diff options
Diffstat (limited to 'usr/src/lib/libctf')
-rw-r--r-- | usr/src/lib/libctf/Makefile.com | 41 | ||||
-rw-r--r-- | usr/src/lib/libctf/Makefile.shared.com | 90 | ||||
-rw-r--r-- | usr/src/lib/libctf/Makefile.shared.targ | 30 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_convert.c | 210 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_diff.c | 1362 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_dwarf.c | 2957 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_elfwrite.c | 422 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_lib.c | 325 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_merge.c | 1570 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/ctf_subr.c | 28 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/libctf.h | 48 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/libctf_impl.h | 59 | ||||
-rw-r--r-- | usr/src/lib/libctf/common/mapfile-vers | 36 |
13 files changed, 7113 insertions, 65 deletions
diff --git a/usr/src/lib/libctf/Makefile.com b/usr/src/lib/libctf/Makefile.com index 4d1e01d4eb..0169c2a367 100644 --- a/usr/src/lib/libctf/Makefile.com +++ b/usr/src/lib/libctf/Makefile.com @@ -23,43 +23,9 @@ # Use is subject to license terms. # -LIBRARY = libctf.a -VERS = .1 - -COMMON_OBJS = \ - ctf_create.o \ - ctf_decl.o \ - ctf_error.o \ - ctf_hash.o \ - ctf_labels.o \ - ctf_lookup.o \ - ctf_open.o \ - ctf_types.o \ - ctf_util.o - -LIB_OBJS = \ - ctf_lib.o \ - ctf_subr.o - -OBJECTS = $(COMMON_OBJS) $(LIB_OBJS) - -include ../../Makefile.lib +include ../Makefile.shared.com include ../../Makefile.rootfs -SRCS = $(COMMON_OBJS:%.o=../../../common/ctf/%.c) $(LIB_OBJS:%.o=../common/%.c) -LIBS = $(DYNLIB) $(LINTLIB) - -SRCDIR = ../common - -CPPFLAGS += -I../common -I../../../common/ctf -DCTF_OLD_VERSIONS -CFLAGS += $(CCVERBOSE) - -CERRWARN += -_gcc=-Wno-uninitialized - -LDLIBS += -lc - -$(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC) - .KEEP_STATE: all: $(LIBS) @@ -67,7 +33,4 @@ all: $(LIBS) lint: lintcheck include ../../Makefile.targ - -objs/%.o pics/%.o: ../../../common/ctf/%.c - $(COMPILE.c) -o $@ $< - $(POST_PROCESS_O) +include ../Makefile.shared.targ diff --git a/usr/src/lib/libctf/Makefile.shared.com b/usr/src/lib/libctf/Makefile.shared.com new file mode 100644 index 0000000000..55f090e7f8 --- /dev/null +++ b/usr/src/lib/libctf/Makefile.shared.com @@ -0,0 +1,90 @@ +# +# CDDL HEADER START +# +# The contents of this file are subject to the terms of the +# Common Development and Distribution License (the "License"). +# You may not use this file except in compliance with the License. +# +# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE +# or http://www.opensolaris.org/os/licensing. +# See the License for the specific language governing permissions +# and limitations under the License. +# +# When distributing Covered Code, include this CDDL HEADER in each +# file and include the License file at usr/src/OPENSOLARIS.LICENSE. +# If applicable, add the following below this CDDL HEADER, with the +# fields enclosed by brackets "[]" replaced with your own identifying +# information: Portions Copyright [yyyy] [name of copyright owner] +# +# CDDL HEADER END +# +# +# Copyright 2006 Sun Microsystems, Inc. All rights reserved. +# Use is subject to license terms. +# +# Copyright (c) 2015, Joyent, Inc. All rights reserved. +# + +# +# This Makefile is shared between the libctf native build in tools and +# the libctf build here for the system. +# +LIBRARY = libctf.a +VERS = .1 + +COMMON_OBJS = \ + ctf_create.o \ + ctf_decl.o \ + ctf_dwarf.o \ + ctf_error.o \ + ctf_hash.o \ + ctf_labels.o \ + ctf_lookup.o \ + ctf_open.o \ + ctf_types.o \ + ctf_util.o + +MERGEQ_OBJS = \ + mergeq.o \ + workq.o + +LIST_OBJS = \ + list.o + +LIB_OBJS = \ + ctf_convert.o \ + ctf_elfwrite.o \ + ctf_diff.o \ + ctf_lib.o \ + ctf_merge.o \ + ctf_subr.o + +OBJECTS = $(COMMON_OBJS) $(LIB_OBJS) $(LIST_OBJS) $(MERGEQ_OBJS) +MAPFILEDIR = $(SRC)/lib/libctf + +include $(SRC)/lib/Makefile.lib + +SRCS = \ + $(COMMON_OBJS:%.o=$(SRC)/common/ctf/%.c) \ + $(LIB_OBJS:%.o=$(SRC)/lib/libctf/common/%.c) \ + $(LIST_OBJS:%.o=$(SRC)/common/list/%.c) \ + $(MERGEQ_OBJS:%.o=$(SRC)/lib/mergeq/%.c) + +LIBS = $(DYNLIB) $(LINTLIB) +LDLIBS += -lc -lelf -ldwarf -lavl + +C99MODE= -xc99=%all +C99LMODE= -Xc99=%all + +SRCDIR = $(SRC)/lib/libctf/common + +CPPFLAGS += -I$(SRC)/lib/libctf/common \ + -I$(SRC)/common/ctf \ + -I$(SRC)/lib/libdwarf/common \ + -I$(SRC)/lib/mergeq \ + -DCTF_OLD_VERSIONS +CFLAGS += $(CCVERBOSE) + +CERRWARN += -_gcc=-Wno-uninitialized + +$(LINTLIB) := SRCS = $(SRCDIR)/$(LINTSRC) diff --git a/usr/src/lib/libctf/Makefile.shared.targ b/usr/src/lib/libctf/Makefile.shared.targ new file mode 100644 index 0000000000..b6520f2366 --- /dev/null +++ b/usr/src/lib/libctf/Makefile.shared.targ @@ -0,0 +1,30 @@ +# +# This file and its contents are supplied under the terms of the +# Common Development and Distribution License ("CDDL"), version 1.0. +# You may only use this file in accordance with the terms of version +# 1.0 of the CDDL. +# +# A full copy of the text of the CDDL should have accompanied this +# source. A copy of the CDDL is also available via the Internet at +# http://www.illumos.org/license/CDDL. +# + +# +# Copyright (c) 2015, Joyent, Inc. All rights reserved. +# + +# +# This Makefile is shared between both the tools and the normal library build. +# + +pics/%.o: $(SRC)/common/ctf/%.c + $(COMPILE.c) -o $@ $< + $(POST_PROCESS_O) + +pics/%.o: $(SRC)/common/list/%.c + $(COMPILE.c) -o $@ $< + $(POST_PROCESS_O) + +pics/%.o: $(SRC)/lib/mergeq/%.c + $(COMPILE.c) -o $@ $< + $(POST_PROCESS_O) diff --git a/usr/src/lib/libctf/common/ctf_convert.c b/usr/src/lib/libctf/common/ctf_convert.c new file mode 100644 index 0000000000..1a433d17db --- /dev/null +++ b/usr/src/lib/libctf/common/ctf_convert.c @@ -0,0 +1,210 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2015 Joyent, Inc. + */ + +/* + * Main conversion entry points. This has been designed such that there can be + * any number of different conversion backends. Currently we only have one that + * understands DWARFv2 (and bits of DWARFv4). Each backend should be placed in + * the ctf_converters list and each will be tried in turn. + */ + +#include <libctf_impl.h> +#include <gelf.h> + +ctf_convert_f ctf_converters[] = { + ctf_dwarf_convert +}; + +#define NCONVERTS (sizeof (ctf_converters) / sizeof (ctf_convert_f)) + +typedef enum ctf_convert_source { + CTFCONV_SOURCE_NONE = 0x0, + CTFCONV_SOURCE_UNKNOWN = 0x01, + CTFCONV_SOURCE_C = 0x02, + CTFCONV_SOURCE_S = 0x04 +} ctf_convert_source_t; + +static void +ctf_convert_ftypes(Elf *elf, ctf_convert_source_t *types) +{ + int i; + Elf_Scn *scn = NULL, *strscn; + *types = CTFCONV_SOURCE_NONE; + GElf_Shdr shdr; + Elf_Data *data, *strdata; + + while ((scn = elf_nextscn(elf, scn)) != NULL) { + + if (gelf_getshdr(scn, &shdr) == NULL) + return; + + if (shdr.sh_type == SHT_SYMTAB) + break; + } + + if (scn == NULL) + return; + + if ((strscn = elf_getscn(elf, shdr.sh_link)) == NULL) + return; + + if ((data = elf_getdata(scn, NULL)) == NULL) + return; + + if ((strdata = elf_getdata(strscn, NULL)) == NULL) + return; + + for (i = 0; i < shdr.sh_size / shdr.sh_entsize; i++) { + GElf_Sym sym; + const char *file; + size_t len; + + if (gelf_getsym(data, i, &sym) == NULL) + return; + + if (GELF_ST_TYPE(sym.st_info) != STT_FILE) + continue; + + file = (const char *)((uintptr_t)strdata->d_buf + sym.st_name); + len = strlen(file); + if (len < 2 || file[len - 2] != '.') { + *types |= CTFCONV_SOURCE_UNKNOWN; + continue; + } + + switch (file[len - 1]) { + case 'c': + *types |= CTFCONV_SOURCE_C; + break; + case 'h': + /* We traditionally ignore header files... */ + break; + case 's': + *types |= CTFCONV_SOURCE_S; + break; + default: + *types |= CTFCONV_SOURCE_UNKNOWN; + break; + } + } +} + +ctf_file_t * +ctf_elfconvert(int fd, Elf *elf, const char *label, uint_t nthrs, uint_t flags, + int *errp, char *errbuf, size_t errlen) +{ + int err, i; + ctf_file_t *fp = NULL; + boolean_t notsup = B_TRUE; + ctf_convert_source_t type; + + if (errp == NULL) + errp = &err; + + if (elf == NULL) { + *errp = EINVAL; + return (NULL); + } + + if (flags & ~CTF_CONVERT_F_IGNNONC) { + *errp = EINVAL; + return (NULL); + } + + if (elf_kind(elf) != ELF_K_ELF) { + *errp = ECTF_FMT; + return (NULL); + } + + ctf_convert_ftypes(elf, &type); + ctf_dprintf("got types: %d\n", type); + if (flags & CTF_CONVERT_F_IGNNONC) { + if (type == CTFCONV_SOURCE_NONE || + (type & CTFCONV_SOURCE_UNKNOWN)) { + *errp = ECTF_CONVNOCSRC; + return (NULL); + } + } + + for (i = 0; i < NCONVERTS; i++) { + ctf_conv_status_t cs; + + fp = NULL; + cs = ctf_converters[i](fd, elf, nthrs, errp, &fp, errbuf, + errlen); + if (cs == CTF_CONV_SUCCESS) { + notsup = B_FALSE; + break; + } + if (cs == CTF_CONV_ERROR) { + fp = NULL; + notsup = B_FALSE; + break; + } + } + + if (notsup == B_TRUE) { + if ((flags & CTF_CONVERT_F_IGNNONC) != 0 && + (type & CTFCONV_SOURCE_C) == 0) { + *errp = ECTF_CONVNOCSRC; + return (NULL); + } + *errp = ECTF_NOCONVBKEND; + return (NULL); + } + + /* + * Succsesful conversion. + */ + if (fp != NULL) { + if (label == NULL) + label = ""; + if (ctf_add_label(fp, label, fp->ctf_typemax, 0) == CTF_ERR) { + *errp = ctf_errno(fp); + ctf_close(fp); + return (NULL); + } + if (ctf_update(fp) == CTF_ERR) { + *errp = ctf_errno(fp); + ctf_close(fp); + return (NULL); + } + } + + return (fp); +} + +ctf_file_t * +ctf_fdconvert(int fd, const char *label, uint_t nthrs, uint_t flags, int *errp, + char *errbuf, size_t errlen) +{ + int err; + Elf *elf; + ctf_file_t *fp; + + if (errp == NULL) + errp = &err; + + elf = elf_begin(fd, ELF_C_READ, NULL); + if (elf == NULL) { + *errp = ECTF_FMT; + return (NULL); + } + + fp = ctf_elfconvert(fd, elf, label, nthrs, flags, errp, errbuf, errlen); + + (void) elf_end(elf); + return (fp); +} diff --git a/usr/src/lib/libctf/common/ctf_diff.c b/usr/src/lib/libctf/common/ctf_diff.c new file mode 100644 index 0000000000..d070488bbb --- /dev/null +++ b/usr/src/lib/libctf/common/ctf_diff.c @@ -0,0 +1,1362 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright (c) 2015 Joyent, Inc. All rights reserved. + */ + +/* + * The following ia a basic overview of how we diff types in containers (the + * generally interesting part of diff, and what's used by merge). We maintain + * two mapping tables, a table of forward mappings (src->dest), and a reverse + * mapping (dest->src). Both are initialized to contain no mapping, and can also + * be updated to contain a negative mapping. + * + * What we do first is iterate over each type in the src container, and compare + * it with a type in the destination container. This may involve doing recursive + * comparisons -- which can involve cycles. To deal with this, whenever we + * encounter something which may be cyclic, we insert a guess. In other words, + * we assume that it may be true. This is necessary for the classic case of the + * following structure: + * + * struct foo { + * struct foo *foo_next; + * }; + * + * If it turns out that we were wrong, we discard our guesses. + * + * If we find that a given type in src has no corresponding entry in dst, we + * then mark its map as CTF_ERR (-1) to indicate that it has *no* match, as + * opposed to the default value of 0, which indicates an unknown match. + * Once we've done the first iteration through src, we know at that point in + * time whether everything in dst is similar or not and can simply walk over it + * and don't have to do any additional checks. + */ + +#include <libctf.h> +#include <ctf_impl.h> +#include <sys/debug.h> + +typedef struct ctf_diff_func { + const char *cdf_name; + ulong_t cdf_symidx; + ulong_t cdf_matchidx; +} ctf_diff_func_t; + +typedef struct ctf_diff_obj { + const char *cdo_name; + ulong_t cdo_symidx; + ctf_id_t cdo_id; + ulong_t cdo_matchidx; +} ctf_diff_obj_t; + +typedef struct ctf_diff_guess { + struct ctf_diff_guess *cdg_next; + ctf_id_t cdg_iid; + ctf_id_t cdg_oid; +} ctf_diff_guess_t; + +/* typedef in libctf.h */ +struct ctf_diff { + uint_t cds_flags; + boolean_t cds_tvalid; /* types valid */ + ctf_file_t *cds_ifp; + ctf_file_t *cds_ofp; + ctf_id_t *cds_forward; + ctf_id_t *cds_reverse; + size_t cds_fsize; + size_t cds_rsize; + ctf_diff_type_f cds_func; + ctf_diff_guess_t *cds_guess; + void *cds_arg; + uint_t cds_nifuncs; + uint_t cds_nofuncs; + uint_t cds_nextifunc; + uint_t cds_nextofunc; + ctf_diff_func_t *cds_ifuncs; + ctf_diff_func_t *cds_ofuncs; + boolean_t cds_ffillip; + boolean_t cds_fvalid; + uint_t cds_niobj; + uint_t cds_noobj; + uint_t cds_nextiobj; + uint_t cds_nextoobj; + ctf_diff_obj_t *cds_iobj; + ctf_diff_obj_t *cds_oobj; + boolean_t cds_ofillip; + boolean_t cds_ovalid; +}; + +#define TINDEX(tid) (tid - 1) + +/* + * Team Diff + */ +static int ctf_diff_type(ctf_diff_t *, ctf_file_t *, ctf_id_t, ctf_file_t *, + ctf_id_t); + +static int +ctf_diff_name(ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, ctf_id_t oid) +{ + const char *iname, *oname; + const ctf_type_t *itp, *otp; + + if ((itp = ctf_lookup_by_id(&ifp, iid)) == NULL) + return (CTF_ERR); + + if ((otp = ctf_lookup_by_id(&ofp, oid)) == NULL) + return (ctf_set_errno(ifp, iid)); + + iname = ctf_strptr(ifp, itp->ctt_name); + oname = ctf_strptr(ofp, otp->ctt_name); + + if ((iname == NULL || oname == NULL) && (iname != oname)) + return (B_TRUE); + + /* Two anonymous names are the same */ + if (iname == NULL && oname == NULL) + return (B_FALSE); + + return (strcmp(iname, oname) == 0 ? B_FALSE: B_TRUE); +} + +/* + * For floats and ints + */ +static int +ctf_diff_number(ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, ctf_id_t oid) +{ + ctf_encoding_t ien, den; + + if (ctf_type_encoding(ifp, iid, &ien) != 0) + return (CTF_ERR); + + if (ctf_type_encoding(ofp, oid, &den) != 0) + return (ctf_set_errno(ifp, iid)); + + if (bcmp(&ien, &den, sizeof (ctf_encoding_t)) != 0) + return (B_TRUE); + + return (B_FALSE); +} + +/* + * Two typedefs are equivalent, if after we resolve a chain of typedefs, they + * point to equivalent types. This means that if a size_t is defined as follows: + * + * size_t -> ulong_t -> unsigned long + * size_t -> unsigned long + * + * That we'll ultimately end up treating them the same. + */ +static int +ctf_diff_typedef(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, + ctf_file_t *ofp, ctf_id_t oid) +{ + ctf_id_t iref = CTF_ERR, oref = CTF_ERR; + + while (ctf_type_kind(ifp, iid) == CTF_K_TYPEDEF) { + iref = ctf_type_reference(ifp, iid); + if (iref == CTF_ERR) + return (CTF_ERR); + iid = iref; + } + + while (ctf_type_kind(ofp, oid) == CTF_K_TYPEDEF) { + oref = ctf_type_reference(ofp, oid); + if (oref == CTF_ERR) + return (CTF_ERR); + oid = oref; + } + + VERIFY(iref != CTF_ERR && oref != CTF_ERR); + return (ctf_diff_type(cds, ifp, iref, ofp, oref)); +} + +/* + * Two qualifiers are equivalent iff they point to two equivalent types. + */ +static int +ctf_diff_qualifier(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, + ctf_file_t *ofp, ctf_id_t oid) +{ + ctf_id_t iref, oref; + + iref = ctf_type_reference(ifp, iid); + if (iref == CTF_ERR) + return (CTF_ERR); + + oref = ctf_type_reference(ofp, oid); + if (oref == CTF_ERR) + return (ctf_set_errno(ifp, ctf_errno(ofp))); + + return (ctf_diff_type(cds, ifp, iref, ofp, oref)); +} + +/* + * Two arrays are the same iff they have the same type for contents, the same + * type for the index, and the same number of elements. + */ +static int +ctf_diff_array(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, + ctf_id_t oid) +{ + int ret; + ctf_arinfo_t iar, oar; + + if (ctf_array_info(ifp, iid, &iar) == CTF_ERR) + return (CTF_ERR); + + if (ctf_array_info(ofp, oid, &oar) == CTF_ERR) + return (ctf_set_errno(ifp, ctf_errno(ofp))); + + ret = ctf_diff_type(cds, ifp, iar.ctr_contents, ofp, oar.ctr_contents); + if (ret != B_FALSE) + return (ret); + + if (iar.ctr_nelems != oar.ctr_nelems) + return (B_TRUE); + + /* + * If we're ignoring integer types names, then we're trying to do a bit + * of a logical diff and we don't really care about the fact that the + * index element might not be the same here, what we care about are the + * number of elements and that they're the same type. + */ + if ((cds->cds_flags & CTF_DIFF_F_IGNORE_INTNAMES) == 0) { + ret = ctf_diff_type(cds, ifp, iar.ctr_index, ofp, + oar.ctr_index); + if (ret != B_FALSE) + return (ret); + } + + return (B_FALSE); +} + +/* + * Two function pointers are the same if the following is all true: + * + * o They have the same return type + * o They have the same number of arguments + * o The arguments are of the same type + * o They have the same flags + */ +static int +ctf_diff_fptr(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, + ctf_id_t oid) +{ + int ret, i; + ctf_funcinfo_t ifunc, ofunc; + ctf_id_t *iids, *oids; + + if (ctf_func_info_by_id(ifp, iid, &ifunc) == CTF_ERR) + return (CTF_ERR); + + if (ctf_func_info_by_id(ofp, oid, &ofunc) == CTF_ERR) + return (ctf_set_errno(ifp, ctf_errno(ofp))); + + if (ifunc.ctc_argc != ofunc.ctc_argc) + return (B_TRUE); + + if (ifunc.ctc_flags != ofunc.ctc_flags) + return (B_TRUE); + + ret = ctf_diff_type(cds, ifp, ifunc.ctc_return, ofp, ofunc.ctc_return); + if (ret != B_FALSE) + return (ret); + + iids = ctf_alloc(sizeof (ctf_id_t) * ifunc.ctc_argc); + if (iids == NULL) + return (ctf_set_errno(ifp, ENOMEM)); + + oids = ctf_alloc(sizeof (ctf_id_t) * ifunc.ctc_argc); + if (oids == NULL) { + ctf_free(iids, sizeof (ctf_id_t) * ifunc.ctc_argc); + return (ctf_set_errno(ifp, ENOMEM)); + } + + if (ctf_func_args_by_id(ifp, iid, ifunc.ctc_argc, iids) == CTF_ERR) { + ret = CTF_ERR; + goto out; + } + + if (ctf_func_args_by_id(ofp, oid, ofunc.ctc_argc, oids) == CTF_ERR) { + ret = ctf_set_errno(ifp, ctf_errno(ofp)); + goto out; + } + + ret = B_TRUE; + for (i = 0; i < ifunc.ctc_argc; i++) { + ret = ctf_diff_type(cds, ifp, iids[i], ofp, oids[i]); + if (ret != B_FALSE) + goto out; + } + ret = B_FALSE; + +out: + ctf_free(iids, sizeof (ctf_id_t) * ifunc.ctc_argc); + ctf_free(oids, sizeof (ctf_id_t) * ofunc.ctc_argc); + return (ret); +} + +/* + * Two structures are the same if every member is identical to its corresponding + * type, at the same offset, and has the same name, as well as them having the + * same overall size. + */ +static int +ctf_diff_struct(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, + ctf_id_t oid) +{ + ctf_file_t *oifp; + const ctf_type_t *itp, *otp; + ssize_t isize, iincr, osize, oincr; + const ctf_member_t *imp, *omp; + const ctf_lmember_t *ilmp, *olmp; + int n; + ctf_diff_guess_t *cdg; + + oifp = ifp; + + if ((itp = ctf_lookup_by_id(&ifp, iid)) == NULL) + return (CTF_ERR); + + if ((otp = ctf_lookup_by_id(&ofp, oid)) == NULL) + return (ctf_set_errno(oifp, ctf_errno(ofp))); + + if (ctf_type_size(ifp, iid) != ctf_type_size(ofp, oid)) + return (B_TRUE); + + if (LCTF_INFO_VLEN(ifp, itp->ctt_info) != + LCTF_INFO_VLEN(ofp, otp->ctt_info)) + return (B_TRUE); + + (void) ctf_get_ctt_size(ifp, itp, &isize, &iincr); + (void) ctf_get_ctt_size(ofp, otp, &osize, &oincr); + + if (ifp->ctf_version == CTF_VERSION_1 || isize < CTF_LSTRUCT_THRESH) { + imp = (const ctf_member_t *)((uintptr_t)itp + iincr); + ilmp = NULL; + } else { + imp = NULL; + ilmp = (const ctf_lmember_t *)((uintptr_t)itp + iincr); + } + + if (ofp->ctf_version == CTF_VERSION_1 || osize < CTF_LSTRUCT_THRESH) { + omp = (const ctf_member_t *)((uintptr_t)otp + oincr); + olmp = NULL; + } else { + omp = NULL; + olmp = (const ctf_lmember_t *)((uintptr_t)otp + oincr); + } + + /* + * Insert our assumption that they're equal for the moment. + */ + cdg = ctf_alloc(sizeof (ctf_diff_guess_t)); + if (cdg == NULL) + return (ctf_set_errno(ifp, ENOMEM)); + cdg->cdg_iid = iid; + cdg->cdg_oid = oid; + cdg->cdg_next = cds->cds_guess; + cds->cds_guess = cdg; + cds->cds_forward[TINDEX(iid)] = oid; + cds->cds_reverse[TINDEX(oid)] = iid; + + for (n = LCTF_INFO_VLEN(ifp, itp->ctt_info); n != 0; n--) { + const char *iname, *oname; + ulong_t ioff, ooff; + ctf_id_t itype, otype; + int ret; + + if (imp != NULL) { + iname = ctf_strptr(ifp, imp->ctm_name); + ioff = imp->ctm_offset; + itype = imp->ctm_type; + } else { + iname = ctf_strptr(ifp, ilmp->ctlm_name); + ioff = CTF_LMEM_OFFSET(ilmp); + itype = ilmp->ctlm_type; + } + + if (omp != NULL) { + oname = ctf_strptr(ofp, omp->ctm_name); + ooff = omp->ctm_offset; + otype = omp->ctm_type; + } else { + oname = ctf_strptr(ofp, olmp->ctlm_name); + ooff = CTF_LMEM_OFFSET(olmp); + otype = olmp->ctlm_type; + } + + if (ioff != ooff) { + return (B_TRUE); + } + if (strcmp(iname, oname) != 0) { + return (B_TRUE); + } + ret = ctf_diff_type(cds, ifp, itype, ofp, otype); + if (ret != B_FALSE) { + return (ret); + } + + /* Advance our pointers */ + if (imp != NULL) + imp++; + if (ilmp != NULL) + ilmp++; + if (omp != NULL) + omp++; + if (olmp != NULL) + olmp++; + } + + return (B_FALSE); +} + +/* + * Two unions are the same if they have the same set of members. This is similar + * to, but slightly different from a struct. The offsets of members don't + * matter. However, their is no guarantee of ordering so we have to fall back to + * doing an O(N^2) scan. + */ +typedef struct ctf_diff_union_member { + ctf_diff_t *cdum_cds; + ctf_file_t *cdum_fp; + ctf_file_t *cdum_iterfp; + const char *cdum_name; + ctf_id_t cdum_type; + int cdum_ret; +} ctf_diff_union_member_t; + +typedef struct ctf_diff_union_fp { + ctf_diff_t *cduf_cds; + ctf_file_t *cduf_curfp; + ctf_file_t *cduf_altfp; + ctf_id_t cduf_type; + int cduf_ret; +} ctf_diff_union_fp_t; + +/* ARGSUSED */ +static int +ctf_diff_union_check_member(const char *name, ctf_id_t id, ulong_t off, + void *arg) +{ + int ret; + ctf_diff_union_member_t *cdump = arg; + + if (strcmp(name, cdump->cdum_name) != 0) + return (0); + + ret = ctf_diff_type(cdump->cdum_cds, cdump->cdum_fp, cdump->cdum_type, + cdump->cdum_iterfp, id); + if (ret == CTF_ERR) { + cdump->cdum_ret = CTF_ERR; + return (1); + } + + if (ret == B_FALSE) { + cdump->cdum_ret = B_FALSE; + /* Return non-zero to stop iteration as we have a match */ + return (1); + } + + return (0); +} + +/* ARGSUSED */ +static int +ctf_diff_union_check_fp(const char *name, ctf_id_t id, ulong_t off, void *arg) +{ + int ret; + ctf_diff_union_member_t cdum; + ctf_diff_union_fp_t *cdufp = arg; + + cdum.cdum_cds = cdufp->cduf_cds; + cdum.cdum_fp = cdufp->cduf_curfp; + cdum.cdum_iterfp = cdufp->cduf_altfp; + cdum.cdum_name = name; + cdum.cdum_type = id; + cdum.cdum_ret = B_TRUE; + + ret = ctf_member_iter(cdum.cdum_iterfp, cdufp->cduf_type, + ctf_diff_union_check_member, &cdum); + if (ret == 0 || cdum.cdum_ret == CTF_ERR) { + /* No match found or error, terminate now */ + cdufp->cduf_ret = cdum.cdum_ret; + return (1); + } else if (ret == CTF_ERR) { + (void) ctf_set_errno(cdum.cdum_fp, ctf_errno(cdum.cdum_iterfp)); + cdufp->cduf_ret = CTF_ERR; + return (1); + } else { + ASSERT(cdum.cdum_ret == B_FALSE); + cdufp->cduf_ret = cdum.cdum_ret; + return (0); + } +} + +static int +ctf_diff_union(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, + ctf_id_t oid) +{ + ctf_file_t *oifp; + const ctf_type_t *itp, *otp; + ctf_diff_union_fp_t cduf; + ctf_diff_guess_t *cdg; + int ret; + + oifp = ifp; + if ((itp = ctf_lookup_by_id(&ifp, iid)) == NULL) + return (CTF_ERR); + if ((otp = ctf_lookup_by_id(&ofp, oid)) == NULL) + return (ctf_set_errno(oifp, ctf_errno(ofp))); + + if (LCTF_INFO_VLEN(ifp, itp->ctt_info) != + LCTF_INFO_VLEN(ofp, otp->ctt_info)) + return (B_TRUE); + + cdg = ctf_alloc(sizeof (ctf_diff_guess_t)); + if (cdg == NULL) + return (ctf_set_errno(ifp, ENOMEM)); + cdg->cdg_iid = iid; + cdg->cdg_oid = oid; + cdg->cdg_next = cds->cds_guess; + cds->cds_guess = cdg; + cds->cds_forward[TINDEX(iid)] = oid; + cds->cds_reverse[TINDEX(oid)] = iid; + + cduf.cduf_cds = cds; + cduf.cduf_curfp = ifp; + cduf.cduf_altfp = ofp; + cduf.cduf_type = oid; + cduf.cduf_ret = B_TRUE; + ret = ctf_member_iter(ifp, iid, ctf_diff_union_check_fp, &cduf); + if (ret != CTF_ERR) + ret = cduf.cduf_ret; + + return (ret); +} + +/* + * Two enums are equivalent if they share the same underlying type and they have + * the same set of members. + */ +static int +ctf_diff_enum(ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, ctf_id_t oid) +{ + ctf_file_t *oifp; + const ctf_type_t *itp, *otp; + ssize_t iincr, oincr; + const ctf_enum_t *iep, *oep; + int n; + + oifp = ifp; + if ((itp = ctf_lookup_by_id(&ifp, iid)) == NULL) + return (CTF_ERR); + if ((otp = ctf_lookup_by_id(&ofp, oid)) == NULL) + return (ctf_set_errno(oifp, ctf_errno(ofp))); + + if (LCTF_INFO_VLEN(ifp, itp->ctt_info) != + LCTF_INFO_VLEN(ofp, otp->ctt_info)) + return (B_TRUE); + + (void) ctf_get_ctt_size(ifp, itp, NULL, &iincr); + (void) ctf_get_ctt_size(ofp, otp, NULL, &oincr); + iep = (const ctf_enum_t *)((uintptr_t)itp + iincr); + oep = (const ctf_enum_t *)((uintptr_t)otp + oincr); + + for (n = LCTF_INFO_VLEN(ifp, itp->ctt_info); n != 0; + n--, iep++, oep++) { + if (strcmp(ctf_strptr(ifp, iep->cte_name), + ctf_strptr(ofp, oep->cte_name)) != 0) + return (B_TRUE); + + if (iep->cte_value != oep->cte_value) + return (B_TRUE); + } + + return (B_FALSE); +} + +/* + * Two forwards are equivalent in one of two cases. If both are forwards, than + * they are the same. Otherwise, they're equivalent if one is a struct or union + * and the other is a forward. + */ +static int +ctf_diff_forward(ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, ctf_id_t oid) +{ + int ikind, okind; + + ikind = ctf_type_kind(ifp, iid); + okind = ctf_type_kind(ofp, oid); + + if (ikind == okind) { + ASSERT(ikind == CTF_K_FORWARD); + return (B_FALSE); + } else if (ikind == CTF_K_FORWARD) { + return (okind != CTF_K_UNION && okind != CTF_K_STRUCT); + } else { + return (ikind != CTF_K_UNION && ikind != CTF_K_STRUCT); + } +} + +/* + * Are two types equivalent? + */ +int +ctf_diff_type(ctf_diff_t *cds, ctf_file_t *ifp, ctf_id_t iid, ctf_file_t *ofp, + ctf_id_t oid) +{ + int ret, ikind, okind; + + /* Do a quick short circuit */ + if (ifp == ofp && iid == oid) + return (B_FALSE); + + /* + * Check if it's something we've already encountered in a forward + * reference or forward negative table. Also double check the reverse + * table. + */ + if (cds->cds_forward[TINDEX(iid)] == oid) + return (B_FALSE); + if (cds->cds_forward[TINDEX(iid)] != 0) + return (B_TRUE); + if (cds->cds_reverse[TINDEX(oid)] == iid) + return (B_FALSE); + if ((cds->cds_flags & CTF_DIFF_F_IGNORE_INTNAMES) == 0 && + cds->cds_reverse[TINDEX(oid)] != 0) + return (B_TRUE); + + ikind = ctf_type_kind(ifp, iid); + okind = ctf_type_kind(ofp, oid); + + if (ikind != okind && + ikind != CTF_K_FORWARD && okind != CTF_K_FORWARD) + return (B_TRUE); + + /* Check names */ + if ((ret = ctf_diff_name(ifp, iid, ofp, oid)) != B_FALSE) { + if (ikind != okind || ikind != CTF_K_INTEGER || + (cds->cds_flags & CTF_DIFF_F_IGNORE_INTNAMES) == 0) + return (ret); + } + + if (ikind == CTF_K_FORWARD || okind == CTF_K_FORWARD) + return (ctf_diff_forward(ifp, iid, ofp, oid)); + + switch (ikind) { + case CTF_K_INTEGER: + case CTF_K_FLOAT: + ret = ctf_diff_number(ifp, iid, ofp, oid); + break; + case CTF_K_ARRAY: + ret = ctf_diff_array(cds, ifp, iid, ofp, oid); + break; + case CTF_K_FUNCTION: + ret = ctf_diff_fptr(cds, ifp, iid, ofp, oid); + break; + case CTF_K_STRUCT: + ret = ctf_diff_struct(cds, ifp, iid, ofp, oid); + break; + case CTF_K_UNION: + ret = ctf_diff_union(cds, ifp, iid, ofp, oid); + break; + case CTF_K_ENUM: + ret = ctf_diff_enum(ifp, iid, ofp, oid); + break; + case CTF_K_FORWARD: + ret = ctf_diff_forward(ifp, iid, ofp, oid); + break; + case CTF_K_TYPEDEF: + ret = ctf_diff_typedef(cds, ifp, iid, ofp, oid); + break; + case CTF_K_POINTER: + case CTF_K_VOLATILE: + case CTF_K_CONST: + case CTF_K_RESTRICT: + ret = ctf_diff_qualifier(cds, ifp, iid, ofp, oid); + break; + case CTF_K_UNKNOWN: + /* + * The current CTF tools use CTF_K_UNKNOWN as a padding type. We + * always declare two instances of CTF_K_UNKNOWN as different, + * even though this leads to additional diff noise. + */ + ret = B_TRUE; + break; + default: + abort(); + } + + return (ret); +} + +/* + * Walk every type in the first container and try to find a match in the second. + * If there is a match, then update both the forward and reverse mapping tables. + * + * The self variable tells us whether or not we should be comparing the input + * ctf container with itself or not. + */ +static int +ctf_diff_pass1(ctf_diff_t *cds, boolean_t self) +{ + int i, j, diff; + int istart, iend, jstart, jend; + + if (cds->cds_ifp->ctf_flags & LCTF_CHILD) { + istart = 0x8001; + iend = cds->cds_ifp->ctf_typemax + 0x8000; + } else { + istart = 1; + iend = cds->cds_ifp->ctf_typemax; + } + + if (cds->cds_ofp->ctf_flags & LCTF_CHILD) { + jstart = 0x8001; + jend = cds->cds_ofp->ctf_typemax + 0x8000; + } else { + jstart = 1; + jend = cds->cds_ofp->ctf_typemax; + } + + for (i = istart; i <= iend; i++) { + diff = B_TRUE; + + /* + * If we're doing a self diff for dedup purposes, then we want + * to ensure that we compare a type i with every type in the + * range, [ 1, i ). Yes, this does mean that when i equals 1, + * we won't compare anything. + */ + if (self == B_TRUE) { + jstart = istart; + jend = i - 1; + } + for (j = jstart; j <= jend; j++) { + ctf_diff_guess_t *cdg, *tofree; + + ASSERT(cds->cds_guess == NULL); + diff = ctf_diff_type(cds, cds->cds_ifp, i, + cds->cds_ofp, j); + if (diff == CTF_ERR) + return (CTF_ERR); + + /* Clean up our guesses */ + cdg = cds->cds_guess; + cds->cds_guess = NULL; + while (cdg != NULL) { + if (diff == B_TRUE) { + cds->cds_forward[TINDEX(cdg->cdg_iid)] = + 0; + cds->cds_reverse[TINDEX(cdg->cdg_oid)] = + 0; + } + tofree = cdg; + cdg = cdg->cdg_next; + ctf_free(tofree, sizeof (ctf_diff_guess_t)); + } + + /* Found a hit, update the tables */ + if (diff == B_FALSE) { + cds->cds_forward[TINDEX(i)] = j; + if (cds->cds_reverse[TINDEX(j)] == 0) + cds->cds_reverse[TINDEX(j)] = i; + break; + } + } + + /* Call the callback at this point */ + if (diff == B_TRUE) { + cds->cds_forward[TINDEX(i)] = CTF_ERR; + cds->cds_func(cds->cds_ifp, i, B_FALSE, NULL, CTF_ERR, + cds->cds_arg); + } else { + cds->cds_func(cds->cds_ifp, i, B_TRUE, cds->cds_ofp, j, + cds->cds_arg); + } + } + + return (0); +} + +/* + * Now we need to walk the second container and emit anything that we didn't + * find as common in the first pass. + */ +static int +ctf_diff_pass2(ctf_diff_t *cds) +{ + int i, start, end; + + start = 0x1; + end = cds->cds_ofp->ctf_typemax; + if (cds->cds_ofp->ctf_flags & LCTF_CHILD) { + start += 0x8000; + end += 0x8000; + } + + for (i = start; i <= end; i++) { + if (cds->cds_reverse[TINDEX(i)] != 0) + continue; + cds->cds_func(cds->cds_ofp, i, B_FALSE, NULL, CTF_ERR, + cds->cds_arg); + } + + return (0); +} + +int +ctf_diff_init(ctf_file_t *ifp, ctf_file_t *ofp, ctf_diff_t **cdsp) +{ + ctf_diff_t *cds; + size_t fsize, rsize; + + cds = ctf_alloc(sizeof (ctf_diff_t)); + if (cds == NULL) + return (ctf_set_errno(ifp, ENOMEM)); + + bzero(cds, sizeof (ctf_diff_t)); + cds->cds_ifp = ifp; + cds->cds_ofp = ofp; + + fsize = sizeof (ctf_id_t) * ifp->ctf_typemax; + rsize = sizeof (ctf_id_t) * ofp->ctf_typemax; + if (ifp->ctf_flags & LCTF_CHILD) + fsize += 0x8000 * sizeof (ctf_id_t); + if (ofp->ctf_flags & LCTF_CHILD) + rsize += 0x8000 * sizeof (ctf_id_t); + + cds->cds_forward = ctf_alloc(fsize); + if (cds->cds_forward == NULL) { + ctf_free(cds, sizeof (ctf_diff_t)); + return (ctf_set_errno(ifp, ENOMEM)); + } + cds->cds_fsize = fsize; + cds->cds_reverse = ctf_alloc(rsize); + if (cds->cds_reverse == NULL) { + ctf_free(cds->cds_forward, fsize); + ctf_free(cds, sizeof (ctf_diff_t)); + return (ctf_set_errno(ifp, ENOMEM)); + } + cds->cds_rsize = rsize; + bzero(cds->cds_forward, fsize); + bzero(cds->cds_reverse, rsize); + + cds->cds_ifp->ctf_refcnt++; + cds->cds_ofp->ctf_refcnt++; + *cdsp = cds; + return (0); +} + +int +ctf_diff_types(ctf_diff_t *cds, ctf_diff_type_f cb, void *arg) +{ + int ret; + + cds->cds_func = cb; + cds->cds_arg = arg; + + ret = ctf_diff_pass1(cds, B_FALSE); + if (ret == 0) + ret = ctf_diff_pass2(cds); + + cds->cds_func = NULL; + cds->cds_arg = NULL; + cds->cds_tvalid = B_TRUE; + return (ret); +} + +/* + * Do a diff where we're comparing a container with itself. In other words we'd + * like to know what types are actually duplicates of existing types in the + * container. + * + * Note this should remain private to libctf and not be exported in the public + * mapfile for the time being. + */ +int +ctf_diff_self(ctf_diff_t *cds, ctf_diff_type_f cb, void *arg) +{ + if (cds->cds_ifp != cds->cds_ofp) + return (EINVAL); + + cds->cds_func = cb; + cds->cds_arg = arg; + + return (ctf_diff_pass1(cds, B_TRUE)); +} + + +void +ctf_diff_fini(ctf_diff_t *cds) +{ + ctf_diff_guess_t *cdg; + size_t fsize, rsize; + + if (cds == NULL) + return; + + cds->cds_ifp->ctf_refcnt--; + cds->cds_ofp->ctf_refcnt--; + + fsize = sizeof (ctf_id_t) * cds->cds_ifp->ctf_typemax; + rsize = sizeof (ctf_id_t) * cds->cds_ofp->ctf_typemax; + if (cds->cds_ifp->ctf_flags & LCTF_CHILD) + fsize += 0x8000 * sizeof (ctf_id_t); + if (cds->cds_ofp->ctf_flags & LCTF_CHILD) + rsize += 0x8000 * sizeof (ctf_id_t); + + if (cds->cds_ifuncs != NULL) + ctf_free(cds->cds_ifuncs, + sizeof (ctf_diff_func_t) * cds->cds_nifuncs); + if (cds->cds_ofuncs != NULL) + ctf_free(cds->cds_ofuncs, + sizeof (ctf_diff_func_t) * cds->cds_nofuncs); + if (cds->cds_iobj != NULL) + ctf_free(cds->cds_iobj, + sizeof (ctf_diff_obj_t) * cds->cds_niobj); + if (cds->cds_oobj != NULL) + ctf_free(cds->cds_oobj, + sizeof (ctf_diff_obj_t) * cds->cds_noobj); + cdg = cds->cds_guess; + while (cdg != NULL) { + ctf_diff_guess_t *tofree = cdg; + cdg = cdg->cdg_next; + ctf_free(tofree, sizeof (ctf_diff_guess_t)); + } + if (cds->cds_forward != NULL) + ctf_free(cds->cds_forward, cds->cds_fsize); + if (cds->cds_reverse != NULL) + ctf_free(cds->cds_reverse, cds->cds_rsize); + ctf_free(cds, sizeof (ctf_diff_t)); +} + +uint_t +ctf_diff_getflags(ctf_diff_t *cds) +{ + return (cds->cds_flags); +} + +int +ctf_diff_setflags(ctf_diff_t *cds, uint_t flags) +{ + if ((flags & ~CTF_DIFF_F_IGNORE_INTNAMES) != 0) + return (ctf_set_errno(cds->cds_ifp, EINVAL)); + + cds->cds_flags = flags; + return (0); +} + +static boolean_t +ctf_diff_symid(ctf_diff_t *cds, ctf_id_t iid, ctf_id_t oid) +{ + ctf_file_t *ifp, *ofp; + + ifp = cds->cds_ifp; + ofp = cds->cds_ofp; + + /* + * If we have parent containers on the scene here, we need to go through + * and do a full diff check because while a diff for types will not + * actually go through and check types in the parent container. + */ + if (iid == 0 || oid == 0) + return (iid == oid ? B_FALSE: B_TRUE); + + if (!(ifp->ctf_flags & LCTF_CHILD) && !(ofp->ctf_flags & LCTF_CHILD)) { + if (cds->cds_forward[TINDEX(iid)] != oid) + return (B_TRUE); + return (B_FALSE); + } + + return (ctf_diff_type(cds, ifp, iid, ofp, oid)); +} + +/* ARGSUSED */ +static void +ctf_diff_void_cb(ctf_file_t *ifp, ctf_id_t iid, boolean_t same, ctf_file_t *ofp, + ctf_id_t oid, void *arg) +{ +} + +/* ARGSUSED */ +static int +ctf_diff_func_count(const char *name, ulong_t symidx, ctf_funcinfo_t *fip, + void *arg) +{ + uint32_t *ip = arg; + + *ip = *ip + 1; + return (0); +} + +/* ARGSUSED */ +static int +ctf_diff_func_fill_cb(const char *name, ulong_t symidx, ctf_funcinfo_t *fip, + void *arg) +{ + uint_t *next, max; + ctf_diff_func_t *funcptr; + ctf_diff_t *cds = arg; + + if (cds->cds_ffillip == B_TRUE) { + max = cds->cds_nifuncs; + next = &cds->cds_nextifunc; + funcptr = cds->cds_ifuncs + *next; + } else { + max = cds->cds_nofuncs; + next = &cds->cds_nextofunc; + funcptr = cds->cds_ofuncs + *next; + + } + + VERIFY(*next < max); + funcptr->cdf_name = name; + funcptr->cdf_symidx = symidx; + funcptr->cdf_matchidx = ULONG_MAX; + *next = *next + 1; + + return (0); +} + +int +ctf_diff_func_fill(ctf_diff_t *cds) +{ + int ret; + uint32_t ifcount, ofcount, idcnt, cti; + ulong_t i, j; + ctf_id_t *iids, *oids; + + ifcount = 0; + ofcount = 0; + idcnt = 0; + iids = NULL; + oids = NULL; + + ret = ctf_function_iter(cds->cds_ifp, ctf_diff_func_count, &ifcount); + if (ret != 0) + return (ret); + ret = ctf_function_iter(cds->cds_ofp, ctf_diff_func_count, &ofcount); + if (ret != 0) + return (ret); + + cds->cds_ifuncs = ctf_alloc(sizeof (ctf_diff_func_t) * ifcount); + if (cds->cds_ifuncs == NULL) + return (ctf_set_errno(cds->cds_ifp, ENOMEM)); + + cds->cds_nifuncs = ifcount; + cds->cds_nextifunc = 0; + + cds->cds_ofuncs = ctf_alloc(sizeof (ctf_diff_func_t) * ofcount); + if (cds->cds_ofuncs == NULL) + return (ctf_set_errno(cds->cds_ifp, ENOMEM)); + + cds->cds_nofuncs = ofcount; + cds->cds_nextofunc = 0; + + cds->cds_ffillip = B_TRUE; + if ((ret = ctf_function_iter(cds->cds_ifp, ctf_diff_func_fill_cb, + cds)) != 0) + return (ret); + + cds->cds_ffillip = B_FALSE; + if ((ret = ctf_function_iter(cds->cds_ofp, ctf_diff_func_fill_cb, + cds)) != 0) + return (ret); + + /* + * Everything is initialized to not match. This could probably be faster + * with something that used a hash. But this part of the diff isn't used + * by merge. + */ + for (i = 0; i < cds->cds_nifuncs; i++) { + for (j = 0; j < cds->cds_nofuncs; j++) { + ctf_diff_func_t *ifd, *ofd; + ctf_funcinfo_t ifip, ofip; + boolean_t match; + + ifd = &cds->cds_ifuncs[i]; + ofd = &cds->cds_ofuncs[j]; + if (strcmp(ifd->cdf_name, ofd->cdf_name) != 0) + continue; + + ret = ctf_func_info(cds->cds_ifp, ifd->cdf_symidx, + &ifip); + if (ret != 0) + goto out; + ret = ctf_func_info(cds->cds_ofp, ofd->cdf_symidx, + &ofip); + if (ret != 0) { + ret = ctf_set_errno(cds->cds_ifp, + ctf_errno(cds->cds_ofp)); + goto out; + } + + if (ifip.ctc_argc != ofip.ctc_argc && + ifip.ctc_flags != ofip.ctc_flags) + continue; + + /* Validate return type and arguments are the same */ + if (ctf_diff_symid(cds, ifip.ctc_return, + ofip.ctc_return)) + continue; + + if (ifip.ctc_argc > idcnt) { + if (iids != NULL) + ctf_free(iids, + sizeof (ctf_id_t) * idcnt); + if (oids != NULL) + ctf_free(oids, + sizeof (ctf_id_t) * idcnt); + iids = oids = NULL; + idcnt = ifip.ctc_argc; + iids = ctf_alloc(sizeof (ctf_id_t) * idcnt); + if (iids == NULL) { + ret = ctf_set_errno(cds->cds_ifp, + ENOMEM); + goto out; + } + oids = ctf_alloc(sizeof (ctf_id_t) * idcnt); + if (iids == NULL) { + ret = ctf_set_errno(cds->cds_ifp, + ENOMEM); + goto out; + } + } + + if ((ret = ctf_func_args(cds->cds_ifp, ifd->cdf_symidx, + ifip.ctc_argc, iids)) != 0) + goto out; + if ((ret = ctf_func_args(cds->cds_ofp, ofd->cdf_symidx, + ofip.ctc_argc, oids)) != 0) + goto out; + + match = B_TRUE; + for (cti = 0; cti < ifip.ctc_argc; cti++) { + if (ctf_diff_symid(cds, iids[cti], oids[cti])) { + match = B_FALSE; + break; + } + } + + if (match == B_FALSE) + continue; + + ifd->cdf_matchidx = j; + ofd->cdf_matchidx = i; + break; + } + } + + ret = 0; + +out: + if (iids != NULL) + ctf_free(iids, sizeof (ctf_id_t) * idcnt); + if (oids != NULL) + ctf_free(oids, sizeof (ctf_id_t) * idcnt); + + return (ret); +} + +/* + * In general, two functions are the same, if they have the same name and their + * arguments have the same types, including the return type. Like types, we + * basically have to do this in two passes. In the first phase we walk every + * type in the first container and try to find a match in the second. + */ +int +ctf_diff_functions(ctf_diff_t *cds, ctf_diff_func_f cb, void *arg) +{ + int ret; + ulong_t i; + + if (cds->cds_tvalid == B_FALSE) { + if ((ret = ctf_diff_types(cds, ctf_diff_void_cb, NULL)) != 0) + return (ret); + } + + if (cds->cds_fvalid == B_FALSE) { + if ((ret = ctf_diff_func_fill(cds)) != 0) + return (ret); + cds->cds_fvalid = B_TRUE; + } + + for (i = 0; i < cds->cds_nifuncs; i++) { + if (cds->cds_ifuncs[i].cdf_matchidx == ULONG_MAX) { + cb(cds->cds_ifp, cds->cds_ifuncs[i].cdf_symidx, + B_FALSE, NULL, ULONG_MAX, arg); + } else { + ulong_t idx = cds->cds_ifuncs[i].cdf_matchidx; + cb(cds->cds_ifp, cds->cds_ifuncs[i].cdf_symidx, B_TRUE, + cds->cds_ofp, cds->cds_ofuncs[idx].cdf_symidx, arg); + } + } + + for (i = 0; i < cds->cds_nofuncs; i++) { + if (cds->cds_ofuncs[i].cdf_matchidx != ULONG_MAX) + continue; + cb(cds->cds_ofp, cds->cds_ofuncs[i].cdf_symidx, B_FALSE, + NULL, ULONG_MAX, arg); + } + + return (0); +} + +static int +ctf_diff_obj_fill_cb(const char *name, ctf_id_t id, ulong_t symidx, void *arg) +{ + uint_t *next, max; + ctf_diff_obj_t *objptr; + ctf_diff_t *cds = arg; + + if (cds->cds_ofillip == B_TRUE) { + max = cds->cds_niobj; + next = &cds->cds_nextiobj; + objptr = cds->cds_iobj + *next; + } else { + max = cds->cds_noobj; + next = &cds->cds_nextoobj; + objptr = cds->cds_oobj+ *next; + + } + + VERIFY(*next < max); + objptr->cdo_name = name; + objptr->cdo_symidx = symidx; + objptr->cdo_id = id; + objptr->cdo_matchidx = ULONG_MAX; + *next = *next + 1; + + return (0); +} + +/* ARGSUSED */ +static int +ctf_diff_obj_count(const char *name, ctf_id_t id, ulong_t symidx, void *arg) +{ + uint32_t *count = arg; + + *count = *count + 1; + + return (0); +} + + +static int +ctf_diff_obj_fill(ctf_diff_t *cds) +{ + int ret; + uint32_t iocount, oocount; + ulong_t i, j; + + iocount = 0; + oocount = 0; + + ret = ctf_object_iter(cds->cds_ifp, ctf_diff_obj_count, &iocount); + if (ret != 0) + return (ret); + + ret = ctf_object_iter(cds->cds_ofp, ctf_diff_obj_count, &oocount); + if (ret != 0) + return (ret); + + cds->cds_iobj = ctf_alloc(sizeof (ctf_diff_obj_t) * iocount); + if (cds->cds_iobj == NULL) + return (ctf_set_errno(cds->cds_ifp, ENOMEM)); + cds->cds_niobj = iocount; + cds->cds_nextiobj = 0; + + cds->cds_oobj = ctf_alloc(sizeof (ctf_diff_obj_t) * oocount); + if (cds->cds_oobj == NULL) + return (ctf_set_errno(cds->cds_ifp, ENOMEM)); + cds->cds_noobj = oocount; + cds->cds_nextoobj = 0; + + cds->cds_ofillip = B_TRUE; + if ((ret = ctf_object_iter(cds->cds_ifp, ctf_diff_obj_fill_cb, + cds)) != 0) + return (ret); + + cds->cds_ofillip = B_FALSE; + if ((ret = ctf_object_iter(cds->cds_ofp, ctf_diff_obj_fill_cb, + cds)) != 0) + return (ret); + + for (i = 0; i < cds->cds_niobj; i++) { + for (j = 0; j < cds->cds_noobj; j++) { + ctf_diff_obj_t *id, *od; + + id = &cds->cds_iobj[i]; + od = &cds->cds_oobj[j]; + + if (id->cdo_name == NULL || od->cdo_name == NULL) + continue; + if (strcmp(id->cdo_name, od->cdo_name) != 0) + continue; + + if (ctf_diff_symid(cds, id->cdo_id, od->cdo_id)) { + continue; + } + + id->cdo_matchidx = j; + od->cdo_matchidx = i; + break; + } + } + + return (0); +} + +int +ctf_diff_objects(ctf_diff_t *cds, ctf_diff_obj_f cb, void *arg) +{ + int ret; + ulong_t i; + + if (cds->cds_tvalid == B_FALSE) { + if ((ret = ctf_diff_types(cds, ctf_diff_void_cb, NULL)) != 0) + return (ret); + } + + if (cds->cds_ovalid == B_FALSE) { + if ((ret = ctf_diff_obj_fill(cds)) != 0) + return (ret); + cds->cds_ovalid = B_TRUE; + } + + for (i = 0; i < cds->cds_niobj; i++) { + ctf_diff_obj_t *o = &cds->cds_iobj[i]; + + if (cds->cds_iobj[i].cdo_matchidx == ULONG_MAX) { + cb(cds->cds_ifp, o->cdo_symidx, o->cdo_id, B_FALSE, + NULL, ULONG_MAX, CTF_ERR, arg); + } else { + ctf_diff_obj_t *alt = &cds->cds_oobj[o->cdo_matchidx]; + cb(cds->cds_ifp, o->cdo_symidx, o->cdo_id, B_TRUE, + cds->cds_ofp, alt->cdo_symidx, alt->cdo_id, arg); + } + } + + for (i = 0; i < cds->cds_noobj; i++) { + ctf_diff_obj_t *o = &cds->cds_oobj[i]; + if (o->cdo_matchidx != ULONG_MAX) + continue; + cb(cds->cds_ofp, o->cdo_symidx, o->cdo_id, B_FALSE, NULL, + ULONG_MAX, CTF_ERR, arg); + } + + return (0); +} diff --git a/usr/src/lib/libctf/common/ctf_dwarf.c b/usr/src/lib/libctf/common/ctf_dwarf.c new file mode 100644 index 0000000000..811a55bc64 --- /dev/null +++ b/usr/src/lib/libctf/common/ctf_dwarf.c @@ -0,0 +1,2957 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2007 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ +/* + * Copyright 2012 Jason King. All rights reserved. + * Use is subject to license terms. + */ + +/* + * Copyright 2015 Joyent, Inc. + */ + +/* + * CTF DWARF conversion theory. + * + * DWARF data contains a series of compilation units. Each compilation unit + * generally refers to an object file or what once was, in the case of linked + * binaries and shared objects. Each compilation unit has a series of what DWARF + * calls a DIE (Debugging Information Entry). The set of entries that we care + * about have type information stored in a series of attributes. Each DIE also + * has a tag that identifies the kind of attributes that it has. + * + * A given DIE may itself have children. For example, a DIE that represents a + * structure has children which represent members. Whenever we encounter a DIE + * that has children or other values or types associated with it, we recursively + * process those children first so that way we can then refer to the generated + * CTF type id while processing its parent. This reduces the amount of unknowns + * and fixups that we need. It also ensures that we don't accidentally add types + * that an overzealous compiler might add to the DWARF data but aren't used by + * anything in the system. + * + * Once we do a conversion, we store a mapping in an AVL tree that goes from the + * DWARF's die offset, which is relative to the given compilation unit), to a + * ctf_id_t. + * + * Unfortunately, some compilers actually will emit duplicate entries for a + * given type that look similar, but aren't quite. To that end, we go through + * and do a variant on a merge once we're done processing a single compilation + * unit which deduplicates all of the types that are in the unit. + * + * Finally, if we encounter an object that has multiple compilation units, then + * we'll convert all of the compilation units separately and then do a merge, so + * that way we can result in one single ctf_file_t that represents everything + * for the object. + * + * Conversion Steps + * ---------------- + * + * Because a given object we've been given to convert may have multiple + * compilation units, we break the work into two halves. The first half + * processes each compilation unit (potentially in parallel) and then the second + * half optionally merges all of the dies in the first half. First, we'll cover + * what's involved in converting a single ctf_die_t's dwarf to CTF. This covers + * the work done in ctf_dwarf_convert_one(). + * + * An individual ctf_die_t, which represents a compilation unit, is converted to + * CTF in a series of multiple passes. + * + * Pass 1: During the first pass we walk all of the dies and if we find a + * function, variable, struct, union, enum or typedef, we recursively transform + * all of its types. We don't recurse or process everything, because we don't + * want to add some of the types that compilers may add which are effectively + * unused. + * + * During pass 1, if we encounter any structures or unions we mark them for + * fixing up later. This is necessary because we may not be able to determine + * the full size of a structure at the beginning of time. This will happen if + * the DWARF attribute DW_AT_byte_size is not present for a member. Because of + * this possibility we defer adding members to structures or even converting + * them during pass 1 and save that for pass 2. Adding all of the base + * structures without any of their members helps deal with any circular + * dependencies that we might encounter. + * + * Pass 2: This pass is used to do the first half of fixing up structures and + * unions. Rather than walk the entire type space again, we actually walk the + * list of structures and unions that we marked for later fixing up. Here, we + * iterate over every structure and add members to the underlying ctf_file_t, + * but not to the structs themselves. One might wonder why we don't, and the + * main reason is that libctf requires a ctf_update() be done before adding the + * members to structures or unions. + * + * Pass 3: This pass is used to do the second half of fixing up structures and + * unions. During this part we always go through and add members to structures + * and unions that we added to the container in the previous pass. In addition, + * we set the structure and union's actual size, which may have additional + * padding added by the compiler, it isn't simply the last offset. DWARF always + * guarantees an attribute exists for this. Importantly no ctf_id_t's change + * during pass 2. + * + * Pass 4: The next phase is to add CTF entries for all of the symbols and + * variables that are present in this die. During pass 1 we added entries to a + * map for each variable and function. During this pass, we iterate over the + * symbol table and when we encounter a symbol that we have in our lists of + * translated information which matches, we then add it to the ctf_file_t. + * + * Pass 5: Here we go and look for any weak symbols and functions and see if + * they match anything that we recognize. If so, then we add type information + * for them at this point based on the matching type. + * + * Pass 6: This pass is actually a variant on a merge. The traditional merge + * process expects there to be no duplicate types. As such, at the end of + * conversion, we do a dedup on all of the types in the system. The + * deduplication process is described in lib/libctf/common/ctf_merge.c. + * + * Once pass 6 is done, we've finished processing the individual compilation + * unit. + * + * The following steps reflect the general process of doing a conversion. + * + * 1) Walk the dwarf section and determine the number of compilation units + * 2) Create a ctf_die_t for each compilation unit + * 3) Add all ctf_die_t's to a workq + * 4) Have the workq process each die with ctf_dwarf_convert_one. This itself + * is comprised of several steps, which were already enumerated. + * 5) If we have multiple dies, we do a ctf merge of all the dies. The mechanics + * of the merge are discussed in lib/libctf/common/ctf_merge.c. + * 6) Free everything up and return a ctf_file_t to the user. If we only had a + * single compilation unit, then we give that to the user. Otherwise, we + * return the merged ctf_file_t. + * + * Threading + * --------- + * + * The process has been designed to be amenable to threading. Each compilation + * unit has its own type stream, therefore the logical place to divide and + * conquer is at the compilation unit. Each ctf_die_t has been built to be able + * to be processed independently of the others. It has its own libdwarf handle, + * as a given libdwarf handle may only be used by a single thread at a time. + * This allows the various ctf_die_t's to be processed in parallel by different + * threads. + * + * All of the ctf_die_t's are loaded into a workq which allows for a number of + * threads to be specified and used as a thread pool to process all of the + * queued work. We set the number of threads to use in the workq equal to the + * number of threads that the user has specified. + * + * After all of the compilation units have been drained, we use the same number + * of threads when performing a merge of multiple compilation units, if they + * exist. + * + * While all of these different parts do support and allow for multiple threads, + * it's important that when only a single thread is specified, that it be the + * calling thread. This allows the conversion routines to be used in a context + * that doesn't allow additional threads, such as rtld. + * + * Common DWARF Mechanics and Notes + * -------------------------------- + * + * At this time, we really only support DWARFv2, though support for DWARFv4 is + * mostly there. There is no intent to support DWARFv3. + * + * Generally types for something are stored in the DW_AT_type attribute. For + * example, a function's return type will be stored in the local DW_AT_type + * attribute while the arguments will be in child DIEs. There are also various + * times when we don't have any DW_AT_type. In that case, the lack of a type + * implies, at least for C, that it's C type is void. Because DWARF doesn't emit + * one, we have a synthetic void type that we create and manipulate instead and + * pass it off to consumers on an as-needed basis. If nothing has a void type, + * it will not be emitted. + * + * Architecture Specific Parts + * --------------------------- + * + * The CTF tooling encodes various information about the various architectures + * in the system. Importantly, the tool assumes that every architecture has a + * data model where long and pointer are the same size. This is currently the + * case, as the two data models illumos supports are ILP32 and LP64. + * + * In addition, we encode the mapping of various floating point sizes to various + * types for each architecture. If a new architecture is being added, it should + * be added to the list. The general design of the ctf conversion tools is to be + * architecture independent. eg. any of the tools here should be able to convert + * any architecture's DWARF into ctf; however, this has not been rigorously + * tested and more importantly, the ctf routines don't currently write out the + * data in an endian-aware form, they only use that of the currently running + * library. + */ + +#include <libctf_impl.h> +#include <sys/avl.h> +#include <sys/debug.h> +#include <gelf.h> +#include <libdwarf.h> +#include <dwarf.h> +#include <libgen.h> +#include <workq.h> +#include <errno.h> + +#define DWARF_VERSION_TWO 2 +#define DWARF_VARARGS_NAME "..." + +/* + * Dwarf may refer recursively to other types that we've already processed. To + * see if we've already converted them, we look them up in an AVL tree that's + * sorted by the DWARF id. + */ +typedef struct ctf_dwmap { + avl_node_t cdm_avl; + Dwarf_Off cdm_off; + Dwarf_Die cdm_die; + ctf_id_t cdm_id; + boolean_t cdm_fix; +} ctf_dwmap_t; + +typedef struct ctf_dwvar { + ctf_list_t cdv_list; + char *cdv_name; + ctf_id_t cdv_type; + boolean_t cdv_global; +} ctf_dwvar_t; + +typedef struct ctf_dwfunc { + ctf_list_t cdf_list; + char *cdf_name; + ctf_funcinfo_t cdf_fip; + ctf_id_t *cdf_argv; + boolean_t cdf_global; +} ctf_dwfunc_t; + +typedef struct ctf_dwbitf { + ctf_list_t cdb_list; + ctf_id_t cdb_base; + uint_t cdb_nbits; + ctf_id_t cdb_id; +} ctf_dwbitf_t; + +/* + * The ctf_die_t represents a single top-level DWARF die unit. While generally, + * the typical object file hs only a single die, if we're asked to convert + * something that's been linked from multiple sources, multiple dies will exist. + */ +typedef struct ctf_die { + Elf *cd_elf; /* shared libelf handle */ + char *cd_name; /* basename of the DIE */ + ctf_merge_t *cd_cmh; /* merge handle */ + ctf_list_t cd_vars; /* List of variables */ + ctf_list_t cd_funcs; /* List of functions */ + ctf_list_t cd_bitfields; /* Bit field members */ + Dwarf_Debug cd_dwarf; /* shared libdwarf handle */ + Dwarf_Die cd_cu; /* libdwarf compilation unit */ + Dwarf_Off cd_cuoff; /* cu's offset */ + Dwarf_Off cd_maxoff; /* maximum offset */ + ctf_file_t *cd_ctfp; /* output CTF file */ + avl_tree_t cd_map; /* map die offsets to CTF types */ + char *cd_errbuf; /* error message buffer */ + size_t cd_errlen; /* error message buffer length */ + size_t cd_ptrsz; /* object's pointer size */ + boolean_t cd_bigend; /* is it big endian */ + boolean_t cd_doweaks; /* should we convert weak symbols? */ + uint_t cd_mach; /* machine type */ + ctf_id_t cd_voidtid; /* void pointer */ + ctf_id_t cd_longtid; /* id for a 'long' */ +} ctf_die_t; + +static int ctf_dwarf_offset(ctf_die_t *, Dwarf_Die, Dwarf_Off *); +static int ctf_dwarf_convert_die(ctf_die_t *, Dwarf_Die); +static int ctf_dwarf_convert_type(ctf_die_t *, Dwarf_Die, ctf_id_t *, int); + +static int ctf_dwarf_function_count(ctf_die_t *, Dwarf_Die, ctf_funcinfo_t *, + boolean_t); +static int ctf_dwarf_convert_fargs(ctf_die_t *, Dwarf_Die, ctf_funcinfo_t *, + ctf_id_t *); + +typedef int (ctf_dwarf_symtab_f)(ctf_die_t *, const GElf_Sym *, ulong_t, + const char *, const char *, void *); + +/* + * This is a generic way to set a CTF Conversion backend error depending on what + * we were doing. Unless it was one of a specific set of errors that don't + * indicate a programming / translation bug, eg. ENOMEM, then we transform it + * into a CTF backend error and fill in the error buffer. + */ +static int +ctf_dwarf_error(ctf_die_t *cdp, ctf_file_t *cfp, int err, const char *fmt, ...) +{ + va_list ap; + int ret; + size_t off = 0; + ssize_t rem = cdp->cd_errlen; + if (cfp != NULL) + err = ctf_errno(cfp); + + if (err == ENOMEM) + return (err); + + ret = snprintf(cdp->cd_errbuf, rem, "die %s: ", cdp->cd_name); + if (ret < 0) + goto err; + off += ret; + rem = MAX(rem - ret, 0); + + va_start(ap, fmt); + ret = vsnprintf(cdp->cd_errbuf + off, rem, fmt, ap); + va_end(ap); + if (ret < 0) + goto err; + + off += ret; + rem = MAX(rem - ret, 0); + if (fmt[strlen(fmt) - 1] != '\n') { + (void) snprintf(cdp->cd_errbuf + off, rem, + ": %s\n", ctf_errmsg(err)); + } + va_end(ap); + return (ECTF_CONVBKERR); + +err: + cdp->cd_errbuf[0] = '\0'; + return (ECTF_CONVBKERR); +} + +/* + * DWARF often ops to put no explicit type to describe a void type. eg. if we + * have a reference type whose DW_AT_type member doesn't exist, then we should + * instead assume it points to void. Because this isn't represented, we + * instead cause it to come into existence. + */ +static ctf_id_t +ctf_dwarf_void(ctf_die_t *cdp) +{ + if (cdp->cd_voidtid == CTF_ERR) { + ctf_encoding_t enc = { CTF_INT_SIGNED, 0, 0 }; + cdp->cd_voidtid = ctf_add_integer(cdp->cd_ctfp, CTF_ADD_ROOT, + "void", &enc); + if (cdp->cd_voidtid == CTF_ERR) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to create void type: %s\n", + ctf_errmsg(ctf_errno(cdp->cd_ctfp))); + } + } + + return (cdp->cd_voidtid); +} + +/* + * There are many different forms that an array index may take. However, we just + * always force it to be of a type long no matter what. Therefore we use this to + * have a single instance of long across everything. + */ +static ctf_id_t +ctf_dwarf_long(ctf_die_t *cdp) +{ + if (cdp->cd_longtid == CTF_ERR) { + ctf_encoding_t enc; + + enc.cte_format = CTF_INT_SIGNED; + enc.cte_offset = 0; + /* All illumos systems are LP */ + enc.cte_bits = cdp->cd_ptrsz * 8; + cdp->cd_longtid = ctf_add_integer(cdp->cd_ctfp, CTF_ADD_NONROOT, + "long", &enc); + if (cdp->cd_longtid == CTF_ERR) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to create long type: %s\n", + ctf_errmsg(ctf_errno(cdp->cd_ctfp))); + } + + } + + return (cdp->cd_longtid); +} + +static int +ctf_dwmap_comp(const void *a, const void *b) +{ + const ctf_dwmap_t *ca = a; + const ctf_dwmap_t *cb = b; + + if (ca->cdm_off > cb->cdm_off) + return (1); + if (ca->cdm_off < cb->cdm_off) + return (-1); + return (0); +} + +static int +ctf_dwmap_add(ctf_die_t *cdp, ctf_id_t id, Dwarf_Die die, boolean_t fix) +{ + int ret; + avl_index_t index; + ctf_dwmap_t *dwmap; + Dwarf_Off off; + + VERIFY(id > 0 && id < CTF_MAX_TYPE); + + if ((ret = ctf_dwarf_offset(cdp, die, &off)) != 0) + return (ret); + + if ((dwmap = ctf_alloc(sizeof (ctf_dwmap_t))) == NULL) + return (ENOMEM); + + dwmap->cdm_die = die; + dwmap->cdm_off = off; + dwmap->cdm_id = id; + dwmap->cdm_fix = fix; + + ctf_dprintf("dwmap: %p %x->%d\n", dwmap, (uint32_t)off, id); + VERIFY(avl_find(&cdp->cd_map, dwmap, &index) == NULL); + avl_insert(&cdp->cd_map, dwmap, index); + return (0); +} + +static int +ctf_dwarf_attribute(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, + Dwarf_Attribute *attrp) +{ + int ret; + Dwarf_Error derr; + + if ((ret = dwarf_attr(die, name, attrp, &derr)) == DW_DLV_OK) + return (0); + if (ret == DW_DLV_NO_ENTRY) { + *attrp = NULL; + return (ENOENT); + } + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get attribute for type: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_ref(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, Dwarf_Off *refp) +{ + int ret; + Dwarf_Attribute attr; + Dwarf_Error derr; + + if ((ret = ctf_dwarf_attribute(cdp, die, name, &attr)) != 0) + return (ret); + + if (dwarf_formref(attr, refp, &derr) == DW_DLV_OK) { + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + return (0); + } + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get unsigned attribute for type: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_refdie(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, + Dwarf_Die *diep) +{ + int ret; + Dwarf_Off off; + Dwarf_Error derr; + + if ((ret = ctf_dwarf_ref(cdp, die, DW_AT_type, &off)) != 0) + return (ret); + + off += cdp->cd_cuoff; + if ((ret = dwarf_offdie(cdp->cd_dwarf, off, diep, &derr)) != + DW_DLV_OK) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get die from offset %llu: %s\n", + off, dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); + } + + return (0); +} + +static int +ctf_dwarf_signed(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, + Dwarf_Signed *valp) +{ + int ret; + Dwarf_Attribute attr; + Dwarf_Error derr; + + if ((ret = ctf_dwarf_attribute(cdp, die, name, &attr)) != 0) + return (ret); + + if (dwarf_formsdata(attr, valp, &derr) == DW_DLV_OK) { + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + return (0); + } + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get unsigned attribute for type: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_unsigned(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, + Dwarf_Unsigned *valp) +{ + int ret; + Dwarf_Attribute attr; + Dwarf_Error derr; + + if ((ret = ctf_dwarf_attribute(cdp, die, name, &attr)) != 0) + return (ret); + + if (dwarf_formudata(attr, valp, &derr) == DW_DLV_OK) { + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + return (0); + } + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get unsigned attribute for type: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_boolean(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, + Dwarf_Bool *val) +{ + int ret; + Dwarf_Attribute attr; + Dwarf_Error derr; + + if ((ret = ctf_dwarf_attribute(cdp, die, name, &attr)) != 0) + return (ret); + + if (dwarf_formflag(attr, val, &derr) == DW_DLV_OK) { + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + return (0); + } + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get boolean attribute for type: %s\n", + dwarf_errmsg(derr)); + + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_string(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half name, char **strp) +{ + int ret; + char *s; + Dwarf_Attribute attr; + Dwarf_Error derr; + + *strp = NULL; + if ((ret = ctf_dwarf_attribute(cdp, die, name, &attr)) != 0) + return (ret); + + if (dwarf_formstring(attr, &s, &derr) == DW_DLV_OK) { + if ((*strp = ctf_strdup(s)) == NULL) + ret = ENOMEM; + else + ret = 0; + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + return (ret); + } + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get string attribute for type: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_member_location(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Unsigned *valp) +{ + int ret; + Dwarf_Error derr; + Dwarf_Attribute attr; + Dwarf_Locdesc *loc; + Dwarf_Signed locnum; + + if ((ret = ctf_dwarf_attribute(cdp, die, DW_AT_data_member_location, + &attr)) != 0) + return (ret); + + if (dwarf_loclist(attr, &loc, &locnum, &derr) != DW_DLV_OK) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to obtain location list for member offset: %s", + dwarf_errmsg(derr)); + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + return (ECTF_CONVBKERR); + } + dwarf_dealloc(cdp->cd_dwarf, attr, DW_DLA_ATTR); + + if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to parse location structure for member"); + dwarf_dealloc(cdp->cd_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK); + dwarf_dealloc(cdp->cd_dwarf, loc, DW_DLA_LOCDESC); + return (ECTF_CONVBKERR); + } + + *valp = loc->ld_s->lr_number; + + dwarf_dealloc(cdp->cd_dwarf, loc->ld_s, DW_DLA_LOC_BLOCK); + dwarf_dealloc(cdp->cd_dwarf, loc, DW_DLA_LOCDESC); + return (0); +} + + +static int +ctf_dwarf_offset(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Off *offsetp) +{ + Dwarf_Error derr; + + if (dwarf_dieoffset(die, offsetp, &derr) == DW_DLV_OK) + return (0); + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get die offset: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_tag(ctf_die_t *cdp, Dwarf_Die die, Dwarf_Half *tagp) +{ + Dwarf_Error derr; + + if (dwarf_tag(die, tagp, &derr) == DW_DLV_OK) + return (0); + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get tag type: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_sib(ctf_die_t *cdp, Dwarf_Die base, Dwarf_Die *sibp) +{ + Dwarf_Error derr; + int ret; + + *sibp = NULL; + ret = dwarf_siblingof(cdp->cd_dwarf, base, sibp, &derr); + if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY) + return (0); + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to sibling from die: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +static int +ctf_dwarf_child(ctf_die_t *cdp, Dwarf_Die base, Dwarf_Die *childp) +{ + Dwarf_Error derr; + int ret; + + *childp = NULL; + ret = dwarf_child(base, childp, &derr); + if (ret == DW_DLV_OK || ret == DW_DLV_NO_ENTRY) + return (0); + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to child from die: %s\n", + dwarf_errmsg(derr)); + return (ECTF_CONVBKERR); +} + +/* + * Compilers disagree on what to do to determine if something has global + * visiblity. Traditionally gcc has used DW_AT_external to indicate this while + * Studio has used DW_AT_visibility. We check DW_AT_visibility first and then + * fall back to DW_AT_external. Lack of DW_AT_external implies that it is not. + */ +static int +ctf_dwarf_isglobal(ctf_die_t *cdp, Dwarf_Die die, boolean_t *igp) +{ + int ret; + Dwarf_Signed vis; + Dwarf_Bool ext; + + if ((ret = ctf_dwarf_signed(cdp, die, DW_AT_visibility, &vis)) == 0) { + *igp = vis == DW_VIS_exported; + return (0); + } else if (ret != ENOENT) { + return (ret); + } + + if ((ret = ctf_dwarf_boolean(cdp, die, DW_AT_external, &ext)) != 0) { + if (ret == ENOENT) { + *igp = B_FALSE; + return (0); + } + return (ret); + } + *igp = ext != 0 ? B_TRUE : B_FALSE; + return (0); +} + +static int +ctf_dwarf_die_elfenc(Elf *elf, ctf_die_t *cdp, char *errbuf, size_t errlen) +{ + GElf_Ehdr ehdr; + + if (gelf_getehdr(elf, &ehdr) == NULL) { + (void) snprintf(errbuf, errlen, + "failed to get ELF header: %s\n", + elf_errmsg(elf_errno())); + return (ECTF_CONVBKERR); + } + + cdp->cd_mach = ehdr.e_machine; + + if (ehdr.e_ident[EI_CLASS] == ELFCLASS32) { + cdp->cd_ptrsz = 4; + VERIFY(ctf_setmodel(cdp->cd_ctfp, CTF_MODEL_ILP32) == 0); + } else if (ehdr.e_ident[EI_CLASS] == ELFCLASS64) { + cdp->cd_ptrsz = 8; + VERIFY(ctf_setmodel(cdp->cd_ctfp, CTF_MODEL_LP64) == 0); + } else { + (void) snprintf(errbuf, errlen, + "unknown ELF class %d", ehdr.e_ident[EI_CLASS]); + return (ECTF_CONVBKERR); + } + + if (ehdr.e_ident[EI_DATA] == ELFDATA2LSB) { + cdp->cd_bigend = B_FALSE; + } else if (ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { + cdp->cd_bigend = B_TRUE; + } else { + (void) snprintf(errbuf, errlen, + "unknown ELF data encoding: %d", ehdr.e_ident[EI_DATA]); + return (ECTF_CONVBKERR); + } + + return (0); +} + +typedef struct ctf_dwarf_fpent { + size_t cdfe_size; + uint_t cdfe_enc[3]; +} ctf_dwarf_fpent_t; + +typedef struct ctf_dwarf_fpmap { + uint_t cdf_mach; + ctf_dwarf_fpent_t cdf_ents[4]; +} ctf_dwarf_fpmap_t; + +static const ctf_dwarf_fpmap_t ctf_dwarf_fpmaps[] = { + { EM_SPARC, { + { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, + { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, + { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, + { 0, { 0 } } + } }, + { EM_SPARC32PLUS, { + { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, + { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, + { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, + { 0, { 0 } } + } }, + { EM_SPARCV9, { + { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, + { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, + { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, + { 0, { 0 } } + } }, + { EM_386, { + { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, + { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, + { 12, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, + { 0, { 0 } } + } }, + { EM_X86_64, { + { 4, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, + { 8, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, + { 16, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, + { 0, { 0 } } + } }, + { EM_NONE } +}; + +static int +ctf_dwarf_float_base(ctf_die_t *cdp, Dwarf_Signed type, ctf_encoding_t *enc) +{ + const ctf_dwarf_fpmap_t *map = &ctf_dwarf_fpmaps[0]; + const ctf_dwarf_fpent_t *ent; + uint_t col = 0, mult = 1; + + for (map = &ctf_dwarf_fpmaps[0]; map->cdf_mach != EM_NONE; map++) { + if (map->cdf_mach == cdp->cd_mach) + break; + } + + if (map->cdf_mach == EM_NONE) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "Unsupported machine type: %d\n", cdp->cd_mach); + return (ENOTSUP); + } + + if (type == DW_ATE_complex_float) { + mult = 2; + col = 1; + } else if (type == DW_ATE_imaginary_float || + type == DW_ATE_SUN_imaginary_float) { + col = 2; + } + + ent = &map->cdf_ents[0]; + for (ent = &map->cdf_ents[0]; ent->cdfe_size != 0; ent++) { + if (ent->cdfe_size * mult * 8 == enc->cte_bits) { + enc->cte_format = ent->cdfe_enc[col]; + return (0); + } + } + + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to find valid fp mapping for encoding %d, size %d bits\n", + type, enc->cte_bits); + return (EINVAL); +} + +static int +ctf_dwarf_dwarf_base(ctf_die_t *cdp, Dwarf_Die die, int *kindp, + ctf_encoding_t *enc) +{ + int ret; + Dwarf_Signed type; + + if ((ret = ctf_dwarf_signed(cdp, die, DW_AT_encoding, &type)) != 0) + return (ret); + + switch (type) { + case DW_ATE_unsigned: + case DW_ATE_address: + *kindp = CTF_K_INTEGER; + enc->cte_format = 0; + break; + case DW_ATE_unsigned_char: + *kindp = CTF_K_INTEGER; + enc->cte_format = CTF_INT_CHAR; + break; + case DW_ATE_signed: + *kindp = CTF_K_INTEGER; + enc->cte_format = CTF_INT_SIGNED; + break; + case DW_ATE_signed_char: + *kindp = CTF_K_INTEGER; + enc->cte_format = CTF_INT_SIGNED | CTF_INT_CHAR; + break; + case DW_ATE_boolean: + *kindp = CTF_K_INTEGER; + enc->cte_format = CTF_INT_SIGNED | CTF_INT_BOOL; + break; + case DW_ATE_float: + case DW_ATE_complex_float: + case DW_ATE_imaginary_float: + case DW_ATE_SUN_imaginary_float: + case DW_ATE_SUN_interval_float: + *kindp = CTF_K_FLOAT; + if ((ret = ctf_dwarf_float_base(cdp, type, enc)) != 0) + return (ret); + break; + default: + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "encountered unkown DWARF encoding: %d", type); + return (ECTF_CONVBKERR); + } + + return (0); +} + +/* + * Different compilers (at least GCC and Studio) use different names for types. + * This parses the types and attempts to unify them. If this fails, we just fall + * back to using the DWARF itself. + */ +static int +ctf_dwarf_parse_base(const char *name, int *kindp, ctf_encoding_t *enc, + char **newnamep) +{ + char buf[256]; + char *base, *c; + int nlong = 0, nshort = 0, nchar = 0, nint = 0; + int sign = 1; + + if (strlen(name) + 1 > sizeof (buf)) + return (EINVAL); + + (void) strlcpy(buf, name, sizeof (buf)); + for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { + if (strcmp(c, "signed") == 0) { + sign = 1; + } else if (strcmp(c, "unsigned") == 0) { + sign = 0; + } else if (strcmp(c, "long") == 0) { + nlong++; + } else if (strcmp(c, "char") == 0) { + nchar++; + } else if (strcmp(c, "short") == 0) { + nshort++; + } else if (strcmp(c, "int") == 0) { + nint++; + } else { + /* + * If we don't recognize any of the tokens, we'll tell + * the caller to fall back to the dwarf-provided + * encoding information. + */ + return (EINVAL); + } + } + + if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) + return (EINVAL); + + if (nchar > 0) { + if (nlong > 0 || nshort > 0 || nint > 0) + return (EINVAL); + base = "char"; + } else if (nshort > 0) { + if (nlong > 0) + return (EINVAL); + base = "short"; + } else if (nlong > 0) { + base = "long"; + } else { + base = "int"; + } + + if (nchar > 0) + enc->cte_format = CTF_INT_CHAR; + else + enc->cte_format = 0; + + if (sign > 0) + enc->cte_format |= CTF_INT_SIGNED; + + (void) snprintf(buf, sizeof (buf), "%s%s%s", + (sign ? "" : "unsigned "), + (nlong > 1 ? "long " : ""), + base); + + *newnamep = ctf_strdup(buf); + if (*newnamep == NULL) + return (ENOMEM); + *kindp = CTF_K_INTEGER; + return (0); +} + +static int +ctf_dwarf_create_base(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, int isroot, + Dwarf_Off off) +{ + int ret; + char *name, *nname; + Dwarf_Unsigned sz; + int kind; + ctf_encoding_t enc; + ctf_id_t id; + + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, &name)) != 0) + return (ret); + if ((ret = ctf_dwarf_unsigned(cdp, die, DW_AT_byte_size, &sz)) != 0) { + goto out; + } + ctf_dprintf("Creating base type %s from off %llu, size: %d\n", name, + off, sz); + + bzero(&enc, sizeof (ctf_encoding_t)); + enc.cte_bits = sz * 8; + if ((ret = ctf_dwarf_parse_base(name, &kind, &enc, &nname)) == 0) { + ctf_free(name, strlen(name) + 1); + name = nname; + } else { + if (ret != EINVAL) + return (ret); + ctf_dprintf("falling back to dwarf for base type %s\n", name); + if ((ret = ctf_dwarf_dwarf_base(cdp, die, &kind, &enc)) != 0) + return (ret); + } + + id = ctf_add_encoded(cdp->cd_ctfp, isroot, name, &enc, kind); + if (id == CTF_ERR) { + ret = ctf_errno(cdp->cd_ctfp); + } else { + *idp = id; + ret = ctf_dwmap_add(cdp, id, die, B_FALSE); + } +out: + ctf_free(name, strlen(name) + 1); + return (ret); +} + +/* + * Getting a member's offset is a surprisingly intricate dance. It works as + * follows: + * + * 1) If we're in DWARFv4, then we either have a DW_AT_data_bit_offset or we + * have a DW_AT_data_member_location. We won't have both. Thus we check first + * for DW_AT_data_bit_offset, and if it exists, we're set. + * + * Next, if we have a bitfield and we don't ahve a DW_AT_data_bit_offset, then + * we have to grab the data location and use the following dance: + * + * 2) Gather the set of DW_AT_byte_size, DW_AT_bit_offset, and DW_AT_bit_size. + * Of course, the DW_AT_byte_size may be omitted, even though it isn't always. + * When it's been omitted, we then have to say that the size is that of the + * underlying type, which forces that to be after a ctf_update(). Here, we have + * to do different things based on whether or not we're using big endian or + * little endian to obtain the proper offset. + */ +static int +ctf_dwarf_member_offset(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t mid, + ulong_t *offp) +{ + int ret; + Dwarf_Unsigned loc, bitsz, bytesz; + Dwarf_Signed bitoff; + size_t off, tsz; + + if ((ret = ctf_dwarf_unsigned(cdp, die, DW_AT_data_bit_offset, + &loc)) == 0) { + *offp = loc; + return (0); + } else if (ret != ENOENT) { + return (ret); + } + + if ((ret = ctf_dwarf_member_location(cdp, die, &loc)) != 0) + return (ret); + off = loc * 8; + + if ((ret = ctf_dwarf_signed(cdp, die, DW_AT_bit_offset, + &bitoff)) != 0) { + if (ret != ENOENT) + return (ret); + *offp = off; + return (0); + } + + /* At this point we have to have DW_AT_bit_size */ + if ((ret = ctf_dwarf_unsigned(cdp, die, DW_AT_bit_size, &bitsz)) != 0) + return (ret); + + if ((ret = ctf_dwarf_unsigned(cdp, die, DW_AT_byte_size, + &bytesz)) != 0) { + if (ret != ENOENT) + return (ret); + if ((tsz = ctf_type_size(cdp->cd_ctfp, mid)) == CTF_ERR) { + int e = ctf_errno(cdp->cd_ctfp); + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get type size: %s", ctf_errmsg(e)); + return (ECTF_CONVBKERR); + } + } else { + tsz = bytesz; + } + tsz *= 8; + if (cdp->cd_bigend == B_TRUE) { + *offp = off + bitoff; + } else { + *offp = off + tsz - bitoff - bitsz; + } + + return (0); +} + +/* + * We need to determine if the member in question is a bitfield. If it is, then + * we need to go through and create a new type that's based on the actual base + * type, but has a different size. We also rename the type as a result to help + * deal with future collisions. + * + * Here we need to look and see if we have a DW_AT_bit_size value. If we have a + * bit size member and it does not equal the byte size member, then we need to + * create a bitfield type based on this. + * + * Note: When we support DWARFv4, there may be a chance that we ned to also + * search for the DW_AT_byte_size if we don't have a DW_AT_bit_size member. + */ +static int +ctf_dwarf_member_bitfield(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp) +{ + int ret; + Dwarf_Unsigned bitsz; + ctf_encoding_t e; + ctf_dwbitf_t *cdb; + ctf_dtdef_t *dtd; + ctf_id_t base = *idp; + int kind; + + if ((ret = ctf_dwarf_unsigned(cdp, die, DW_AT_bit_size, &bitsz)) != 0) { + if (ret == ENOENT) + return (0); + return (ret); + } + + ctf_dprintf("Trying to deal with bitfields on %d:%d\n", base, bitsz); + /* + * Given that we now have a bitsize, time to go do something about it. + * We're going to create a new type based on the current one, but first + * we need to find the base type. This means we need to traverse any + * typedef's, consts, and volatiles until we get to what should be + * something of type integer or enumeration. + */ + VERIFY(bitsz < UINT32_MAX); + dtd = ctf_dtd_lookup(cdp->cd_ctfp, base); + VERIFY(dtd != NULL); + kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); + while (kind == CTF_K_TYPEDEF || kind == CTF_K_CONST || + kind == CTF_K_VOLATILE) { + dtd = ctf_dtd_lookup(cdp->cd_ctfp, dtd->dtd_data.ctt_type); + VERIFY(dtd != NULL); + kind = CTF_INFO_KIND(dtd->dtd_data.ctt_info); + } + ctf_dprintf("got kind %d\n", kind); + VERIFY(kind == CTF_K_INTEGER || kind == CTF_K_ENUM); + + /* + * As surprising as it may be, it is strictly possible to create a + * bitfield that is based on an enum. Of course, the C standard leaves + * enums sizing as an ABI concern more or less. To that effect, today on + * all illumos platforms the size of an enum is generally that of an + * int as our supported data models and ABIs all agree on that. So what + * we'll do is fake up a CTF enconding here to use. In this case, we'll + * treat it as an unsigned value of whatever size the underlying enum + * currently has (which is in the ctt_size member of its dynamic type + * data). + */ + if (kind == CTF_K_INTEGER) { + e = dtd->dtd_u.dtu_enc; + } else { + bzero(&e, sizeof (ctf_encoding_t)); + e.cte_bits = dtd->dtd_data.ctt_size * NBBY; + } + + for (cdb = ctf_list_next(&cdp->cd_bitfields); cdb != NULL; + cdb = ctf_list_next(cdb)) { + if (cdb->cdb_base == base && cdb->cdb_nbits == bitsz) + break; + } + + /* + * Create a new type if none exists. We name all types in a way that is + * guaranteed not to conflict with the corresponding C type. We do this + * by using the ':' operator. + */ + if (cdb == NULL) { + size_t namesz; + char *name; + + e.cte_bits = bitsz; + namesz = snprintf(NULL, 0, "%s:%d", dtd->dtd_name, + (uint32_t)bitsz); + name = ctf_alloc(namesz + 1); + if (name == NULL) + return (ENOMEM); + cdb = ctf_alloc(sizeof (ctf_dwbitf_t)); + if (cdb == NULL) { + ctf_free(name, namesz + 1); + return (ENOMEM); + } + (void) snprintf(name, namesz + 1, "%s:%d", dtd->dtd_name, + (uint32_t)bitsz); + + cdb->cdb_base = base; + cdb->cdb_nbits = bitsz; + cdb->cdb_id = ctf_add_integer(cdp->cd_ctfp, CTF_ADD_NONROOT, + name, &e); + if (cdb->cdb_id == CTF_ERR) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to get add bitfield type %s: %s", name, + ctf_errmsg(ctf_errno(cdp->cd_ctfp))); + ctf_free(name, namesz + 1); + ctf_free(cdb, sizeof (ctf_dwbitf_t)); + return (ECTF_CONVBKERR); + } + ctf_free(name, namesz + 1); + ctf_list_append(&cdp->cd_bitfields, cdb); + } + + *idp = cdb->cdb_id; + + return (0); +} + +static int +ctf_dwarf_fixup_sou(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t base, boolean_t add) +{ + int ret, kind; + Dwarf_Die child, memb; + Dwarf_Unsigned size; + ulong_t nsz; + + kind = ctf_type_kind(cdp->cd_ctfp, base); + VERIFY(kind != CTF_ERR); + VERIFY(kind == CTF_K_STRUCT || kind == CTF_K_UNION); + + /* + * Members are in children. However, gcc also allows empty ones. + */ + if ((ret = ctf_dwarf_child(cdp, die, &child)) != 0) + return (ret); + if (child == NULL) + return (0); + + memb = child; + while (memb != NULL) { + Dwarf_Die sib, tdie; + Dwarf_Half tag; + ctf_id_t mid; + char *mname; + ulong_t memboff = 0; + + if ((ret = ctf_dwarf_tag(cdp, memb, &tag)) != 0) + return (ret); + + if (tag != DW_TAG_member) + continue; + + if ((ret = ctf_dwarf_refdie(cdp, memb, DW_AT_type, &tdie)) != 0) + return (ret); + + if ((ret = ctf_dwarf_convert_type(cdp, tdie, &mid, + CTF_ADD_NONROOT)) != 0) + return (ret); + ctf_dprintf("Got back type id: %d\n", mid); + + /* + * If we're not adding a member, just go ahead and return. + */ + if (add == B_FALSE) { + if ((ret = ctf_dwarf_member_bitfield(cdp, memb, + &mid)) != 0) + return (ret); + goto next; + } + + if ((ret = ctf_dwarf_string(cdp, memb, DW_AT_name, + &mname)) != 0 && ret != ENOENT) + return (ret); + if (ret == ENOENT) + mname = NULL; + + if (kind == CTF_K_UNION) { + memboff = 0; + } else if ((ret = ctf_dwarf_member_offset(cdp, memb, mid, + &memboff)) != 0) { + if (mname != NULL) + ctf_free(mname, strlen(mname) + 1); + return (ret); + } + + if ((ret = ctf_dwarf_member_bitfield(cdp, memb, &mid)) != 0) + return (ret); + + ret = ctf_add_member(cdp->cd_ctfp, base, mname, mid, memboff); + if (ret == CTF_ERR) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to add member %s: %s", + mname, ctf_errmsg(ctf_errno(cdp->cd_ctfp))); + if (mname != NULL) + ctf_free(mname, strlen(mname) + 1); + return (ECTF_CONVBKERR); + } + + if (mname != NULL) + ctf_free(mname, strlen(mname) + 1); + +next: + if ((ret = ctf_dwarf_sib(cdp, memb, &sib)) != 0) + return (ret); + memb = sib; + } + + /* + * If we're not adding members, then we don't know the final size of the + * structure, so end here. + */ + if (add == B_FALSE) + return (0); + + /* Finally set the size of the structure to the actual byte size */ + if ((ret = ctf_dwarf_unsigned(cdp, die, DW_AT_byte_size, &size)) != 0) + return (ret); + nsz = size; + if ((ctf_set_size(cdp->cd_ctfp, base, nsz)) == CTF_ERR) { + int e = ctf_errno(cdp->cd_ctfp); + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to set type size for %d to 0x%x: %s", base, + (uint32_t)size, ctf_errmsg(e)); + return (ECTF_CONVBKERR); + } + + return (0); +} + +static int +ctf_dwarf_create_sou(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, + int kind, int isroot) +{ + int ret; + char *name; + ctf_id_t base; + Dwarf_Die child; + Dwarf_Bool decl; + + /* + * Deal with the terribly annoying case of anonymous structs and unions. + * If they don't have a name, set the name to the empty string. + */ + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, &name)) != 0 && + ret != ENOENT) + return (ret); + if (ret == ENOENT) + name = NULL; + + /* + * We need to check if we just have a declaration here. If we do, then + * instead of creating an actual structure or union, we're just going to + * go ahead and create a forward. During a dedup or merge, the forward + * will be replaced with the real thing. + */ + if ((ret = ctf_dwarf_boolean(cdp, die, DW_AT_declaration, + &decl)) != 0) { + if (ret != ENOENT) + return (ret); + decl = 0; + } + + if (decl != 0) { + base = ctf_add_forward(cdp->cd_ctfp, isroot, name, kind); + } else if (kind == CTF_K_STRUCT) { + base = ctf_add_struct(cdp->cd_ctfp, isroot, name); + } else { + base = ctf_add_union(cdp->cd_ctfp, isroot, name); + } + ctf_dprintf("added sou %s (%d) (%d)\n", name, kind, base); + if (name != NULL) + ctf_free(name, strlen(name) + 1); + if (base == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + *idp = base; + + /* + * If it's just a declaration, we're not going to mark it for fix up or + * do anything else. + */ + if (decl == B_TRUE) + return (ctf_dwmap_add(cdp, base, die, B_FALSE)); + if ((ret = ctf_dwmap_add(cdp, base, die, B_TRUE)) != 0) + return (ret); + + /* + * Members are in children. However, gcc also allows empty ones. + */ + if ((ret = ctf_dwarf_child(cdp, die, &child)) != 0) + return (ret); + if (child == NULL) + return (0); + + return (0); +} + +static int +ctf_dwarf_create_array_range(ctf_die_t *cdp, Dwarf_Die range, ctf_id_t *idp, + ctf_id_t base, int isroot) +{ + int ret; + Dwarf_Die sib; + Dwarf_Unsigned val; + Dwarf_Signed sval; + ctf_arinfo_t ar; + + ctf_dprintf("creating array range\n"); + + if ((ret = ctf_dwarf_sib(cdp, range, &sib)) != 0) + return (ret); + if (sib != NULL) { + ctf_id_t id; + if ((ret = ctf_dwarf_create_array_range(cdp, sib, &id, + base, CTF_ADD_NONROOT)) != 0) + return (ret); + ar.ctr_contents = id; + } else { + ar.ctr_contents = base; + } + + if ((ar.ctr_index = ctf_dwarf_long(cdp)) == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + + /* + * Array bounds can be signed or unsigned, but there are several kinds + * of signless forms (data1, data2, etc) that take their sign from the + * routine that is trying to interpret them. That is, data1 can be + * either signed or unsigned, depending on whether you use the signed or + * unsigned accessor function. GCC will use the signless forms to store + * unsigned values which have their high bit set, so we need to try to + * read them first as unsigned to get positive values. We could also + * try signed first, falling back to unsigned if we got a negative + * value. + */ + if ((ret = ctf_dwarf_unsigned(cdp, range, DW_AT_upper_bound, + &val)) == 0) { + ar.ctr_nelems = val + 1; + } else if (ret != ENOENT) { + return (ret); + } else if ((ret = ctf_dwarf_signed(cdp, range, DW_AT_upper_bound, + &sval)) == 0) { + ar.ctr_nelems = sval + 1; + } else if (ret != ENOENT) { + return (ret); + } else { + ar.ctr_nelems = 0; + } + + if ((*idp = ctf_add_array(cdp->cd_ctfp, isroot, &ar)) == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + + return (0); +} + +/* + * Try and create an array type. First, the kind of the array is specified in + * the DW_AT_type entry. Next, the number of entries is stored in a more + * complicated form, we should have a child that has the DW_TAG_subrange type. + */ +static int +ctf_dwarf_create_array(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, int isroot) +{ + int ret; + Dwarf_Die tdie, rdie; + ctf_id_t tid; + Dwarf_Half rtag; + ctf_arinfo_t ar; + + if ((ret = ctf_dwarf_refdie(cdp, die, DW_AT_type, &tdie)) != 0) + return (ret); + if ((ret = ctf_dwarf_convert_type(cdp, tdie, &tid, + CTF_ADD_NONROOT)) != 0) + return (ret); + + ar.ctr_contents = tid; + + if ((ret = ctf_dwarf_child(cdp, die, &rdie)) != 0) + return (ret); + if ((ret = ctf_dwarf_tag(cdp, rdie, &rtag)) != 0) + return (ret); + if (rtag != DW_TAG_subrange_type) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "encountered array without DW_TAG_subrange_type child\n"); + return (ECTF_CONVBKERR); + } + + /* + * The compiler may opt to describe a multi-dimensional array as one + * giant array or it may opt to instead encode it as a series of + * subranges. If it's the latter, then for each subrange we introduce a + * type. We can always use the base type. + */ + if ((ret = ctf_dwarf_create_array_range(cdp, rdie, idp, tid, + isroot)) != 0) + return (ret); + ctf_dprintf("Got back id %d\n", *idp); + return (ctf_dwmap_add(cdp, *idp, die, B_FALSE)); +} + +static int +ctf_dwarf_create_reference(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, + int kind, int isroot) +{ + int ret; + ctf_id_t id; + Dwarf_Die tdie; + char *name; + size_t namelen; + + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, &name)) != 0 && + ret != ENOENT) + return (ret); + if (ret == ENOENT) { + name = NULL; + namelen = 0; + } else { + namelen = strlen(name); + } + + ctf_dprintf("reference kind %d %s\n", kind, name != NULL ? name : "<>"); + + if ((ret = ctf_dwarf_refdie(cdp, die, DW_AT_type, &tdie)) != 0) { + if (ret != ENOENT) { + ctf_free(name, namelen); + return (ret); + } + if ((id = ctf_dwarf_void(cdp)) == CTF_ERR) { + ctf_free(name, namelen); + return (ctf_errno(cdp->cd_ctfp)); + } + } else { + if ((ret = ctf_dwarf_convert_type(cdp, tdie, &id, + CTF_ADD_NONROOT)) != 0) { + ctf_free(name, namelen); + return (ret); + } + } + + if ((*idp = ctf_add_reftype(cdp->cd_ctfp, isroot, name, id, kind)) == + CTF_ERR) { + ctf_free(name, namelen); + return (ctf_errno(cdp->cd_ctfp)); + } + + ctf_free(name, namelen); + return (ctf_dwmap_add(cdp, *idp, die, B_FALSE)); +} + +static int +ctf_dwarf_create_enum(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, int isroot) +{ + int ret; + ctf_id_t id; + Dwarf_Die child; + char *name; + + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, &name)) != 0 && + ret != ENOENT) + return (ret); + if (ret == ENOENT) + name = NULL; + id = ctf_add_enum(cdp->cd_ctfp, isroot, name); + ctf_dprintf("added enum %s (%d)\n", name, id); + if (name != NULL) + ctf_free(name, strlen(name) + 1); + if (id == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + *idp = id; + if ((ret = ctf_dwmap_add(cdp, id, die, B_FALSE)) != 0) + return (ret); + + + if ((ret = ctf_dwarf_child(cdp, die, &child)) != 0) { + if (ret == ENOENT) + ret = 0; + return (ret); + } + + while (child != NULL) { + Dwarf_Half tag; + Dwarf_Signed sval; + Dwarf_Unsigned uval; + Dwarf_Die arg = child; + int eval; + + if ((ret = ctf_dwarf_sib(cdp, arg, &child)) != 0) + return (ret); + + if ((ret = ctf_dwarf_tag(cdp, arg, &tag)) != 0) + return (ret); + + if (tag != DW_TAG_enumerator) { + if ((ret = ctf_dwarf_convert_type(cdp, arg, NULL, + CTF_ADD_NONROOT)) != 0) + return (ret); + continue; + } + + if ((ret = ctf_dwarf_signed(cdp, arg, DW_AT_const_value, + &sval)) == 0) { + eval = sval; + } else if (ret != ENOENT) { + return (ret); + } else if ((ret = ctf_dwarf_unsigned(cdp, arg, + DW_AT_const_value, &uval)) == 0) { + eval = (int)uval; + } else { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "encountered enumration without constant value\n"); + return (ECTF_CONVBKERR); + } + + /* + * DWARF v4 section 5.7 tells us we'll always have names. + */ + if ((ret = ctf_dwarf_string(cdp, arg, DW_AT_name, + &name)) != 0) + return (ret); + + ret = ctf_add_enumerator(cdp->cd_ctfp, id, name, eval); + if (ret == CTF_ERR) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "failed to add enumarator %s (%d) to %d\n", + name, eval, id); + ctf_free(name, strlen(name) + 1); + return (ctf_errno(cdp->cd_ctfp)); + } + ctf_free(name, strlen(name) + 1); + } + + return (0); +} + +/* + * For a function pointer, walk over and process all of its children, unless we + * encounter one that's just a declaration. In which case, we error on it. + */ +static int +ctf_dwarf_create_fptr(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, int isroot) +{ + int ret; + Dwarf_Bool b; + ctf_funcinfo_t fi; + Dwarf_Die retdie; + ctf_id_t *argv = NULL; + + bzero(&fi, sizeof (ctf_funcinfo_t)); + + if ((ret = ctf_dwarf_boolean(cdp, die, DW_AT_declaration, &b)) != 0) { + if (ret != ENOENT) + return (ret); + } else { + if (b != 0) + return (EPROTOTYPE); + } + + /* + * Return type is in DW_AT_type, if none, it returns void. + */ + if ((ret = ctf_dwarf_refdie(cdp, die, DW_AT_type, &retdie)) != 0) { + if (ret != ENOENT) + return (ret); + if ((fi.ctc_return = ctf_dwarf_void(cdp)) == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + } else { + if ((ret = ctf_dwarf_convert_type(cdp, retdie, &fi.ctc_return, + CTF_ADD_NONROOT)) != 0) + return (ret); + } + + if ((ret = ctf_dwarf_function_count(cdp, die, &fi, B_TRUE)) != 0) { + return (ret); + } + + if (fi.ctc_argc != 0) { + argv = ctf_alloc(sizeof (ctf_id_t) * fi.ctc_argc); + if (argv == NULL) + return (ENOMEM); + + if ((ret = ctf_dwarf_convert_fargs(cdp, die, &fi, argv)) != 0) { + ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); + return (ret); + } + } + + if ((*idp = ctf_add_funcptr(cdp->cd_ctfp, isroot, &fi, argv)) == + CTF_ERR) { + ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); + return (ctf_errno(cdp->cd_ctfp)); + } + + ctf_free(argv, sizeof (ctf_id_t) * fi.ctc_argc); + return (ctf_dwmap_add(cdp, *idp, die, B_FALSE)); +} + +static int +ctf_dwarf_convert_type(ctf_die_t *cdp, Dwarf_Die die, ctf_id_t *idp, + int isroot) +{ + int ret; + Dwarf_Off offset; + Dwarf_Half tag; + ctf_dwmap_t lookup, *map; + ctf_id_t id; + + if (idp == NULL) + idp = &id; + + if ((ret = ctf_dwarf_offset(cdp, die, &offset)) != 0) + return (ret); + + if (offset > cdp->cd_maxoff) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "die offset %llu beyond maximum for header %llu\n", + offset, cdp->cd_maxoff); + return (ECTF_CONVBKERR); + } + + /* + * If we've already added an entry for this offset, then we're done. + */ + lookup.cdm_off = offset; + if ((map = avl_find(&cdp->cd_map, &lookup, NULL)) != NULL) { + *idp = map->cdm_id; + return (0); + } + + if ((ret = ctf_dwarf_tag(cdp, die, &tag)) != 0) + return (ret); + + ret = ENOTSUP; + switch (tag) { + case DW_TAG_base_type: + ctf_dprintf("base\n"); + ret = ctf_dwarf_create_base(cdp, die, idp, isroot, offset); + break; + case DW_TAG_array_type: + ctf_dprintf("array\n"); + ret = ctf_dwarf_create_array(cdp, die, idp, isroot); + break; + case DW_TAG_enumeration_type: + ctf_dprintf("enum\n"); + ret = ctf_dwarf_create_enum(cdp, die, idp, isroot); + break; + case DW_TAG_pointer_type: + ctf_dprintf("pointer\n"); + ret = ctf_dwarf_create_reference(cdp, die, idp, CTF_K_POINTER, + isroot); + break; + case DW_TAG_structure_type: + ctf_dprintf("struct\n"); + ret = ctf_dwarf_create_sou(cdp, die, idp, CTF_K_STRUCT, + isroot); + break; + case DW_TAG_subroutine_type: + ctf_dprintf("fptr\n"); + ret = ctf_dwarf_create_fptr(cdp, die, idp, isroot); + break; + case DW_TAG_typedef: + ctf_dprintf("typedef\n"); + ret = ctf_dwarf_create_reference(cdp, die, idp, CTF_K_TYPEDEF, + isroot); + break; + case DW_TAG_union_type: + ctf_dprintf("union\n"); + ret = ctf_dwarf_create_sou(cdp, die, idp, CTF_K_UNION, + isroot); + break; + case DW_TAG_const_type: + ctf_dprintf("const\n"); + ret = ctf_dwarf_create_reference(cdp, die, idp, CTF_K_CONST, + isroot); + break; + case DW_TAG_volatile_type: + ctf_dprintf("volatile\n"); + ret = ctf_dwarf_create_reference(cdp, die, idp, CTF_K_VOLATILE, + isroot); + break; + case DW_TAG_restrict_type: + ctf_dprintf("restrict\n"); + ret = ctf_dwarf_create_reference(cdp, die, idp, CTF_K_RESTRICT, + isroot); + break; + default: + ctf_dprintf("ignoring tag type %x\n", tag); + ret = 0; + break; + } + ctf_dprintf("ctf_dwarf_convert_type tag specific handler returned %d\n", + ret); + + return (ret); +} + +static int +ctf_dwarf_walk_lexical(ctf_die_t *cdp, Dwarf_Die die) +{ + int ret; + Dwarf_Die child; + + if ((ret = ctf_dwarf_child(cdp, die, &child)) != 0) + return (ret); + + if (child == NULL) + return (0); + + return (ctf_dwarf_convert_die(cdp, die)); +} + +static int +ctf_dwarf_function_count(ctf_die_t *cdp, Dwarf_Die die, ctf_funcinfo_t *fip, + boolean_t fptr) +{ + int ret; + Dwarf_Die child, sib, arg; + + if ((ret = ctf_dwarf_child(cdp, die, &child)) != 0) + return (ret); + + arg = child; + while (arg != NULL) { + Dwarf_Half tag; + + if ((ret = ctf_dwarf_tag(cdp, arg, &tag)) != 0) + return (ret); + + /* + * We have to check for a varargs type decleration. This will + * happen in one of two ways. If we have a function pointer + * type, then it'll be done with a tag of type + * DW_TAG_unspecified_parameters. However, it only means we have + * a variable number of arguments, if we have more than one + * argument found so far. Otherwise, when we have a function + * type, it instead uses a formal parameter whose name is '...' + * to indicate a variable arguments member. + * + * Also, if we have a function pointer, then we have to expect + * that we might not get a name at all. + */ + if (tag == DW_TAG_formal_parameter && fptr == B_FALSE) { + char *name; + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, + &name)) != 0) + return (ret); + if (strcmp(name, DWARF_VARARGS_NAME) == 0) + fip->ctc_flags |= CTF_FUNC_VARARG; + else + fip->ctc_argc++; + ctf_free(name, strlen(name) + 1); + } else if (tag == DW_TAG_formal_parameter) { + fip->ctc_argc++; + } else if (tag == DW_TAG_unspecified_parameters && + fip->ctc_argc > 0) { + fip->ctc_flags |= CTF_FUNC_VARARG; + } + if ((ret = ctf_dwarf_sib(cdp, arg, &sib)) != 0) + return (ret); + arg = sib; + } + + return (0); +} + +static int +ctf_dwarf_convert_fargs(ctf_die_t *cdp, Dwarf_Die die, ctf_funcinfo_t *fip, + ctf_id_t *argv) +{ + int ret; + int i = 0; + Dwarf_Die child, sib, arg; + + if ((ret = ctf_dwarf_child(cdp, die, &child)) != 0) + return (ret); + + arg = child; + while (arg != NULL) { + Dwarf_Half tag; + + if ((ret = ctf_dwarf_tag(cdp, arg, &tag)) != 0) + return (ret); + if (tag == DW_TAG_formal_parameter) { + Dwarf_Die tdie; + + if ((ret = ctf_dwarf_refdie(cdp, arg, DW_AT_type, + &tdie)) != 0) + return (ret); + + if ((ret = ctf_dwarf_convert_type(cdp, tdie, &argv[i], + CTF_ADD_ROOT)) != 0) + return (ret); + i++; + + /* + * Once we hit argc entries, we're done. This ensures we + * don't accidentally hit a varargs which should be the + * least entry. + */ + if (i == fip->ctc_argc) + break; + } + + if ((ret = ctf_dwarf_sib(cdp, arg, &sib)) != 0) + return (ret); + arg = sib; + } + + return (0); +} + +static int +ctf_dwarf_convert_function(ctf_die_t *cdp, Dwarf_Die die) +{ + int ret; + char *name; + ctf_dwfunc_t *cdf; + Dwarf_Die tdie; + + /* + * Functions that don't have a name are generally functions that have + * been inlined and thus most information about them has been lost. If + * we can't get a name, then instead of returning ENOENT, we silently + * swallow the error. + */ + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, &name)) != 0) { + if (ret == ENOENT) + return (0); + return (ret); + } + + ctf_dprintf("beginning work on function %s\n", name); + if ((cdf = ctf_alloc(sizeof (ctf_dwfunc_t))) == NULL) { + ctf_free(name, strlen(name) + 1); + return (ENOMEM); + } + bzero(cdf, sizeof (ctf_dwfunc_t)); + cdf->cdf_name = name; + + if ((ret = ctf_dwarf_refdie(cdp, die, DW_AT_type, &tdie)) == 0) { + if ((ret = ctf_dwarf_convert_type(cdp, tdie, + &(cdf->cdf_fip.ctc_return), CTF_ADD_ROOT)) != 0) { + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ret); + } + } else if (ret != ENOENT) { + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ret); + } else { + if ((cdf->cdf_fip.ctc_return = ctf_dwarf_void(cdp)) == + CTF_ERR) { + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ctf_errno(cdp->cd_ctfp)); + } + } + + /* + * A function has a number of children, some of which may not be ones we + * care about. Children that we care about have a type of + * DW_TAG_formal_parameter. We're going to do two passes, the first to + * count the arguments, the second to process them. Afterwards, we + * should be good to go ahead and add this function. + * + * Note, we already got the return type by going in and grabbing it out + * of the DW_AT_type. + */ + if ((ret = ctf_dwarf_function_count(cdp, die, &cdf->cdf_fip, + B_FALSE)) != 0) { + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ret); + } + + ctf_dprintf("beginning to convert function arguments %s\n", name); + if (cdf->cdf_fip.ctc_argc != 0) { + uint_t argc = cdf->cdf_fip.ctc_argc; + cdf->cdf_argv = ctf_alloc(sizeof (ctf_id_t) * argc); + if (cdf->cdf_argv == NULL) { + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ENOMEM); + } + if ((ret = ctf_dwarf_convert_fargs(cdp, die, + &cdf->cdf_fip, cdf->cdf_argv)) != 0) { + ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * argc); + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ret); + } + } else { + cdf->cdf_argv = NULL; + } + + if ((ret = ctf_dwarf_isglobal(cdp, die, &cdf->cdf_global)) != 0) { + ctf_free(cdf->cdf_argv, sizeof (ctf_id_t) * + cdf->cdf_fip.ctc_argc); + ctf_free(name, strlen(name) + 1); + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + return (ret); + } + + ctf_list_append(&cdp->cd_funcs, cdf); + return (ret); +} + +/* + * Convert variables, but only if they're not prototypes and have names. + */ +static int +ctf_dwarf_convert_variable(ctf_die_t *cdp, Dwarf_Die die) +{ + int ret; + char *name; + Dwarf_Bool b; + Dwarf_Die tdie; + ctf_id_t id; + ctf_dwvar_t *cdv; + + if ((ret = ctf_dwarf_boolean(cdp, die, DW_AT_declaration, &b)) != 0) { + if (ret != ENOENT) + return (ret); + } else if (b != 0) { + return (0); + } + + if ((ret = ctf_dwarf_string(cdp, die, DW_AT_name, &name)) != 0 && + ret != ENOENT) + return (ret); + if (ret == ENOENT) + return (0); + + if ((ret = ctf_dwarf_refdie(cdp, die, DW_AT_type, &tdie)) != 0) { + ctf_free(name, strlen(name) + 1); + return (ret); + } + + if ((ret = ctf_dwarf_convert_type(cdp, tdie, &id, + CTF_ADD_ROOT)) != 0) + return (ret); + + if ((cdv = ctf_alloc(sizeof (ctf_dwvar_t))) == NULL) { + ctf_free(name, strlen(name) + 1); + return (ENOMEM); + } + + cdv->cdv_name = name; + cdv->cdv_type = id; + + if ((ret = ctf_dwarf_isglobal(cdp, die, &cdv->cdv_global)) != 0) { + ctf_free(cdv, sizeof (ctf_dwvar_t)); + ctf_free(name, strlen(name) + 1); + return (ret); + } + + ctf_list_append(&cdp->cd_vars, cdv); + return (0); +} + +/* + * Walk through our set of top-level types and process them. + */ +static int +ctf_dwarf_walk_toplevel(ctf_die_t *cdp, Dwarf_Die die) +{ + int ret; + Dwarf_Off offset; + Dwarf_Half tag; + + if ((ret = ctf_dwarf_offset(cdp, die, &offset)) != 0) + return (ret); + + if (offset > cdp->cd_maxoff) { + (void) snprintf(cdp->cd_errbuf, cdp->cd_errlen, + "die offset %llu beyond maximum for header %llu\n", + offset, cdp->cd_maxoff); + return (ECTF_CONVBKERR); + } + + if ((ret = ctf_dwarf_tag(cdp, die, &tag)) != 0) + return (ret); + + ret = 0; + switch (tag) { + case DW_TAG_subprogram: + ctf_dprintf("top level func\n"); + ret = ctf_dwarf_convert_function(cdp, die); + break; + case DW_TAG_variable: + ctf_dprintf("top level var\n"); + ret = ctf_dwarf_convert_variable(cdp, die); + break; + case DW_TAG_lexical_block: + ctf_dprintf("top level block\n"); + ret = ctf_dwarf_walk_lexical(cdp, die); + break; + case DW_TAG_enumeration_type: + case DW_TAG_structure_type: + case DW_TAG_typedef: + case DW_TAG_union_type: + ctf_dprintf("top level type\n"); + ret = ctf_dwarf_convert_type(cdp, die, NULL, B_TRUE); + break; + default: + break; + } + + return (ret); +} + + +/* + * We're given a node. At this node we need to convert it and then proceed to + * convert any siblings that are associaed with this die. + */ +static int +ctf_dwarf_convert_die(ctf_die_t *cdp, Dwarf_Die die) +{ + while (die != NULL) { + int ret; + Dwarf_Die sib; + + if ((ret = ctf_dwarf_walk_toplevel(cdp, die)) != 0) + return (ret); + + if ((ret = ctf_dwarf_sib(cdp, die, &sib)) != 0) + return (ret); + die = sib; + } + return (0); +} + +static int +ctf_dwarf_fixup_die(ctf_die_t *cdp, boolean_t addpass) +{ + ctf_dwmap_t *map; + + for (map = avl_first(&cdp->cd_map); map != NULL; + map = AVL_NEXT(&cdp->cd_map, map)) { + int ret; + if (map->cdm_fix == B_FALSE) + continue; + if ((ret = ctf_dwarf_fixup_sou(cdp, map->cdm_die, map->cdm_id, + addpass)) != 0) + return (ret); + } + + return (0); +} + +static ctf_dwfunc_t * +ctf_dwarf_match_func(ctf_die_t *cdp, const char *file, const char *name, + int bind) +{ + ctf_dwfunc_t *cdf; + + if (bind == STB_WEAK) + return (NULL); + + /* Nothing we can do if we can't find a name to compare it to. */ + if (bind == STB_LOCAL && (file == NULL || cdp->cd_name == NULL)) + return (NULL); + + for (cdf = ctf_list_next(&cdp->cd_funcs); cdf != NULL; + cdf = ctf_list_next(cdf)) { + if (bind == STB_GLOBAL && cdf->cdf_global == B_FALSE) + continue; + if (bind == STB_LOCAL && cdf->cdf_global == B_TRUE) + continue; + if (strcmp(name, cdf->cdf_name) != 0) + continue; + if (bind == STB_LOCAL && strcmp(file, cdp->cd_name) != 0) + continue; + return (cdf); + } + + return (NULL); +} +static ctf_dwvar_t * +ctf_dwarf_match_var(ctf_die_t *cdp, const char *file, const char *name, + int bind) +{ + ctf_dwvar_t *cdv; + + /* Nothing we can do if we can't find a name to compare it to. */ + if (bind == STB_LOCAL && (file == NULL || cdp->cd_name == NULL)) + return (NULL); + ctf_dprintf("Still considering %s\n", name); + + for (cdv = ctf_list_next(&cdp->cd_vars); cdv != NULL; + cdv = ctf_list_next(cdv)) { + if (bind == STB_GLOBAL && cdv->cdv_global == B_FALSE) + continue; + if (bind == STB_LOCAL && cdv->cdv_global == B_TRUE) + continue; + if (strcmp(name, cdv->cdv_name) != 0) + continue; + if (bind == STB_LOCAL && strcmp(file, cdp->cd_name) != 0) + continue; + return (cdv); + } + + return (NULL); +} + +static int +ctf_dwarf_symtab_iter(ctf_die_t *cdp, ctf_dwarf_symtab_f *func, void *arg) +{ + int ret; + ulong_t i; + ctf_file_t *fp = cdp->cd_ctfp; + const char *file = NULL; + uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; + uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data; + + for (i = 0; i < fp->ctf_nsyms; i++) { + const char *name; + int type; + GElf_Sym gsym; + const GElf_Sym *gsymp; + + if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { + const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; + type = ELF32_ST_TYPE(symp->st_info); + if (type == STT_FILE) { + file = (char *)(strbase + symp->st_name); + continue; + } + if (type != STT_OBJECT && type != STT_FUNC) + continue; + if (ctf_sym_valid(strbase, type, symp->st_shndx, + symp->st_value, symp->st_name) == B_FALSE) + continue; + name = (char *)(strbase + symp->st_name); + gsym.st_name = symp->st_name; + gsym.st_value = symp->st_value; + gsym.st_size = symp->st_size; + gsym.st_info = symp->st_info; + gsym.st_other = symp->st_other; + gsym.st_shndx = symp->st_shndx; + gsymp = &gsym; + } else { + const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; + type = ELF64_ST_TYPE(symp->st_info); + if (type == STT_FILE) { + file = (char *)(strbase + symp->st_name); + continue; + } + if (type != STT_OBJECT && type != STT_FUNC) + continue; + if (ctf_sym_valid(strbase, type, symp->st_shndx, + symp->st_value, symp->st_name) == B_FALSE) + continue; + name = (char *)(strbase + symp->st_name); + gsymp = symp; + } + + ret = func(cdp, gsymp, i, file, name, arg); + if (ret != 0) + return (ret); + } + + return (0); +} + +static int +ctf_dwarf_conv_funcvars_cb(ctf_die_t *cdp, const GElf_Sym *symp, ulong_t idx, + const char *file, const char *name, void *arg) +{ + int ret, bind, type; + + bind = GELF_ST_BIND(symp->st_info); + type = GELF_ST_TYPE(symp->st_info); + + /* + * Come back to weak symbols in another pass + */ + if (bind == STB_WEAK) + return (0); + + if (type == STT_OBJECT) { + ctf_dwvar_t *cdv = ctf_dwarf_match_var(cdp, file, name, + bind); + ctf_dprintf("match for %s (%d): %p\n", name, idx, cdv); + if (cdv == NULL) + return (0); + ret = ctf_add_object(cdp->cd_ctfp, idx, cdv->cdv_type); + ctf_dprintf("added object %s\n", name); + } else { + ctf_dwfunc_t *cdf = ctf_dwarf_match_func(cdp, file, name, + bind); + if (cdf == NULL) + return (0); + ret = ctf_add_function(cdp->cd_ctfp, idx, &cdf->cdf_fip, + cdf->cdf_argv); + } + + if (ret == CTF_ERR) { + return (ctf_errno(cdp->cd_ctfp)); + } + + return (0); +} + +static int +ctf_dwarf_conv_funcvars(ctf_die_t *cdp) +{ + return (ctf_dwarf_symtab_iter(cdp, ctf_dwarf_conv_funcvars_cb, NULL)); +} + +/* + * Note, this comment comes from the original version of the CTF tools. + * + * If we have a weak symbol, attempt to find the strong symbol it will + * resolve to. Note: the code where this actually happens is in + * sym_process() in cmd/sgs/libld/common/syms.c + * + * Finding the matching symbol is unfortunately not trivial. For a + * symbol to be a candidate, it must: + * + * - have the same type (function, object) + * - have the same value (address) + * - have the same size + * - not be another weak symbol + * - belong to the same section (checked via section index) + * + * If such a candidate is global, then we assume we've found it. The + * linker generates the symbol table such that the curfile might be + * incorrect; this is OK for global symbols, since find_iidesc() doesn't + * need to check for the source file for the symbol. + * + * We might have found a strong local symbol, where the curfile is + * accurate and matches that of the weak symbol. We assume this is a + * reasonable match. + * + * If we've got a local symbol with a non-matching curfile, there are + * two possibilities. Either this is a completely different symbol, or + * it's a once-global symbol that was scoped to local via a mapfile. In + * the latter case, curfile is likely inaccurate since the linker does + * not preserve the needed curfile in the order of the symbol table (see + * the comments about locally scoped symbols in libld's update_osym()). + * As we can't tell this case from the former one, we use this symbol + * iff no other matching symbol is found. + * + * What we really need here is a SUNW section containing weak<->strong + * mappings that we can consume. + */ +typedef struct ctf_dwarf_weak_arg { + const GElf_Sym *cweak_symp; + const char *cweak_file; + boolean_t cweak_candidate; + ulong_t cweak_idx; +} ctf_dwarf_weak_arg_t; + +static int +ctf_dwarf_conv_check_weak(ctf_die_t *cdp, const GElf_Sym *symp, + ulong_t idx, const char *file, const char *name, void *arg) +{ + ctf_dwarf_weak_arg_t *cweak = arg; + const GElf_Sym *wsymp = cweak->cweak_symp; + + ctf_dprintf("comparing weak to %s\n", name); + + if (GELF_ST_BIND(symp->st_info) == STB_WEAK) { + return (0); + } + + if (GELF_ST_TYPE(wsymp->st_info) != GELF_ST_TYPE(symp->st_info)) { + return (0); + } + + if (wsymp->st_value != symp->st_value) { + return (0); + } + + if (wsymp->st_size != symp->st_size) { + return (0); + } + + if (wsymp->st_shndx != symp->st_shndx) { + return (0); + } + + /* + * Check if it's a weak candidate. + */ + if (GELF_ST_BIND(symp->st_info) == STB_LOCAL && + (file == NULL || cweak->cweak_file == NULL || + strcmp(file, cweak->cweak_file) != 0)) { + cweak->cweak_candidate = B_TRUE; + cweak->cweak_idx = idx; + return (0); + } + + /* + * Found a match, break. + */ + cweak->cweak_idx = idx; + return (1); +} + +static int +ctf_dwarf_duplicate_sym(ctf_die_t *cdp, ulong_t idx, ulong_t matchidx) +{ + ctf_id_t id = ctf_lookup_by_symbol(cdp->cd_ctfp, matchidx); + + /* + * If we matched something that for some reason didn't have type data, + * we don't consider that a fatal error and silently swallow it. + */ + if (id == CTF_ERR) { + if (ctf_errno(cdp->cd_ctfp) == ECTF_NOTYPEDAT) + return (0); + else + return (ctf_errno(cdp->cd_ctfp)); + } + + if (ctf_add_object(cdp->cd_ctfp, idx, id) == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + + return (0); +} + +static int +ctf_dwarf_duplicate_func(ctf_die_t *cdp, ulong_t idx, ulong_t matchidx) +{ + int ret; + ctf_funcinfo_t fip; + ctf_id_t *args = NULL; + + if (ctf_func_info(cdp->cd_ctfp, matchidx, &fip) == CTF_ERR) { + if (ctf_errno(cdp->cd_ctfp) == ECTF_NOFUNCDAT) + return (0); + else + return (ctf_errno(cdp->cd_ctfp)); + } + + if (fip.ctc_argc != 0) { + args = ctf_alloc(sizeof (ctf_id_t) * fip.ctc_argc); + if (args == NULL) + return (ENOMEM); + + if (ctf_func_args(cdp->cd_ctfp, matchidx, fip.ctc_argc, args) == + CTF_ERR) { + ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc); + return (ctf_errno(cdp->cd_ctfp)); + } + } + + ret = ctf_add_function(cdp->cd_ctfp, idx, &fip, args); + if (args != NULL) + ctf_free(args, sizeof (ctf_id_t) * fip.ctc_argc); + if (ret == CTF_ERR) + return (ctf_errno(cdp->cd_ctfp)); + + return (0); +} + +static int +ctf_dwarf_conv_weaks_cb(ctf_die_t *cdp, const GElf_Sym *symp, + ulong_t idx, const char *file, const char *name, void *arg) +{ + int ret, type; + ctf_dwarf_weak_arg_t cweak; + + /* + * We only care about weak symbols. + */ + if (GELF_ST_BIND(symp->st_info) != STB_WEAK) + return (0); + + type = GELF_ST_TYPE(symp->st_info); + ASSERT(type == STT_OBJECT || type == STT_FUNC); + + /* + * For each weak symbol we encounter, we need to do a second iteration + * to try and find a match. We should probably think about other + * techniques to try and save us time in the future. + */ + cweak.cweak_symp = symp; + cweak.cweak_file = file; + cweak.cweak_candidate = B_FALSE; + cweak.cweak_idx = 0; + + ctf_dprintf("Trying to find weak equiv for %s\n", name); + + ret = ctf_dwarf_symtab_iter(cdp, ctf_dwarf_conv_check_weak, &cweak); + VERIFY(ret == 0 || ret == 1); + + /* + * Nothing was ever found, we're not going to add anything for this + * entry. + */ + if (ret == 0 && cweak.cweak_candidate == B_FALSE) { + ctf_dprintf("found no weak match for %s\n", name); + return (0); + } + + /* + * Now, finally go and add the type based on the match. + */ + if (type == STT_OBJECT) { + ret = ctf_dwarf_duplicate_sym(cdp, idx, cweak.cweak_idx); + } else { + ret = ctf_dwarf_duplicate_func(cdp, idx, cweak.cweak_idx); + } + + return (ret); +} + +static int +ctf_dwarf_conv_weaks(ctf_die_t *cdp) +{ + return (ctf_dwarf_symtab_iter(cdp, ctf_dwarf_conv_weaks_cb, NULL)); +} + +/* ARGSUSED */ +static int +ctf_dwarf_convert_one(void *arg, void *unused) +{ + int ret; + ctf_file_t *dedup; + ctf_die_t *cdp = arg; + + ctf_dprintf("converting die: %s\n", cdp->cd_name); + ctf_dprintf("max offset: %x\n", cdp->cd_maxoff); + VERIFY(cdp != NULL); + + ret = ctf_dwarf_convert_die(cdp, cdp->cd_cu); + ctf_dprintf("ctf_dwarf_convert_die (%s) returned %d\n", cdp->cd_name, + ret); + if (ret != 0) { + return (ret); + } + if (ctf_update(cdp->cd_ctfp) != 0) { + return (ctf_dwarf_error(cdp, cdp->cd_ctfp, 0, + "failed to update output ctf container")); + } + + ret = ctf_dwarf_fixup_die(cdp, B_FALSE); + ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cdp->cd_name, + ret); + if (ret != 0) { + return (ret); + } + if (ctf_update(cdp->cd_ctfp) != 0) { + return (ctf_dwarf_error(cdp, cdp->cd_ctfp, 0, + "failed to update output ctf container")); + } + + ret = ctf_dwarf_fixup_die(cdp, B_TRUE); + ctf_dprintf("ctf_dwarf_fixup_die (%s) returned %d\n", cdp->cd_name, + ret); + if (ret != 0) { + return (ret); + } + if (ctf_update(cdp->cd_ctfp) != 0) { + return (ctf_dwarf_error(cdp, cdp->cd_ctfp, 0, + "failed to update output ctf container")); + } + + + if ((ret = ctf_dwarf_conv_funcvars(cdp)) != 0) { + return (ctf_dwarf_error(cdp, NULL, ret, + "failed to convert strong functions and variables")); + } + + if (ctf_update(cdp->cd_ctfp) != 0) { + return (ctf_dwarf_error(cdp, cdp->cd_ctfp, 0, + "failed to update output ctf container")); + } + + if (cdp->cd_doweaks == B_TRUE) { + if ((ret = ctf_dwarf_conv_weaks(cdp)) != 0) { + return (ctf_dwarf_error(cdp, NULL, ret, + "failed to convert weak functions and variables")); + } + + if (ctf_update(cdp->cd_ctfp) != 0) { + return (ctf_dwarf_error(cdp, cdp->cd_ctfp, 0, + "failed to update output ctf container")); + } + } + + ctf_phase_dump(cdp->cd_ctfp, "pre-dedup"); + ctf_dprintf("adding inputs for dedup\n"); + if ((ret = ctf_merge_add(cdp->cd_cmh, cdp->cd_ctfp)) != 0) { + return (ctf_dwarf_error(cdp, NULL, ret, + "failed to add inputs for merge")); + } + + ctf_dprintf("starting merge\n"); + if ((ret = ctf_merge_dedup(cdp->cd_cmh, &dedup)) != 0) { + return (ctf_dwarf_error(cdp, NULL, ret, + "failed to deduplicate die")); + } + ctf_close(cdp->cd_ctfp); + cdp->cd_ctfp = dedup; + + return (0); +} + +/* + * Note, we expect that if we're returning a ctf_file_t from one of the dies, + * say in the single node case, it's been saved and the entry here has been set + * to NULL, which ctf_close happily ignores. + */ +static void +ctf_dwarf_free_die(ctf_die_t *cdp) +{ + ctf_dwfunc_t *cdf, *ndf; + ctf_dwvar_t *cdv, *ndv; + ctf_dwbitf_t *cdb, *ndb; + ctf_dwmap_t *map; + void *cookie; + Dwarf_Error derr; + + ctf_dprintf("Beginning to free die: %p\n", cdp); + cdp->cd_elf = NULL; + ctf_dprintf("Trying to free name: %p\n", cdp->cd_name); + if (cdp->cd_name != NULL) + ctf_free(cdp->cd_name, strlen(cdp->cd_name) + 1); + ctf_dprintf("Trying to free merge handle: %p\n", cdp->cd_cmh); + if (cdp->cd_cmh != NULL) { + ctf_merge_fini(cdp->cd_cmh); + cdp->cd_cmh = NULL; + } + + ctf_dprintf("Trying to free functions\n"); + for (cdf = ctf_list_next(&cdp->cd_funcs); cdf != NULL; cdf = ndf) { + ndf = ctf_list_next(cdf); + ctf_free(cdf->cdf_name, strlen(cdf->cdf_name) + 1); + if (cdf->cdf_fip.ctc_argc != 0) { + ctf_free(cdf->cdf_argv, + sizeof (ctf_id_t) * cdf->cdf_fip.ctc_argc); + } + ctf_free(cdf, sizeof (ctf_dwfunc_t)); + } + + ctf_dprintf("Trying to free variables\n"); + for (cdv = ctf_list_next(&cdp->cd_vars); cdv != NULL; cdv = ndv) { + ndv = ctf_list_next(cdv); + ctf_free(cdv->cdv_name, strlen(cdv->cdv_name) + 1); + ctf_free(cdv, sizeof (ctf_dwvar_t)); + } + + ctf_dprintf("Trying to free bitfields\n"); + for (cdb = ctf_list_next(&cdp->cd_bitfields); cdb != NULL; cdb = ndb) { + ndb = ctf_list_next(cdb); + ctf_free(cdb, sizeof (ctf_dwbitf_t)); + } + + /* How do we clean up die usage? */ + ctf_dprintf("Trying to clean up dwarf_t: %p\n", cdp->cd_dwarf); + (void) dwarf_finish(cdp->cd_dwarf, &derr); + cdp->cd_dwarf = NULL; + ctf_close(cdp->cd_ctfp); + + cookie = NULL; + while ((map = avl_destroy_nodes(&cdp->cd_map, &cookie)) != NULL) { + ctf_free(map, sizeof (ctf_dwmap_t)); + } + avl_destroy(&cdp->cd_map); + cdp->cd_errbuf = NULL; +} + +static void +ctf_dwarf_free_dies(ctf_die_t *cdies, int ndies) +{ + int i; + + ctf_dprintf("Beginning to free dies\n"); + for (i = 0; i < ndies; i++) { + ctf_dwarf_free_die(&cdies[i]); + } + + ctf_free(cdies, sizeof (ctf_die_t) * ndies); +} + +static int +ctf_dwarf_count_dies(Dwarf_Debug dw, Dwarf_Error *derr, int *ndies, + char *errbuf, size_t errlen) +{ + int ret; + Dwarf_Half vers; + Dwarf_Unsigned nexthdr; + + while ((ret = dwarf_next_cu_header(dw, NULL, &vers, NULL, NULL, + &nexthdr, derr)) != DW_DLV_NO_ENTRY) { + if (ret != DW_DLV_OK) { + (void) snprintf(errbuf, errlen, + "file does not contain valid DWARF data: %s\n", + dwarf_errmsg(*derr)); + return (ECTF_CONVBKERR); + } + + if (vers != DWARF_VERSION_TWO) { + (void) snprintf(errbuf, errlen, + "unsupported DWARF version: %d\n", vers); + return (ECTF_CONVBKERR); + } + *ndies = *ndies + 1; + } + + if (*ndies == 0) { + (void) snprintf(errbuf, errlen, + "file does not contain valid DWARF data: %s\n", + dwarf_errmsg(*derr)); + return (ECTF_CONVBKERR); + } + + return (0); +} + +/* + * Iterate over all of the dies and create a ctf_die_t for each of them. This is + * used to determine if we have zero, one, or multiple dies to convert. If we + * have zero, that's an error. If there's only one die, that's the simple case. + * No merge needed and only a single Dwarf_Debug as well. + */ +static int +ctf_dwarf_init_die(int fd, Elf *elf, ctf_die_t *cdp, int ndie, char *errbuf, + size_t errlen) +{ + int ret; + Dwarf_Unsigned hdrlen, abboff, nexthdr; + Dwarf_Half addrsz; + Dwarf_Unsigned offset = 0; + Dwarf_Error derr; + + while ((ret = dwarf_next_cu_header(cdp->cd_dwarf, &hdrlen, NULL, + &abboff, &addrsz, &nexthdr, &derr)) != DW_DLV_NO_ENTRY) { + char *name; + Dwarf_Die cu, child; + + /* Based on the counting above, we should be good to go */ + VERIFY(ret == DW_DLV_OK); + if (ndie > 0) { + ndie--; + offset = nexthdr; + continue; + } + + /* + * Compilers are apparently inconsistent. Some emit no DWARF for + * empty files and others emit empty compilation unit. + */ + cdp->cd_voidtid = CTF_ERR; + cdp->cd_longtid = CTF_ERR; + cdp->cd_elf = elf; + cdp->cd_maxoff = nexthdr - 1; + cdp->cd_ctfp = ctf_fdcreate(fd, &ret); + if (cdp->cd_ctfp == NULL) { + ctf_free(cdp, sizeof (ctf_die_t)); + return (ret); + } + avl_create(&cdp->cd_map, ctf_dwmap_comp, sizeof (ctf_dwmap_t), + offsetof(ctf_dwmap_t, cdm_avl)); + cdp->cd_errbuf = errbuf; + cdp->cd_errlen = errlen; + bzero(&cdp->cd_vars, sizeof (ctf_list_t)); + bzero(&cdp->cd_funcs, sizeof (ctf_list_t)); + bzero(&cdp->cd_bitfields, sizeof (ctf_list_t)); + + if ((ret = ctf_dwarf_die_elfenc(elf, cdp, errbuf, + errlen)) != 0) { + avl_destroy(&cdp->cd_map); + ctf_free(cdp, sizeof (ctf_die_t)); + return (ret); + } + + if ((ret = ctf_dwarf_sib(cdp, NULL, &cu)) != 0) { + avl_destroy(&cdp->cd_map); + ctf_free(cdp, sizeof (ctf_die_t)); + return (ret); + } + if (cu == NULL) { + (void) snprintf(errbuf, errlen, + "file does not contain DWARF data\n"); + avl_destroy(&cdp->cd_map); + ctf_free(cdp, sizeof (ctf_die_t)); + return (ECTF_CONVBKERR); + } + + if ((ret = ctf_dwarf_child(cdp, cu, &child)) != 0) { + avl_destroy(&cdp->cd_map); + ctf_free(cdp, sizeof (ctf_die_t)); + return (ret); + } + if (child == NULL) { + (void) snprintf(errbuf, errlen, + "file does not contain DWARF data\n"); + avl_destroy(&cdp->cd_map); + ctf_free(cdp, sizeof (ctf_die_t)); + return (ECTF_CONVBKERR); + } + + cdp->cd_cuoff = offset; + cdp->cd_cu = child; + + if ((cdp->cd_cmh = ctf_merge_init(fd, &ret)) == NULL) { + avl_destroy(&cdp->cd_map); + ctf_free(cdp, sizeof (ctf_die_t)); + return (ret); + } + + if (ctf_dwarf_string(cdp, cu, DW_AT_name, &name) == 0) { + size_t len = strlen(name) + 1; + char *b = basename(name); + cdp->cd_name = strdup(b); + ctf_free(name, len); + } + break; + } + + return (0); +} + + +ctf_conv_status_t +ctf_dwarf_convert(int fd, Elf *elf, uint_t nthrs, int *errp, ctf_file_t **fpp, + char *errmsg, size_t errlen) +{ + int err, ret, ndies, i; + Dwarf_Debug dw; + Dwarf_Error derr; + ctf_die_t *cdies = NULL, *cdp; + workq_t *wqp = NULL; + + if (errp == NULL) + errp = &err; + *errp = 0; + *fpp = NULL; + + ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw, &derr); + if (ret != DW_DLV_OK) { + /* + * The old CTF tools used to check if we expected DWARF data + * here. In this case, if we actually have some amount of DWARF, + * but no section, for now, just go ahead and create an empty + * CTF file. + */ + if (ret == DW_DLV_NO_ENTRY || + dwarf_errno(derr) == DW_DLE_DEBUG_INFO_NULL) { + *fpp = ctf_create(errp); + return (*fpp != NULL ? CTF_CONV_SUCCESS : + CTF_CONV_ERROR); + } + (void) snprintf(errmsg, errlen, + "failed to initialize DWARF: %s\n", + dwarf_errmsg(derr)); + *errp = ECTF_CONVBKERR; + return (CTF_CONV_ERROR); + } + + ndies = 0; + ret = ctf_dwarf_count_dies(dw, &derr, &ndies, errmsg, errlen); + if (ret != 0) { + *errp = ret; + goto out; + } + + (void) dwarf_finish(dw, &derr); + cdies = ctf_alloc(sizeof (ctf_die_t) * ndies); + if (cdies == NULL) { + *errp = ENOMEM; + return (CTF_CONV_ERROR); + } + + for (i = 0; i < ndies; i++) { + cdp = &cdies[i]; + ret = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, + &cdp->cd_dwarf, &derr); + if (ret != 0) { + ctf_free(cdies, sizeof (ctf_die_t) * ndies); + (void) snprintf(errmsg, errlen, + "failed to initialize DWARF: %s\n", + dwarf_errmsg(derr)); + *errp = ECTF_CONVBKERR; + return (CTF_CONV_ERROR); + } + + ret = ctf_dwarf_init_die(fd, elf, &cdies[i], i, errmsg, errlen); + if (ret != 0) { + *errp = ret; + goto out; + } + cdp->cd_doweaks = ndies > 1 ? B_FALSE : B_TRUE; + } + + ctf_dprintf("found %d DWARF die(s)\n", ndies); + + /* + * If we only have one die, there's no reason to use multiple threads, + * even if the user requested them. After all, they just gave us an + * upper bound. + */ + if (ndies == 1) + nthrs = 1; + + if (workq_init(&wqp, nthrs) == -1) { + *errp = errno; + goto out; + } + + for (i = 0; i < ndies; i++) { + cdp = &cdies[i]; + ctf_dprintf("adding die %s: %p, %x %x\n", cdp->cd_name, + cdp->cd_cu, cdp->cd_cuoff, cdp->cd_maxoff); + if (workq_add(wqp, cdp) == -1) { + *errp = errno; + goto out; + } + } + + ret = workq_work(wqp, ctf_dwarf_convert_one, NULL, errp); + if (ret == WORKQ_ERROR) { + *errp = errno; + goto out; + } else if (ret == WORKQ_UERROR) { + ctf_dprintf("internal convert failed: %s\n", + ctf_errmsg(*errp)); + goto out; + } + + ctf_dprintf("Determining next phase: have %d dies\n", ndies); + if (ndies != 1) { + ctf_merge_t *cmp; + + cmp = ctf_merge_init(fd, &ret); + if (cmp == NULL) { + *errp = ret; + goto out; + } + + ctf_dprintf("setting threads\n"); + if ((ret = ctf_merge_set_nthreads(cmp, nthrs)) != 0) { + ctf_merge_fini(cmp); + *errp = ret; + goto out; + } + + ctf_dprintf("adding dies\n"); + for (i = 0; i < ndies; i++) { + cdp = &cdies[i]; + if ((ret = ctf_merge_add(cmp, cdp->cd_ctfp)) != 0) { + ctf_merge_fini(cmp); + *errp = ret; + goto out; + } + } + + ctf_dprintf("performing merge\n"); + ret = ctf_merge_merge(cmp, fpp); + if (ret != 0) { + ctf_dprintf("failed merge!\n"); + *fpp = NULL; + ctf_merge_fini(cmp); + *errp = ret; + goto out; + } + ctf_merge_fini(cmp); + *errp = 0; + ctf_dprintf("successfully converted!\n"); + } else { + *errp = 0; + *fpp = cdies->cd_ctfp; + cdies->cd_ctfp = NULL; + ctf_dprintf("successfully converted!\n"); + } + +out: + workq_fini(wqp); + ctf_dwarf_free_dies(cdies, ndies); + return (*fpp != NULL ? CTF_CONV_SUCCESS : CTF_CONV_ERROR); +} diff --git a/usr/src/lib/libctf/common/ctf_elfwrite.c b/usr/src/lib/libctf/common/ctf_elfwrite.c new file mode 100644 index 0000000000..4d7c10aeec --- /dev/null +++ b/usr/src/lib/libctf/common/ctf_elfwrite.c @@ -0,0 +1,422 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ +/* + * Copyright (c) 2015, Joyent, Inc. + */ + +/* + * Routines for writing ctf data to elf files, originally from the ctf tools. + */ + +#include <libctf_impl.h> +#include <libctf.h> +#include <gelf.h> +#include <sys/stat.h> +#include <sys/types.h> +#include <fcntl.h> +#include <errno.h> +#include <unistd.h> +#include <libelf.h> + +static int +ctf_write_elf(ctf_file_t *fp, Elf *src, Elf *dst, int flags) +{ + GElf_Ehdr sehdr, dehdr; + Elf_Scn *sscn, *dscn; + Elf_Data *sdata, *ddata; + GElf_Shdr shdr; + int symtab_idx = -1; + off_t new_offset = 0; + off_t ctfnameoff = 0; + int compress = (flags & CTF_ELFWRITE_F_COMPRESS); + int *secxlate = NULL; + int srcidx, dstidx, pad, i; + int curnmoff = 0; + int changing = 0; + int ret; + size_t nshdr, nphdr, strndx; + void *strdatabuf = NULL, *symdatabuf = NULL; + size_t strdatasz = 0, symdatasz = 0; + + void *cdata = NULL; + size_t elfsize, asize; + + if ((flags & ~(CTF_ELFWRITE_F_COMPRESS)) != 0) { + ret = ctf_set_errno(fp, EINVAL); + goto out; + } + + if (gelf_newehdr(dst, gelf_getclass(src)) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if (gelf_getehdr(src, &sehdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + (void) memcpy(&dehdr, &sehdr, sizeof (GElf_Ehdr)); + if (gelf_update_ehdr(dst, &dehdr) == 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + /* + * Use libelf to get the number of sections and the string section to + * deal with ELF files that may have a large number of sections. We just + * always use this to make our live easier. + */ + if (elf_getphdrnum(src, &nphdr) != 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if (elf_getshdrnum(src, &nshdr) != 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if (elf_getshdrstrndx(src, &strndx) != 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + /* + * Neither the existing debug sections nor the SUNW_ctf sections (new or + * existing) are SHF_ALLOC'd, so they won't be in areas referenced by + * program headers. As such, we can just blindly copy the program + * headers from the existing file to the new file. + */ + if (nphdr != 0) { + (void) elf_flagelf(dst, ELF_C_SET, ELF_F_LAYOUT); + if (gelf_newphdr(dst, nphdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + for (i = 0; i < nphdr; i++) { + GElf_Phdr phdr; + + if (gelf_getphdr(src, i, &phdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if (gelf_update_phdr(dst, i, &phdr) == 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + } + } + + secxlate = ctf_alloc(sizeof (int) * nshdr); + for (srcidx = dstidx = 0; srcidx < nshdr; srcidx++) { + Elf_Scn *scn = elf_getscn(src, srcidx); + GElf_Shdr shdr; + char *sname; + + if (gelf_getshdr(scn, &shdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + sname = elf_strptr(src, strndx, shdr.sh_name); + if (sname == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + if (strcmp(sname, CTF_ELF_SCN_NAME) == 0) { + secxlate[srcidx] = -1; + } else { + secxlate[srcidx] = dstidx++; + curnmoff += strlen(sname) + 1; + } + + new_offset = (off_t)dehdr.e_phoff; + } + + for (srcidx = 1; srcidx < nshdr; srcidx++) { + char *sname; + + sscn = elf_getscn(src, srcidx); + if (gelf_getshdr(sscn, &shdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + if (secxlate[srcidx] == -1) { + changing = 1; + continue; + } + + dscn = elf_newscn(dst); + if (dscn == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + /* + * If this file has program headers, we need to explicitly lay + * out sections. If none of the sections prior to this one have + * been removed, then we can just use the existing location. If + * one or more sections have been changed, then we need to + * adjust this one to avoid holes. + */ + if (changing && nphdr != 0) { + pad = new_offset % shdr.sh_addralign; + + if (pad != 0) + new_offset += shdr.sh_addralign - pad; + shdr.sh_offset = new_offset; + } + + shdr.sh_link = secxlate[shdr.sh_link]; + + if (shdr.sh_type == SHT_REL || shdr.sh_type == SHT_RELA) + shdr.sh_info = secxlate[shdr.sh_info]; + + sname = elf_strptr(src, strndx, shdr.sh_name); + if (sname == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if ((sdata = elf_getdata(sscn, NULL)) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if ((ddata = elf_newdata(dscn)) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + bcopy(sdata, ddata, sizeof (Elf_Data)); + + if (srcidx == strndx) { + char seclen = strlen(CTF_ELF_SCN_NAME); + + strdatasz = ddata->d_size + shdr.sh_size + + seclen + 1; + ddata->d_buf = strdatabuf = ctf_alloc(strdatasz); + if (ddata->d_buf == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + bcopy(sdata->d_buf, ddata->d_buf, shdr.sh_size); + (void) strcpy((caddr_t)ddata->d_buf + shdr.sh_size, + CTF_ELF_SCN_NAME); + ctfnameoff = (off_t)shdr.sh_size; + shdr.sh_size += seclen + 1; + ddata->d_size += seclen + 1; + + if (nphdr != 0) + changing = 1; + } + + if (shdr.sh_type == SHT_SYMTAB && shdr.sh_entsize != 0) { + int nsym = shdr.sh_size / shdr.sh_entsize; + + symtab_idx = secxlate[srcidx]; + + symdatasz = shdr.sh_size; + ddata->d_buf = symdatabuf = ctf_alloc(symdatasz); + if (ddata->d_buf == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + (void) bcopy(sdata->d_buf, ddata->d_buf, shdr.sh_size); + + for (i = 0; i < nsym; i++) { + GElf_Sym sym; + short newscn; + + (void) gelf_getsym(ddata, i, &sym); + + if (sym.st_shndx >= SHN_LORESERVE) + continue; + + if ((newscn = secxlate[sym.st_shndx]) != + sym.st_shndx) { + sym.st_shndx = + (newscn == -1 ? 1 : newscn); + + if (gelf_update_sym(ddata, i, &sym) == + 0) { + ret = ctf_set_errno(fp, + ECTF_ELF); + goto out; + } + } + } + } + + if (gelf_update_shdr(dscn, &shdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + new_offset = (off_t)shdr.sh_offset; + if (shdr.sh_type != SHT_NOBITS) + new_offset += shdr.sh_size; + } + + if (symtab_idx == -1) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + /* Add the ctf section */ + if ((dscn = elf_newscn(dst)) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if (gelf_getshdr(dscn, &shdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + shdr.sh_name = ctfnameoff; + shdr.sh_type = SHT_PROGBITS; + shdr.sh_size = fp->ctf_size; + shdr.sh_link = symtab_idx; + shdr.sh_addralign = 4; + if (changing && nphdr != 0) { + pad = new_offset % shdr.sh_addralign; + + if (pad) + new_offset += shdr.sh_addralign - pad; + + shdr.sh_offset = new_offset; + new_offset += shdr.sh_size; + } + + if ((ddata = elf_newdata(dscn)) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + if (compress != 0) { + int err; + + if (ctf_zopen(&err) == NULL) { + ret = ctf_set_errno(fp, err); + goto out; + } + + if ((err = ctf_compress(fp, &cdata, &asize, &elfsize)) != 0) { + ret = ctf_set_errno(fp, err); + goto out; + } + ddata->d_buf = cdata; + ddata->d_size = elfsize; + } else { + ddata->d_buf = (void *)fp->ctf_base; + ddata->d_size = fp->ctf_size; + } + ddata->d_align = shdr.sh_addralign; + + if (gelf_update_shdr(dscn, &shdr) == 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + /* update the section header location */ + if (nphdr != 0) { + size_t align = gelf_fsize(dst, ELF_T_ADDR, 1, EV_CURRENT); + size_t r = new_offset % align; + + if (r) + new_offset += align - r; + + dehdr.e_shoff = new_offset; + } + + /* commit to disk */ + if (sehdr.e_shstrndx == SHN_XINDEX) + dehdr.e_shstrndx = SHN_XINDEX; + else + dehdr.e_shstrndx = secxlate[sehdr.e_shstrndx]; + if (gelf_update_ehdr(dst, &dehdr) == NULL) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + if (elf_update(dst, ELF_C_WRITE) < 0) { + ret = ctf_set_errno(fp, ECTF_ELF); + goto out; + } + + ret = 0; + +out: + if (strdatabuf != NULL) + ctf_free(strdatabuf, strdatasz); + if (symdatabuf != NULL) + ctf_free(symdatabuf, symdatasz); + if (cdata != NULL) + ctf_data_free(cdata, fp->ctf_size); + if (secxlate != NULL) + ctf_free(secxlate, sizeof (int) * nshdr); + + return (ret); +} + +int +ctf_elffdwrite(ctf_file_t *fp, int ifd, int ofd, int flags) +{ + int ret; + Elf *ielf, *oelf; + + (void) elf_version(EV_CURRENT); + if ((ielf = elf_begin(ifd, ELF_C_READ, NULL)) == NULL) + return (ctf_set_errno(fp, ECTF_ELF)); + + if ((oelf = elf_begin(ofd, ELF_C_WRITE, NULL)) == NULL) + return (ctf_set_errno(fp, ECTF_ELF)); + + ret = ctf_write_elf(fp, ielf, oelf, flags); + + (void) elf_end(ielf); + (void) elf_end(oelf); + + return (ret); +} + +int +ctf_elfwrite(ctf_file_t *fp, const char *input, const char *output, int flags) +{ + struct stat st; + int ifd, ofd, ret; + + if ((ifd = open(input, O_RDONLY)) < 0) + return (ctf_set_errno(fp, errno)); + + if (fstat(ifd, &st) < 0) + return (ctf_set_errno(fp, errno)); + + if ((ofd = open(output, O_RDWR | O_CREAT | O_TRUNC, st.st_mode)) < 0) + return (ctf_set_errno(fp, errno)); + + ret = ctf_elffdwrite(fp, ifd, ofd, flags); + + if (close(ifd) != 0 && ret != 0) + ret = ctf_set_errno(fp, errno); + if (close(ofd) != 0 && ret != 0) + ret = ctf_set_errno(fp, errno); + + return (ret); +} diff --git a/usr/src/lib/libctf/common/ctf_lib.c b/usr/src/lib/libctf/common/ctf_lib.c index e71ebc6d9d..6b637ba663 100644 --- a/usr/src/lib/libctf/common/ctf_lib.c +++ b/usr/src/lib/libctf/common/ctf_lib.c @@ -23,6 +23,9 @@ * Copyright 2003 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ +/* + * Copyright (c) 2015, Joyent, Inc. + */ #include <sys/types.h> #include <sys/stat.h> @@ -33,6 +36,9 @@ #include <errno.h> #include <dlfcn.h> #include <gelf.h> +#include <zlib.h> +#include <zone.h> +#include <sys/debug.h> #ifdef _LP64 static const char *_libctf_zlib = "/usr/lib/64/libz.so.1"; @@ -42,6 +48,9 @@ static const char *_libctf_zlib = "/usr/lib/libz.so.1"; static struct { int (*z_uncompress)(uchar_t *, ulong_t *, const uchar_t *, ulong_t); + int (*z_initcomp)(z_stream *, int, const char *, int); + int (*z_compress)(z_stream *, int); + int (*z_finicomp)(z_stream *); const char *(*z_error)(int); void *z_dlp; } zlib; @@ -49,6 +58,18 @@ static struct { static size_t _PAGESIZE; static size_t _PAGEMASK; +static uint64_t ctf_phase = 0; + +#define CTF_COMPRESS_CHUNK (64*1024) + +typedef struct ctf_zdata { + void *czd_buf; + void *czd_next; + ctf_file_t *czd_ctfp; + size_t czd_allocsz; + z_stream czd_zstr; +} ctf_zdata_t; + #pragma init(_libctf_init) void _libctf_init(void) @@ -72,21 +93,47 @@ _libctf_init(void) void * ctf_zopen(int *errp) { - ctf_dprintf("decompressing CTF data using %s\n", _libctf_zlib); + char buf[MAXPATHLEN]; + const char *path = _libctf_zlib, *zroot; if (zlib.z_dlp != NULL) return (zlib.z_dlp); /* library is already loaded */ - if (access(_libctf_zlib, R_OK) == -1) + /* + * Get the zone native root. For the tools build, we don't need + * this (it seems fair to impose that we always build the system in + * a native zone), and we want to allow build machines that are older + * that the notion of the native root, so we only actually make this + * call if we're not the tools build. + */ +#ifndef CTF_TOOLS_BUILD + zroot = zone_get_nroot(); +#else + zroot = NULL; +#endif + + if (zroot != NULL) { + (void) snprintf(buf, MAXPATHLEN, "%s/%s", zroot, _libctf_zlib); + path = buf; + } + + ctf_dprintf("decompressing CTF data using %s\n", path); + + if (access(path, R_OK) == -1) return (ctf_set_open_errno(errp, ECTF_ZMISSING)); - if ((zlib.z_dlp = dlopen(_libctf_zlib, RTLD_LAZY | RTLD_LOCAL)) == NULL) + if ((zlib.z_dlp = dlopen(path, RTLD_LAZY | RTLD_LOCAL)) == NULL) return (ctf_set_open_errno(errp, ECTF_ZINIT)); zlib.z_uncompress = (int (*)()) dlsym(zlib.z_dlp, "uncompress"); + zlib.z_initcomp = (int (*)()) dlsym(zlib.z_dlp, "deflateInit_"); + zlib.z_compress = (int (*)()) dlsym(zlib.z_dlp, "deflate"); + zlib.z_finicomp = (int (*)()) dlsym(zlib.z_dlp, "deflateEnd"); zlib.z_error = (const char *(*)()) dlsym(zlib.z_dlp, "zError"); - if (zlib.z_uncompress == NULL || zlib.z_error == NULL) { + if (zlib.z_uncompress == NULL || zlib.z_error == NULL || + zlib.z_initcomp == NULL|| zlib.z_compress == NULL || + zlib.z_finicomp == NULL) { (void) dlclose(zlib.z_dlp); bzero(&zlib, sizeof (zlib)); return (ctf_set_open_errno(errp, ECTF_ZINIT)); @@ -111,6 +158,207 @@ z_strerror(int err) return (zlib.z_error(err)); } +static int +ctf_zdata_init(ctf_zdata_t *czd, ctf_file_t *fp) +{ + int err; + ctf_header_t *cthp; + + bzero(czd, sizeof (ctf_zdata_t)); + + czd->czd_allocsz = fp->ctf_size; + czd->czd_buf = ctf_data_alloc(czd->czd_allocsz); + if (czd->czd_buf == MAP_FAILED) + return (ctf_set_errno(fp, ENOMEM)); + + bcopy(fp->ctf_base, czd->czd_buf, sizeof (ctf_header_t)); + czd->czd_ctfp = fp; + cthp = czd->czd_buf; + cthp->cth_flags |= CTF_F_COMPRESS; + czd->czd_next = (void *)((uintptr_t)czd->czd_buf + + sizeof (ctf_header_t)); + + if ((err = zlib.z_initcomp(&czd->czd_zstr, Z_BEST_COMPRESSION, + ZLIB_VERSION, sizeof (z_stream))) != Z_OK) + return (ctf_set_errno(fp, ECTF_ZLIB)); + + return (0); +} + +static int +ctf_zdata_grow(ctf_zdata_t *czd) +{ + size_t off; + size_t newsz; + void *ndata; + + off = (uintptr_t)czd->czd_next - (uintptr_t)czd->czd_buf; + newsz = czd->czd_allocsz + CTF_COMPRESS_CHUNK; + ndata = ctf_data_alloc(newsz); + if (ndata == MAP_FAILED) { + return (ctf_set_errno(czd->czd_ctfp, ENOMEM)); + } + + bcopy(czd->czd_buf, ndata, off); + ctf_data_free(czd->czd_buf, czd->czd_allocsz); + czd->czd_allocsz = newsz; + czd->czd_buf = ndata; + czd->czd_next = (void *)((uintptr_t)ndata + off); + + czd->czd_zstr.next_out = (Bytef *)czd->czd_next; + czd->czd_zstr.avail_out = CTF_COMPRESS_CHUNK; + return (0); +} + +static int +ctf_zdata_compress_buffer(ctf_zdata_t *czd, const void *buf, size_t bufsize) +{ + int err; + + czd->czd_zstr.next_out = czd->czd_next; + czd->czd_zstr.avail_out = czd->czd_allocsz - + (czd->czd_next - czd->czd_buf); + czd->czd_zstr.next_in = (Bytef *)buf; + czd->czd_zstr.avail_in = bufsize; + + while (czd->czd_zstr.avail_in != 0) { + if (czd->czd_zstr.avail_out == 0) { + czd->czd_next = czd->czd_zstr.next_out; + if ((err = ctf_zdata_grow(czd)) != 0) { + return (err); + } + } + + if ((err = zlib.z_compress(&czd->czd_zstr, Z_NO_FLUSH)) != Z_OK) + return (ctf_set_errno(czd->czd_ctfp, ECTF_ZLIB)); + } + czd->czd_next = czd->czd_zstr.next_out; + + return (0); +} + +static int +ctf_zdata_flush(ctf_zdata_t *czd, boolean_t finish) +{ + int err; + int flag = finish == B_TRUE ? Z_FINISH : Z_FULL_FLUSH; + int bret = finish == B_TRUE ? Z_STREAM_END : Z_BUF_ERROR; + + for (;;) { + if (czd->czd_zstr.avail_out == 0) { + czd->czd_next = czd->czd_zstr.next_out; + if ((err = ctf_zdata_grow(czd)) != 0) { + return (err); + } + } + + err = zlib.z_compress(&czd->czd_zstr, flag); + if (err == bret) { + break; + } + if (err != Z_OK) + return (ctf_set_errno(czd->czd_ctfp, ECTF_ZLIB)); + + } + + czd->czd_next = czd->czd_zstr.next_out; + + return (0); +} + +static int +ctf_zdata_end(ctf_zdata_t *czd) +{ + int ret; + + if ((ret = ctf_zdata_flush(czd, B_TRUE)) != 0) + return (ret); + + if ((ret = zlib.z_finicomp(&czd->czd_zstr)) != 0) + return (ctf_set_errno(czd->czd_ctfp, ECTF_ZLIB)); + + return (0); +} + +static void +ctf_zdata_cleanup(ctf_zdata_t *czd) +{ + ctf_data_free(czd->czd_buf, czd->czd_allocsz); + (void) zlib.z_finicomp(&czd->czd_zstr); +} + +/* + * Compress our CTF data and return both the size of the compressed data and the + * size of the allocation. These may be different due to the nature of + * compression. + * + * In addition, we flush the compression inbetween our two phases such that we + * maintain a different dictionary bbetween the CTF data and the string section. + */ +int +ctf_compress(ctf_file_t *fp, void **buf, size_t *allocsz, size_t *elfsize) +{ + int err; + ctf_zdata_t czd; + ctf_header_t *cthp = (ctf_header_t *)fp->ctf_base; + + if ((err = ctf_zdata_init(&czd, fp)) != 0) + return (err); + + if ((err = ctf_zdata_compress_buffer(&czd, fp->ctf_buf, + cthp->cth_stroff)) != 0) { + ctf_zdata_cleanup(&czd); + return (err); + } + + if ((err = ctf_zdata_flush(&czd, B_FALSE)) != 0) { + ctf_zdata_cleanup(&czd); + return (err); + } + + if ((err = ctf_zdata_compress_buffer(&czd, + fp->ctf_buf + cthp->cth_stroff, cthp->cth_strlen)) != 0) { + ctf_zdata_cleanup(&czd); + return (err); + } + + if ((err = ctf_zdata_end(&czd)) != 0) { + ctf_zdata_cleanup(&czd); + return (err); + } + + *buf = czd.czd_buf; + *allocsz = czd.czd_allocsz; + *elfsize = (uintptr_t)(czd.czd_next - czd.czd_buf); + + return (0); +} + +int +z_compress(void *dst, size_t *dstlen, const void *src, size_t srclen) +{ + z_stream zs; + int err; + + bzero(&zs, sizeof (z_stream)); + zs.next_in = (uchar_t *)src; + zs.avail_in = srclen; + zs.next_out = dst; + zs.avail_out = *dstlen; + + if ((err = zlib.z_initcomp(&zs, Z_BEST_COMPRESSION, ZLIB_VERSION, + sizeof (z_stream))) != Z_OK) + return (err); + + if ((err = zlib.z_compress(&zs, Z_FINISH)) != Z_STREAM_END) { + (void) zlib.z_finicomp(&zs); + return (err == Z_OK ? Z_BUF_ERROR : err); + } + + *dstlen = zs.total_out; + return (zlib.z_finicomp(&zs)); +} + /* * Convert a 32-bit ELF file header into GElf. */ @@ -189,7 +437,7 @@ ctf_sect_munmap(const ctf_sect_t *sp) * responsible for closing the file descriptor when it is no longer needed. */ ctf_file_t * -ctf_fdopen(int fd, int *errp) +ctf_fdcreate_int(int fd, int *errp, ctf_sect_t *ctfp) { ctf_sect_t ctfsect, symsect, strsect; ctf_file_t *fp = NULL; @@ -221,6 +469,9 @@ ctf_fdopen(int fd, int *errp) */ if (nbytes >= sizeof (ctf_preamble_t) && hdr.ctf.ctp_magic == CTF_MAGIC) { + if (ctfp != NULL) + return (ctf_set_open_errno(errp, EINVAL)); + if (hdr.ctf.ctp_version > CTF_VERSION) return (ctf_set_open_errno(errp, ECTF_CTFVERS)); @@ -370,7 +621,8 @@ ctf_fdopen(int fd, int *errp) continue; /* corrupt sh_name field */ if (shp->sh_type == SHT_PROGBITS && - strcmp(strs + shp->sh_name, _CTF_SECTION) == 0) { + strcmp(strs + shp->sh_name, _CTF_SECTION) == 0 && + ctfp == NULL) { ctfsect.cts_name = strs + shp->sh_name; ctfsect.cts_type = shp->sh_type; ctfsect.cts_flags = shp->sh_flags; @@ -397,18 +649,22 @@ ctf_fdopen(int fd, int *errp) free(sp); /* free section header array */ - if (ctfsect.cts_type == SHT_NULL) { - (void) munmap(strs_map, strs_mapsz); - return (ctf_set_open_errno(errp, ECTF_NOCTFDATA)); - } + if (ctfp == NULL) { + if (ctfsect.cts_type == SHT_NULL && ctfp == NULL) { + (void) munmap(strs_map, strs_mapsz); + return (ctf_set_open_errno(errp, + ECTF_NOCTFDATA)); + } - /* - * Now mmap the CTF data, symtab, and strtab sections and - * call ctf_bufopen() to do the rest of the work. - */ - if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) { - (void) munmap(strs_map, strs_mapsz); - return (ctf_set_open_errno(errp, ECTF_MMAP)); + /* + * Now mmap the CTF data, symtab, and strtab sections + * and call ctf_bufopen() to do the rest of the work. + */ + if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) { + (void) munmap(strs_map, strs_mapsz); + return (ctf_set_open_errno(errp, ECTF_MMAP)); + } + ctfp = &ctfsect; } if (symsect.cts_type != SHT_NULL && @@ -418,12 +674,13 @@ ctf_fdopen(int fd, int *errp) (void) ctf_set_open_errno(errp, ECTF_MMAP); goto bad; /* unmap all and abort */ } - fp = ctf_bufopen(&ctfsect, &symsect, &strsect, errp); + fp = ctf_bufopen(ctfp, &symsect, &strsect, errp); } else - fp = ctf_bufopen(&ctfsect, NULL, NULL, errp); + fp = ctf_bufopen(ctfp, NULL, NULL, errp); bad: if (fp == NULL) { - ctf_sect_munmap(&ctfsect); + if (ctfp == NULL) + ctf_sect_munmap(&ctfsect); ctf_sect_munmap(&symsect); ctf_sect_munmap(&strsect); } else @@ -436,6 +693,12 @@ bad: return (ctf_set_open_errno(errp, ECTF_FMT)); } +ctf_file_t * +ctf_fdopen(int fd, int *errp) +{ + return (ctf_fdcreate_int(fd, errp, NULL)); +} + /* * Open the specified file and return a pointer to a CTF container. The file * can be either an ELF file or raw CTF file. This is just a convenient @@ -502,3 +765,25 @@ ctf_version(int version) return (_libctf_version); } + +/* + * A utility function for folks debugging CTF conversion and merging. + */ +void +ctf_phase_dump(ctf_file_t *fp, const char *phase) +{ + int fd; + static char *base; + char path[MAXPATHLEN]; + + if (base == NULL && (base = getenv("LIBCTF_WRITE_PHASES")) == NULL) + return; + + (void) snprintf(path, sizeof (path), "%s/libctf.%s.%d.ctf", base, + phase != NULL ? phase : "", + ctf_phase); + if ((fd = open(path, O_CREAT | O_TRUNC | O_RDWR, 0777)) < 0) + return; + (void) ctf_write(fp, fd); + (void) close(fd); +} diff --git a/usr/src/lib/libctf/common/ctf_merge.c b/usr/src/lib/libctf/common/ctf_merge.c new file mode 100644 index 0000000000..f23dbc232d --- /dev/null +++ b/usr/src/lib/libctf/common/ctf_merge.c @@ -0,0 +1,1570 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright (c) 2015 Joyent, Inc. + */ + +/* + * To perform a merge of two CTF containers, we first diff the two containers + * types. For every type that's in the src container, but not in the dst + * container, we note it and add it to dst container. If there are any objects + * or functions associated with src, we go through and update the types that + * they refer to such that they all refer to types in the dst container. + * + * The bulk of the logic for the merge, after we've run the diff, occurs in + * ctf_merge_common(). + * + * In terms of exported APIs, we don't really export a simple merge two + * containers, as the general way this is used, in something like ctfmerge(1), + * is to add all the containers and then let us figure out the best way to merge + * it. In the future we'll want to grow some control over the number of threads + * that we use to do this, if we end up wanting a muli-threaded merge. If we do, + * we should take care to do the merge in the same way every time. + */ + +#include <libctf_impl.h> +#include <sys/debug.h> +#include <sys/list.h> +#include <stddef.h> +#include <fcntl.h> +#include <sys/types.h> +#include <sys/stat.h> +#include <mergeq.h> +#include <errno.h> + +typedef struct ctf_merge_tinfo { + uint16_t cmt_map; /* Map to the type in out */ + boolean_t cmt_fixup; + boolean_t cmt_forward; + boolean_t cmt_missing; +} ctf_merge_tinfo_t; + +/* + * State required for doing an individual merge of two containers. + */ +typedef struct ctf_merge_types { + ctf_file_t *cm_out; /* Output CTF file */ + ctf_file_t *cm_src; /* Input CTF file */ + ctf_merge_tinfo_t *cm_tmap; /* Type state information */ + boolean_t cm_dedup; /* Are we doing a dedup? */ + boolean_t cm_unique; /* are we doing a uniquify? */ +} ctf_merge_types_t; + +typedef struct ctf_merge_objmap { + list_node_t cmo_node; + const char *cmo_name; /* Symbol name */ + ulong_t cmo_idx; /* Symbol ID */ + ctf_id_t cmo_tid; /* Type ID */ +} ctf_merge_objmap_t; + +typedef struct ctf_merge_funcmap { + list_node_t cmf_node; + const char *cmf_name; /* Symbol name */ + ulong_t cmf_idx; /* Symbol ID */ + ctf_id_t cmf_rtid; /* Type ID */ + uint_t cmf_flags; /* ctf_funcinfo_t ctc_flags */ + uint_t cmf_argc; /* Number of arguments */ + ctf_id_t cmf_args[]; /* Types of arguments */ +} ctf_merge_funcmap_t; + +typedef struct ctf_merge_input { + list_node_t cmi_node; + ctf_file_t *cmi_input; + list_t cmi_omap; + list_t cmi_fmap; + boolean_t cmi_created; +} ctf_merge_input_t; + +struct ctf_merge_handle { + list_t cmh_inputs; /* Input list */ + uint_t cmh_ninputs; /* Number of inputs */ + uint_t cmh_nthreads; /* Number of threads to use */ + ctf_file_t *cmh_unique; /* ctf to uniquify against */ + boolean_t cmh_msyms; /* Should we merge symbols/funcs? */ + int cmh_ofd; /* FD for output file */ + int cmh_flags; /* Flags that control merge behavior */ + char *cmh_label; /* Optional label */ + char *cmh_pname; /* Parent name */ +}; + +static int ctf_merge_add_type(ctf_merge_types_t *, ctf_id_t); + +static ctf_id_t +ctf_merge_gettype(ctf_merge_types_t *cmp, ctf_id_t id) +{ + if (cmp->cm_dedup == B_FALSE) { + VERIFY(cmp->cm_tmap[id].cmt_map != 0); + return (cmp->cm_tmap[id].cmt_map); + } + + while (cmp->cm_tmap[id].cmt_missing == B_FALSE) { + VERIFY(cmp->cm_tmap[id].cmt_map != 0); + id = cmp->cm_tmap[id].cmt_map; + } + VERIFY(cmp->cm_tmap[id].cmt_map != 0); + return (cmp->cm_tmap[id].cmt_map); +} + +static void +ctf_merge_diffcb(ctf_file_t *ifp, ctf_id_t iid, boolean_t same, ctf_file_t *ofp, + ctf_id_t oid, void *arg) +{ + ctf_merge_types_t *cmp = arg; + ctf_merge_tinfo_t *cmt = cmp->cm_tmap; + + if (same == B_TRUE) { + if (ctf_type_kind(ifp, iid) == CTF_K_FORWARD && + ctf_type_kind(ofp, oid) != CTF_K_FORWARD) { + VERIFY(cmt[oid].cmt_map == 0); + + /* + * If we're uniquifying types, it's possible for the + * container that we're uniquifying against to have a + * forward which exists in the container being reduced. + * For example, genunix has the machcpu structure as a + * forward which is actually in unix and we uniquify + * unix against genunix. In such cases, we explicitly do + * not do any mapping of the forward information, lest + * we risk losing the real definition. Instead, mark + * that it's missing. + */ + if (cmp->cm_unique == B_TRUE) { + cmt[oid].cmt_missing = B_TRUE; + return; + } + + cmt[oid].cmt_map = iid; + cmt[oid].cmt_forward = B_TRUE; + ctf_dprintf("merge diff forward mapped %d->%d\n", oid, + iid); + return; + } + + /* + * We could have multiple things that a given type ends up + * matching in the world of forwards and pointers to forwards. + * For now just take the first one... + */ + if (cmt[oid].cmt_map != 0) + return; + cmt[oid].cmt_map = iid; + ctf_dprintf("merge diff mapped %d->%d\n", oid, iid); + } else if (ifp == cmp->cm_src) { + VERIFY(cmt[iid].cmt_map == 0); + cmt[iid].cmt_missing = B_TRUE; + ctf_dprintf("merge diff said %d is missing\n", iid); + } +} + +static int +ctf_merge_add_number(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int ret, flags; + const ctf_type_t *tp; + const char *name; + ctf_encoding_t en; + + if (ctf_type_encoding(cmp->cm_src, id, &en) != 0) + return (CTF_ERR); + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + name = ctf_strraw(cmp->cm_src, tp->ctt_name); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + ret = ctf_add_encoded(cmp->cm_out, flags, name, &en, + ctf_type_kind(cmp->cm_src, id)); + + if (ret == CTF_ERR) + return (ret); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = ret; + return (0); +} + +static int +ctf_merge_add_array(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int ret, flags; + const ctf_type_t *tp; + ctf_arinfo_t ar; + + if (ctf_array_info(cmp->cm_src, id, &ar) == CTF_ERR) + return (CTF_ERR); + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + if (cmp->cm_tmap[ar.ctr_contents].cmt_map == 0) { + ret = ctf_merge_add_type(cmp, ar.ctr_contents); + if (ret != 0) + return (ret); + ASSERT(cmp->cm_tmap[ar.ctr_contents].cmt_map != 0); + } + ar.ctr_contents = ctf_merge_gettype(cmp, ar.ctr_contents); + + if (cmp->cm_tmap[ar.ctr_index].cmt_map == 0) { + ret = ctf_merge_add_type(cmp, ar.ctr_index); + if (ret != 0) + return (ret); + ASSERT(cmp->cm_tmap[ar.ctr_index].cmt_map != 0); + } + ar.ctr_index = ctf_merge_gettype(cmp, ar.ctr_index); + + ret = ctf_add_array(cmp->cm_out, flags, &ar); + if (ret == CTF_ERR) + return (ret); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = ret; + + return (0); +} + +static int +ctf_merge_add_reftype(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int ret, flags; + const ctf_type_t *tp; + ctf_id_t reftype; + const char *name; + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + name = ctf_strraw(cmp->cm_src, tp->ctt_name); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + reftype = ctf_type_reference(cmp->cm_src, id); + if (reftype == CTF_ERR) + return (ctf_set_errno(cmp->cm_out, ctf_errno(cmp->cm_src))); + + if (cmp->cm_tmap[reftype].cmt_map == 0) { + ret = ctf_merge_add_type(cmp, reftype); + if (ret != 0) + return (ret); + ASSERT(cmp->cm_tmap[reftype].cmt_map != 0); + } + reftype = ctf_merge_gettype(cmp, reftype); + + ret = ctf_add_reftype(cmp->cm_out, flags, name, reftype, + ctf_type_kind(cmp->cm_src, id)); + if (ret == CTF_ERR) + return (ret); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = ret; + return (0); +} + +static int +ctf_merge_add_typedef(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int ret, flags; + const ctf_type_t *tp; + const char *name; + ctf_id_t reftype; + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + name = ctf_strraw(cmp->cm_src, tp->ctt_name); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + reftype = ctf_type_reference(cmp->cm_src, id); + if (reftype == CTF_ERR) + return (ctf_set_errno(cmp->cm_out, ctf_errno(cmp->cm_src))); + + if (cmp->cm_tmap[reftype].cmt_map == 0) { + ret = ctf_merge_add_type(cmp, reftype); + if (ret != 0) + return (ret); + ASSERT(cmp->cm_tmap[reftype].cmt_map != 0); + } + reftype = ctf_merge_gettype(cmp, reftype); + + ret = ctf_add_typedef(cmp->cm_out, flags, name, reftype); + if (ret == CTF_ERR) + return (ret); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = ret; + return (0); +} + +typedef struct ctf_merge_enum { + ctf_file_t *cme_fp; + ctf_id_t cme_id; +} ctf_merge_enum_t; + +static int +ctf_merge_add_enumerator(const char *name, int value, void *arg) +{ + ctf_merge_enum_t *cmep = arg; + + return (ctf_add_enumerator(cmep->cme_fp, cmep->cme_id, name, value) == + CTF_ERR); +} + +static int +ctf_merge_add_enum(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int flags; + const ctf_type_t *tp; + const char *name; + ctf_id_t enumid; + ctf_merge_enum_t cme; + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + name = ctf_strraw(cmp->cm_src, tp->ctt_name); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + enumid = ctf_add_enum(cmp->cm_out, flags, name); + if (enumid == CTF_ERR) + return (enumid); + + cme.cme_fp = cmp->cm_out; + cme.cme_id = enumid; + if (ctf_enum_iter(cmp->cm_src, id, ctf_merge_add_enumerator, + &cme) != 0) + return (CTF_ERR); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = enumid; + return (0); +} + +static int +ctf_merge_add_func(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int ret, flags, i; + const ctf_type_t *tp; + ctf_funcinfo_t ctc; + ctf_id_t *argv; + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + if (ctf_func_info_by_id(cmp->cm_src, id, &ctc) == CTF_ERR) + return (ctf_set_errno(cmp->cm_out, ctf_errno(cmp->cm_src))); + + argv = ctf_alloc(sizeof (ctf_id_t) * ctc.ctc_argc); + if (argv == NULL) + return (ctf_set_errno(cmp->cm_out, ENOMEM)); + if (ctf_func_args_by_id(cmp->cm_src, id, ctc.ctc_argc, argv) == + CTF_ERR) { + ctf_free(argv, sizeof (ctf_id_t) * ctc.ctc_argc); + return (ctf_set_errno(cmp->cm_out, ctf_errno(cmp->cm_src))); + } + + if (cmp->cm_tmap[ctc.ctc_return].cmt_map == 0) { + ret = ctf_merge_add_type(cmp, ctc.ctc_return); + if (ret != 0) + return (ret); + ASSERT(cmp->cm_tmap[ctc.ctc_return].cmt_map != 0); + } + ctc.ctc_return = ctf_merge_gettype(cmp, ctc.ctc_return); + + for (i = 0; i < ctc.ctc_argc; i++) { + if (cmp->cm_tmap[argv[i]].cmt_map == 0) { + ret = ctf_merge_add_type(cmp, argv[i]); + if (ret != 0) + return (ret); + ASSERT(cmp->cm_tmap[argv[i]].cmt_map != 0); + } + argv[i] = ctf_merge_gettype(cmp, argv[i]); + } + + ret = ctf_add_funcptr(cmp->cm_out, flags, &ctc, argv); + ctf_free(argv, sizeof (ctf_id_t) * ctc.ctc_argc); + if (ret == CTF_ERR) + return (ret); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = ret; + return (0); +} + +static int +ctf_merge_add_forward(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int ret, flags; + const ctf_type_t *tp; + const char *name; + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + name = ctf_strraw(cmp->cm_src, tp->ctt_name); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + + /* + * ctf_add_forward tries to check to see if a given forward already + * exists in one of its hash tables. If we're here then we know that we + * have a forward in a container that isn't present in another. + * Therefore, we choose a token hash table to satisfy the API choice + * here. + */ + ret = ctf_add_forward(cmp->cm_out, flags, name, CTF_K_STRUCT); + if (ret == CTF_ERR) + return (CTF_ERR); + + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = ret; + return (0); +} + +typedef struct ctf_merge_su { + ctf_merge_types_t *cms_cm; + ctf_id_t cms_id; +} ctf_merge_su_t; + +static int +ctf_merge_add_member(const char *name, ctf_id_t type, ulong_t offset, void *arg) +{ + ctf_merge_su_t *cms = arg; + + VERIFY(cms->cms_cm->cm_tmap[type].cmt_map != 0); + type = cms->cms_cm->cm_tmap[type].cmt_map; + + ctf_dprintf("Trying to add member %s to %d\n", name, cms->cms_id); + return (ctf_add_member(cms->cms_cm->cm_out, cms->cms_id, name, + type, offset) == CTF_ERR); +} + +/* + * During the first pass, we always add the generic structure and union but none + * of its members as they might not all have been mapped yet. Instead we just + * mark all structures and unions as needing to be fixed up. + */ +static int +ctf_merge_add_sou(ctf_merge_types_t *cmp, ctf_id_t id, boolean_t forward) +{ + int flags, kind; + const ctf_type_t *tp; + const char *name; + ctf_id_t suid; + + tp = LCTF_INDEX_TO_TYPEPTR(cmp->cm_src, id); + name = ctf_strraw(cmp->cm_src, tp->ctt_name); + if (CTF_INFO_ISROOT(tp->ctt_info) != 0) + flags = CTF_ADD_ROOT; + else + flags = CTF_ADD_NONROOT; + kind = ctf_type_kind(cmp->cm_src, id); + + if (kind == CTF_K_STRUCT) + suid = ctf_add_struct(cmp->cm_out, flags, name); + else + suid = ctf_add_union(cmp->cm_out, flags, name); + + if (suid == CTF_ERR) + return (suid); + + /* + * If this is a forward reference then it's mapping should already + * exist. + */ + if (forward == B_FALSE) { + VERIFY(cmp->cm_tmap[id].cmt_map == 0); + cmp->cm_tmap[id].cmt_map = suid; + ctf_dprintf("added sou \"%s\" as (%d) %d->%d\n", name, kind, id, + suid); + } else { + VERIFY(cmp->cm_tmap[id].cmt_map == suid); + } + cmp->cm_tmap[id].cmt_fixup = B_TRUE; + + return (0); +} + +static int +ctf_merge_add_type(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int kind, ret; + + /* + * We may end up evaluating a type more than once as we may deal with it + * as we recursively evaluate some kind of reference and then we may see + * it normally. + */ + if (cmp->cm_tmap[id].cmt_map != 0) + return (0); + + kind = ctf_type_kind(cmp->cm_src, id); + switch (kind) { + case CTF_K_INTEGER: + case CTF_K_FLOAT: + ret = ctf_merge_add_number(cmp, id); + break; + case CTF_K_ARRAY: + ret = ctf_merge_add_array(cmp, id); + break; + case CTF_K_POINTER: + case CTF_K_VOLATILE: + case CTF_K_CONST: + case CTF_K_RESTRICT: + ret = ctf_merge_add_reftype(cmp, id); + break; + case CTF_K_TYPEDEF: + ret = ctf_merge_add_typedef(cmp, id); + break; + case CTF_K_ENUM: + ret = ctf_merge_add_enum(cmp, id); + break; + case CTF_K_FUNCTION: + ret = ctf_merge_add_func(cmp, id); + break; + case CTF_K_FORWARD: + ret = ctf_merge_add_forward(cmp, id); + break; + case CTF_K_STRUCT: + case CTF_K_UNION: + ret = ctf_merge_add_sou(cmp, id, B_FALSE); + break; + case CTF_K_UNKNOWN: + /* + * We don't add uknown types, and we later assert that nothing + * should reference them. + */ + return (0); + default: + abort(); + } + + return (ret); +} + +static int +ctf_merge_fixup_sou(ctf_merge_types_t *cmp, ctf_id_t id) +{ + ctf_dtdef_t *dtd; + ctf_merge_su_t cms; + ctf_id_t mapid; + ssize_t size; + + mapid = cmp->cm_tmap[id].cmt_map; + VERIFY(mapid != 0); + dtd = ctf_dtd_lookup(cmp->cm_out, mapid); + VERIFY(dtd != NULL); + + ctf_dprintf("Trying to fix up sou %d\n", id); + cms.cms_cm = cmp; + cms.cms_id = mapid; + if (ctf_member_iter(cmp->cm_src, id, ctf_merge_add_member, &cms) != 0) + return (CTF_ERR); + + if ((size = ctf_type_size(cmp->cm_src, id)) == CTF_ERR) + return (CTF_ERR); + if (ctf_set_size(cmp->cm_out, mapid, size) == CTF_ERR) + return (CTF_ERR); + + return (0); +} + +static int +ctf_merge_fixup_type(ctf_merge_types_t *cmp, ctf_id_t id) +{ + int kind, ret; + + kind = ctf_type_kind(cmp->cm_src, id); + switch (kind) { + case CTF_K_STRUCT: + case CTF_K_UNION: + ret = ctf_merge_fixup_sou(cmp, id); + break; + default: + VERIFY(0); + ret = CTF_ERR; + } + + return (ret); +} + +/* + * Now that we've successfully merged everything, we're going to clean + * up the merge type table. Traditionally if we had just two different + * files that we were working between, the types would be fully + * resolved. However, because we were comparing with ourself every step + * of the way and not our reduced self, we need to go through and update + * every mapped entry to what it now points to in the deduped file. + */ +static void +ctf_merge_fixup_dedup_map(ctf_merge_types_t *cmp) +{ + int i; + + for (i = 1; i < cmp->cm_src->ctf_typemax + 1; i++) { + ctf_id_t tid; + + /* + * Missing types always have their id updated to exactly what it + * should be. + */ + if (cmp->cm_tmap[i].cmt_missing == B_TRUE) { + VERIFY(cmp->cm_tmap[i].cmt_map != 0); + continue; + } + + tid = i; + while (cmp->cm_tmap[tid].cmt_missing == B_FALSE) { + VERIFY(cmp->cm_tmap[tid].cmt_map != 0); + tid = cmp->cm_tmap[tid].cmt_map; + } + VERIFY(cmp->cm_tmap[tid].cmt_map != 0); + cmp->cm_tmap[i].cmt_map = cmp->cm_tmap[tid].cmt_map; + } +} + + +/* + * We're going to do three passes over the containers. + * + * Pass 1 checks for forward references in the output container that we know + * exist in the source container. + * + * Pass 2 adds all the missing types from the source container. As part of this + * we may be adding a type as a forward reference that doesn't exist yet. + * Any types that we encounter in this form, we need to add to a third pass. + * + * Pass 3 is the fixup pass. Here we go through and find all the types that were + * missing in the first. + * + * Importantly, we *must* call ctf_update between the second and third pass, + * otherwise several of the libctf functions will not properly find the data in + * the container. If we're doing a dedup we also fix up the type mapping. + */ +static int +ctf_merge_common(ctf_merge_types_t *cmp) +{ + int ret, i; + + ctf_phase_dump(cmp->cm_src, "merge-common-src"); + ctf_phase_dump(cmp->cm_out, "merge-common-dest"); + + /* Pass 1 */ + for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) { + if (cmp->cm_tmap[i].cmt_forward == B_TRUE) { + ret = ctf_merge_add_sou(cmp, i, B_TRUE); + if (ret != 0) { + return (ret); + } + } + } + + /* Pass 2 */ + for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) { + if (cmp->cm_tmap[i].cmt_missing == B_TRUE) { + ret = ctf_merge_add_type(cmp, i); + if (ret != 0) { + ctf_dprintf("Failed to merge type %d\n", i); + return (ret); + } + } + } + + ret = ctf_update(cmp->cm_out); + if (ret != 0) + return (ret); + + if (cmp->cm_dedup == B_TRUE) { + ctf_merge_fixup_dedup_map(cmp); + } + + ctf_dprintf("Beginning merge pass 3\n"); + /* Pass 3 */ + for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) { + if (cmp->cm_tmap[i].cmt_fixup == B_TRUE) { + ret = ctf_merge_fixup_type(cmp, i); + if (ret != 0) + return (ret); + } + } + + if (cmp->cm_dedup == B_TRUE) { + ctf_merge_fixup_dedup_map(cmp); + } + + return (0); +} + +/* + * Uniquification is slightly different from a stock merge. For starters, we + * don't need to replace any forward references in the output. In this case + * though, the types that already exist are in a parent container to the empty + * output container. + */ +static int +ctf_merge_uniquify_types(ctf_merge_types_t *cmp) +{ + int i, ret; + + for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) { + if (cmp->cm_tmap[i].cmt_missing == B_FALSE) + continue; + ret = ctf_merge_add_type(cmp, i); + if (ret != 0) + return (ret); + } + + ret = ctf_update(cmp->cm_out); + if (ret != 0) + return (ret); + + for (i = 1; i <= cmp->cm_src->ctf_typemax; i++) { + if (cmp->cm_tmap[i].cmt_fixup == B_FALSE) + continue; + ret = ctf_merge_fixup_type(cmp, i); + if (ret != 0) + return (ret); + } + + return (0); +} + +static int +ctf_merge_types_init(ctf_merge_types_t *cmp) +{ + cmp->cm_tmap = ctf_alloc(sizeof (ctf_merge_tinfo_t) * + (cmp->cm_src->ctf_typemax + 1)); + if (cmp->cm_tmap == NULL) + return (ctf_set_errno(cmp->cm_out, ENOMEM)); + bzero(cmp->cm_tmap, sizeof (ctf_merge_tinfo_t) * + (cmp->cm_src->ctf_typemax + 1)); + return (0); +} + +static void +ctf_merge_types_fini(ctf_merge_types_t *cmp) +{ + ctf_free(cmp->cm_tmap, sizeof (ctf_merge_tinfo_t) * + (cmp->cm_src->ctf_typemax + 1)); +} + +/* + * Merge the types contained inside of two input files. The second input file is + * always going to be the destination. We're guaranteed that it's always + * writeable. + */ +static int +ctf_merge_types(void *arg, void *arg2, void **outp, void *unsued) +{ + int ret; + ctf_merge_types_t cm; + ctf_diff_t *cdp; + ctf_merge_objmap_t *cmo; + ctf_merge_funcmap_t *cmf; + ctf_merge_input_t *scmi = arg; + ctf_merge_input_t *dcmi = arg2; + ctf_file_t *out = dcmi->cmi_input; + ctf_file_t *source = scmi->cmi_input; + + ctf_dprintf("merging %p->%p\n", source, out); + + if (!(out->ctf_flags & LCTF_RDWR)) + return (ctf_set_errno(out, ECTF_RDONLY)); + + if (ctf_getmodel(out) != ctf_getmodel(source)) + return (ctf_set_errno(out, ECTF_DMODEL)); + + if ((ret = ctf_diff_init(out, source, &cdp)) != 0) + return (ret); + + cm.cm_out = out; + cm.cm_src = source; + cm.cm_dedup = B_FALSE; + cm.cm_unique = B_FALSE; + ret = ctf_merge_types_init(&cm); + if (ret != 0) { + ctf_diff_fini(cdp); + return (ctf_set_errno(out, ret)); + } + + ret = ctf_diff_types(cdp, ctf_merge_diffcb, &cm); + if (ret != 0) + goto cleanup; + ret = ctf_merge_common(&cm); + ctf_dprintf("merge common returned with %d\n", ret); + if (ret == 0) { + ret = ctf_update(out); + ctf_dprintf("update returned with %d\n", ret); + } else { + goto cleanup; + } + + /* + * Now we need to fix up the object and function maps. + */ + for (cmo = list_head(&scmi->cmi_omap); cmo != NULL; + cmo = list_next(&scmi->cmi_omap, cmo)) { + if (cmo->cmo_tid == 0) + continue; + VERIFY(cm.cm_tmap[cmo->cmo_tid].cmt_map != 0); + cmo->cmo_tid = cm.cm_tmap[cmo->cmo_tid].cmt_map; + } + + for (cmf = list_head(&scmi->cmi_fmap); cmf != NULL; + cmf = list_next(&scmi->cmi_fmap, cmf)) { + int i; + + VERIFY(cm.cm_tmap[cmf->cmf_rtid].cmt_map != 0); + cmf->cmf_rtid = cm.cm_tmap[cmf->cmf_rtid].cmt_map; + for (i = 0; i < cmf->cmf_argc; i++) { + VERIFY(cm.cm_tmap[cmf->cmf_args[i]].cmt_map != 0); + cmf->cmf_args[i] = cm.cm_tmap[cmf->cmf_args[i]].cmt_map; + } + } + + /* + * Now that we've fixed things up, we need to give our function and + * object maps to the destination, such that it can continue to update + * them going forward. + */ + list_move_tail(&dcmi->cmi_fmap, &scmi->cmi_fmap); + list_move_tail(&dcmi->cmi_omap, &scmi->cmi_omap); + +cleanup: + if (ret == 0) + *outp = dcmi; + ctf_merge_types_fini(&cm); + ctf_diff_fini(cdp); + if (ret != 0) + return (ctf_errno(out)); + return (0); +} + +static int +ctf_uniquify_types(ctf_merge_t *cmh, ctf_file_t *src, ctf_file_t **outp) +{ + int err, ret; + ctf_file_t *out; + ctf_merge_types_t cm; + ctf_diff_t *cdp; + ctf_merge_input_t *cmi; + ctf_file_t *parent = cmh->cmh_unique; + + *outp = NULL; + out = ctf_fdcreate(cmh->cmh_ofd, &err); + if (out == NULL) + return (ctf_set_errno(src, err)); + + out->ctf_parname = cmh->cmh_pname; + if (ctf_setmodel(out, ctf_getmodel(parent)) != 0) { + (void) ctf_set_errno(src, ctf_errno(out)); + ctf_close(out); + return (CTF_ERR); + } + + if (ctf_import(out, parent) != 0) { + (void) ctf_set_errno(src, ctf_errno(out)); + ctf_close(out); + return (CTF_ERR); + } + + if ((ret = ctf_diff_init(parent, src, &cdp)) != 0) { + ctf_close(out); + return (ctf_set_errno(src, ctf_errno(parent))); + } + + cm.cm_out = parent; + cm.cm_src = src; + cm.cm_dedup = B_FALSE; + cm.cm_unique = B_TRUE; + ret = ctf_merge_types_init(&cm); + if (ret != 0) { + ctf_close(out); + ctf_diff_fini(cdp); + return (ctf_set_errno(src, ret)); + } + + ret = ctf_diff_types(cdp, ctf_merge_diffcb, &cm); + if (ret == 0) { + cm.cm_out = out; + ret = ctf_merge_uniquify_types(&cm); + if (ret == 0) + ret = ctf_update(out); + } + + if (ret != 0) { + ctf_merge_types_fini(&cm); + ctf_diff_fini(cdp); + return (ctf_set_errno(src, ctf_errno(cm.cm_out))); + } + + for (cmi = list_head(&cmh->cmh_inputs); cmi != NULL; + cmi = list_next(&cmh->cmh_inputs, cmi)) { + ctf_merge_objmap_t *cmo; + ctf_merge_funcmap_t *cmf; + + for (cmo = list_head(&cmi->cmi_omap); cmo != NULL; + cmo = list_next(&cmi->cmi_omap, cmo)) { + if (cmo->cmo_tid == 0) + continue; + VERIFY(cm.cm_tmap[cmo->cmo_tid].cmt_map != 0); + cmo->cmo_tid = cm.cm_tmap[cmo->cmo_tid].cmt_map; + } + + for (cmf = list_head(&cmi->cmi_fmap); cmf != NULL; + cmf = list_next(&cmi->cmi_fmap, cmf)) { + int i; + + VERIFY(cm.cm_tmap[cmf->cmf_rtid].cmt_map != 0); + cmf->cmf_rtid = cm.cm_tmap[cmf->cmf_rtid].cmt_map; + for (i = 0; i < cmf->cmf_argc; i++) { + VERIFY(cm.cm_tmap[cmf->cmf_args[i]].cmt_map != + 0); + cmf->cmf_args[i] = + cm.cm_tmap[cmf->cmf_args[i]].cmt_map; + } + } + } + + ctf_merge_types_fini(&cm); + ctf_diff_fini(cdp); + *outp = out; + return (0); +} + +static void +ctf_merge_fini_input(ctf_merge_input_t *cmi) +{ + ctf_merge_objmap_t *cmo; + ctf_merge_funcmap_t *cmf; + + while ((cmo = list_remove_head(&cmi->cmi_omap)) != NULL) + ctf_free(cmo, sizeof (ctf_merge_objmap_t)); + + while ((cmf = list_remove_head(&cmi->cmi_fmap)) != NULL) + ctf_free(cmf, sizeof (ctf_merge_funcmap_t) + + sizeof (ctf_id_t) * cmf->cmf_argc); + + if (cmi->cmi_created == B_TRUE && cmi->cmi_input != NULL) + ctf_close(cmi->cmi_input); + + ctf_free(cmi, sizeof (ctf_merge_input_t)); +} + +void +ctf_merge_fini(ctf_merge_t *cmh) +{ + size_t len; + ctf_merge_input_t *cmi; + + if (cmh->cmh_label != NULL) { + len = strlen(cmh->cmh_label) + 1; + ctf_free(cmh->cmh_label, len); + } + + if (cmh->cmh_pname != NULL) { + len = strlen(cmh->cmh_pname) + 1; + ctf_free(cmh->cmh_pname, len); + } + + while ((cmi = list_remove_head(&cmh->cmh_inputs)) != NULL) + ctf_merge_fini_input(cmi); + + ctf_free(cmh, sizeof (ctf_merge_t)); +} + +ctf_merge_t * +ctf_merge_init(int fd, int *errp) +{ + int err; + ctf_merge_t *out; + struct stat st; + + if (errp == NULL) + errp = &err; + + if (fd != -1 && fstat(fd, &st) != 0) { + *errp = EINVAL; + return (NULL); + } + + out = ctf_alloc(sizeof (ctf_merge_t)); + if (out == NULL) { + *errp = ENOMEM; + return (NULL); + } + + if (fd == -1) { + out->cmh_msyms = B_FALSE; + } else { + out->cmh_msyms = B_TRUE; + } + + list_create(&out->cmh_inputs, sizeof (ctf_merge_input_t), + offsetof(ctf_merge_input_t, cmi_node)); + out->cmh_ninputs = 0; + out->cmh_nthreads = 1; + out->cmh_unique = NULL; + out->cmh_ofd = fd; + out->cmh_flags = 0; + out->cmh_label = NULL; + out->cmh_pname = NULL; + + return (out); +} + +int +ctf_merge_label(ctf_merge_t *cmh, const char *label) +{ + char *dup; + + if (label == NULL) + return (EINVAL); + + dup = ctf_strdup(label); + if (dup == NULL) + return (EAGAIN); + + if (cmh->cmh_label != NULL) { + size_t len = strlen(cmh->cmh_label) + 1; + ctf_free(cmh->cmh_label, len); + } + + cmh->cmh_label = dup; + return (0); +} + +static int +ctf_merge_add_funcs(const char *name, ulong_t idx, ctf_funcinfo_t *fip, + void *arg) +{ + ctf_merge_input_t *cmi = arg; + ctf_merge_funcmap_t *fmap; + + fmap = ctf_alloc(sizeof (ctf_merge_funcmap_t) + + sizeof (ctf_id_t) * fip->ctc_argc); + if (fmap == NULL) + return (ENOMEM); + + fmap->cmf_idx = idx; + fmap->cmf_rtid = fip->ctc_return; + fmap->cmf_flags = fip->ctc_flags; + fmap->cmf_argc = fip->ctc_argc; + fmap->cmf_name = name; + + if (ctf_func_args(cmi->cmi_input, idx, fmap->cmf_argc, + fmap->cmf_args) != 0) { + ctf_free(fmap, sizeof (ctf_merge_funcmap_t) + + sizeof (ctf_id_t) * fip->ctc_argc); + return (ctf_errno(cmi->cmi_input)); + } + + list_insert_tail(&cmi->cmi_fmap, fmap); + return (0); +} + +static int +ctf_merge_add_objs(const char *name, ctf_id_t id, ulong_t idx, void *arg) +{ + ctf_merge_input_t *cmi = arg; + ctf_merge_objmap_t *cmo; + + cmo = ctf_alloc(sizeof (ctf_merge_objmap_t)); + if (cmo == NULL) + return (ENOMEM); + + cmo->cmo_name = name; + cmo->cmo_idx = idx; + cmo->cmo_tid = id; + list_insert_tail(&cmi->cmi_omap, cmo); + return (0); +} + +/* + * Whenever we create an entry to merge, we then go and add a second empty + * ctf_file_t which we use for the purposes of our merging. It's not the best, + * but it's the best that we've got at the moment. + */ +int +ctf_merge_add(ctf_merge_t *cmh, ctf_file_t *input) +{ + int ret; + ctf_merge_input_t *cmi; + ctf_file_t *empty; + + if (input->ctf_flags & LCTF_CHILD) + return (ECTF_MCHILD); + + cmi = ctf_alloc(sizeof (ctf_merge_input_t)); + if (cmi == NULL) + return (ENOMEM); + + cmi->cmi_created = B_FALSE; + cmi->cmi_input = input; + list_create(&cmi->cmi_fmap, sizeof (ctf_merge_funcmap_t), + offsetof(ctf_merge_funcmap_t, cmf_node)); + list_create(&cmi->cmi_omap, sizeof (ctf_merge_funcmap_t), + offsetof(ctf_merge_objmap_t, cmo_node)); + + if (cmh->cmh_msyms == B_TRUE) { + if ((ret = ctf_function_iter(input, ctf_merge_add_funcs, + cmi)) != 0) { + ctf_merge_fini_input(cmi); + return (ret); + } + + if ((ret = ctf_object_iter(input, ctf_merge_add_objs, + cmi)) != 0) { + ctf_merge_fini_input(cmi); + return (ret); + } + } + + list_insert_tail(&cmh->cmh_inputs, cmi); + cmh->cmh_ninputs++; + + /* And now the empty one to merge into this */ + cmi = ctf_alloc(sizeof (ctf_merge_input_t)); + if (cmi == NULL) + return (ENOMEM); + list_create(&cmi->cmi_fmap, sizeof (ctf_merge_funcmap_t), + offsetof(ctf_merge_funcmap_t, cmf_node)); + list_create(&cmi->cmi_omap, sizeof (ctf_merge_funcmap_t), + offsetof(ctf_merge_objmap_t, cmo_node)); + + empty = ctf_fdcreate(cmh->cmh_ofd, &ret); + if (empty == NULL) + return (ret); + cmi->cmi_input = empty; + cmi->cmi_created = B_TRUE; + + if (ctf_setmodel(empty, ctf_getmodel(input)) == CTF_ERR) { + return (ctf_errno(empty)); + } + + list_insert_tail(&cmh->cmh_inputs, cmi); + cmh->cmh_ninputs++; + ctf_dprintf("added containers %p and %p\n", input, empty); + return (0); +} + +int +ctf_merge_uniquify(ctf_merge_t *cmh, ctf_file_t *u, const char *pname) +{ + char *dup; + + if (u->ctf_flags & LCTF_CHILD) + return (ECTF_MCHILD); + if (pname == NULL) + return (EINVAL); + dup = ctf_strdup(pname); + if (dup == NULL) + return (EINVAL); + if (cmh->cmh_pname != NULL) { + size_t len = strlen(cmh->cmh_pname) + 1; + ctf_free(cmh->cmh_pname, len); + } + cmh->cmh_pname = dup; + cmh->cmh_unique = u; + return (0); +} + +static int +ctf_merge_symbols(ctf_merge_t *cmh, ctf_file_t *fp) +{ + int err; + ulong_t i; + + uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; + uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data; + + for (i = 0; i < fp->ctf_nsyms; i++) { + const char *name; + ctf_merge_input_t *cmi; + ctf_merge_objmap_t *cmo; + + if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { + const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; + int type = ELF32_ST_TYPE(symp->st_info); + if (type != STT_OBJECT) + continue; + if (ctf_sym_valid(strbase, type, symp->st_shndx, + symp->st_value, symp->st_name) == B_FALSE) + continue; + name = (char *)(strbase + symp->st_name); + } else { + const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; + int type = ELF64_ST_TYPE(symp->st_info); + if (type != STT_OBJECT) + continue; + if (ctf_sym_valid(strbase, type, symp->st_shndx, + symp->st_value, symp->st_name) == B_FALSE) + continue; + name = (char *)(strbase + symp->st_name); + } + + cmo = NULL; + for (cmi = list_head(&cmh->cmh_inputs); cmi != NULL; + cmi = list_next(&cmh->cmh_inputs, cmi)) { + for (cmo = list_head(&cmi->cmi_omap); cmo != NULL; + cmo = list_next(&cmi->cmi_omap, cmo)) { + if (strcmp(cmo->cmo_name, name) == 0) + goto found; + } + } +found: + if (cmo != NULL) { + if (cmo->cmo_tid == 0) + continue; + if ((err = ctf_add_object(fp, i, cmo->cmo_tid)) != 0) { + ctf_dprintf("Failed to add symbol %s->%d: %s\n", + name, cmo->cmo_tid, + ctf_errmsg(ctf_errno(fp))); + return (err); + } + } + } + + return (0); +} + +static int +ctf_merge_functions(ctf_merge_t *cmh, ctf_file_t *fp) +{ + int err; + ulong_t i; + ctf_funcinfo_t fi; + + uintptr_t symbase = (uintptr_t)fp->ctf_symtab.cts_data; + uintptr_t strbase = (uintptr_t)fp->ctf_strtab.cts_data; + + for (i = 0; i < fp->ctf_nsyms; i++) { + const char *name; + ctf_merge_input_t *cmi; + ctf_merge_funcmap_t *cmf; + + if (fp->ctf_symtab.cts_entsize == sizeof (Elf32_Sym)) { + const Elf32_Sym *symp = (Elf32_Sym *)symbase + i; + int type = ELF32_ST_TYPE(symp->st_info); + if (ELF32_ST_TYPE(symp->st_info) != STT_FUNC) + continue; + if (ctf_sym_valid(strbase, type, symp->st_shndx, + symp->st_value, symp->st_name) == B_FALSE) + continue; + name = (char *)(strbase + symp->st_name); + } else { + const Elf64_Sym *symp = (Elf64_Sym *)symbase + i; + int type = ELF64_ST_TYPE(symp->st_info); + if (ELF64_ST_TYPE(symp->st_info) != STT_FUNC) + continue; + if (ctf_sym_valid(strbase, type, symp->st_shndx, + symp->st_value, symp->st_name) == B_FALSE) + continue; + name = (char *)(strbase + symp->st_name); + } + + cmf = NULL; + for (cmi = list_head(&cmh->cmh_inputs); cmi != NULL; + cmi = list_next(&cmh->cmh_inputs, cmi)) { + for (cmf = list_head(&cmi->cmi_fmap); cmf != NULL; + cmf = list_next(&cmi->cmi_fmap, cmf)) { + if (strcmp(cmf->cmf_name, name) == 0) + goto found; + } + } +found: + if (cmf != NULL) { + fi.ctc_return = cmf->cmf_rtid; + fi.ctc_argc = cmf->cmf_argc; + fi.ctc_flags = cmf->cmf_flags; + if ((err = ctf_add_function(fp, i, &fi, + cmf->cmf_args)) != 0) + return (err); + } + } + + return (0); + +} + +int +ctf_merge_merge(ctf_merge_t *cmh, ctf_file_t **outp) +{ + int err, merr; + ctf_merge_input_t *cmi; + ctf_id_t ltype; + mergeq_t *mqp; + ctf_merge_input_t *final; + ctf_file_t *out; + + if (cmh->cmh_label != NULL && cmh->cmh_unique != NULL) { + const char *label = ctf_label_topmost(cmh->cmh_unique); + if (label == NULL) + return (ECTF_NOLABEL); + if (strcmp(label, cmh->cmh_label) != 0) + return (ECTF_LCONFLICT); + } + + if (mergeq_init(&mqp, cmh->cmh_nthreads) == -1) { + return (errno); + } + + /* + * We should consider doing a divide and conquer and parallel merge + * here. If we did, we'd want to use some number of threads to perform + * this operation. + */ + VERIFY(cmh->cmh_ninputs % 2 == 0); + for (cmi = list_head(&cmh->cmh_inputs); cmi != NULL; + cmi = list_next(&cmh->cmh_inputs, cmi)) { + if (mergeq_add(mqp, cmi) == -1) { + err = errno; + mergeq_fini(mqp); + } + } + + err = mergeq_merge(mqp, ctf_merge_types, NULL, (void **)&final, &merr); + mergeq_fini(mqp); + + if (err == MERGEQ_ERROR) { + return (errno); + } else if (err == MERGEQ_UERROR) { + return (merr); + } + + /* + * Disassociate the generated ctf_file_t from the original input. That + * way when the input gets cleaned up, we don't accidentally kill the + * final reference to the ctf_file_t. If it gets uniquified then we'll + * kill it. + */ + VERIFY(final->cmi_input != NULL); + out = final->cmi_input; + final->cmi_input = NULL; + + ctf_dprintf("preparing to uniquify against: %p\n", cmh->cmh_unique); + if (cmh->cmh_unique != NULL) { + ctf_file_t *u; + err = ctf_uniquify_types(cmh, out, &u); + if (err != 0) { + err = ctf_errno(out); + ctf_close(out); + return (err); + } + ctf_close(out); + out = u; + } + + ltype = out->ctf_typemax; + if ((out->ctf_flags & LCTF_CHILD) && ltype != 0) + ltype += 0x8000; + ctf_dprintf("trying to add the label\n"); + if (cmh->cmh_label != NULL && + ctf_add_label(out, cmh->cmh_label, ltype, 0) != 0) { + ctf_close(out); + return (ctf_errno(out)); + } + + ctf_dprintf("merging symbols and the like\n"); + if (cmh->cmh_msyms == B_TRUE) { + err = ctf_merge_symbols(cmh, out); + if (err != 0) { + ctf_close(out); + return (ctf_errno(out)); + } + + err = ctf_merge_functions(cmh, out); + if (err != 0) { + ctf_close(out); + return (ctf_errno(out)); + } + } + + err = ctf_update(out); + if (err != 0) { + ctf_close(out); + return (ctf_errno(out)); + } + + *outp = out; + return (0); +} + +/* + * When we get told that something is unique, eg. same is B_FALSE, then that + * tells us that we need to add it to the output. If same is B_TRUE, then we'll + * want to record it in the mapping table so that we know how to redirect types + * to the extant ones. + */ +static void +ctf_dedup_cb(ctf_file_t *ifp, ctf_id_t iid, boolean_t same, ctf_file_t *ofp, + ctf_id_t oid, void *arg) +{ + ctf_merge_types_t *cmp = arg; + ctf_merge_tinfo_t *cmt = cmp->cm_tmap; + + if (same == B_TRUE) { + /* + * The output id here may itself map to something else. + * Therefore, we need to basically walk a chain and see what it + * points to until it itself points to a base type, eg. -1. + * Otherwise we'll dedup to something which no longer exists. + */ + while (cmt[oid].cmt_missing == B_FALSE) + oid = cmt[oid].cmt_map; + cmt[iid].cmt_map = oid; + ctf_dprintf("%d->%d \n", iid, oid); + } else { + VERIFY(cmt[iid].cmt_map == 0); + cmt[iid].cmt_missing = B_TRUE; + ctf_dprintf("%d is missing\n", iid); + } +} + +/* + * Dedup a CTF container. + * + * DWARF and other encoding formats that we use to create CTF data may create + * multiple copies of a given type. However, after doing a conversion, and + * before doing a merge, we'd prefer, if possible, to have every input container + * to be unique. + * + * Doing a deduplication is like a normal merge. However, when we diff the types + * in the container, rather than doing a normal diff, we instead want to diff + * against any already processed types. eg, for a given type i in a container, + * we want to diff it from 0 to i - 1. + */ +int +ctf_merge_dedup(ctf_merge_t *cmp, ctf_file_t **outp) +{ + int ret; + ctf_diff_t *cdp = NULL; + ctf_merge_input_t *cmi, *cmc; + ctf_file_t *ifp, *ofp; + ctf_merge_objmap_t *cmo; + ctf_merge_funcmap_t *cmf; + ctf_merge_types_t cm; + + if (cmp == NULL || outp == NULL) + return (EINVAL); + + ctf_dprintf("encountered %d inputs\n", cmp->cmh_ninputs); + if (cmp->cmh_ninputs != 2) + return (EINVAL); + + ctf_dprintf("passed argument sanity check\n"); + + cmi = list_head(&cmp->cmh_inputs); + VERIFY(cmi != NULL); + cmc = list_next(&cmp->cmh_inputs, cmi); + VERIFY(cmc != NULL); + ifp = cmi->cmi_input; + ofp = cmc->cmi_input; + VERIFY(ifp != NULL); + VERIFY(ofp != NULL); + cm.cm_src = ifp; + cm.cm_out = ofp; + cm.cm_dedup = B_TRUE; + cm.cm_unique = B_FALSE; + + if ((ret = ctf_merge_types_init(&cm)) != 0) { + return (ret); + } + + if ((ret = ctf_diff_init(ifp, ifp, &cdp)) != 0) + goto err; + + ctf_dprintf("Successfully initialized dedup\n"); + if ((ret = ctf_diff_self(cdp, ctf_dedup_cb, &cm)) != 0) + goto err; + + ctf_dprintf("Successfully diffed types\n"); + ret = ctf_merge_common(&cm); + ctf_dprintf("deduping types result: %d\n", ret); + if (ret == 0) + ret = ctf_update(cm.cm_out); + if (ret != 0) + goto err; + + ctf_dprintf("Successfully deduped types\n"); + ctf_phase_dump(cm.cm_out, "dedup-pre-syms"); + + + /* + * Now we need to fix up the object and function maps. + */ + for (cmo = list_head(&cmi->cmi_omap); cmo != NULL; + cmo = list_next(&cmi->cmi_omap, cmo)) { + if (cmo->cmo_tid == 0) + continue; + ctf_dprintf("mapped %s %d->%d\n", cmo->cmo_name, + cmo->cmo_tid, cm.cm_tmap[cmo->cmo_tid].cmt_map); + cmo->cmo_tid = cm.cm_tmap[cmo->cmo_tid].cmt_map; + } + + for (cmf = list_head(&cmi->cmi_fmap); cmf != NULL; + cmf = list_next(&cmi->cmi_fmap, cmf)) { + int i; + + VERIFY(cm.cm_tmap[cmf->cmf_rtid].cmt_map != 0); + cmf->cmf_rtid = cm.cm_tmap[cmf->cmf_rtid].cmt_map; + for (i = 0; i < cmf->cmf_argc; i++) { + VERIFY(cm.cm_tmap[cmf->cmf_args[i]].cmt_map != 0); + cmf->cmf_args[i] = cm.cm_tmap[cmf->cmf_args[i]].cmt_map; + } + } + + if (cmp->cmh_msyms == B_TRUE) { + ret = ctf_merge_symbols(cmp, cm.cm_out); + if (ret != 0) { + ret = ctf_errno(cm.cm_out); + ctf_dprintf("failed to dedup symbols: %s\n", + ctf_errmsg(ret)); + goto err; + } + + ret = ctf_merge_functions(cmp, cm.cm_out); + if (ret != 0) { + ret = ctf_errno(cm.cm_out); + ctf_dprintf("failed to dedup functions: %s\n", + ctf_errmsg(ret)); + goto err; + } + } + + ret = ctf_update(cm.cm_out); + if (ret == 0) { + cmc->cmi_input = NULL; + *outp = cm.cm_out; + } +err: + ctf_merge_types_fini(&cm); + ctf_diff_fini(cdp); + return (ret); +} + +int +ctf_merge_set_nthreads(ctf_merge_t *cmp, const uint_t nthrs) +{ + if (nthrs == 0) + return (EINVAL); + cmp->cmh_nthreads = nthrs; + return (0); +} diff --git a/usr/src/lib/libctf/common/ctf_subr.c b/usr/src/lib/libctf/common/ctf_subr.c index 467b6a8181..26f7e8c4db 100644 --- a/usr/src/lib/libctf/common/ctf_subr.c +++ b/usr/src/lib/libctf/common/ctf_subr.c @@ -24,8 +24,6 @@ * Use is subject to license terms. */ -#pragma ident "%Z%%M% %I% %E% SMI" - #include <ctf_impl.h> #include <libctf.h> #include <sys/mman.h> @@ -56,6 +54,18 @@ ctf_alloc(size_t size) return (malloc(size)); } +void * +mergeq_alloc(size_t size) +{ + return (malloc(size)); +} + +void * +workq_alloc(size_t size) +{ + return (malloc(size)); +} + /*ARGSUSED*/ void ctf_free(void *buf, size_t size) @@ -63,6 +73,20 @@ ctf_free(void *buf, size_t size) free(buf); } +/*ARGSUSED*/ +void +mergeq_free(void *buf, size_t size) +{ + free(buf); +} + +/*ARGSUSED*/ +void +workq_free(void *buf, size_t size) +{ + free(buf); +} + const char * ctf_strerror(int err) { diff --git a/usr/src/lib/libctf/common/libctf.h b/usr/src/lib/libctf/common/libctf.h index 3fd69318de..a5c5027048 100644 --- a/usr/src/lib/libctf/common/libctf.h +++ b/usr/src/lib/libctf/common/libctf.h @@ -23,6 +23,9 @@ * Copyright 2001-2003 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ +/* + * Copyright (c) 2015, Joyent, Inc. + */ /* * This header file defines the interfaces available from the CTF debugger @@ -32,7 +35,7 @@ * the fullness of time after we gain more experience with the interfaces. * * In the meantime, be aware that any program linked with libctf in this - * release of Solaris is almost guaranteed to break in the next release. + * release of illumos is almost guaranteed to break in the next release. * * In short, do not user this header file or libctf for any purpose. */ @@ -40,9 +43,8 @@ #ifndef _LIBCTF_H #define _LIBCTF_H -#pragma ident "%Z%%M% %I% %E% SMI" - #include <sys/ctf_api.h> +#include <libelf.h> #ifdef __cplusplus extern "C" { @@ -53,6 +55,46 @@ extern "C" { */ extern int _libctf_debug; +typedef enum ctf_diff_flag { + CTF_DIFF_F_IGNORE_INTNAMES = 0x01 +} ctf_diff_flag_t; + +typedef struct ctf_diff ctf_diff_t; +typedef void (*ctf_diff_type_f)(ctf_file_t *, ctf_id_t, boolean_t, ctf_file_t *, + ctf_id_t, void *); +typedef void (*ctf_diff_func_f)(ctf_file_t *, ulong_t, boolean_t, ctf_file_t *, + ulong_t, void *); +typedef void (*ctf_diff_obj_f)(ctf_file_t *, ulong_t, ctf_id_t, boolean_t, + ctf_file_t *, ulong_t, ctf_id_t, void *); + +extern int ctf_diff_init(ctf_file_t *, ctf_file_t *, ctf_diff_t **); +extern uint_t ctf_diff_getflags(ctf_diff_t *); +extern int ctf_diff_setflags(ctf_diff_t *, uint_t); +extern int ctf_diff_types(ctf_diff_t *, ctf_diff_type_f, void *); +extern int ctf_diff_functions(ctf_diff_t *, ctf_diff_func_f, void *); +extern int ctf_diff_objects(ctf_diff_t *, ctf_diff_obj_f, void *); +extern void ctf_diff_fini(ctf_diff_t *); + +#define CTF_CONVERT_F_IGNNONC 0x01 +extern ctf_file_t *ctf_elfconvert(int, Elf *, const char *, uint_t, uint_t, + int *, char *, size_t); +extern ctf_file_t *ctf_fdconvert(int, const char *, uint_t, uint_t, int *, + char *, size_t); + +typedef struct ctf_merge_handle ctf_merge_t; +extern ctf_merge_t *ctf_merge_init(int, int *); +extern int ctf_merge_add(ctf_merge_t *, ctf_file_t *); +extern int ctf_merge_set_nthreads(ctf_merge_t *, const uint_t); +extern int ctf_merge_label(ctf_merge_t *, const char *); +extern int ctf_merge_uniquify(ctf_merge_t *, ctf_file_t *, const char *); +extern int ctf_merge_merge(ctf_merge_t *, ctf_file_t **); +extern int ctf_merge_dedup(ctf_merge_t *, ctf_file_t **); +extern void ctf_merge_fini(ctf_merge_t *); + +#define CTF_ELFWRITE_F_COMPRESS 0x1 +extern int ctf_elffdwrite(ctf_file_t *, int, int, int); +extern int ctf_elfwrite(ctf_file_t *, const char *, const char *, int); + #ifdef __cplusplus } #endif diff --git a/usr/src/lib/libctf/common/libctf_impl.h b/usr/src/lib/libctf/common/libctf_impl.h new file mode 100644 index 0000000000..11193e97d0 --- /dev/null +++ b/usr/src/lib/libctf/common/libctf_impl.h @@ -0,0 +1,59 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2015 Joyent, Inc. + */ + +#ifndef _LIBCTF_IMPL_H +#define _LIBCTF_IMPL_H + +/* + * Portions of libctf implementations that are only suitable for CTF's userland + * library, eg. converting and merging related routines. + */ + +#include <libelf.h> +#include <libctf.h> +#include <ctf_impl.h> + +#ifdef __cplusplus +extern "C" { +#endif + +typedef enum ctf_conv_status { + CTF_CONV_SUCCESS = 0, + CTF_CONV_ERROR = 1, + CTF_CONV_NOTSUP = 2 +} ctf_conv_status_t; + +typedef ctf_conv_status_t (*ctf_convert_f)(int, Elf *, uint_t, int *, + ctf_file_t **, char *, size_t); +extern ctf_conv_status_t ctf_dwarf_convert(int, Elf *, uint_t, int *, + ctf_file_t **, char *, size_t); + +/* + * zlib compression routines + */ +extern int ctf_compress(ctf_file_t *fp, void **, size_t *, size_t *); + +extern int ctf_diff_self(ctf_diff_t *, ctf_diff_type_f, void *); + +/* + * Internal debugging aids + */ +extern void ctf_phase_dump(ctf_file_t *, const char *); + +#ifdef __cplusplus +} +#endif + +#endif /* _LIBCTF_IMPL_H */ diff --git a/usr/src/lib/libctf/common/mapfile-vers b/usr/src/lib/libctf/common/mapfile-vers index 5573e8db25..cfd2952bbe 100644 --- a/usr/src/lib/libctf/common/mapfile-vers +++ b/usr/src/lib/libctf/common/mapfile-vers @@ -23,7 +23,7 @@ # # -# Copyright (c) 2013, Joyent, Inc. All rights reserved. +# Copyright (c) 2015, Joyent, Inc. All rights reserved. # # @@ -53,10 +53,13 @@ SYMBOL_VERSION SUNWprivate_1.2 { ctf_add_enumerator; ctf_add_float; ctf_add_forward; + ctf_add_funcptr; ctf_add_function; ctf_add_integer; + ctf_add_label; ctf_add_member; ctf_add_pointer; + ctf_add_object; ctf_add_restrict; ctf_add_struct; ctf_add_type; @@ -64,17 +67,48 @@ SYMBOL_VERSION SUNWprivate_1.2 { ctf_add_union; ctf_add_volatile; ctf_create; + ctf_dataptr; ctf_delete_type; + ctf_diff_init; + ctf_diff_fini; + ctf_diff_functions; + ctf_diff_getflags; + ctf_diff_objects; + ctf_diff_setflags; + ctf_diff_types; ctf_discard; ctf_dup; + ctf_elfconvert; + ctf_elffdwrite; + ctf_elfwrite; ctf_enum_value; + ctf_fdconvert; + ctf_flags; + ctf_func_args_by_id; + ctf_func_info_by_id; + ctf_function_iter; + ctf_kind_name; ctf_label_info; ctf_label_iter; ctf_label_topmost; ctf_member_info; + ctf_merge_add; + ctf_merge_dedup; + ctf_merge_fini; + ctf_merge_init; + ctf_merge_label; + ctf_merge_merge; + ctf_merge_set_nthreads; + ctf_merge_uniquify; + ctf_object_iter; ctf_parent_file; + ctf_parent_label; ctf_parent_name; ctf_set_array; + ctf_set_root; + ctf_set_size; + ctf_string_iter; + ctf_symbol_name; ctf_type_align; ctf_type_cmp; ctf_type_compat; |