summaryrefslogtreecommitdiff
path: root/usr/src/common/ficl/vm.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/common/ficl/vm.c')
-rw-r--r--usr/src/common/ficl/vm.c2785
1 files changed, 2785 insertions, 0 deletions
diff --git a/usr/src/common/ficl/vm.c b/usr/src/common/ficl/vm.c
new file mode 100644
index 0000000000..39bd41e8b2
--- /dev/null
+++ b/usr/src/common/ficl/vm.c
@@ -0,0 +1,2785 @@
+/*
+ * v m . c
+ * Forth Inspired Command Language - virtual machine methods
+ * Author: John Sadler (john_sadler@alum.mit.edu)
+ * Created: 19 July 1997
+ * $Id: vm.c,v 1.17 2010/09/13 18:43:04 asau Exp $
+ */
+/*
+ * This file implements the virtual machine of Ficl. Each virtual
+ * machine retains the state of an interpreter. A virtual machine
+ * owns a pair of stacks for parameters and return addresses, as
+ * well as a pile of state variables and the two dedicated registers
+ * of the interpreter.
+ */
+/*
+ * Copyright (c) 1997-2001 John Sadler (john_sadler@alum.mit.edu)
+ * All rights reserved.
+ *
+ * Get the latest Ficl release at http://ficl.sourceforge.net
+ *
+ * I am interested in hearing from anyone who uses Ficl. If you have
+ * a problem, a success story, a defect, an enhancement request, or
+ * if you would like to contribute to the Ficl release, please
+ * contact me by email at the address above.
+ *
+ * L I C E N S E and D I S C L A I M E R
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include "ficl.h"
+
+#if FICL_ROBUST >= 2
+#define FICL_VM_CHECK(vm) \
+ FICL_VM_ASSERT(vm, (*(vm->ip - 1)) == vm->runningWord)
+#else
+#define FICL_VM_CHECK(vm)
+#endif
+
+/*
+ * v m B r a n c h R e l a t i v e
+ */
+void
+ficlVmBranchRelative(ficlVm *vm, int offset)
+{
+ vm->ip += offset;
+}
+
+/*
+ * v m C r e a t e
+ * Creates a virtual machine either from scratch (if vm is NULL on entry)
+ * or by resizing and reinitializing an existing VM to the specified stack
+ * sizes.
+ */
+ficlVm *
+ficlVmCreate(ficlVm *vm, unsigned nPStack, unsigned nRStack)
+{
+ if (vm == NULL) {
+ vm = (ficlVm *)ficlMalloc(sizeof (ficlVm));
+ FICL_ASSERT(NULL, vm);
+ memset(vm, 0, sizeof (ficlVm));
+ }
+
+ if (vm->dataStack)
+ ficlStackDestroy(vm->dataStack);
+ vm->dataStack = ficlStackCreate(vm, "data", nPStack);
+
+ if (vm->returnStack)
+ ficlStackDestroy(vm->returnStack);
+ vm->returnStack = ficlStackCreate(vm, "return", nRStack);
+
+#if FICL_WANT_FLOAT
+ if (vm->floatStack)
+ ficlStackDestroy(vm->floatStack);
+ vm->floatStack = ficlStackCreate(vm, "float", nPStack);
+#endif
+
+ ficlVmReset(vm);
+ return (vm);
+}
+
+/*
+ * v m D e l e t e
+ * Free all memory allocated to the specified VM and its subordinate
+ * structures.
+ */
+void
+ficlVmDestroy(ficlVm *vm)
+{
+ if (vm) {
+ ficlFree(vm->dataStack);
+ ficlFree(vm->returnStack);
+#if FICL_WANT_FLOAT
+ ficlFree(vm->floatStack);
+#endif
+ ficlFree(vm);
+ }
+}
+
+/*
+ * v m E x e c u t e
+ * Sets up the specified word to be run by the inner interpreter.
+ * Executes the word's code part immediately, but in the case of
+ * colon definition, the definition itself needs the inner interpreter
+ * to complete. This does not happen until control reaches ficlExec
+ */
+void
+ficlVmExecuteWord(ficlVm *vm, ficlWord *pWord)
+{
+ ficlVmInnerLoop(vm, pWord);
+}
+
+static void
+ficlVmOptimizeJumpToJump(ficlVm *vm, ficlIp ip)
+{
+ ficlIp destination;
+ switch ((ficlInstruction)(*ip)) {
+ case ficlInstructionBranchParenWithCheck:
+ *ip = (ficlWord *)ficlInstructionBranchParen;
+ goto RUNTIME_FIXUP;
+
+ case ficlInstructionBranch0ParenWithCheck:
+ *ip = (ficlWord *)ficlInstructionBranch0Paren;
+RUNTIME_FIXUP:
+ ip++;
+ destination = ip + *(ficlInteger *)ip;
+ switch ((ficlInstruction)*destination) {
+ case ficlInstructionBranchParenWithCheck:
+ /* preoptimize where we're jumping to */
+ ficlVmOptimizeJumpToJump(vm, destination);
+ case ficlInstructionBranchParen:
+ destination++;
+ destination += *(ficlInteger *)destination;
+ *ip = (ficlWord *)(destination - ip);
+ break;
+ }
+ }
+}
+
+/*
+ * v m I n n e r L o o p
+ * the mysterious inner interpreter...
+ * This loop is the address interpreter that makes colon definitions
+ * work. Upon entry, it assumes that the IP points to an entry in
+ * a definition (the body of a colon word). It runs one word at a time
+ * until something does vmThrow. The catcher for this is expected to exist
+ * in the calling code.
+ * vmThrow gets you out of this loop with a longjmp()
+ */
+
+#if FICL_ROBUST <= 1
+ /* turn off stack checking for primitives */
+#define _CHECK_STACK(stack, top, pop, push)
+#else
+
+#define _CHECK_STACK(stack, top, pop, push) \
+ ficlStackCheckNospill(stack, top, pop, push)
+
+FICL_PLATFORM_INLINE void
+ficlStackCheckNospill(ficlStack *stack, ficlCell *top, int popCells,
+ int pushCells)
+{
+ /*
+ * Why save and restore stack->top?
+ * So the simple act of stack checking doesn't force a "register" spill,
+ * which might mask bugs (places where we needed to spill but didn't).
+ * --lch
+ */
+ ficlCell *oldTop = stack->top;
+ stack->top = top;
+ ficlStackCheck(stack, popCells, pushCells);
+ stack->top = oldTop;
+}
+
+#endif /* FICL_ROBUST <= 1 */
+
+#define CHECK_STACK(pop, push) \
+ _CHECK_STACK(vm->dataStack, dataTop, pop, push)
+#define CHECK_FLOAT_STACK(pop, push) \
+ _CHECK_STACK(vm->floatStack, floatTop, pop, push)
+#define CHECK_RETURN_STACK(pop, push) \
+ _CHECK_STACK(vm->returnStack, returnTop, pop, push)
+
+#if FICL_WANT_FLOAT
+#define FLOAT_LOCAL_VARIABLE_SPILL \
+ vm->floatStack->top = floatTop;
+#define FLOAT_LOCAL_VARIABLE_REFILL \
+ floatTop = vm->floatStack->top;
+#else
+#define FLOAT_LOCAL_VARIABLE_SPILL
+#define FLOAT_LOCAL_VARIABLE_REFILL
+#endif /* FICL_WANT_FLOAT */
+
+#if FICL_WANT_LOCALS
+#define LOCALS_LOCAL_VARIABLE_SPILL \
+ vm->returnStack->frame = frame;
+#define LOCALS_LOCAL_VARIABLE_REFILL \
+ frame = vm->returnStack->frame;
+#else
+#define LOCALS_LOCAL_VARIABLE_SPILL
+#define LOCALS_LOCAL_VARIABLE_REFILL
+#endif /* FICL_WANT_FLOAT */
+
+#define LOCAL_VARIABLE_SPILL \
+ vm->ip = (ficlIp)ip; \
+ vm->dataStack->top = dataTop; \
+ vm->returnStack->top = returnTop; \
+ FLOAT_LOCAL_VARIABLE_SPILL \
+ LOCALS_LOCAL_VARIABLE_SPILL
+
+#define LOCAL_VARIABLE_REFILL \
+ ip = (ficlInstruction *)vm->ip; \
+ dataTop = vm->dataStack->top; \
+ returnTop = vm->returnStack->top; \
+ FLOAT_LOCAL_VARIABLE_REFILL \
+ LOCALS_LOCAL_VARIABLE_REFILL
+
+void
+ficlVmInnerLoop(ficlVm *vm, ficlWord *fw)
+{
+ register ficlInstruction *ip;
+ register ficlCell *dataTop;
+ register ficlCell *returnTop;
+#if FICL_WANT_FLOAT
+ register ficlCell *floatTop;
+ ficlFloat f;
+#endif /* FICL_WANT_FLOAT */
+#if FICL_WANT_LOCALS
+ register ficlCell *frame;
+#endif /* FICL_WANT_LOCALS */
+ jmp_buf *oldExceptionHandler;
+ jmp_buf exceptionHandler;
+ int except;
+ int once;
+ int count;
+ ficlInstruction instruction;
+ ficlInteger i;
+ ficlUnsigned u;
+ ficlCell c;
+ ficlCountedString *s;
+ ficlCell *cell;
+ char *cp;
+
+ once = (fw != NULL);
+ if (once)
+ count = 1;
+
+ oldExceptionHandler = vm->exceptionHandler;
+ /* This has to come before the setjmp! */
+ vm->exceptionHandler = &exceptionHandler;
+ except = setjmp(exceptionHandler);
+
+ LOCAL_VARIABLE_REFILL;
+
+ if (except) {
+ LOCAL_VARIABLE_SPILL;
+ vm->exceptionHandler = oldExceptionHandler;
+ ficlVmThrow(vm, except);
+ }
+
+ for (;;) {
+ if (once) {
+ if (!count--)
+ break;
+ instruction = (ficlInstruction)((void *)fw);
+ } else {
+ instruction = *ip++;
+ fw = (ficlWord *)instruction;
+ }
+
+AGAIN:
+ switch (instruction) {
+ case ficlInstructionInvalid:
+ ficlVmThrowError(vm,
+ "Error: NULL instruction executed!");
+ return;
+
+ case ficlInstruction1:
+ case ficlInstruction2:
+ case ficlInstruction3:
+ case ficlInstruction4:
+ case ficlInstruction5:
+ case ficlInstruction6:
+ case ficlInstruction7:
+ case ficlInstruction8:
+ case ficlInstruction9:
+ case ficlInstruction10:
+ case ficlInstruction11:
+ case ficlInstruction12:
+ case ficlInstruction13:
+ case ficlInstruction14:
+ case ficlInstruction15:
+ case ficlInstruction16:
+ CHECK_STACK(0, 1);
+ (++dataTop)->i = instruction;
+ continue;
+
+ case ficlInstruction0:
+ case ficlInstructionNeg1:
+ case ficlInstructionNeg2:
+ case ficlInstructionNeg3:
+ case ficlInstructionNeg4:
+ case ficlInstructionNeg5:
+ case ficlInstructionNeg6:
+ case ficlInstructionNeg7:
+ case ficlInstructionNeg8:
+ case ficlInstructionNeg9:
+ case ficlInstructionNeg10:
+ case ficlInstructionNeg11:
+ case ficlInstructionNeg12:
+ case ficlInstructionNeg13:
+ case ficlInstructionNeg14:
+ case ficlInstructionNeg15:
+ case ficlInstructionNeg16:
+ CHECK_STACK(0, 1);
+ (++dataTop)->i = ficlInstruction0 - instruction;
+ continue;
+
+ /*
+ * stringlit: Fetch the count from the dictionary, then push
+ * the address and count on the stack. Finally, update ip to
+ * point to the first aligned address after the string text.
+ */
+ case ficlInstructionStringLiteralParen: {
+ ficlUnsigned8 length;
+ CHECK_STACK(0, 2);
+
+ s = (ficlCountedString *)(ip);
+ length = s->length;
+ cp = s->text;
+ (++dataTop)->p = cp;
+ (++dataTop)->i = length;
+
+ cp += length + 1;
+ cp = ficlAlignPointer(cp);
+ ip = (void *)cp;
+ continue;
+ }
+
+ case ficlInstructionCStringLiteralParen:
+ CHECK_STACK(0, 1);
+
+ s = (ficlCountedString *)(ip);
+ cp = s->text + s->length + 1;
+ cp = ficlAlignPointer(cp);
+ ip = (void *)cp;
+ (++dataTop)->p = s;
+ continue;
+
+#if FICL_WANT_OPTIMIZE == FICL_OPTIMIZE_FOR_SIZE
+#if FICL_WANT_FLOAT
+FLOAT_PUSH_CELL_POINTER_DOUBLE_MINIPROC:
+ *++floatTop = cell[1];
+ /* intentional fall-through */
+FLOAT_PUSH_CELL_POINTER_MINIPROC:
+ *++floatTop = cell[0];
+ continue;
+
+FLOAT_POP_CELL_POINTER_MINIPROC:
+ cell[0] = *floatTop--;
+ continue;
+
+FLOAT_POP_CELL_POINTER_DOUBLE_MINIPROC:
+ cell[0] = *floatTop--;
+ cell[1] = *floatTop--;
+ continue;
+
+#define FLOAT_PUSH_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); goto FLOAT_PUSH_CELL_POINTER_DOUBLE_MINIPROC
+#define FLOAT_PUSH_CELL_POINTER(cp) \
+ cell = (cp); goto FLOAT_PUSH_CELL_POINTER_MINIPROC
+#define FLOAT_POP_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); goto FLOAT_POP_CELL_POINTER_DOUBLE_MINIPROC
+#define FLOAT_POP_CELL_POINTER(cp) \
+ cell = (cp); goto FLOAT_POP_CELL_POINTER_MINIPROC
+#endif /* FICL_WANT_FLOAT */
+
+ /*
+ * Think of these as little mini-procedures.
+ * --lch
+ */
+PUSH_CELL_POINTER_DOUBLE_MINIPROC:
+ *++dataTop = cell[1];
+ /* intentional fall-through */
+PUSH_CELL_POINTER_MINIPROC:
+ *++dataTop = cell[0];
+ continue;
+
+POP_CELL_POINTER_MINIPROC:
+ cell[0] = *dataTop--;
+ continue;
+POP_CELL_POINTER_DOUBLE_MINIPROC:
+ cell[0] = *dataTop--;
+ cell[1] = *dataTop--;
+ continue;
+
+#define PUSH_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); goto PUSH_CELL_POINTER_DOUBLE_MINIPROC
+#define PUSH_CELL_POINTER(cp) \
+ cell = (cp); goto PUSH_CELL_POINTER_MINIPROC
+#define POP_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); goto POP_CELL_POINTER_DOUBLE_MINIPROC
+#define POP_CELL_POINTER(cp) \
+ cell = (cp); goto POP_CELL_POINTER_MINIPROC
+
+BRANCH_MINIPROC:
+ ip += *(ficlInteger *)ip;
+ continue;
+
+#define BRANCH() goto BRANCH_MINIPROC
+
+EXIT_FUNCTION_MINIPROC:
+ ip = (ficlInstruction *)((returnTop--)->p);
+ continue;
+
+#define EXIT_FUNCTION goto EXIT_FUNCTION_MINIPROC
+
+#else /* FICL_WANT_SIZE */
+
+#if FICL_WANT_FLOAT
+#define FLOAT_PUSH_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); *++floatTop = cell[1]; *++floatTop = *cell; continue
+#define FLOAT_PUSH_CELL_POINTER(cp) \
+ cell = (cp); *++floatTop = *cell; continue
+#define FLOAT_POP_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); *cell = *floatTop--; cell[1] = *floatTop--; continue
+#define FLOAT_POP_CELL_POINTER(cp) \
+ cell = (cp); *cell = *floatTop--; continue
+#endif /* FICL_WANT_FLOAT */
+
+#define PUSH_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); *++dataTop = cell[1]; *++dataTop = *cell; continue
+#define PUSH_CELL_POINTER(cp) \
+ cell = (cp); *++dataTop = *cell; continue
+#define POP_CELL_POINTER_DOUBLE(cp) \
+ cell = (cp); *cell = *dataTop--; cell[1] = *dataTop--; continue
+#define POP_CELL_POINTER(cp) \
+ cell = (cp); *cell = *dataTop--; continue
+
+#define BRANCH() ip += *(ficlInteger *)ip; continue
+#define EXIT_FUNCTION() ip = (ficlInstruction *)((returnTop--)->p); continue
+
+#endif /* FICL_WANT_SIZE */
+
+
+ /*
+ * This is the runtime for (literal). It assumes that it is
+ * part of a colon definition, and that the next ficlCell
+ * contains a value to be pushed on the parameter stack at
+ * runtime. This code is compiled by "literal".
+ */
+
+ case ficlInstructionLiteralParen:
+ CHECK_STACK(0, 1);
+ (++dataTop)->i = *ip++;
+ continue;
+
+ case ficlInstruction2LiteralParen:
+ CHECK_STACK(0, 2);
+ (++dataTop)->i = ip[1];
+ (++dataTop)->i = ip[0];
+ ip += 2;
+ continue;
+
+#if FICL_WANT_LOCALS
+ /*
+ * Link a frame on the return stack, reserving nCells of space
+ * for locals - the value of nCells is the next ficlCell in
+ * the instruction stream.
+ * 1) Push frame onto returnTop
+ * 2) frame = returnTop
+ * 3) returnTop += nCells
+ */
+ case ficlInstructionLinkParen: {
+ ficlInteger nCells = *ip++;
+ (++returnTop)->p = frame;
+ frame = returnTop + 1;
+ returnTop += nCells;
+ continue;
+ }
+
+ /*
+ * Unink a stack frame previously created by stackLink
+ * 1) dataTop = frame
+ * 2) frame = pop()
+ */
+ case ficlInstructionUnlinkParen:
+ returnTop = frame - 1;
+ frame = (returnTop--)->p;
+ continue;
+
+ /*
+ * Immediate - cfa of a local while compiling - when executed,
+ * compiles code to fetch the value of a local given the
+ * local's index in the word's pfa
+ */
+#if FICL_WANT_FLOAT
+ case ficlInstructionGetF2LocalParen:
+ FLOAT_PUSH_CELL_POINTER_DOUBLE(frame + *ip++);
+
+ case ficlInstructionGetFLocalParen:
+ FLOAT_PUSH_CELL_POINTER(frame + *ip++);
+
+ case ficlInstructionToF2LocalParen:
+ FLOAT_POP_CELL_POINTER_DOUBLE(frame + *ip++);
+
+ case ficlInstructionToFLocalParen:
+ FLOAT_POP_CELL_POINTER(frame + *ip++);
+#endif /* FICL_WANT_FLOAT */
+
+ case ficlInstructionGet2LocalParen:
+ PUSH_CELL_POINTER_DOUBLE(frame + *ip++);
+
+ case ficlInstructionGetLocalParen:
+ PUSH_CELL_POINTER(frame + *ip++);
+
+ /*
+ * Immediate - cfa of a local while compiling - when executed,
+ * compiles code to store the value of a local given the
+ * local's index in the word's pfa
+ */
+
+ case ficlInstructionTo2LocalParen:
+ POP_CELL_POINTER_DOUBLE(frame + *ip++);
+
+ case ficlInstructionToLocalParen:
+ POP_CELL_POINTER(frame + *ip++);
+
+ /*
+ * Silly little minor optimizations.
+ * --lch
+ */
+ case ficlInstructionGetLocal0:
+ PUSH_CELL_POINTER(frame);
+
+ case ficlInstructionGetLocal1:
+ PUSH_CELL_POINTER(frame + 1);
+
+ case ficlInstructionGet2Local0:
+ PUSH_CELL_POINTER_DOUBLE(frame);
+
+ case ficlInstructionToLocal0:
+ POP_CELL_POINTER(frame);
+
+ case ficlInstructionToLocal1:
+ POP_CELL_POINTER(frame + 1);
+
+ case ficlInstructionTo2Local0:
+ POP_CELL_POINTER_DOUBLE(frame);
+
+#endif /* FICL_WANT_LOCALS */
+
+ case ficlInstructionPlus:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i += i;
+ continue;
+
+ case ficlInstructionMinus:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i -= i;
+ continue;
+
+ case ficlInstruction1Plus:
+ CHECK_STACK(1, 1);
+ dataTop->i++;
+ continue;
+
+ case ficlInstruction1Minus:
+ CHECK_STACK(1, 1);
+ dataTop->i--;
+ continue;
+
+ case ficlInstruction2Plus:
+ CHECK_STACK(1, 1);
+ dataTop->i += 2;
+ continue;
+
+ case ficlInstruction2Minus:
+ CHECK_STACK(1, 1);
+ dataTop->i -= 2;
+ continue;
+
+ case ficlInstructionDup: {
+ ficlInteger i = dataTop->i;
+ CHECK_STACK(0, 1);
+ (++dataTop)->i = i;
+ continue;
+ }
+
+ case ficlInstructionQuestionDup:
+ CHECK_STACK(1, 2);
+
+ if (dataTop->i != 0) {
+ dataTop[1] = dataTop[0];
+ dataTop++;
+ }
+
+ continue;
+
+ case ficlInstructionSwap: {
+ ficlCell swap;
+ CHECK_STACK(2, 2);
+ swap = dataTop[0];
+ dataTop[0] = dataTop[-1];
+ dataTop[-1] = swap;
+ }
+ continue;
+
+ case ficlInstructionDrop:
+ CHECK_STACK(1, 0);
+ dataTop--;
+ continue;
+
+ case ficlInstruction2Drop:
+ CHECK_STACK(2, 0);
+ dataTop -= 2;
+ continue;
+
+ case ficlInstruction2Dup:
+ CHECK_STACK(2, 4);
+ dataTop[1] = dataTop[-1];
+ dataTop[2] = *dataTop;
+ dataTop += 2;
+ continue;
+
+ case ficlInstructionOver:
+ CHECK_STACK(2, 3);
+ dataTop[1] = dataTop[-1];
+ dataTop++;
+ continue;
+
+ case ficlInstruction2Over:
+ CHECK_STACK(4, 6);
+ dataTop[1] = dataTop[-3];
+ dataTop[2] = dataTop[-2];
+ dataTop += 2;
+ continue;
+
+ case ficlInstructionPick:
+ CHECK_STACK(1, 0);
+ i = dataTop->i;
+ if (i < 0)
+ continue;
+ CHECK_STACK(i + 2, i + 3);
+ *dataTop = dataTop[-i - 1];
+ continue;
+
+ /*
+ * Do stack rot.
+ * rot ( 1 2 3 -- 2 3 1 )
+ */
+ case ficlInstructionRot:
+ i = 2;
+ goto ROLL;
+
+ /*
+ * Do stack roll.
+ * roll ( n -- )
+ */
+ case ficlInstructionRoll:
+ CHECK_STACK(1, 0);
+ i = (dataTop--)->i;
+
+ if (i < 1)
+ continue;
+
+ROLL:
+ CHECK_STACK(i+1, i+2);
+ c = dataTop[-i];
+ memmove(dataTop - i, dataTop - (i - 1),
+ i * sizeof (ficlCell));
+ *dataTop = c;
+ continue;
+
+ /*
+ * Do stack -rot.
+ * -rot ( 1 2 3 -- 3 1 2 )
+ */
+ case ficlInstructionMinusRot:
+ i = 2;
+ goto MINUSROLL;
+
+ /*
+ * Do stack -roll.
+ * -roll ( n -- )
+ */
+ case ficlInstructionMinusRoll:
+ CHECK_STACK(1, 0);
+ i = (dataTop--)->i;
+
+ if (i < 1)
+ continue;
+
+MINUSROLL:
+ CHECK_STACK(i+1, i+2);
+ c = *dataTop;
+ memmove(dataTop - (i - 1), dataTop - i,
+ i * sizeof (ficlCell));
+ dataTop[-i] = c;
+
+ continue;
+
+ /*
+ * Do stack 2swap
+ * 2swap ( 1 2 3 4 -- 3 4 1 2 )
+ */
+ case ficlInstruction2Swap: {
+ ficlCell c2;
+ CHECK_STACK(4, 4);
+
+ c = *dataTop;
+ c2 = dataTop[-1];
+
+ *dataTop = dataTop[-2];
+ dataTop[-1] = dataTop[-3];
+
+ dataTop[-2] = c;
+ dataTop[-3] = c2;
+ continue;
+ }
+
+ case ficlInstructionPlusStore: {
+ ficlCell *cell;
+ CHECK_STACK(2, 0);
+ cell = (ficlCell *)(dataTop--)->p;
+ cell->i += (dataTop--)->i;
+ continue;
+ }
+
+ case ficlInstructionQuadFetch: {
+ ficlUnsigned32 *integer32;
+ CHECK_STACK(1, 1);
+ integer32 = (ficlUnsigned32 *)dataTop->i;
+ dataTop->u = (ficlUnsigned)*integer32;
+ continue;
+ }
+
+ case ficlInstructionQuadStore: {
+ ficlUnsigned32 *integer32;
+ CHECK_STACK(2, 0);
+ integer32 = (ficlUnsigned32 *)(dataTop--)->p;
+ *integer32 = (ficlUnsigned32)((dataTop--)->u);
+ continue;
+ }
+
+ case ficlInstructionWFetch: {
+ ficlUnsigned16 *integer16;
+ CHECK_STACK(1, 1);
+ integer16 = (ficlUnsigned16 *)dataTop->p;
+ dataTop->u = ((ficlUnsigned)*integer16);
+ continue;
+ }
+
+ case ficlInstructionWStore: {
+ ficlUnsigned16 *integer16;
+ CHECK_STACK(2, 0);
+ integer16 = (ficlUnsigned16 *)(dataTop--)->p;
+ *integer16 = (ficlUnsigned16)((dataTop--)->u);
+ continue;
+ }
+
+ case ficlInstructionCFetch: {
+ ficlUnsigned8 *integer8;
+ CHECK_STACK(1, 1);
+ integer8 = (ficlUnsigned8 *)dataTop->p;
+ dataTop->u = ((ficlUnsigned)*integer8);
+ continue;
+ }
+
+ case ficlInstructionCStore: {
+ ficlUnsigned8 *integer8;
+ CHECK_STACK(2, 0);
+ integer8 = (ficlUnsigned8 *)(dataTop--)->p;
+ *integer8 = (ficlUnsigned8)((dataTop--)->u);
+ continue;
+ }
+
+
+ /*
+ * l o g i c a n d c o m p a r i s o n s
+ */
+
+ case ficlInstruction0Equals:
+ CHECK_STACK(1, 1);
+ dataTop->i = FICL_BOOL(dataTop->i == 0);
+ continue;
+
+ case ficlInstruction0Less:
+ CHECK_STACK(1, 1);
+ dataTop->i = FICL_BOOL(dataTop->i < 0);
+ continue;
+
+ case ficlInstruction0Greater:
+ CHECK_STACK(1, 1);
+ dataTop->i = FICL_BOOL(dataTop->i > 0);
+ continue;
+
+ case ficlInstructionEquals:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i = FICL_BOOL(dataTop->i == i);
+ continue;
+
+ case ficlInstructionLess:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i = FICL_BOOL(dataTop->i < i);
+ continue;
+
+ case ficlInstructionULess:
+ CHECK_STACK(2, 1);
+ u = (dataTop--)->u;
+ dataTop->i = FICL_BOOL(dataTop->u < u);
+ continue;
+
+ case ficlInstructionAnd:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i = dataTop->i & i;
+ continue;
+
+ case ficlInstructionOr:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i = dataTop->i | i;
+ continue;
+
+ case ficlInstructionXor:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i = dataTop->i ^ i;
+ continue;
+
+ case ficlInstructionInvert:
+ CHECK_STACK(1, 1);
+ dataTop->i = ~dataTop->i;
+ continue;
+
+ /*
+ * r e t u r n s t a c k
+ */
+ case ficlInstructionToRStack:
+ CHECK_STACK(1, 0);
+ CHECK_RETURN_STACK(0, 1);
+ *++returnTop = *dataTop--;
+ continue;
+
+ case ficlInstructionFromRStack:
+ CHECK_STACK(0, 1);
+ CHECK_RETURN_STACK(1, 0);
+ *++dataTop = *returnTop--;
+ continue;
+
+ case ficlInstructionFetchRStack:
+ CHECK_STACK(0, 1);
+ CHECK_RETURN_STACK(1, 1);
+ *++dataTop = *returnTop;
+ continue;
+
+ case ficlInstruction2ToR:
+ CHECK_STACK(2, 0);
+ CHECK_RETURN_STACK(0, 2);
+ *++returnTop = dataTop[-1];
+ *++returnTop = dataTop[0];
+ dataTop -= 2;
+ continue;
+
+ case ficlInstruction2RFrom:
+ CHECK_STACK(0, 2);
+ CHECK_RETURN_STACK(2, 0);
+ *++dataTop = returnTop[-1];
+ *++dataTop = returnTop[0];
+ returnTop -= 2;
+ continue;
+
+ case ficlInstruction2RFetch:
+ CHECK_STACK(0, 2);
+ CHECK_RETURN_STACK(2, 2);
+ *++dataTop = returnTop[-1];
+ *++dataTop = returnTop[0];
+ continue;
+
+ /*
+ * f i l l
+ * CORE ( c-addr u char -- )
+ * If u is greater than zero, store char in each of u
+ * consecutive characters of memory beginning at c-addr.
+ */
+ case ficlInstructionFill: {
+ char c;
+ char *memory;
+ CHECK_STACK(3, 0);
+ c = (char)(dataTop--)->i;
+ u = (dataTop--)->u;
+ memory = (char *)(dataTop--)->p;
+
+ /*
+ * memset() is faster than the previous hand-rolled
+ * solution. --lch
+ */
+ memset(memory, c, u);
+ continue;
+ }
+
+ /*
+ * l s h i f t
+ * l-shift CORE ( x1 u -- x2 )
+ * Perform a logical left shift of u bit-places on x1,
+ * giving x2. Put zeroes into the least significant bits
+ * vacated by the shift. An ambiguous condition exists if
+ * u is greater than or equal to the number of bits in a
+ * ficlCell.
+ *
+ * r-shift CORE ( x1 u -- x2 )
+ * Perform a logical right shift of u bit-places on x1,
+ * giving x2. Put zeroes into the most significant bits
+ * vacated by the shift. An ambiguous condition exists
+ * if u is greater than or equal to the number of bits
+ * in a ficlCell.
+ */
+ case ficlInstructionLShift: {
+ ficlUnsigned nBits;
+ ficlUnsigned x1;
+ CHECK_STACK(2, 1);
+
+ nBits = (dataTop--)->u;
+ x1 = dataTop->u;
+ dataTop->u = x1 << nBits;
+ continue;
+ }
+
+ case ficlInstructionRShift: {
+ ficlUnsigned nBits;
+ ficlUnsigned x1;
+ CHECK_STACK(2, 1);
+
+ nBits = (dataTop--)->u;
+ x1 = dataTop->u;
+ dataTop->u = x1 >> nBits;
+ continue;
+ }
+
+ /*
+ * m a x & m i n
+ */
+ case ficlInstructionMax: {
+ ficlInteger n2;
+ ficlInteger n1;
+ CHECK_STACK(2, 1);
+
+ n2 = (dataTop--)->i;
+ n1 = dataTop->i;
+
+ dataTop->i = ((n1 > n2) ? n1 : n2);
+ continue;
+ }
+
+ case ficlInstructionMin: {
+ ficlInteger n2;
+ ficlInteger n1;
+ CHECK_STACK(2, 1);
+
+ n2 = (dataTop--)->i;
+ n1 = dataTop->i;
+
+ dataTop->i = ((n1 < n2) ? n1 : n2);
+ continue;
+ }
+
+ /*
+ * m o v e
+ * CORE ( addr1 addr2 u -- )
+ * If u is greater than zero, copy the contents of u
+ * consecutive address units at addr1 to the u consecutive
+ * address units at addr2. After MOVE completes, the u
+ * consecutive address units at addr2 contain exactly
+ * what the u consecutive address units at addr1 contained
+ * before the move.
+ * NOTE! This implementation assumes that a char is the same
+ * size as an address unit.
+ */
+ case ficlInstructionMove: {
+ ficlUnsigned u;
+ char *addr2;
+ char *addr1;
+ CHECK_STACK(3, 0);
+
+ u = (dataTop--)->u;
+ addr2 = (dataTop--)->p;
+ addr1 = (dataTop--)->p;
+
+ if (u == 0)
+ continue;
+ /*
+ * Do the copy carefully, so as to be
+ * correct even if the two ranges overlap
+ */
+ /* Which ANSI C's memmove() does for you! Yay! --lch */
+ memmove(addr2, addr1, u);
+ continue;
+ }
+
+ /*
+ * s t o d
+ * s-to-d CORE ( n -- d )
+ * Convert the number n to the double-ficlCell number d with
+ * the same numerical value.
+ */
+ case ficlInstructionSToD: {
+ ficlInteger s;
+ CHECK_STACK(1, 2);
+
+ s = dataTop->i;
+
+ /* sign extend to 64 bits.. */
+ (++dataTop)->i = (s < 0) ? -1 : 0;
+ continue;
+ }
+
+ /*
+ * c o m p a r e
+ * STRING ( c-addr1 u1 c-addr2 u2 -- n )
+ * Compare the string specified by c-addr1 u1 to the string
+ * specified by c-addr2 u2. The strings are compared, beginning
+ * at the given addresses, character by character, up to the
+ * length of the shorter string or until a difference is found.
+ * If the two strings are identical, n is zero. If the two
+ * strings are identical up to the length of the shorter string,
+ * n is minus-one (-1) if u1 is less than u2 and one (1)
+ * otherwise. If the two strings are not identical up to the
+ * length of the shorter string, n is minus-one (-1) if the
+ * first non-matching character in the string specified by
+ * c-addr1 u1 has a lesser numeric value than the corresponding
+ * character in the string specified by c-addr2 u2 and
+ * one (1) otherwise.
+ */
+ case ficlInstructionCompare:
+ i = FICL_FALSE;
+ goto COMPARE;
+
+
+ case ficlInstructionCompareInsensitive:
+ i = FICL_TRUE;
+ goto COMPARE;
+
+COMPARE:
+ {
+ char *cp1, *cp2;
+ ficlUnsigned u1, u2, uMin;
+ int n = 0;
+
+ CHECK_STACK(4, 1);
+ u2 = (dataTop--)->u;
+ cp2 = (char *)(dataTop--)->p;
+ u1 = (dataTop--)->u;
+ cp1 = (char *)(dataTop--)->p;
+
+ uMin = (u1 < u2)? u1 : u2;
+ for (; (uMin > 0) && (n == 0); uMin--) {
+ int c1 = (unsigned char)*cp1++;
+ int c2 = (unsigned char)*cp2++;
+
+ if (i) {
+ c1 = tolower(c1);
+ c2 = tolower(c2);
+ }
+ n = (c1 - c2);
+ }
+
+ if (n == 0)
+ n = (int)(u1 - u2);
+
+ if (n < 0)
+ n = -1;
+ else if (n > 0)
+ n = 1;
+
+ (++dataTop)->i = n;
+ continue;
+ }
+
+ /*
+ * r a n d o m
+ * Ficl-specific
+ */
+ case ficlInstructionRandom:
+ (++dataTop)->i = random();
+ continue;
+
+ /*
+ * s e e d - r a n d o m
+ * Ficl-specific
+ */
+ case ficlInstructionSeedRandom:
+ srandom((dataTop--)->i);
+ continue;
+
+ case ficlInstructionGreaterThan: {
+ ficlInteger x, y;
+ CHECK_STACK(2, 1);
+ y = (dataTop--)->i;
+ x = dataTop->i;
+ dataTop->i = FICL_BOOL(x > y);
+ continue;
+ }
+
+ /*
+ * This function simply pops the previous instruction
+ * pointer and returns to the "next" loop. Used for exiting
+ * from within a definition. Note that exitParen is identical
+ * to semiParen - they are in two different functions so that
+ * "see" can correctly identify the end of a colon definition,
+ * even if it uses "exit".
+ */
+ case ficlInstructionExitParen:
+ case ficlInstructionSemiParen:
+ EXIT_FUNCTION();
+
+ /*
+ * The first time we run "(branch)", perform a "peephole
+ * optimization" to see if we're jumping to another
+ * unconditional jump. If so, just jump directly there.
+ */
+ case ficlInstructionBranchParenWithCheck:
+ LOCAL_VARIABLE_SPILL;
+ ficlVmOptimizeJumpToJump(vm, vm->ip - 1);
+ LOCAL_VARIABLE_REFILL;
+ goto BRANCH_PAREN;
+
+ /*
+ * Same deal with branch0.
+ */
+ case ficlInstructionBranch0ParenWithCheck:
+ LOCAL_VARIABLE_SPILL;
+ ficlVmOptimizeJumpToJump(vm, vm->ip - 1);
+ LOCAL_VARIABLE_REFILL;
+ /* intentional fall-through */
+
+ /*
+ * Runtime code for "(branch0)"; pop a flag from the stack,
+ * branch if 0. fall through otherwise.
+ * The heart of "if" and "until".
+ */
+ case ficlInstructionBranch0Paren:
+ CHECK_STACK(1, 0);
+
+ if ((dataTop--)->i) {
+ /*
+ * don't branch, but skip over branch
+ * relative address
+ */
+ ip += 1;
+ continue;
+ }
+ /* otherwise, take branch (to else/endif/begin) */
+ /* intentional fall-through! */
+
+ /*
+ * Runtime for "(branch)" -- expects a literal offset in the
+ * next compilation address, and branches to that location.
+ */
+ case ficlInstructionBranchParen:
+BRANCH_PAREN:
+ BRANCH();
+
+ case ficlInstructionOfParen: {
+ ficlUnsigned a, b;
+
+ CHECK_STACK(2, 1);
+
+ a = (dataTop--)->u;
+ b = dataTop->u;
+
+ if (a == b) {
+ /* fall through */
+ ip++;
+ /* remove CASE argument */
+ dataTop--;
+ } else {
+ /* take branch to next of or endcase */
+ BRANCH();
+ }
+
+ continue;
+ }
+
+ case ficlInstructionDoParen: {
+ ficlCell index, limit;
+
+ CHECK_STACK(2, 0);
+
+ index = *dataTop--;
+ limit = *dataTop--;
+
+ /* copy "leave" target addr to stack */
+ (++returnTop)->i = *(ip++);
+ *++returnTop = limit;
+ *++returnTop = index;
+
+ continue;
+ }
+
+ case ficlInstructionQDoParen: {
+ ficlCell index, limit, leave;
+
+ CHECK_STACK(2, 0);
+
+ index = *dataTop--;
+ limit = *dataTop--;
+
+ leave.i = *ip;
+
+ if (limit.u == index.u) {
+ ip = leave.p;
+ } else {
+ ip++;
+ *++returnTop = leave;
+ *++returnTop = limit;
+ *++returnTop = index;
+ }
+
+ continue;
+ }
+
+ case ficlInstructionLoopParen:
+ case ficlInstructionPlusLoopParen: {
+ ficlInteger index;
+ ficlInteger limit;
+ int direction = 0;
+
+ index = returnTop->i;
+ limit = returnTop[-1].i;
+
+ if (instruction == ficlInstructionLoopParen)
+ index++;
+ else {
+ ficlInteger increment;
+ CHECK_STACK(1, 0);
+ increment = (dataTop--)->i;
+ index += increment;
+ direction = (increment < 0);
+ }
+
+ if (direction ^ (index >= limit)) {
+ /* nuke the loop indices & "leave" addr */
+ returnTop -= 3;
+ ip++; /* fall through the loop */
+ } else { /* update index, branch to loop head */
+ returnTop->i = index;
+ BRANCH();
+ }
+
+ continue;
+ }
+
+
+ /*
+ * Runtime code to break out of a do..loop construct
+ * Drop the loop control variables; the branch address
+ * past "loop" is next on the return stack.
+ */
+ case ficlInstructionLeave:
+ /* almost unloop */
+ returnTop -= 2;
+ /* exit */
+ EXIT_FUNCTION();
+
+ case ficlInstructionUnloop:
+ returnTop -= 3;
+ continue;
+
+ case ficlInstructionI:
+ *++dataTop = *returnTop;
+ continue;
+
+ case ficlInstructionJ:
+ *++dataTop = returnTop[-3];
+ continue;
+
+ case ficlInstructionK:
+ *++dataTop = returnTop[-6];
+ continue;
+
+ case ficlInstructionDoesParen: {
+ ficlDictionary *dictionary = ficlVmGetDictionary(vm);
+ dictionary->smudge->code =
+ (ficlPrimitive)ficlInstructionDoDoes;
+ dictionary->smudge->param[0].p = ip;
+ ip = (ficlInstruction *)((returnTop--)->p);
+ continue;
+ }
+
+ case ficlInstructionDoDoes: {
+ ficlCell *cell;
+ ficlIp tempIP;
+
+ CHECK_STACK(0, 1);
+
+ cell = fw->param;
+ tempIP = (ficlIp)((*cell).p);
+ (++dataTop)->p = (cell + 1);
+ (++returnTop)->p = (void *)ip;
+ ip = (ficlInstruction *)tempIP;
+ continue;
+ }
+
+#if FICL_WANT_FLOAT
+ case ficlInstructionF2Fetch:
+ CHECK_FLOAT_STACK(0, 2);
+ CHECK_STACK(1, 0);
+ FLOAT_PUSH_CELL_POINTER_DOUBLE((dataTop--)->p);
+
+ case ficlInstructionFFetch:
+ CHECK_FLOAT_STACK(0, 1);
+ CHECK_STACK(1, 0);
+ FLOAT_PUSH_CELL_POINTER((dataTop--)->p);
+
+ case ficlInstructionF2Store:
+ CHECK_FLOAT_STACK(2, 0);
+ CHECK_STACK(1, 0);
+ FLOAT_POP_CELL_POINTER_DOUBLE((dataTop--)->p);
+
+ case ficlInstructionFStore:
+ CHECK_FLOAT_STACK(1, 0);
+ CHECK_STACK(1, 0);
+ FLOAT_POP_CELL_POINTER((dataTop--)->p);
+#endif /* FICL_WANT_FLOAT */
+
+ /*
+ * two-fetch CORE ( a-addr -- x1 x2 )
+ *
+ * Fetch the ficlCell pair x1 x2 stored at a-addr.
+ * x2 is stored at a-addr and x1 at the next consecutive
+ * ficlCell. It is equivalent to the sequence
+ * DUP ficlCell+ @ SWAP @ .
+ */
+ case ficlInstruction2Fetch:
+ CHECK_STACK(1, 2);
+ PUSH_CELL_POINTER_DOUBLE((dataTop--)->p);
+
+ /*
+ * fetch CORE ( a-addr -- x )
+ *
+ * x is the value stored at a-addr.
+ */
+ case ficlInstructionFetch:
+ CHECK_STACK(1, 1);
+ PUSH_CELL_POINTER((dataTop--)->p);
+
+ /*
+ * two-store CORE ( x1 x2 a-addr -- )
+ * Store the ficlCell pair x1 x2 at a-addr, with x2 at a-addr
+ * and x1 at the next consecutive ficlCell. It is equivalent
+ * to the sequence SWAP OVER ! ficlCell+ !
+ */
+ case ficlInstruction2Store:
+ CHECK_STACK(3, 0);
+ POP_CELL_POINTER_DOUBLE((dataTop--)->p);
+
+ /*
+ * store CORE ( x a-addr -- )
+ * Store x at a-addr.
+ */
+ case ficlInstructionStore:
+ CHECK_STACK(2, 0);
+ POP_CELL_POINTER((dataTop--)->p);
+
+ case ficlInstructionComma: {
+ ficlDictionary *dictionary;
+ CHECK_STACK(1, 0);
+
+ dictionary = ficlVmGetDictionary(vm);
+ ficlDictionaryAppendCell(dictionary, *dataTop--);
+ continue;
+ }
+
+ case ficlInstructionCComma: {
+ ficlDictionary *dictionary;
+ char c;
+ CHECK_STACK(1, 0);
+
+ dictionary = ficlVmGetDictionary(vm);
+ c = (char)(dataTop--)->i;
+ ficlDictionaryAppendCharacter(dictionary, c);
+ continue;
+ }
+
+ case ficlInstructionCells:
+ CHECK_STACK(1, 1);
+ dataTop->i *= sizeof (ficlCell);
+ continue;
+
+ case ficlInstructionCellPlus:
+ CHECK_STACK(1, 1);
+ dataTop->i += sizeof (ficlCell);
+ continue;
+
+ case ficlInstructionStar:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i *= i;
+ continue;
+
+ case ficlInstructionNegate:
+ CHECK_STACK(1, 1);
+ dataTop->i = - dataTop->i;
+ continue;
+
+ case ficlInstructionSlash:
+ CHECK_STACK(2, 1);
+ i = (dataTop--)->i;
+ dataTop->i /= i;
+ continue;
+
+ /*
+ * slash-mod CORE ( n1 n2 -- n3 n4 )
+ * Divide n1 by n2, giving the single-ficlCell remainder n3
+ * and the single-ficlCell quotient n4. An ambiguous condition
+ * exists if n2 is zero. If n1 and n2 differ in sign, the
+ * implementation-defined result returned will be the
+ * same as that returned by either the phrase
+ * >R S>D R> FM/MOD or the phrase >R S>D R> SM/REM.
+ * NOTE: Ficl complies with the second phrase
+ * (symmetric division)
+ */
+ case ficlInstructionSlashMod: {
+ ficl2Integer n1;
+ ficlInteger n2;
+ ficl2IntegerQR qr;
+
+ CHECK_STACK(2, 2);
+ n2 = dataTop[0].i;
+ FICL_INTEGER_TO_2INTEGER(dataTop[-1].i, n1);
+
+ qr = ficl2IntegerDivideSymmetric(n1, n2);
+ dataTop[-1].i = qr.remainder;
+ dataTop[0].i = FICL_2UNSIGNED_GET_LOW(qr.quotient);
+ continue;
+ }
+
+ case ficlInstruction2Star:
+ CHECK_STACK(1, 1);
+ dataTop->i <<= 1;
+ continue;
+
+ case ficlInstruction2Slash:
+ CHECK_STACK(1, 1);
+ dataTop->i >>= 1;
+ continue;
+
+ case ficlInstructionStarSlash: {
+ ficlInteger x, y, z;
+ ficl2Integer prod;
+ CHECK_STACK(3, 1);
+
+ z = (dataTop--)->i;
+ y = (dataTop--)->i;
+ x = dataTop->i;
+
+ prod = ficl2IntegerMultiply(x, y);
+ dataTop->i = FICL_2UNSIGNED_GET_LOW(
+ ficl2IntegerDivideSymmetric(prod, z).quotient);
+ continue;
+ }
+
+ case ficlInstructionStarSlashMod: {
+ ficlInteger x, y, z;
+ ficl2Integer prod;
+ ficl2IntegerQR qr;
+
+ CHECK_STACK(3, 2);
+
+ z = (dataTop--)->i;
+ y = dataTop[0].i;
+ x = dataTop[-1].i;
+
+ prod = ficl2IntegerMultiply(x, y);
+ qr = ficl2IntegerDivideSymmetric(prod, z);
+
+ dataTop[-1].i = qr.remainder;
+ dataTop[0].i = FICL_2UNSIGNED_GET_LOW(qr.quotient);
+ continue;
+ }
+
+#if FICL_WANT_FLOAT
+ case ficlInstructionF0:
+ CHECK_FLOAT_STACK(0, 1);
+ (++floatTop)->f = 0.0f;
+ continue;
+
+ case ficlInstructionF1:
+ CHECK_FLOAT_STACK(0, 1);
+ (++floatTop)->f = 1.0f;
+ continue;
+
+ case ficlInstructionFNeg1:
+ CHECK_FLOAT_STACK(0, 1);
+ (++floatTop)->f = -1.0f;
+ continue;
+
+ /*
+ * Floating point literal execution word.
+ */
+ case ficlInstructionFLiteralParen:
+ CHECK_FLOAT_STACK(0, 1);
+
+ /*
+ * Yes, I'm using ->i here,
+ * but it's really a float. --lch
+ */
+ (++floatTop)->i = *ip++;
+ continue;
+
+ /*
+ * Do float addition r1 + r2.
+ * f+ ( r1 r2 -- r )
+ */
+ case ficlInstructionFPlus:
+ CHECK_FLOAT_STACK(2, 1);
+
+ f = (floatTop--)->f;
+ floatTop->f += f;
+ continue;
+
+ /*
+ * Do float subtraction r1 - r2.
+ * f- ( r1 r2 -- r )
+ */
+ case ficlInstructionFMinus:
+ CHECK_FLOAT_STACK(2, 1);
+
+ f = (floatTop--)->f;
+ floatTop->f -= f;
+ continue;
+
+ /*
+ * Do float multiplication r1 * r2.
+ * f* ( r1 r2 -- r )
+ */
+ case ficlInstructionFStar:
+ CHECK_FLOAT_STACK(2, 1);
+
+ f = (floatTop--)->f;
+ floatTop->f *= f;
+ continue;
+
+ /*
+ * Do float negation.
+ * fnegate ( r -- r )
+ */
+ case ficlInstructionFNegate:
+ CHECK_FLOAT_STACK(1, 1);
+
+ floatTop->f = -(floatTop->f);
+ continue;
+
+ /*
+ * Do float division r1 / r2.
+ * f/ ( r1 r2 -- r )
+ */
+ case ficlInstructionFSlash:
+ CHECK_FLOAT_STACK(2, 1);
+
+ f = (floatTop--)->f;
+ floatTop->f /= f;
+ continue;
+
+ /*
+ * Do float + integer r + n.
+ * f+i ( r n -- r )
+ */
+ case ficlInstructionFPlusI:
+ CHECK_FLOAT_STACK(1, 1);
+ CHECK_STACK(1, 0);
+
+ f = (ficlFloat)(dataTop--)->f;
+ floatTop->f += f;
+ continue;
+
+ /*
+ * Do float - integer r - n.
+ * f-i ( r n -- r )
+ */
+ case ficlInstructionFMinusI:
+ CHECK_FLOAT_STACK(1, 1);
+ CHECK_STACK(1, 0);
+
+ f = (ficlFloat)(dataTop--)->f;
+ floatTop->f -= f;
+ continue;
+
+ /*
+ * Do float * integer r * n.
+ * f*i ( r n -- r )
+ */
+ case ficlInstructionFStarI:
+ CHECK_FLOAT_STACK(1, 1);
+ CHECK_STACK(1, 0);
+
+ f = (ficlFloat)(dataTop--)->f;
+ floatTop->f *= f;
+ continue;
+
+ /*
+ * Do float / integer r / n.
+ * f/i ( r n -- r )
+ */
+ case ficlInstructionFSlashI:
+ CHECK_FLOAT_STACK(1, 1);
+ CHECK_STACK(1, 0);
+
+ f = (ficlFloat)(dataTop--)->f;
+ floatTop->f /= f;
+ continue;
+
+ /*
+ * Do integer - float n - r.
+ * i-f ( n r -- r )
+ */
+ case ficlInstructionIMinusF:
+ CHECK_FLOAT_STACK(1, 1);
+ CHECK_STACK(1, 0);
+
+ f = (ficlFloat)(dataTop--)->f;
+ floatTop->f = f - floatTop->f;
+ continue;
+
+ /*
+ * Do integer / float n / r.
+ * i/f ( n r -- r )
+ */
+ case ficlInstructionISlashF:
+ CHECK_FLOAT_STACK(1, 1);
+ CHECK_STACK(1, 0);
+
+ f = (ficlFloat)(dataTop--)->f;
+ floatTop->f = f / floatTop->f;
+ continue;
+
+ /*
+ * Do integer to float conversion.
+ * int>float ( n -- r )
+ */
+ case ficlInstructionIntToFloat:
+ CHECK_STACK(1, 0);
+ CHECK_FLOAT_STACK(0, 1);
+
+ (++floatTop)->f = ((dataTop--)->f);
+ continue;
+
+ /*
+ * Do float to integer conversion.
+ * float>int ( r -- n )
+ */
+ case ficlInstructionFloatToInt:
+ CHECK_STACK(0, 1);
+ CHECK_FLOAT_STACK(1, 0);
+
+ (++dataTop)->i = ((floatTop--)->i);
+ continue;
+
+ /*
+ * Add a floating point number to contents of a variable.
+ * f+! ( r n -- )
+ */
+ case ficlInstructionFPlusStore: {
+ ficlCell *cell;
+
+ CHECK_STACK(1, 0);
+ CHECK_FLOAT_STACK(1, 0);
+
+ cell = (ficlCell *)(dataTop--)->p;
+ cell->f += (floatTop--)->f;
+ continue;
+ }
+
+ /*
+ * Do float stack drop.
+ * fdrop ( r -- )
+ */
+ case ficlInstructionFDrop:
+ CHECK_FLOAT_STACK(1, 0);
+ floatTop--;
+ continue;
+
+ /*
+ * Do float stack ?dup.
+ * f?dup ( r -- r )
+ */
+ case ficlInstructionFQuestionDup:
+ CHECK_FLOAT_STACK(1, 2);
+
+ if (floatTop->f != 0)
+ goto FDUP;
+
+ continue;
+
+ /*
+ * Do float stack dup.
+ * fdup ( r -- r r )
+ */
+ case ficlInstructionFDup:
+ CHECK_FLOAT_STACK(1, 2);
+
+FDUP:
+ floatTop[1] = floatTop[0];
+ floatTop++;
+ continue;
+
+ /*
+ * Do float stack swap.
+ * fswap ( r1 r2 -- r2 r1 )
+ */
+ case ficlInstructionFSwap:
+ CHECK_FLOAT_STACK(2, 2);
+
+ c = floatTop[0];
+ floatTop[0] = floatTop[-1];
+ floatTop[-1] = c;
+ continue;
+
+ /*
+ * Do float stack 2drop.
+ * f2drop ( r r -- )
+ */
+ case ficlInstructionF2Drop:
+ CHECK_FLOAT_STACK(2, 0);
+
+ floatTop -= 2;
+ continue;
+
+ /*
+ * Do float stack 2dup.
+ * f2dup ( r1 r2 -- r1 r2 r1 r2 )
+ */
+ case ficlInstructionF2Dup:
+ CHECK_FLOAT_STACK(2, 4);
+
+ floatTop[1] = floatTop[-1];
+ floatTop[2] = *floatTop;
+ floatTop += 2;
+ continue;
+
+ /*
+ * Do float stack over.
+ * fover ( r1 r2 -- r1 r2 r1 )
+ */
+ case ficlInstructionFOver:
+ CHECK_FLOAT_STACK(2, 3);
+
+ floatTop[1] = floatTop[-1];
+ floatTop++;
+ continue;
+
+ /*
+ * Do float stack 2over.
+ * f2over ( r1 r2 r3 -- r1 r2 r3 r1 r2 )
+ */
+ case ficlInstructionF2Over:
+ CHECK_FLOAT_STACK(4, 6);
+
+ floatTop[1] = floatTop[-2];
+ floatTop[2] = floatTop[-1];
+ floatTop += 2;
+ continue;
+
+ /*
+ * Do float stack pick.
+ * fpick ( n -- r )
+ */
+ case ficlInstructionFPick:
+ CHECK_STACK(1, 0);
+ c = *dataTop--;
+ CHECK_FLOAT_STACK(c.i+2, c.i+3);
+
+ floatTop[1] = floatTop[- c.i - 1];
+ continue;
+
+ /*
+ * Do float stack rot.
+ * frot ( r1 r2 r3 -- r2 r3 r1 )
+ */
+ case ficlInstructionFRot:
+ i = 2;
+ goto FROLL;
+
+ /*
+ * Do float stack roll.
+ * froll ( n -- )
+ */
+ case ficlInstructionFRoll:
+ CHECK_STACK(1, 0);
+ i = (dataTop--)->i;
+
+ if (i < 1)
+ continue;
+
+FROLL:
+ CHECK_FLOAT_STACK(i+1, i+2);
+ c = floatTop[-i];
+ memmove(floatTop - i, floatTop - (i - 1),
+ i * sizeof (ficlCell));
+ *floatTop = c;
+
+ continue;
+
+ /*
+ * Do float stack -rot.
+ * f-rot ( r1 r2 r3 -- r3 r1 r2 )
+ */
+ case ficlInstructionFMinusRot:
+ i = 2;
+ goto FMINUSROLL;
+
+
+ /*
+ * Do float stack -roll.
+ * f-roll ( n -- )
+ */
+ case ficlInstructionFMinusRoll:
+ CHECK_STACK(1, 0);
+ i = (dataTop--)->i;
+
+ if (i < 1)
+ continue;
+
+FMINUSROLL:
+ CHECK_FLOAT_STACK(i+1, i+2);
+ c = *floatTop;
+ memmove(floatTop - (i - 1), floatTop - i,
+ i * sizeof (ficlCell));
+ floatTop[-i] = c;
+
+ continue;
+
+ /*
+ * Do float stack 2swap
+ * f2swap ( r1 r2 r3 r4 -- r3 r4 r1 r2 )
+ */
+ case ficlInstructionF2Swap: {
+ ficlCell c2;
+ CHECK_FLOAT_STACK(4, 4);
+
+ c = *floatTop;
+ c2 = floatTop[-1];
+
+ *floatTop = floatTop[-2];
+ floatTop[-1] = floatTop[-3];
+
+ floatTop[-2] = c;
+ floatTop[-3] = c2;
+ continue;
+ }
+
+ /*
+ * Do float 0= comparison r = 0.0.
+ * f0= ( r -- T/F )
+ */
+ case ficlInstructionF0Equals:
+ CHECK_FLOAT_STACK(1, 0);
+ CHECK_STACK(0, 1);
+
+ (++dataTop)->i = FICL_BOOL((floatTop--)->f != 0.0f);
+ continue;
+
+ /*
+ * Do float 0< comparison r < 0.0.
+ * f0< ( r -- T/F )
+ */
+ case ficlInstructionF0Less:
+ CHECK_FLOAT_STACK(1, 0);
+ CHECK_STACK(0, 1);
+
+ (++dataTop)->i = FICL_BOOL((floatTop--)->f < 0.0f);
+ continue;
+
+ /*
+ * Do float 0> comparison r > 0.0.
+ * f0> ( r -- T/F )
+ */
+ case ficlInstructionF0Greater:
+ CHECK_FLOAT_STACK(1, 0);
+ CHECK_STACK(0, 1);
+
+ (++dataTop)->i = FICL_BOOL((floatTop--)->f > 0.0f);
+ continue;
+
+ /*
+ * Do float = comparison r1 = r2.
+ * f= ( r1 r2 -- T/F )
+ */
+ case ficlInstructionFEquals:
+ CHECK_FLOAT_STACK(2, 0);
+ CHECK_STACK(0, 1);
+
+ f = (floatTop--)->f;
+ (++dataTop)->i = FICL_BOOL((floatTop--)->f == f);
+ continue;
+
+ /*
+ * Do float < comparison r1 < r2.
+ * f< ( r1 r2 -- T/F )
+ */
+ case ficlInstructionFLess:
+ CHECK_FLOAT_STACK(2, 0);
+ CHECK_STACK(0, 1);
+
+ f = (floatTop--)->f;
+ (++dataTop)->i = FICL_BOOL((floatTop--)->f < f);
+ continue;
+
+ /*
+ * Do float > comparison r1 > r2.
+ * f> ( r1 r2 -- T/F )
+ */
+ case ficlInstructionFGreater:
+ CHECK_FLOAT_STACK(2, 0);
+ CHECK_STACK(0, 1);
+
+ f = (floatTop--)->f;
+ (++dataTop)->i = FICL_BOOL((floatTop--)->f > f);
+ continue;
+
+
+ /*
+ * Move float to param stack (assumes they both fit in a
+ * single ficlCell) f>s
+ */
+ case ficlInstructionFFrom:
+ CHECK_FLOAT_STACK(1, 0);
+ CHECK_STACK(0, 1);
+
+ *++dataTop = *floatTop--;
+ continue;
+
+ case ficlInstructionToF:
+ CHECK_FLOAT_STACK(0, 1);
+ CHECK_STACK(1, 0);
+
+ *++floatTop = *dataTop--;
+ continue;
+
+#endif /* FICL_WANT_FLOAT */
+
+ /*
+ * c o l o n P a r e n
+ * This is the code that executes a colon definition. It
+ * assumes that the virtual machine is running a "next" loop
+ * (See the vm.c for its implementation of member function
+ * vmExecute()). The colon code simply copies the address of
+ * the first word in the list of words to interpret into IP
+ * after saving its old value. When we return to the "next"
+ * loop, the virtual machine will call the code for each
+ * word in turn.
+ */
+ case ficlInstructionColonParen:
+ (++returnTop)->p = (void *)ip;
+ ip = (ficlInstruction *)(fw->param);
+ continue;
+
+ case ficlInstructionCreateParen:
+ CHECK_STACK(0, 1);
+ (++dataTop)->p = (fw->param + 1);
+ continue;
+
+ case ficlInstructionVariableParen:
+ CHECK_STACK(0, 1);
+ (++dataTop)->p = fw->param;
+ continue;
+
+ /*
+ * c o n s t a n t P a r e n
+ * This is the run-time code for "constant". It simply returns
+ * the contents of its word's first data ficlCell.
+ */
+
+#if FICL_WANT_FLOAT
+ case ficlInstructionF2ConstantParen:
+ CHECK_FLOAT_STACK(0, 2);
+ FLOAT_PUSH_CELL_POINTER_DOUBLE(fw->param);
+
+ case ficlInstructionFConstantParen:
+ CHECK_FLOAT_STACK(0, 1);
+ FLOAT_PUSH_CELL_POINTER(fw->param);
+#endif /* FICL_WANT_FLOAT */
+
+ case ficlInstruction2ConstantParen:
+ CHECK_STACK(0, 2);
+ PUSH_CELL_POINTER_DOUBLE(fw->param);
+
+ case ficlInstructionConstantParen:
+ CHECK_STACK(0, 1);
+ PUSH_CELL_POINTER(fw->param);
+
+#if FICL_WANT_USER
+ case ficlInstructionUserParen: {
+ ficlInteger i = fw->param[0].i;
+ (++dataTop)->p = &vm->user[i];
+ continue;
+ }
+#endif
+
+ default:
+ /*
+ * Clever hack, or evil coding? You be the judge.
+ *
+ * If the word we've been asked to execute is in fact
+ * an *instruction*, we grab the instruction, stow it
+ * in "i" (our local cache of *ip), and *jump* to the
+ * top of the switch statement. --lch
+ */
+ if (((ficlInstruction)fw->code >
+ ficlInstructionInvalid) &&
+ ((ficlInstruction)fw->code < ficlInstructionLast)) {
+ instruction = (ficlInstruction)fw->code;
+ goto AGAIN;
+ }
+
+ LOCAL_VARIABLE_SPILL;
+ (vm)->runningWord = fw;
+ fw->code(vm);
+ LOCAL_VARIABLE_REFILL;
+ continue;
+ }
+ }
+
+ LOCAL_VARIABLE_SPILL;
+ vm->exceptionHandler = oldExceptionHandler;
+}
+
+/*
+ * v m G e t D i c t
+ * Returns the address dictionary for this VM's system
+ */
+ficlDictionary *
+ficlVmGetDictionary(ficlVm *vm)
+{
+ FICL_VM_ASSERT(vm, vm);
+ return (vm->callback.system->dictionary);
+}
+
+/*
+ * v m G e t S t r i n g
+ * Parses a string out of the VM input buffer and copies up to the first
+ * FICL_COUNTED_STRING_MAX characters to the supplied destination buffer, a
+ * ficlCountedString. The destination string is NULL terminated.
+ *
+ * Returns the address of the first unused character in the dest buffer.
+ */
+char *
+ficlVmGetString(ficlVm *vm, ficlCountedString *counted, char delimiter)
+{
+ ficlString s = ficlVmParseStringEx(vm, delimiter, 0);
+
+ if (FICL_STRING_GET_LENGTH(s) > FICL_COUNTED_STRING_MAX) {
+ FICL_STRING_SET_LENGTH(s, FICL_COUNTED_STRING_MAX);
+ }
+
+ strncpy(counted->text, FICL_STRING_GET_POINTER(s),
+ FICL_STRING_GET_LENGTH(s));
+ counted->text[FICL_STRING_GET_LENGTH(s)] = '\0';
+ counted->length = (ficlUnsigned8)FICL_STRING_GET_LENGTH(s);
+
+ return (counted->text + FICL_STRING_GET_LENGTH(s) + 1);
+}
+
+/*
+ * v m G e t W o r d
+ * vmGetWord calls vmGetWord0 repeatedly until it gets a string with
+ * non-zero length.
+ */
+ficlString
+ficlVmGetWord(ficlVm *vm)
+{
+ ficlString s = ficlVmGetWord0(vm);
+
+ if (FICL_STRING_GET_LENGTH(s) == 0) {
+ ficlVmThrow(vm, FICL_VM_STATUS_RESTART);
+ }
+
+ return (s);
+}
+
+/*
+ * v m G e t W o r d 0
+ * Skip leading whitespace and parse a space delimited word from the tib.
+ * Returns the start address and length of the word. Updates the tib
+ * to reflect characters consumed, including the trailing delimiter.
+ * If there's nothing of interest in the tib, returns zero. This function
+ * does not use vmParseString because it uses isspace() rather than a
+ * single delimiter character.
+ */
+ficlString
+ficlVmGetWord0(ficlVm *vm)
+{
+ char *trace = ficlVmGetInBuf(vm);
+ char *stop = ficlVmGetInBufEnd(vm);
+ ficlString s;
+ ficlUnsigned length = 0;
+ char c = 0;
+
+ trace = ficlStringSkipSpace(trace, stop);
+ FICL_STRING_SET_POINTER(s, trace);
+
+ /* Please leave this loop this way; it makes Purify happier. --lch */
+ for (;;) {
+ if (trace == stop)
+ break;
+ c = *trace;
+ if (isspace((unsigned char)c))
+ break;
+ length++;
+ trace++;
+ }
+
+ FICL_STRING_SET_LENGTH(s, length);
+
+ /* skip one trailing delimiter */
+ if ((trace != stop) && isspace((unsigned char)c))
+ trace++;
+
+ ficlVmUpdateTib(vm, trace);
+
+ return (s);
+}
+
+/*
+ * v m G e t W o r d T o P a d
+ * Does vmGetWord and copies the result to the pad as a NULL terminated
+ * string. Returns the length of the string. If the string is too long
+ * to fit in the pad, it is truncated.
+ */
+int
+ficlVmGetWordToPad(ficlVm *vm)
+{
+ ficlString s;
+ char *pad = (char *)vm->pad;
+ s = ficlVmGetWord(vm);
+
+ if (FICL_STRING_GET_LENGTH(s) > FICL_PAD_SIZE)
+ FICL_STRING_SET_LENGTH(s, FICL_PAD_SIZE);
+
+ strncpy(pad, FICL_STRING_GET_POINTER(s), FICL_STRING_GET_LENGTH(s));
+ pad[FICL_STRING_GET_LENGTH(s)] = '\0';
+ return ((int)(FICL_STRING_GET_LENGTH(s)));
+}
+
+/*
+ * v m P a r s e S t r i n g
+ * Parses a string out of the input buffer using the delimiter
+ * specified. Skips leading delimiters, marks the start of the string,
+ * and counts characters to the next delimiter it encounters. It then
+ * updates the vm input buffer to consume all these chars, including the
+ * trailing delimiter.
+ * Returns the address and length of the parsed string, not including the
+ * trailing delimiter.
+ */
+ficlString
+ficlVmParseString(ficlVm *vm, char delimiter)
+{
+ return (ficlVmParseStringEx(vm, delimiter, 1));
+}
+
+ficlString
+ficlVmParseStringEx(ficlVm *vm, char delimiter, char skipLeadingDelimiters)
+{
+ ficlString s;
+ char *trace = ficlVmGetInBuf(vm);
+ char *stop = ficlVmGetInBufEnd(vm);
+ char c;
+
+ if (skipLeadingDelimiters) {
+ while ((trace != stop) && (*trace == delimiter))
+ trace++;
+ }
+
+ FICL_STRING_SET_POINTER(s, trace); /* mark start of text */
+
+ /* find next delimiter or end of line */
+ for (c = *trace;
+ (trace != stop) && (c != delimiter) && (c != '\r') && (c != '\n');
+ c = *++trace) {
+ ;
+ }
+
+ /* set length of result */
+ FICL_STRING_SET_LENGTH(s, trace - FICL_STRING_GET_POINTER(s));
+
+ /* gobble trailing delimiter */
+ if ((trace != stop) && (*trace == delimiter))
+ trace++;
+
+ ficlVmUpdateTib(vm, trace);
+ return (s);
+}
+
+
+/*
+ * v m P o p
+ */
+ficlCell
+ficlVmPop(ficlVm *vm)
+{
+ return (ficlStackPop(vm->dataStack));
+}
+
+/*
+ * v m P u s h
+ */
+void
+ficlVmPush(ficlVm *vm, ficlCell c)
+{
+ ficlStackPush(vm->dataStack, c);
+}
+
+/*
+ * v m P o p I P
+ */
+void
+ficlVmPopIP(ficlVm *vm)
+{
+ vm->ip = (ficlIp)(ficlStackPopPointer(vm->returnStack));
+}
+
+/*
+ * v m P u s h I P
+ */
+void
+ficlVmPushIP(ficlVm *vm, ficlIp newIP)
+{
+ ficlStackPushPointer(vm->returnStack, (void *)vm->ip);
+ vm->ip = newIP;
+}
+
+/*
+ * v m P u s h T i b
+ * Binds the specified input string to the VM and clears >IN (the index)
+ */
+void
+ficlVmPushTib(ficlVm *vm, char *text, ficlInteger nChars, ficlTIB *pSaveTib)
+{
+ if (pSaveTib) {
+ *pSaveTib = vm->tib;
+ }
+ vm->tib.text = text;
+ vm->tib.end = text + nChars;
+ vm->tib.index = 0;
+}
+
+void
+ficlVmPopTib(ficlVm *vm, ficlTIB *pTib)
+{
+ if (pTib) {
+ vm->tib = *pTib;
+ }
+}
+
+/*
+ * v m Q u i t
+ */
+void
+ficlVmQuit(ficlVm *vm)
+{
+ ficlStackReset(vm->returnStack);
+ vm->restart = 0;
+ vm->ip = NULL;
+ vm->runningWord = NULL;
+ vm->state = FICL_VM_STATE_INTERPRET;
+ vm->tib.text = NULL;
+ vm->tib.end = NULL;
+ vm->tib.index = 0;
+ vm->pad[0] = '\0';
+ vm->sourceId.i = 0;
+}
+
+/*
+ * v m R e s e t
+ */
+void
+ficlVmReset(ficlVm *vm)
+{
+ ficlVmQuit(vm);
+ ficlStackReset(vm->dataStack);
+#if FICL_WANT_FLOAT
+ ficlStackReset(vm->floatStack);
+#endif
+ vm->base = 10;
+}
+
+/*
+ * v m S e t T e x t O u t
+ * Binds the specified output callback to the vm. If you pass NULL,
+ * binds the default output function (ficlTextOut)
+ */
+void
+ficlVmSetTextOut(ficlVm *vm, ficlOutputFunction textOut)
+{
+ vm->callback.textOut = textOut;
+}
+
+void
+ficlVmTextOut(ficlVm *vm, char *text)
+{
+ ficlCallbackTextOut((ficlCallback *)vm, text);
+}
+
+
+void
+ficlVmErrorOut(ficlVm *vm, char *text)
+{
+ ficlCallbackErrorOut((ficlCallback *)vm, text);
+}
+
+
+/*
+ * v m T h r o w
+ */
+void
+ficlVmThrow(ficlVm *vm, int except)
+{
+ if (vm->exceptionHandler)
+ longjmp(*(vm->exceptionHandler), except);
+}
+
+void
+ficlVmThrowError(ficlVm *vm, char *fmt, ...)
+{
+ va_list list;
+
+ va_start(list, fmt);
+ vsprintf(vm->pad, fmt, list);
+ va_end(list);
+ strcat(vm->pad, "\n");
+
+ ficlVmErrorOut(vm, vm->pad);
+ longjmp(*(vm->exceptionHandler), FICL_VM_STATUS_ERROR_EXIT);
+}
+
+void
+ficlVmThrowErrorVararg(ficlVm *vm, char *fmt, va_list list)
+{
+ vsprintf(vm->pad, fmt, list);
+ /*
+ * well, we can try anyway, we're certainly not
+ * returning to our caller!
+ */
+ va_end(list);
+ strcat(vm->pad, "\n");
+
+ ficlVmErrorOut(vm, vm->pad);
+ longjmp(*(vm->exceptionHandler), FICL_VM_STATUS_ERROR_EXIT);
+}
+
+/*
+ * f i c l E v a l u a t e
+ * Wrapper for ficlExec() which sets SOURCE-ID to -1.
+ */
+int
+ficlVmEvaluate(ficlVm *vm, char *s)
+{
+ int returnValue;
+ ficlCell id = vm->sourceId;
+ ficlString string;
+ vm->sourceId.i = -1;
+ FICL_STRING_SET_FROM_CSTRING(string, s);
+ returnValue = ficlVmExecuteString(vm, string);
+ vm->sourceId = id;
+ return (returnValue);
+}
+
+/*
+ * f i c l E x e c
+ * Evaluates a block of input text in the context of the
+ * specified interpreter. Emits any requested output to the
+ * interpreter's output function.
+ *
+ * Contains the "inner interpreter" code in a tight loop
+ *
+ * Returns one of the VM_XXXX codes defined in ficl.h:
+ * VM_OUTOFTEXT is the normal exit condition
+ * VM_ERREXIT means that the interpreter encountered a syntax error
+ * and the vm has been reset to recover (some or all
+ * of the text block got ignored
+ * VM_USEREXIT means that the user executed the "bye" command
+ * to shut down the interpreter. This would be a good
+ * time to delete the vm, etc -- or you can ignore this
+ * signal.
+ */
+int
+ficlVmExecuteString(ficlVm *vm, ficlString s)
+{
+ ficlSystem *system = vm->callback.system;
+ ficlDictionary *dictionary = system->dictionary;
+
+ int except;
+ jmp_buf vmState;
+ jmp_buf *oldState;
+ ficlTIB saveficlTIB;
+
+ FICL_VM_ASSERT(vm, vm);
+ FICL_VM_ASSERT(vm, system->interpreterLoop[0]);
+
+ ficlVmPushTib(vm, FICL_STRING_GET_POINTER(s),
+ FICL_STRING_GET_LENGTH(s), &saveficlTIB);
+
+ /*
+ * Save and restore VM's jmp_buf to enable nested calls to ficlExec
+ */
+ oldState = vm->exceptionHandler;
+
+ /* This has to come before the setjmp! */
+ vm->exceptionHandler = &vmState;
+ except = setjmp(vmState);
+
+ switch (except) {
+ case 0:
+ if (vm->restart) {
+ vm->runningWord->code(vm);
+ vm->restart = 0;
+ } else { /* set VM up to interpret text */
+ ficlVmPushIP(vm, &(system->interpreterLoop[0]));
+ }
+
+ ficlVmInnerLoop(vm, 0);
+ break;
+
+ case FICL_VM_STATUS_RESTART:
+ vm->restart = 1;
+ except = FICL_VM_STATUS_OUT_OF_TEXT;
+ break;
+
+ case FICL_VM_STATUS_OUT_OF_TEXT:
+ ficlVmPopIP(vm);
+#if 0 /* we dont output prompt in loader */
+ if ((vm->state != FICL_VM_STATE_COMPILE) &&
+ (vm->sourceId.i == 0))
+ ficlVmTextOut(vm, FICL_PROMPT);
+#endif
+ break;
+
+ case FICL_VM_STATUS_USER_EXIT:
+ case FICL_VM_STATUS_INNER_EXIT:
+ case FICL_VM_STATUS_BREAK:
+ break;
+
+ case FICL_VM_STATUS_QUIT:
+ if (vm->state == FICL_VM_STATE_COMPILE) {
+ ficlDictionaryAbortDefinition(dictionary);
+#if FICL_WANT_LOCALS
+ ficlDictionaryEmpty(system->locals,
+ system->locals->forthWordlist->size);
+#endif
+ }
+ ficlVmQuit(vm);
+ break;
+
+ case FICL_VM_STATUS_ERROR_EXIT:
+ case FICL_VM_STATUS_ABORT:
+ case FICL_VM_STATUS_ABORTQ:
+ default: /* user defined exit code?? */
+ if (vm->state == FICL_VM_STATE_COMPILE) {
+ ficlDictionaryAbortDefinition(dictionary);
+#if FICL_WANT_LOCALS
+ ficlDictionaryEmpty(system->locals,
+ system->locals->forthWordlist->size);
+#endif
+ }
+ ficlDictionaryResetSearchOrder(dictionary);
+ ficlVmReset(vm);
+ break;
+ }
+
+ vm->exceptionHandler = oldState;
+ ficlVmPopTib(vm, &saveficlTIB);
+ return (except);
+}
+
+/*
+ * f i c l E x e c X T
+ * Given a pointer to a ficlWord, push an inner interpreter and
+ * execute the word to completion. This is in contrast with vmExecute,
+ * which does not guarantee that the word will have completed when
+ * the function returns (ie in the case of colon definitions, which
+ * need an inner interpreter to finish)
+ *
+ * Returns one of the VM_XXXX exception codes listed in ficl.h. Normal
+ * exit condition is VM_INNEREXIT, Ficl's private signal to exit the
+ * inner loop under normal circumstances. If another code is thrown to
+ * exit the loop, this function will re-throw it if it's nested under
+ * itself or ficlExec.
+ *
+ * NOTE: this function is intended so that C code can execute ficlWords
+ * given their address in the dictionary (xt).
+ */
+int
+ficlVmExecuteXT(ficlVm *vm, ficlWord *pWord)
+{
+ int except;
+ jmp_buf vmState;
+ jmp_buf *oldState;
+ ficlWord *oldRunningWord;
+
+ FICL_VM_ASSERT(vm, vm);
+ FICL_VM_ASSERT(vm, vm->callback.system->exitInnerWord);
+
+ /*
+ * Save the runningword so that RESTART behaves correctly
+ * over nested calls.
+ */
+ oldRunningWord = vm->runningWord;
+ /*
+ * Save and restore VM's jmp_buf to enable nested calls
+ */
+ oldState = vm->exceptionHandler;
+ /* This has to come before the setjmp! */
+ vm->exceptionHandler = &vmState;
+ except = setjmp(vmState);
+
+ if (except)
+ ficlVmPopIP(vm);
+ else
+ ficlVmPushIP(vm, &(vm->callback.system->exitInnerWord));
+
+ switch (except) {
+ case 0:
+ ficlVmExecuteWord(vm, pWord);
+ ficlVmInnerLoop(vm, 0);
+ break;
+
+ case FICL_VM_STATUS_INNER_EXIT:
+ case FICL_VM_STATUS_BREAK:
+ break;
+
+ case FICL_VM_STATUS_RESTART:
+ case FICL_VM_STATUS_OUT_OF_TEXT:
+ case FICL_VM_STATUS_USER_EXIT:
+ case FICL_VM_STATUS_QUIT:
+ case FICL_VM_STATUS_ERROR_EXIT:
+ case FICL_VM_STATUS_ABORT:
+ case FICL_VM_STATUS_ABORTQ:
+ default: /* user defined exit code?? */
+ if (oldState) {
+ vm->exceptionHandler = oldState;
+ ficlVmThrow(vm, except);
+ }
+ break;
+ }
+
+ vm->exceptionHandler = oldState;
+ vm->runningWord = oldRunningWord;
+ return (except);
+}
+
+/*
+ * f i c l P a r s e N u m b e r
+ * Attempts to convert the NULL terminated string in the VM's pad to
+ * a number using the VM's current base. If successful, pushes the number
+ * onto the param stack and returns FICL_TRUE. Otherwise, returns FICL_FALSE.
+ * (jws 8/01) Trailing decimal point causes a zero ficlCell to be pushed. (See
+ * the standard for DOUBLE wordset.
+ */
+int
+ficlVmParseNumber(ficlVm *vm, ficlString s)
+{
+ ficlInteger accumulator = 0;
+ char isNegative = 0;
+ char isDouble = 0;
+ unsigned base = vm->base;
+ char *trace = FICL_STRING_GET_POINTER(s);
+ ficlUnsigned8 length = (ficlUnsigned8)FICL_STRING_GET_LENGTH(s);
+ unsigned c;
+ unsigned digit;
+
+ if (length > 1) {
+ switch (*trace) {
+ case '-':
+ trace++;
+ length--;
+ isNegative = 1;
+ break;
+ case '+':
+ trace++;
+ length--;
+ isNegative = 0;
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* detect & remove trailing decimal */
+ if ((length > 0) && (trace[length - 1] == '.')) {
+ isDouble = 1;
+ length--;
+ }
+
+ if (length == 0) /* detect "+", "-", ".", "+." etc */
+ return (0); /* false */
+
+ while ((length--) && ((c = *trace++) != '\0')) {
+ if (!isalnum(c))
+ return (0); /* false */
+
+ digit = c - '0';
+
+ if (digit > 9)
+ digit = tolower(c) - 'a' + 10;
+
+ if (digit >= base)
+ return (0); /* false */
+
+ accumulator = accumulator * base + digit;
+ }
+
+ if (isNegative)
+ accumulator = -accumulator;
+
+ ficlStackPushInteger(vm->dataStack, accumulator);
+ if (vm->state == FICL_VM_STATE_COMPILE)
+ ficlPrimitiveLiteralIm(vm);
+
+ if (isDouble) { /* simple (required) DOUBLE support */
+ if (isNegative)
+ ficlStackPushInteger(vm->dataStack, -1);
+ else
+ ficlStackPushInteger(vm->dataStack, 0);
+ if (vm->state == FICL_VM_STATE_COMPILE)
+ ficlPrimitiveLiteralIm(vm);
+ }
+
+ return (1); /* true */
+}
+
+/*
+ * d i c t C h e c k
+ * Checks the dictionary for corruption and throws appropriate
+ * errors.
+ * Input: +n number of ADDRESS UNITS (not ficlCells) proposed to allot
+ * -n number of ADDRESS UNITS proposed to de-allot
+ * 0 just do a consistency check
+ */
+void
+ficlVmDictionarySimpleCheck(ficlVm *vm, ficlDictionary *dictionary, int cells)
+{
+#if FICL_ROBUST >= 1
+ if ((cells >= 0) &&
+ (ficlDictionaryCellsAvailable(dictionary) *
+ (int)sizeof (ficlCell) < cells)) {
+ ficlVmThrowError(vm, "Error: dictionary full");
+ }
+
+ if ((cells <= 0) &&
+ (ficlDictionaryCellsUsed(dictionary) *
+ (int)sizeof (ficlCell) < -cells)) {
+ ficlVmThrowError(vm, "Error: dictionary underflow");
+ }
+#else /* FICL_ROBUST >= 1 */
+ FICL_IGNORE(vm);
+ FICL_IGNORE(dictionary);
+ FICL_IGNORE(cells);
+#endif /* FICL_ROBUST >= 1 */
+}
+
+void
+ficlVmDictionaryCheck(ficlVm *vm, ficlDictionary *dictionary, int cells)
+{
+#if FICL_ROBUST >= 1
+ ficlVmDictionarySimpleCheck(vm, dictionary, cells);
+
+ if (dictionary->wordlistCount > FICL_MAX_WORDLISTS) {
+ ficlDictionaryResetSearchOrder(dictionary);
+ ficlVmThrowError(vm, "Error: search order overflow");
+ } else if (dictionary->wordlistCount < 0) {
+ ficlDictionaryResetSearchOrder(dictionary);
+ ficlVmThrowError(vm, "Error: search order underflow");
+ }
+#else /* FICL_ROBUST >= 1 */
+ FICL_IGNORE(vm);
+ FICL_IGNORE(dictionary);
+ FICL_IGNORE(cells);
+#endif /* FICL_ROBUST >= 1 */
+}
+
+void
+ficlVmDictionaryAllot(ficlVm *vm, ficlDictionary *dictionary, int n)
+{
+ FICL_VM_DICTIONARY_SIMPLE_CHECK(vm, dictionary, n);
+ FICL_IGNORE(vm);
+ ficlDictionaryAllot(dictionary, n);
+}
+
+void
+ficlVmDictionaryAllotCells(ficlVm *vm, ficlDictionary *dictionary, int cells)
+{
+ FICL_VM_DICTIONARY_SIMPLE_CHECK(vm, dictionary, cells);
+ FICL_IGNORE(vm);
+ ficlDictionaryAllotCells(dictionary, cells);
+}
+
+/*
+ * f i c l P a r s e W o r d
+ * From the standard, section 3.4
+ * b) Search the dictionary name space (see 3.4.2). If a definition name
+ * matching the string is found:
+ * 1.if interpreting, perform the interpretation semantics of the definition
+ * (see 3.4.3.2), and continue at a);
+ * 2.if compiling, perform the compilation semantics of the definition
+ * (see 3.4.3.3), and continue at a).
+ *
+ * c) If a definition name matching the string is not found, attempt to
+ * convert the string to a number (see 3.4.1.3). If successful:
+ * 1.if interpreting, place the number on the data stack, and continue at a);
+ * 2.if compiling, FICL_VM_STATE_COMPILE code that when executed will place
+ * the number on the stack (see 6.1.1780 LITERAL), and continue at a);
+ *
+ * d) If unsuccessful, an ambiguous condition exists (see 3.4.4).
+ *
+ * (jws 4/01) Modified to be a ficlParseStep
+ */
+int
+ficlVmParseWord(ficlVm *vm, ficlString name)
+{
+ ficlDictionary *dictionary = ficlVmGetDictionary(vm);
+ ficlWord *tempFW;
+
+ FICL_VM_DICTIONARY_CHECK(vm, dictionary, 0);
+ FICL_STACK_CHECK(vm->dataStack, 0, 0);
+
+#if FICL_WANT_LOCALS
+ if (vm->callback.system->localsCount > 0) {
+ tempFW = ficlSystemLookupLocal(vm->callback.system, name);
+ } else
+#endif
+ tempFW = ficlDictionaryLookup(dictionary, name);
+
+ if (vm->state == FICL_VM_STATE_INTERPRET) {
+ if (tempFW != NULL) {
+ if (ficlWordIsCompileOnly(tempFW)) {
+ ficlVmThrowError(vm,
+ "Error: FICL_VM_STATE_COMPILE only!");
+ }
+
+ ficlVmExecuteWord(vm, tempFW);
+ return (1); /* true */
+ }
+ } else { /* (vm->state == FICL_VM_STATE_COMPILE) */
+ if (tempFW != NULL) {
+ if (ficlWordIsImmediate(tempFW)) {
+ ficlVmExecuteWord(vm, tempFW);
+ } else {
+ ficlCell c;
+ c.p = tempFW;
+ if (tempFW->flags & FICL_WORD_INSTRUCTION)
+ ficlDictionaryAppendUnsigned(dictionary,
+ (ficlInteger)tempFW->code);
+ else
+ ficlDictionaryAppendCell(dictionary, c);
+ }
+ return (1); /* true */
+ }
+ }
+
+ return (0); /* false */
+}