdev->v_state = VDEV_STATE_OFFLINE; + } + } else if (vdev->v_read == vdev_raidz_read) { + if (bad_kids > vdev->v_nparity) { + vdev->v_state = VDEV_STATE_OFFLINE; + } else { + vdev->v_state = VDEV_STATE_DEGRADED; + } + } + } + } +} + +static int +vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist) +{ + vdev_t *vdev; + nvlist_t **kids = NULL; + int rc, nkids; + + /* Update top vdev. */ + vdev = vdev_find(top_guid); + if (vdev != NULL) + vdev_set_initial_state(vdev, nvlist); + + /* Update children if there are any. */ + rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, + &nkids, &kids, NULL); + if (rc == 0) { + for (int i = 0; i < nkids; i++) { + uint64_t guid; + + rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, + DATA_TYPE_UINT64, NULL, &guid, NULL); + if (rc != 0) + break; + + vdev = vdev_find(guid); + if (vdev != NULL) + vdev_set_initial_state(vdev, kids[i]); + } + } else { + rc = 0; + } + if (kids != NULL) { + for (int i = 0; i < nkids; i++) + nvlist_destroy(kids[i]); + free(kids); + } + + return (rc); +} + +static int +vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist) +{ + uint64_t pool_guid, vdev_children; + nvlist_t *vdevs = NULL, **kids = NULL; + int rc, nkids; + + if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, + NULL, &pool_guid, NULL) || + nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64, + NULL, &vdev_children, NULL) || + nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, + NULL, &vdevs, NULL)) { + printf("ZFS: can't find vdev details\n"); + return (ENOENT); + } + + /* Wrong guid?! */ + if (spa->spa_guid != pool_guid) { + nvlist_destroy(vdevs); + return (EINVAL); + } + + spa->spa_root_vdev->v_nchildren = vdev_children; + + rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY, + &nkids, &kids, NULL); + nvlist_destroy(vdevs); + + /* + * MOS config has at least one child for root vdev. + */ + if (rc != 0) + return (rc); + + for (int i = 0; i < nkids; i++) { + uint64_t guid; + vdev_t *vdev; + + rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, + NULL, &guid, NULL); + if (rc != 0) + break; + vdev = vdev_find(guid); + /* + * Top level vdev is missing, create it. + */ + if (vdev == NULL) + rc = vdev_from_nvlist(spa, guid, kids[i]); + else + rc = vdev_update_from_nvlist(guid, kids[i]); + if (rc != 0) + break; + } + if (kids != NULL) { + for (int i = 0; i < nkids; i++) + nvlist_destroy(kids[i]); + free(kids); + } + + /* + * Re-evaluate top-level vdev state. + */ + vdev_set_state(spa->spa_root_vdev); + + return (rc); +} + +static spa_t * +spa_find_by_guid(uint64_t guid) +{ + spa_t *spa; + + STAILQ_FOREACH(spa, &zfs_pools, spa_link) + if (spa->spa_guid == guid) + return (spa); + + return (NULL); +} + +static spa_t * +spa_find_by_name(const char *name) +{ + spa_t *spa; + + STAILQ_FOREACH(spa, &zfs_pools, spa_link) + if (strcmp(spa->spa_name, name) == 0) + return (spa); + + return (NULL); +} + +static spa_t * +spa_find_by_dev(struct zfs_devdesc *dev) +{ + + if (dev->dd.d_dev->dv_type != DEVT_ZFS) + return (NULL); + + if (dev->pool_guid == 0) + return (STAILQ_FIRST(&zfs_pools)); + + return (spa_find_by_guid(dev->pool_guid)); +} + +static spa_t * +spa_create(uint64_t guid, const char *name) +{ + spa_t *spa; + + if ((spa = calloc(1, sizeof (spa_t))) == NULL) + return (NULL); + if ((spa->spa_name = strdup(name)) == NULL) { + free(spa); + return (NULL); + } + spa->spa_guid = guid; + spa->spa_root_vdev = vdev_create(guid, NULL); + if (spa->spa_root_vdev == NULL) { + free(spa->spa_name); + free(spa); + return (NULL); + } + spa->spa_root_vdev->v_name = strdup("root"); + STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link); + + return (spa); +} + +static const char * +state_name(vdev_state_t state) +{ + static const char *names[] = { + "UNKNOWN", + "CLOSED", + "OFFLINE", + "REMOVED", + "CANT_OPEN", + "FAULTED", + "DEGRADED", + "ONLINE" + }; + return (names[state]); +} + +static int +pager_printf(const char *fmt, ...) +{ + char line[80]; + va_list args; + + va_start(args, fmt); + vsnprintf(line, sizeof (line), fmt, args); + va_end(args); + return (pager_output(line)); +} + +#define STATUS_FORMAT " %s %s\n" + +static int +print_state(int indent, const char *name, vdev_state_t state) +{ + int i; + char buf[512]; + + buf[0] = 0; + for (i = 0; i < indent; i++) + strcat(buf, " "); + strcat(buf, name); + return (pager_printf(STATUS_FORMAT, buf, state_name(state))); +} + +static int +vdev_status(vdev_t *vdev, int indent) +{ + vdev_t *kid; + int ret; + + if (vdev->v_islog) { + (void) pager_output(" logs\n"); + indent++; + } + + ret = print_state(indent, vdev->v_name, vdev->v_state); + if (ret != 0) + return (ret); + + STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { + ret = vdev_status(kid, indent + 1); + if (ret != 0) + return (ret); + } + return (ret); +} + +static int +spa_status(spa_t *spa) +{ + static char bootfs[ZFS_MAXNAMELEN]; + uint64_t rootid; + vdev_list_t *vlist; + vdev_t *vdev; + int good_kids, bad_kids, degraded_kids, ret; + vdev_state_t state; + + ret = pager_printf(" pool: %s\n", spa->spa_name); + if (ret != 0) + return (ret); + + if (zfs_get_root(spa, &rootid) == 0 && + zfs_rlookup(spa, rootid, bootfs) == 0) { + if (bootfs[0] == '\0') + ret = pager_printf("bootfs: %s\n", spa->spa_name); + else + ret = pager_printf("bootfs: %s/%s\n", spa->spa_name, + bootfs); + if (ret != 0) + return (ret); + } + ret = pager_printf("config:\n\n"); + if (ret != 0) + return (ret); + ret = pager_printf(STATUS_FORMAT, "NAME", "STATE"); + if (ret != 0) + return (ret); + + good_kids = 0; + degraded_kids = 0; + bad_kids = 0; + vlist = &spa->spa_root_vdev->v_children; + STAILQ_FOREACH(vdev, vlist, v_childlink) { + if (vdev->v_state == VDEV_STATE_HEALTHY) + good_kids++; + else if (vdev->v_state == VDEV_STATE_DEGRADED) + degraded_kids++; + else + bad_kids++; + } + + state = VDEV_STATE_CLOSED; + if (good_kids > 0 && (degraded_kids + bad_kids) == 0) + state = VDEV_STATE_HEALTHY; + else if ((good_kids + degraded_kids) > 0) + state = VDEV_STATE_DEGRADED; + + ret = print_state(0, spa->spa_name, state); + if (ret != 0) + return (ret); + + STAILQ_FOREACH(vdev, vlist, v_childlink) { + ret = vdev_status(vdev, 1); + if (ret != 0) + return (ret); + } + return (ret); +} + +int +spa_all_status(void) +{ + spa_t *spa; + int first = 1, ret = 0; + + STAILQ_FOREACH(spa, &zfs_pools, spa_link) { + if (!first) { + ret = pager_printf("\n"); + if (ret != 0) + return (ret); + } + first = 0; + ret = spa_status(spa); + if (ret != 0) + return (ret); + } + return (ret); +} + +uint64_t +vdev_label_offset(uint64_t psize, int l, uint64_t offset) +{ + uint64_t label_offset; + + if (l < VDEV_LABELS / 2) + label_offset = 0; + else + label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t); + + return (offset + l * sizeof (vdev_label_t) + label_offset); +} + +static int +vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) +{ + unsigned int seq1 = 0; + unsigned int seq2 = 0; + int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg); + + if (cmp != 0) + return (cmp); + + cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp); + if (cmp != 0) + return (cmp); + + if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) + seq1 = MMP_SEQ(ub1); + + if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) + seq2 = MMP_SEQ(ub2); + + return (AVL_CMP(seq1, seq2)); +} + +static int +uberblock_verify(uberblock_t *ub) +{ + if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) { + byteswap_uint64_array(ub, sizeof (uberblock_t)); + } + + if (ub->ub_magic != UBERBLOCK_MAGIC || + !SPA_VERSION_IS_SUPPORTED(ub->ub_version)) + return (EINVAL); + + return (0); +} + +static int +vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset, + size_t size) +{ + blkptr_t bp; + off_t off; + + off = vdev_label_offset(vd->v_psize, l, offset); + + BP_ZERO(&bp); + BP_SET_LSIZE(&bp, size); + BP_SET_PSIZE(&bp, size); + BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL); + BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF); + DVA_SET_OFFSET(BP_IDENTITY(&bp), off); + ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0); + + return (vdev_read_phys(vd, &bp, buf, off, size)); +} + +/* + * We do need to be sure we write to correct location. + * Our vdev label does consist of 4 fields: + * pad1 (8k), reserved. + * bootenv (8k), checksummed, previously reserved, may contain garbage. + * vdev_phys (112k), checksummed + * uberblock ring (128k), checksummed. + * + * Since bootenv area may contain garbage, we can not reliably read it, as + * we can get checksum errors. + * Next best thing is vdev_phys - it is just after bootenv. It still may + * be corrupted, but in such case we will miss this one write. + */ +static int +vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset) +{ + uint64_t off, o_phys; + void *buf; + size_t size = VDEV_PHYS_SIZE; + int rc; + + o_phys = offsetof(vdev_label_t, vl_vdev_phys); + off = vdev_label_offset(vd->v_psize, l, o_phys); + + /* off should be 8K from bootenv */ + if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off) + return (EINVAL); + + buf = malloc(size); + if (buf == NULL) + return (ENOMEM); + + /* Read vdev_phys */ + rc = vdev_label_read(vd, l, buf, o_phys, size); + free(buf); + return (rc); +} + +static int +vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset) +{ + zio_checksum_info_t *ci; + zio_cksum_t cksum; + off_t off; + size_t size = VDEV_PAD_SIZE; + int rc; + + if (vd->v_phys_write == NULL) + return (ENOTSUP); + + off = vdev_label_offset(vd->v_psize, l, offset); + + rc = vdev_label_write_validate(vd, l, offset); + if (rc != 0) { + return (rc); + } + + ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; + be->vbe_zbt.zec_magic = ZEC_MAGIC; + zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off); + ci->ci_func[0](be, size, NULL, &cksum); + be->vbe_zbt.zec_cksum = cksum; + + return (vdev_write_phys(vd, be, off, size)); +} + +static int +vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be) +{ + vdev_t *kid; + int rv = 0, rc; + + STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { + if (kid->v_state != VDEV_STATE_HEALTHY) + continue; + rc = vdev_write_bootenv_impl(kid, be); + if (rv == 0) + rv = rc; + } + + /* + * Non-leaf vdevs do not have v_phys_write. + */ + if (vdev->v_phys_write == NULL) + return (rv); + + for (int l = 0; l < VDEV_LABELS; l++) { + rc = vdev_label_write(vdev, l, be, + offsetof(vdev_label_t, vl_be)); + if (rc != 0) { + printf("failed to write bootenv to %s label %d: %d\n", + vdev->v_name ? vdev->v_name : "unknown", l, rc); + rv = rc; + } + } + return (rv); +} + +int +vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl) +{ + vdev_boot_envblock_t *be; + nvlist_t nv, *nvp; + uint64_t version; + int rv; + + if (nvl->nv_size > sizeof (be->vbe_bootenv)) + return (E2BIG); + + version = VB_RAW; + nvp = vdev_read_bootenv(vdev); + if (nvp != NULL) { + nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL, + &version, NULL); + nvlist_destroy(nvp); + } + + be = calloc(1, sizeof (*be)); + if (be == NULL) + return (ENOMEM); + + be->vbe_version = version; + switch (version) { + case VB_RAW: + /* + * If there is no envmap, we will just wipe bootenv. + */ + nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL, + be->vbe_bootenv, NULL); + rv = 0; + break; + + case VB_NVLIST: + nv.nv_header = nvl->nv_header; + nv.nv_asize = nvl->nv_asize; + nv.nv_size = nvl->nv_size; + + bcopy(&nv.nv_header, be->vbe_bootenv, sizeof (nv.nv_header)); + nv.nv_data = (uint8_t *)be->vbe_bootenv + sizeof (nvs_header_t); + bcopy(nvl->nv_data, nv.nv_data, nv.nv_size); + rv = nvlist_export(&nv); + break; + + default: + rv = EINVAL; + break; + } + + if (rv == 0) { + be->vbe_version = htobe64(be->vbe_version); + rv = vdev_write_bootenv_impl(vdev, be); + } + free(be); + return (rv); +} + +/* + * Read the bootenv area from pool label, return the nvlist from it. + * We return from first successful read. + */ +nvlist_t * +vdev_read_bootenv(vdev_t *vdev) +{ + vdev_t *kid; + nvlist_t *benv; + vdev_boot_envblock_t *be; + char *command; + bool ok; + int rv; + + STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) { + if (kid->v_state != VDEV_STATE_HEALTHY) + continue; + + benv = vdev_read_bootenv(kid); + if (benv != NULL) + return (benv); + } + + be = malloc(sizeof (*be)); + if (be == NULL) + return (NULL); + + rv = 0; + for (int l = 0; l < VDEV_LABELS; l++) { + rv = vdev_label_read(vdev, l, be, + offsetof(vdev_label_t, vl_be), + sizeof (*be)); + if (rv == 0) + break; + } + if (rv != 0) { + free(be); + return (NULL); + } + + be->vbe_version = be64toh(be->vbe_version); + switch (be->vbe_version) { + case VB_RAW: + /* + * if we have textual data in vbe_bootenv, create nvlist + * with key "envmap". + */ + benv = nvlist_create(NV_UNIQUE_NAME); + if (benv != NULL) { + if (*be->vbe_bootenv == '\0') { + nvlist_add_uint64(benv, BOOTENV_VERSION, + VB_NVLIST); + break; + } + nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW); + be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0'; + nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv); + } + break; + + case VB_NVLIST: + benv = nvlist_import(be->vbe_bootenv, sizeof (be->vbe_bootenv)); + break; + + default: + command = (char *)be; + ok = false; + + /* Check for legacy zfsbootcfg command string */ + for (int i = 0; command[i] != '\0'; i++) { + if (iscntrl(command[i])) { + ok = false; + break; + } else { + ok = true; + } + } + benv = nvlist_create(NV_UNIQUE_NAME); + if (benv != NULL) { + if (ok) + nvlist_add_string(benv, FREEBSD_BOOTONCE, + command); + else + nvlist_add_uint64(benv, BOOTENV_VERSION, + VB_NVLIST); + } + break; + } + free(be); + return (benv); +} + +static uint64_t +vdev_get_label_asize(nvlist_t *nvl) +{ + nvlist_t *vdevs; + uint64_t asize; + const char *type; + int len; + + asize = 0; + /* Get vdev tree */ + if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, + NULL, &vdevs, NULL) != 0) + return (asize); + + /* + * Get vdev type. We will calculate asize for raidz, mirror and disk. + * For raidz, the asize is raw size of all children. + */ + if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, + NULL, &type, &len) != 0) + goto done; + + if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 && + memcmp(type, VDEV_TYPE_DISK, len) != 0 && + memcmp(type, VDEV_TYPE_RAIDZ, len) != 0) + goto done; + + if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64, + NULL, &asize, NULL) != 0) + goto done; + + if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) { + nvlist_t **kids; + int nkids; + + if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, + DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) { + asize = 0; + goto done; + } + + asize /= nkids; + for (int i = 0; i < nkids; i++) + nvlist_destroy(kids[i]); + free(kids); + } + + asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; +done: + return (asize); +} + +static nvlist_t * +vdev_label_read_config(vdev_t *vd, uint64_t txg) +{ + vdev_phys_t *label; + uint64_t best_txg = 0; + uint64_t label_txg = 0; + uint64_t asize; + nvlist_t *nvl = NULL, *tmp; + int error; + + label = malloc(sizeof (vdev_phys_t)); + if (label == NULL) + return (NULL); + + for (int l = 0; l < VDEV_LABELS; l++) { + if (vdev_label_read(vd, l, label, + offsetof(vdev_label_t, vl_vdev_phys), + sizeof (vdev_phys_t))) + continue; + + tmp = nvlist_import(label->vp_nvlist, + sizeof (label->vp_nvlist)); + if (tmp == NULL) + continue; + + error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG, + DATA_TYPE_UINT64, NULL, &label_txg, NULL); + if (error != 0 || label_txg == 0) { + nvlist_destroy(nvl); + nvl = tmp; + goto done; + } + + if (label_txg <= txg && label_txg > best_txg) { + best_txg = label_txg; + nvlist_destroy(nvl); + nvl = tmp; + tmp = NULL; + + /* + * Use asize from pool config. We need this + * because we can get bad value from BIOS. + */ + asize = vdev_get_label_asize(nvl); + if (asize != 0) { + vd->v_psize = asize; + } + } + nvlist_destroy(tmp); + } + + if (best_txg == 0) { + nvlist_destroy(nvl); + nvl = NULL; + } +done: + free(label); + return (nvl); +} + +static void +vdev_uberblock_load(vdev_t *vd, uberblock_t *ub) +{ + uberblock_t *buf; + + buf = malloc(VDEV_UBERBLOCK_SIZE(vd)); + if (buf == NULL) + return; + + for (int l = 0; l < VDEV_LABELS; l++) { + for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { + if (vdev_label_read(vd, l, buf, + VDEV_UBERBLOCK_OFFSET(vd, n), + VDEV_UBERBLOCK_SIZE(vd))) + continue; + if (uberblock_verify(buf) != 0) + continue; + + if (vdev_uberblock_compare(buf, ub) > 0) + *ub = *buf; + } + } + free(buf); +} + +static int +vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv, + spa_t **spap) +{ + vdev_t vtmp; + spa_t *spa; + vdev_t *vdev; + nvlist_t *nvl; + uint64_t val; + uint64_t guid, vdev_children; + uint64_t pool_txg, pool_guid; + const char *pool_name; + int rc, namelen; + + /* + * Load the vdev label and figure out which + * uberblock is most current. + */ + memset(&vtmp, 0, sizeof (vtmp)); + vtmp.v_phys_read = _read; + vtmp.v_phys_write = _write; + vtmp.v_priv = priv; + vtmp.v_psize = P2ALIGN(ldi_get_size(priv), + (uint64_t)sizeof (vdev_label_t)); + + /* Test for minimum device size. */ + if (vtmp.v_psize < SPA_MINDEVSIZE) + return (EIO); + + nvl = vdev_label_read_config(&vtmp, UINT64_MAX); + if (nvl == NULL) + return (EIO); + + if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64, + NULL, &val, NULL) != 0) { + nvlist_destroy(nvl); + return (EIO); + } + + if (!SPA_VERSION_IS_SUPPORTED(val)) { + printf("ZFS: unsupported ZFS version %u (should be %u)\n", + (unsigned)val, (unsigned)SPA_VERSION); + nvlist_destroy(nvl); + return (EIO); + } + + /* Check ZFS features for read */ + rc = nvlist_check_features_for_read(nvl); + if (rc != 0) { + nvlist_destroy(nvl); + return (EIO); + } + + if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64, + NULL, &val, NULL) != 0) { + nvlist_destroy(nvl); + return (EIO); + } + + if (val == POOL_STATE_DESTROYED) { + /* We don't boot only from destroyed pools. */ + nvlist_destroy(nvl); + return (EIO); + } + + if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64, + NULL, &pool_txg, NULL) != 0 || + nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64, + NULL, &pool_guid, NULL) != 0 || + nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING, + NULL, &pool_name, &namelen) != 0) { + /* + * Cache and spare devices end up here - just ignore + * them. + */ + nvlist_destroy(nvl); + return (EIO); + } + + /* + * Create the pool if this is the first time we've seen it. + */ + spa = spa_find_by_guid(pool_guid); + if (spa == NULL) { + char *name; + + nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN, + DATA_TYPE_UINT64, NULL, &vdev_children, NULL); + name = malloc(namelen + 1); + if (name == NULL) { + nvlist_destroy(nvl); + return (ENOMEM); + } + bcopy(pool_name, name, namelen); + name[namelen] = '\0'; + spa = spa_create(pool_guid, name); + free(name); + if (spa == NULL) { + nvlist_destroy(nvl); + return (ENOMEM); + } + spa->spa_root_vdev->v_nchildren = vdev_children; + } + if (pool_txg > spa->spa_txg) + spa->spa_txg = pool_txg; + + /* + * Get the vdev tree and create our in-core copy of it. + * If we already have a vdev with this guid, this must + * be some kind of alias (overlapping slices, dangerously dedicated + * disks etc). + */ + if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64, + NULL, &guid, NULL) != 0) { + nvlist_destroy(nvl); + return (EIO); + } + vdev = vdev_find(guid); + /* Has this vdev already been inited? */ + if (vdev && vdev->v_phys_read) { + nvlist_destroy(nvl); + return (EIO); + } + + rc = vdev_init_from_label(spa, nvl); + nvlist_destroy(nvl); + if (rc != 0) + return (rc); + + /* + * We should already have created an incomplete vdev for this + * vdev. Find it and initialise it with our read proc. + */ + vdev = vdev_find(guid); + if (vdev != NULL) { + vdev->v_phys_read = _read; + vdev->v_phys_write = _write; + vdev->v_priv = priv; + vdev->v_psize = vtmp.v_psize; + /* + * If no other state is set, mark vdev healthy. + */ + if (vdev->v_state == VDEV_STATE_UNKNOWN) + vdev->v_state = VDEV_STATE_HEALTHY; + } else { + printf("ZFS: inconsistent nvlist contents\n"); + return (EIO); + } + + if (vdev->v_islog) + spa->spa_with_log = vdev->v_islog; + + /* Record boot vdev for spa. */ + if (spa->spa_boot_vdev == NULL) + spa->spa_boot_vdev = vdev; + + /* + * Re-evaluate top-level vdev state. + */ + vdev_set_state(vdev->v_top); + + /* + * Ok, we are happy with the pool so far. Lets find + * the best uberblock and then we can actually access + * the contents of the pool. + */ + vdev_uberblock_load(vdev, &spa->spa_uberblock); + + if (spap != NULL) + *spap = spa; + return (0); +} + +static int +ilog2(int n) +{ + int v; + + for (v = 0; v < 32; v++) + if (n == (1 << v)) + return (v); + return (-1); +} + +static int +zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf) +{ + blkptr_t gbh_bp; + zio_gbh_phys_t zio_gb; + char *pbuf; + int i; + + /* Artificial BP for gang block header. */ + gbh_bp = *bp; + BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); + BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE); + BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER); + BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF); + for (i = 0; i < SPA_DVAS_PER_BP; i++) + DVA_SET_GANG(&gbh_bp.blk_dva[i], 0); + + /* Read gang header block using the artificial BP. */ + if (zio_read(spa, &gbh_bp, &zio_gb)) + return (EIO); + + pbuf = buf; + for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { + blkptr_t *gbp = &zio_gb.zg_blkptr[i]; + + if (BP_IS_HOLE(gbp)) + continue; + if (zio_read(spa, gbp, pbuf)) + return (EIO); + pbuf += BP_GET_PSIZE(gbp); + } + + if (zio_checksum_verify(spa, bp, buf)) + return (EIO); + return (0); +} + +static int +zio_read(const spa_t *spa, const blkptr_t *bp, void *buf) +{ + int cpfunc = BP_GET_COMPRESS(bp); + uint64_t align, size; + void *pbuf; + int i, error; + + /* + * Process data embedded in block pointer + */ + if (BP_IS_EMBEDDED(bp)) { + ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); + + size = BPE_GET_PSIZE(bp); + ASSERT(size <= BPE_PAYLOAD_SIZE); + + if (cpfunc != ZIO_COMPRESS_OFF) + pbuf = malloc(size); + else + pbuf = buf; + + if (pbuf == NULL) + return (ENOMEM); + + decode_embedded_bp_compressed(bp, pbuf); + error = 0; + + if (cpfunc != ZIO_COMPRESS_OFF) { + error = zio_decompress_data(cpfunc, pbuf, + size, buf, BP_GET_LSIZE(bp)); + free(pbuf); + } + if (error != 0) + printf("ZFS: i/o error - unable to decompress " + "block pointer data, error %d\n", error); + return (error); + } + + error = EIO; + + for (i = 0; i < SPA_DVAS_PER_BP; i++) { + const dva_t *dva = &bp->blk_dva[i]; + vdev_t *vdev; + vdev_list_t *vlist; + uint64_t vdevid; + off_t offset; + + if (!dva->dva_word[0] && !dva->dva_word[1]) + continue; + + vdevid = DVA_GET_VDEV(dva); + offset = DVA_GET_OFFSET(dva); + vlist = &spa->spa_root_vdev->v_children; + STAILQ_FOREACH(vdev, vlist, v_childlink) { + if (vdev->v_id == vdevid) + break; + } + if (!vdev || !vdev->v_read) + continue; + + size = BP_GET_PSIZE(bp); + if (vdev->v_read == vdev_raidz_read) { + align = 1ULL << vdev->v_ashift; + if (P2PHASE(size, align) != 0) + size = P2ROUNDUP(size, align); + } + if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF) + pbuf = malloc(size); + else + pbuf = buf; + + if (pbuf == NULL) { + error = ENOMEM; + break; + } + + if (DVA_GET_GANG(dva)) + error = zio_read_gang(spa, bp, pbuf); + else + error = vdev->v_read(vdev, bp, pbuf, offset, size); + if (error == 0) { + if (cpfunc != ZIO_COMPRESS_OFF) + error = zio_decompress_data(cpfunc, pbuf, + BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp)); + else if (size != BP_GET_PSIZE(bp)) + bcopy(pbuf, buf, BP_GET_PSIZE(bp)); + } + if (buf != pbuf) + free(pbuf); + if (error == 0) + break; + } + if (error != 0) + printf("ZFS: i/o error - all block copies unavailable\n"); + + return (error); +} + +static int +dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, + void *buf, size_t buflen) +{ + int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT; + int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + int nlevels = dnode->dn_nlevels; + int i, rc; + + if (bsize > SPA_MAXBLOCKSIZE) { + printf("ZFS: I/O error - blocks larger than %llu are not " + "supported\n", SPA_MAXBLOCKSIZE); + return (EIO); + } + + /* + * Note: bsize may not be a power of two here so we need to do an + * actual divide rather than a bitshift. + */ + while (buflen > 0) { + uint64_t bn = offset / bsize; + int boff = offset % bsize; + int ibn; + const blkptr_t *indbp; + blkptr_t bp; + + if (bn > dnode->dn_maxblkid) { + printf("warning: zfs bug: bn %llx > dn_maxblkid %llx\n", + (unsigned long long)bn, + (unsigned long long)dnode->dn_maxblkid); + /* + * zfs bug, will not return error + * return (EIO); + */ + } + + if (dnode == dnode_cache_obj && bn == dnode_cache_bn) + goto cached; + + indbp = dnode->dn_blkptr; + for (i = 0; i < nlevels; i++) { + /* + * Copy the bp from the indirect array so that + * we can re-use the scratch buffer for multi-level + * objects. + */ + ibn = bn >> ((nlevels - i - 1) * ibshift); + ibn &= ((1 << ibshift) - 1); + bp = indbp[ibn]; + if (BP_IS_HOLE(&bp)) { + memset(dnode_cache_buf, 0, bsize); + break; + } + rc = zio_read(spa, &bp, dnode_cache_buf); + if (rc) + return (rc); + indbp = (const blkptr_t *) dnode_cache_buf; + } + dnode_cache_obj = dnode; + dnode_cache_bn = bn; + cached: + + /* + * The buffer contains our data block. Copy what we + * need from it and loop. + */ + i = bsize - boff; + if (i > buflen) i = buflen; + memcpy(buf, &dnode_cache_buf[boff], i); + buf = ((char *)buf) + i; + offset += i; + buflen -= i; + } + + return (0); +} + +/* + * Lookup a value in a microzap directory. + */ +static int +mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name, + uint64_t *value) +{ + const mzap_ent_phys_t *mze; + int chunks, i; + + /* + * Microzap objects use exactly one block. Read the whole + * thing. + */ + chunks = size / MZAP_ENT_LEN - 1; + for (i = 0; i < chunks; i++) { + mze = &mz->mz_chunk[i]; + if (strcmp(mze->mze_name, name) == 0) { + *value = mze->mze_value; + return (0); + } + } + + return (ENOENT); +} + +/* + * Compare a name with a zap leaf entry. Return non-zero if the name + * matches. + */ +static int +fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, + const char *name) +{ + size_t namelen; + const zap_leaf_chunk_t *nc; + const char *p; + + namelen = zc->l_entry.le_name_numints; + + nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); + p = name; + while (namelen > 0) { + size_t len; + + len = namelen; + if (len > ZAP_LEAF_ARRAY_BYTES) + len = ZAP_LEAF_ARRAY_BYTES; + if (memcmp(p, nc->l_array.la_array, len)) + return (0); + p += len; + namelen -= len; + nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); + } + + return (1); +} + +/* + * Extract a uint64_t value from a zap leaf entry. + */ +static uint64_t +fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc) +{ + const zap_leaf_chunk_t *vc; + int i; + uint64_t value; + const uint8_t *p; + + vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk); + for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) { + value = (value << 8) | p[i]; + } + + return (value); +} + +static void +stv(int len, void *addr, uint64_t value) +{ + switch (len) { + case 1: + *(uint8_t *)addr = value; + return; + case 2: + *(uint16_t *)addr = value; + return; + case 4: + *(uint32_t *)addr = value; + return; + case 8: + *(uint64_t *)addr = value; + return; + } +} + +/* + * Extract a array from a zap leaf entry. + */ +static void +fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, + uint64_t integer_size, uint64_t num_integers, void *buf) +{ + uint64_t array_int_len = zc->l_entry.le_value_intlen; + uint64_t value = 0; + uint64_t *u64 = buf; + char *p = buf; + int len = MIN(zc->l_entry.le_value_numints, num_integers); + int chunk = zc->l_entry.le_value_chunk; + int byten = 0; + + if (integer_size == 8 && len == 1) { + *u64 = fzap_leaf_value(zl, zc); + return; + } + + while (len > 0) { + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array; + int i; + + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl)); + for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { + value = (value << 8) | la->la_array[i]; + byten++; + if (byten == array_int_len) { + stv(integer_size, p, value); + byten = 0; + len--; + if (len == 0) + return; + p += integer_size; + } + } + chunk = la->la_next; + } +} + +static int +fzap_check_size(uint64_t integer_size, uint64_t num_integers) +{ + + switch (integer_size) { + case 1: + case 2: + case 4: + case 8: + break; + default: + return (EINVAL); + } + + if (integer_size * num_integers > ZAP_MAXVALUELEN) + return (E2BIG); + + return (0); +} + +static void +zap_leaf_free(zap_leaf_t *leaf) +{ + free(leaf->l_phys); + free(leaf); +} + +static int +zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp) +{ + int bs = FZAP_BLOCK_SHIFT(zap); + int err; + + *lp = malloc(sizeof (**lp)); + if (*lp == NULL) + return (ENOMEM); + + (*lp)->l_bs = bs; + (*lp)->l_phys = malloc(1 << bs); + + if ((*lp)->l_phys == NULL) { + free(*lp); + return (ENOMEM); + } + err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys, + 1 << bs); + if (err != 0) { + zap_leaf_free(*lp); + } + return (err); +} + +static int +zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, + uint64_t *valp) +{ + int bs = FZAP_BLOCK_SHIFT(zap); + uint64_t blk = idx >> (bs - 3); + uint64_t off = idx & ((1 << (bs - 3)) - 1); + uint64_t *buf; + int rc; + + buf = malloc(1 << zap->zap_block_shift); + if (buf == NULL) + return (ENOMEM); + rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs, + buf, 1 << zap->zap_block_shift); + if (rc == 0) + *valp = buf[off]; + free(buf); + return (rc); +} + +static int +zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp) +{ + if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) { + *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); + return (0); + } else { + return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl, + idx, valp)); + } +} + +#define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) +static int +zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp) +{ + uint64_t idx, blk; + int err; + + idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift); + err = zap_idx_to_blk(zap, idx, &blk); + if (err != 0) + return (err); + return (zap_get_leaf_byblk(zap, blk, lp)); +} + +#define CHAIN_END 0xffff /* end of the chunk chain */ +#define LEAF_HASH(l, h) \ + ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ + ((h) >> \ + (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len))) +#define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) + +static int +zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name, + uint64_t integer_size, uint64_t num_integers, void *value) +{ + int rc; + uint16_t *chunkp; + struct zap_leaf_entry *le; + + /* + * Make sure this chunk matches our hash. + */ + if (zl->l_phys->l_hdr.lh_prefix_len > 0 && + zl->l_phys->l_hdr.lh_prefix != + hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len)) + return (EIO); + + rc = ENOENT; + for (chunkp = LEAF_HASH_ENTPTR(zl, hash); + *chunkp != CHAIN_END; chunkp = &le->le_next) { + zap_leaf_chunk_t *zc; + uint16_t chunk = *chunkp; + + le = ZAP_LEAF_ENTRY(zl, chunk); + if (le->le_hash != hash) + continue; + zc = &ZAP_LEAF_CHUNK(zl, chunk); + if (fzap_name_equal(zl, zc, name)) { + if (zc->l_entry.le_value_intlen > integer_size) { + rc = EINVAL; + } else { + fzap_leaf_array(zl, zc, integer_size, + num_integers, value); + rc = 0; + } + break; + } + } + return (rc); +} + +/* + * Lookup a value in a fatzap directory. + */ +static int +fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, + const char *name, uint64_t integer_size, uint64_t num_integers, + void *value) +{ + int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + fat_zap_t z; + zap_leaf_t *zl; + uint64_t hash; + int rc; + + if (zh->zap_magic != ZAP_MAGIC) + return (EIO); + + if ((rc = fzap_check_size(integer_size, num_integers)) != 0) + return (rc); + + z.zap_block_shift = ilog2(bsize); + z.zap_phys = zh; + z.zap_spa = spa; + z.zap_dnode = dnode; + + hash = zap_hash(zh->zap_salt, name); + rc = zap_deref_leaf(&z, hash, &zl); + if (rc != 0) + return (rc); + + rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value); + + zap_leaf_free(zl); + return (rc); +} + +/* + * Lookup a name in a zap object and return its value as a uint64_t. + */ +static int +zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name, + uint64_t integer_size, uint64_t num_integers, void *value) +{ + int rc; + zap_phys_t *zap; + size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + + zap = malloc(size); + if (zap == NULL) + return (ENOMEM); + + rc = dnode_read(spa, dnode, 0, zap, size); + if (rc) + goto done; + + switch (zap->zap_block_type) { + case ZBT_MICRO: + rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value); + break; + case ZBT_HEADER: + rc = fzap_lookup(spa, dnode, zap, name, integer_size, + num_integers, value); + break; + default: + printf("ZFS: invalid zap_type=%" PRIx64 "\n", + zap->zap_block_type); + rc = EIO; + } +done: + free(zap); + return (rc); +} + +/* + * List a microzap directory. + */ +static int +mzap_list(const mzap_phys_t *mz, size_t size, + int (*callback)(const char *, uint64_t)) +{ + const mzap_ent_phys_t *mze; + int chunks, i, rc; + + /* + * Microzap objects use exactly one block. Read the whole + * thing. + */ + rc = 0; + chunks = size / MZAP_ENT_LEN - 1; + for (i = 0; i < chunks; i++) { + mze = &mz->mz_chunk[i]; + if (mze->mze_name[0]) { + rc = callback(mze->mze_name, mze->mze_value); + if (rc != 0) + break; + } + } + + return (rc); +} + +/* + * List a fatzap directory. + */ +static int +fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, + int (*callback)(const char *, uint64_t)) +{ + int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + fat_zap_t z; + int i, j, rc; + + if (zh->zap_magic != ZAP_MAGIC) + return (EIO); + + z.zap_block_shift = ilog2(bsize); + z.zap_phys = zh; + + /* + * This assumes that the leaf blocks start at block 1. The + * documentation isn't exactly clear on this. + */ + zap_leaf_t zl; + zl.l_bs = z.zap_block_shift; + zl.l_phys = malloc(bsize); + if (zl.l_phys == NULL) + return (ENOMEM); + + for (i = 0; i < zh->zap_num_leafs; i++) { + off_t off = ((off_t)(i + 1)) << zl.l_bs; + char name[256], *p; + uint64_t value; + + if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) { + free(zl.l_phys); + return (EIO); + } + + for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { + zap_leaf_chunk_t *zc, *nc; + int namelen; + + zc = &ZAP_LEAF_CHUNK(&zl, j); + if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) + continue; + namelen = zc->l_entry.le_name_numints; + if (namelen > sizeof (name)) + namelen = sizeof (name); + + /* + * Paste the name back together. + */ + nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk); + p = name; + while (namelen > 0) { + int len; + len = namelen; + if (len > ZAP_LEAF_ARRAY_BYTES) + len = ZAP_LEAF_ARRAY_BYTES; + memcpy(p, nc->l_array.la_array, len); + p += len; + namelen -= len; + nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next); + } + + /* + * Assume the first eight bytes of the value are + * a uint64_t. + */ + value = fzap_leaf_value(&zl, zc); + + /* printf("%s 0x%jx\n", name, (uintmax_t)value); */ + rc = callback((const char *)name, value); + if (rc != 0) { + free(zl.l_phys); + return (rc); + } + } + } + + free(zl.l_phys); + return (0); +} + +static int zfs_printf(const char *name, uint64_t value __unused) +{ + + printf("%s\n", name); + + return (0); +} + +/* + * List a zap directory. + */ +static int +zap_list(const spa_t *spa, const dnode_phys_t *dnode) +{ + zap_phys_t *zap; + size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + int rc; + + zap = malloc(size); + if (zap == NULL) + return (ENOMEM); + + rc = dnode_read(spa, dnode, 0, zap, size); + if (rc == 0) { + if (zap->zap_block_type == ZBT_MICRO) + rc = mzap_list((const mzap_phys_t *)zap, size, + zfs_printf); + else + rc = fzap_list(spa, dnode, zap, zfs_printf); + } + free(zap); + return (rc); +} + +static int +objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, + dnode_phys_t *dnode) +{ + off_t offset; + + offset = objnum * sizeof (dnode_phys_t); + return (dnode_read(spa, &os->os_meta_dnode, offset, + dnode, sizeof (dnode_phys_t))); +} + +/* + * Lookup a name in a microzap directory. + */ +static int +mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value) +{ + const mzap_ent_phys_t *mze; + int chunks, i; + + /* + * Microzap objects use exactly one block. Read the whole + * thing. + */ + chunks = size / MZAP_ENT_LEN - 1; + for (i = 0; i < chunks; i++) { + mze = &mz->mz_chunk[i]; + if (value == mze->mze_value) { + strcpy(name, mze->mze_name); + return (0); + } + } + + return (ENOENT); +} + +static void +fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name) +{ + size_t namelen; + const zap_leaf_chunk_t *nc; + char *p; + + namelen = zc->l_entry.le_name_numints; + + nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk); + p = name; + while (namelen > 0) { + size_t len; + len = namelen; + if (len > ZAP_LEAF_ARRAY_BYTES) + len = ZAP_LEAF_ARRAY_BYTES; + memcpy(p, nc->l_array.la_array, len); + p += len; + namelen -= len; + nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next); + } + + *p = '\0'; +} + +static int +fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh, + char *name, uint64_t value) +{ + int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + fat_zap_t z; + uint64_t i; + int j, rc; + + if (zh->zap_magic != ZAP_MAGIC) + return (EIO); + + z.zap_block_shift = ilog2(bsize); + z.zap_phys = zh; + + /* + * This assumes that the leaf blocks start at block 1. The + * documentation isn't exactly clear on this. + */ + zap_leaf_t zl; + zl.l_bs = z.zap_block_shift; + zl.l_phys = malloc(bsize); + if (zl.l_phys == NULL) + return (ENOMEM); + + for (i = 0; i < zh->zap_num_leafs; i++) { + off_t off = ((off_t)(i + 1)) << zl.l_bs; + + rc = dnode_read(spa, dnode, off, zl.l_phys, bsize); + if (rc != 0) + goto done; + + for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) { + zap_leaf_chunk_t *zc; + + zc = &ZAP_LEAF_CHUNK(&zl, j); + if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY) + continue; + if (zc->l_entry.le_value_intlen != 8 || + zc->l_entry.le_value_numints != 1) + continue; + + if (fzap_leaf_value(&zl, zc) == value) { + fzap_name_copy(&zl, zc, name); + goto done; + } + } + } + + rc = ENOENT; +done: + free(zl.l_phys); + return (rc); +} + +static int +zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, + uint64_t value) +{ + zap_phys_t *zap; + size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT; + int rc; + + zap = malloc(size); + if (zap == NULL) + return (ENOMEM); + + rc = dnode_read(spa, dnode, 0, zap, size); + if (rc == 0) { + if (zap->zap_block_type == ZBT_MICRO) + rc = mzap_rlookup((const mzap_phys_t *)zap, size, + name, value); + else + rc = fzap_rlookup(spa, dnode, zap, name, value); + } + free(zap); + return (rc); +} + +static int +zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result) +{ + char name[256]; + char component[256]; + uint64_t dir_obj, parent_obj, child_dir_zapobj; + dnode_phys_t child_dir_zap, dataset, dir, parent; + dsl_dir_phys_t *dd; + dsl_dataset_phys_t *ds; + char *p; + int len; + + p = &name[sizeof (name) - 1]; + *p = '\0'; + + if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { + printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); + return (EIO); + } + ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; + dir_obj = ds->ds_dir_obj; + + for (;;) { + if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0) + return (EIO); + dd = (dsl_dir_phys_t *)&dir.dn_bonus; + + /* Actual loop condition. */ + parent_obj = dd->dd_parent_obj; + if (parent_obj == 0) + break; + + if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, + &parent) != 0) + return (EIO); + dd = (dsl_dir_phys_t *)&parent.dn_bonus; + child_dir_zapobj = dd->dd_child_dir_zapobj; + if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, + &child_dir_zap) != 0) + return (EIO); + if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0) + return (EIO); + + len = strlen(component); + p -= len; + memcpy(p, component, len); + --p; + *p = '/'; + + /* Actual loop iteration. */ + dir_obj = parent_obj; + } + + if (*p != '\0') + ++p; + strcpy(result, p); + + return (0); +} + +static int +zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum) +{ + char element[256]; + uint64_t dir_obj, child_dir_zapobj; + dnode_phys_t child_dir_zap, dir; + dsl_dir_phys_t *dd; + const char *p, *q; + + if (objset_get_dnode(spa, &spa->spa_mos, + DMU_POOL_DIRECTORY_OBJECT, &dir)) + return (EIO); + if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj), + 1, &dir_obj)) + return (EIO); + + p = name; + for (;;) { + if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) + return (EIO); + dd = (dsl_dir_phys_t *)&dir.dn_bonus; + + while (*p == '/') + p++; + /* Actual loop condition #1. */ + if (*p == '\0') + break; + + q = strchr(p, '/'); + if (q) { + memcpy(element, p, q - p); + element[q - p] = '\0'; + p = q + 1; + } else { + strcpy(element, p); + p += strlen(p); + } + + child_dir_zapobj = dd->dd_child_dir_zapobj; + if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, + &child_dir_zap) != 0) + return (EIO); + + /* Actual loop condition #2. */ + if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj), + 1, &dir_obj) != 0) + return (ENOENT); + } + + *objnum = dd->dd_head_dataset_obj; + return (0); +} + +#pragma GCC diagnostic ignored "-Wstrict-aliasing" +static int +zfs_list_dataset(const spa_t *spa, uint64_t objnum) +{ + uint64_t dir_obj, child_dir_zapobj; + dnode_phys_t child_dir_zap, dir, dataset; + dsl_dataset_phys_t *ds; + dsl_dir_phys_t *dd; + + if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { + printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); + return (EIO); + } + ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; + dir_obj = ds->ds_dir_obj; + + if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) { + printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); + return (EIO); + } + dd = (dsl_dir_phys_t *)&dir.dn_bonus; + + child_dir_zapobj = dd->dd_child_dir_zapobj; + if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, + &child_dir_zap) != 0) { + printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); + return (EIO); + } + + return (zap_list(spa, &child_dir_zap) != 0); +} + +int +zfs_callback_dataset(const spa_t *spa, uint64_t objnum, + int (*callback)(const char *, uint64_t)) +{ + uint64_t dir_obj, child_dir_zapobj; + dnode_phys_t child_dir_zap, dir, dataset; + dsl_dataset_phys_t *ds; + dsl_dir_phys_t *dd; + zap_phys_t *zap; + size_t size; + int err; + + err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset); + if (err != 0) { + printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); + return (err); + } + ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; + dir_obj = ds->ds_dir_obj; + + err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir); + if (err != 0) { + printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj); + return (err); + } + dd = (dsl_dir_phys_t *)&dir.dn_bonus; + + child_dir_zapobj = dd->dd_child_dir_zapobj; + err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, + &child_dir_zap); + if (err != 0) { + printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj); + return (err); + } + + size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT; + zap = malloc(size); + if (zap != NULL) { + err = dnode_read(spa, &child_dir_zap, 0, zap, size); + if (err != 0) + goto done; + + if (zap->zap_block_type == ZBT_MICRO) + err = mzap_list((const mzap_phys_t *)zap, size, + callback); + else + err = fzap_list(spa, &child_dir_zap, zap, callback); + } else { + err = ENOMEM; + } +done: + free(zap); + return (err); +} + +/* + * Find the object set given the object number of its dataset object + * and return its details in *objset + */ +static int +zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset) +{ + dnode_phys_t dataset; + dsl_dataset_phys_t *ds; + + if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) { + printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum); + return (EIO); + } + + ds = (dsl_dataset_phys_t *)&dataset.dn_bonus; + if (zio_read(spa, &ds->ds_bp, objset)) { + printf("ZFS: can't read object set for dataset %ju\n", + (uintmax_t)objnum); + return (EIO); + } + + return (0); +} + +/* + * Find the object set pointed to by the BOOTFS property or the root + * dataset if there is none and return its details in *objset + */ +static int +zfs_get_root(const spa_t *spa, uint64_t *objid) +{ + dnode_phys_t dir, propdir; + uint64_t props, bootfs, root; + + *objid = 0; + + /* + * Start with the MOS directory object. + */ + if (objset_get_dnode(spa, &spa->spa_mos, + DMU_POOL_DIRECTORY_OBJECT, &dir)) { + printf("ZFS: can't read MOS object directory\n"); + return (EIO); + } + + /* + * Lookup the pool_props and see if we can find a bootfs. + */ + if (zap_lookup(spa, &dir, DMU_POOL_PROPS, + sizeof (props), 1, &props) == 0 && + objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 && + zap_lookup(spa, &propdir, "bootfs", + sizeof (bootfs), 1, &bootfs) == 0 && bootfs != 0) { + *objid = bootfs; + return (0); + } + /* + * Lookup the root dataset directory + */ + if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, + sizeof (root), 1, &root) || + objset_get_dnode(spa, &spa->spa_mos, root, &dir)) { + printf("ZFS: can't find root dsl_dir\n"); + return (EIO); + } + + /* + * Use the information from the dataset directory's bonus buffer + * to find the dataset object and from that the object set itself. + */ + dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus; + *objid = dd->dd_head_dataset_obj; + return (0); +} + +static int +zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mnt) +{ + + mnt->spa = spa; + + /* + * Find the root object set if not explicitly provided + */ + if (rootobj == 0 && zfs_get_root(spa, &rootobj)) { + printf("ZFS: can't find root filesystem\n"); + return (EIO); + } + + if (zfs_mount_dataset(spa, rootobj, &mnt->objset)) { + printf("ZFS: can't open root filesystem\n"); + return (EIO); + } + + mnt->rootobj = rootobj; + + return (0); +} + +/* + * callback function for feature name checks. + */ +static int +check_feature(const char *name, uint64_t value) +{ + int i; + + if (value == 0) + return (0); + if (name[0] == '\0') + return (0); + + for (i = 0; features_for_read[i] != NULL; i++) { + if (strcmp(name, features_for_read[i]) == 0) + return (0); + } + printf("ZFS: unsupported feature: %s\n", name); + return (EIO); +} + +/* + * Checks whether the MOS features that are active are supported. + */ +static int +check_mos_features(const spa_t *spa) +{ + dnode_phys_t dir; + zap_phys_t *zap; + uint64_t objnum; + size_t size; + int rc; + + if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY, + &dir)) != 0) + return (rc); + if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ, + sizeof (objnum), 1, &objnum)) != 0) { + /* + * It is older pool without features. As we have already + * tested the label, just return without raising the error. + */ + if (rc == ENOENT) + rc = 0; + return (rc); + } + + if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0) + return (rc); + + if (dir.dn_type != DMU_OTN_ZAP_METADATA) + return (EIO); + + size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT; + zap = malloc(size); + if (zap == NULL) + return (ENOMEM); + + if (dnode_read(spa, &dir, 0, zap, size)) { + free(zap); + return (EIO); + } + + if (zap->zap_block_type == ZBT_MICRO) + rc = mzap_list((const mzap_phys_t *)zap, size, check_feature); + else + rc = fzap_list(spa, &dir, zap, check_feature); + + free(zap); + return (rc); +} + +static int +load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) +{ + dnode_phys_t dir; + size_t size; + int rc; + char *nv; + + *value = NULL; + if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0) + return (rc); + if (dir.dn_type != DMU_OT_PACKED_NVLIST && + dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) { + return (EIO); + } + + if (dir.dn_bonuslen != sizeof (uint64_t)) + return (EIO); + + size = *(uint64_t *)DN_BONUS(&dir); + nv = malloc(size); + if (nv == NULL) + return (ENOMEM); + + rc = dnode_read(spa, &dir, 0, nv, size); + if (rc != 0) { + free(nv); + nv = NULL; + return (rc); + } + *value = nvlist_import(nv, size); + free(nv); + return (rc); +} + +static int +zfs_spa_init(spa_t *spa) +{ + dnode_phys_t dir; + uint64_t config_object; + nvlist_t *nvlist; + int rc; + + if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) { + printf("ZFS: can't read MOS of pool %s\n", spa->spa_name); + return (EIO); + } + if (spa->spa_mos.os_type != DMU_OST_META) { + printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name); + return (EIO); + } + + if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, + &dir)) { + printf("ZFS: failed to read pool %s directory object\n", + spa->spa_name); + return (EIO); + } + /* this is allowed to fail, older pools do not have salt */ + rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1, + sizeof (spa->spa_cksum_salt.zcs_bytes), + spa->spa_cksum_salt.zcs_bytes); + + rc = check_mos_features(spa); + if (rc != 0) { + printf("ZFS: pool %s is not supported\n", spa->spa_name); + return (rc); + } + + rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG, + sizeof (config_object), 1, &config_object); + if (rc != 0) { + printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG); + return (EIO); + } + rc = load_nvlist(spa, config_object, &nvlist); + if (rc != 0) + return (rc); + + /* + * Update vdevs from MOS config. Note, we do skip encoding bytes + * here. See also vdev_label_read_config(). + */ + rc = vdev_init_from_nvlist(spa, nvlist); + nvlist_destroy(nvlist); + return (rc); +} + +static int +zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb) +{ + + if (dn->dn_bonustype != DMU_OT_SA) { + znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus; + + sb->st_mode = zp->zp_mode; + sb->st_uid = zp->zp_uid; + sb->st_gid = zp->zp_gid; + sb->st_size = zp->zp_size; + } else { + sa_hdr_phys_t *sahdrp; + int hdrsize; + size_t size = 0; + void *buf = NULL; + + if (dn->dn_bonuslen != 0) + sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); + else { + if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) { + blkptr_t *bp = DN_SPILL_BLKPTR(dn); + int error; + + size = BP_GET_LSIZE(bp); + buf = malloc(size); + if (buf == NULL) + error = ENOMEM; + else + error = zio_read(spa, bp, buf); + + if (error != 0) { + free(buf); + return (error); + } + sahdrp = buf; + } else { + return (EIO); + } + } + hdrsize = SA_HDR_SIZE(sahdrp); + sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize + + SA_MODE_OFFSET); + sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize + + SA_UID_OFFSET); + sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize + + SA_GID_OFFSET); + sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize + + SA_SIZE_OFFSET); + free(buf); + } + + return (0); +} + +static int +zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize) +{ + int rc = 0; + + if (dn->dn_bonustype == DMU_OT_SA) { + sa_hdr_phys_t *sahdrp = NULL; + size_t size = 0; + void *buf = NULL; + int hdrsize; + char *p; + + if (dn->dn_bonuslen != 0) { + sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn); + } else { + blkptr_t *bp; + + if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0) + return (EIO); + bp = DN_SPILL_BLKPTR(dn); + + size = BP_GET_LSIZE(bp); + buf = malloc(size); + if (buf == NULL) + rc = ENOMEM; + else + rc = zio_read(spa, bp, buf); + if (rc != 0) { + free(buf); + return (rc); + } + sahdrp = buf; + } + hdrsize = SA_HDR_SIZE(sahdrp); + p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET); + memcpy(path, p, psize); + free(buf); + return (0); + } + /* + * Second test is purely to silence bogus compiler + * warning about accessing past the end of dn_bonus. + */ + if (psize + sizeof (znode_phys_t) <= dn->dn_bonuslen && + sizeof (znode_phys_t) <= sizeof (dn->dn_bonus)) { + memcpy(path, &dn->dn_bonus[sizeof (znode_phys_t)], psize); + } else { + rc = dnode_read(spa, dn, 0, path, psize); + } + return (rc); +} + +struct obj_list { + uint64_t objnum; + STAILQ_ENTRY(obj_list) entry; +}; + +/* + * Lookup a file and return its dnode. + */ +static int +zfs_lookup(const struct zfsmount *mnt, const char *upath, dnode_phys_t *dnode) +{ + int rc; + uint64_t objnum; + const spa_t *spa; + dnode_phys_t dn; + const char *p, *q; + char element[256]; + char path[1024]; + int symlinks_followed = 0; + struct stat sb; + struct obj_list *entry, *tentry; + STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache); + + spa = mnt->spa; + if (mnt->objset.os_type != DMU_OST_ZFS) { + printf("ZFS: unexpected object set type %ju\n", + (uintmax_t)mnt->objset.os_type); + return (EIO); + } + + if ((entry = malloc(sizeof (struct obj_list))) == NULL) + return (ENOMEM); + + /* + * Get the root directory dnode. + */ + rc = objset_get_dnode(spa, &mnt->objset, MASTER_NODE_OBJ, &dn); + if (rc) { + free(entry); + return (rc); + } + + rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum); + if (rc) { + free(entry); + return (rc); + } + entry->objnum = objnum; + STAILQ_INSERT_HEAD(&on_cache, entry, entry); + + rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); + if (rc != 0) + goto done; + + p = upath; + while (p && *p) { + rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); + if (rc != 0) + goto done; + + while (*p == '/') + p++; + if (*p == '\0') + break; + q = p; + while (*q != '\0' && *q != '/') + q++; + + /* skip dot */ + if (p + 1 == q && p[0] == '.') { + p++; + continue; + } + /* double dot */ + if (p + 2 == q && p[0] == '.' && p[1] == '.') { + p += 2; + if (STAILQ_FIRST(&on_cache) == + STAILQ_LAST(&on_cache, obj_list, entry)) { + rc = ENOENT; + goto done; + } + entry = STAILQ_FIRST(&on_cache); + STAILQ_REMOVE_HEAD(&on_cache, entry); + free(entry); + objnum = (STAILQ_FIRST(&on_cache))->objnum; + continue; + } + if (q - p + 1 > sizeof (element)) { + rc = ENAMETOOLONG; + goto done; + } + memcpy(element, p, q - p); + element[q - p] = 0; + p = q; + + if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0) + goto done; + if (!S_ISDIR(sb.st_mode)) { + rc = ENOTDIR; + goto done; + } + + rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum); + if (rc) + goto done; + objnum = ZFS_DIRENT_OBJ(objnum); + + if ((entry = malloc(sizeof (struct obj_list))) == NULL) { + rc = ENOMEM; + goto done; + } + entry->objnum = objnum; + STAILQ_INSERT_HEAD(&on_cache, entry, entry); + rc = objset_get_dnode(spa, &mnt->objset, objnum, &dn); + if (rc) + goto done; + + /* + * Check for symlink. + */ + rc = zfs_dnode_stat(spa, &dn, &sb); + if (rc) + goto done; + if (S_ISLNK(sb.st_mode)) { + if (symlinks_followed > 10) { + rc = EMLINK; + goto done; + } + symlinks_followed++; + + /* + * Read the link value and copy the tail of our + * current path onto the end. + */ + if (sb.st_size + strlen(p) + 1 > sizeof (path)) { + rc = ENAMETOOLONG; + goto done; + } + strcpy(&path[sb.st_size], p); + + rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size); + if (rc != 0) + goto done; + + /* + * Restart with the new path, starting either at + * the root or at the parent depending whether or + * not the link is relative. + */ + p = path; + if (*p == '/') { + while (STAILQ_FIRST(&on_cache) != + STAILQ_LAST(&on_cache, obj_list, entry)) { + entry = STAILQ_FIRST(&on_cache); + STAILQ_REMOVE_HEAD(&on_cache, entry); + free(entry); + } + } else { + entry = STAILQ_FIRST(&on_cache); + STAILQ_REMOVE_HEAD(&on_cache, entry); + free(entry); + } + objnum = (STAILQ_FIRST(&on_cache))->objnum; + } + } + + *dnode = dn; +done: + STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry) + free(entry); + return (rc); +} |
