diff options
Diffstat (limited to 'usr/src/lib/libsum/common/sum-sha2.c')
-rw-r--r-- | usr/src/lib/libsum/common/sum-sha2.c | 1248 |
1 files changed, 0 insertions, 1248 deletions
diff --git a/usr/src/lib/libsum/common/sum-sha2.c b/usr/src/lib/libsum/common/sum-sha2.c deleted file mode 100644 index d42674eba1..0000000000 --- a/usr/src/lib/libsum/common/sum-sha2.c +++ /dev/null @@ -1,1248 +0,0 @@ -/*********************************************************************** -* * -* This software is part of the ast package * -* Copyright (c) 1996-2010 AT&T Intellectual Property * -* and is licensed under the * -* Common Public License, Version 1.0 * -* by AT&T Intellectual Property * -* * -* A copy of the License is available at * -* http://www.opensource.org/licenses/cpl1.0.txt * -* (with md5 checksum 059e8cd6165cb4c31e351f2b69388fd9) * -* * -* Information and Software Systems Research * -* AT&T Research * -* Florham Park NJ * -* * -* Glenn Fowler <gsf@research.att.com> * -* * -***********************************************************************/ -#pragma prototyped - -#if _typ_int64_t - -/* - * Aaron D. Gifford's SHA {256,384,512} code transcribed into a -lsum method - */ - -/* - * Copyright (c) 2000-2001, Aaron D. Gifford - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. Neither the name of the copyright holder nor the names of contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - */ - -/* - * ASSERT NOTE: - * Some sanity checking code is included using assert(). On my FreeBSD - * system, this additional code can be removed by compiling with NDEBUG - * defined. Check your own systems manpage on assert() to see how to - * compile WITHOUT the sanity checking code on your system. - * - * UNROLLED TRANSFORM LOOP NOTE: - * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform - * loop version for the hash transform rounds (defined using macros - * later in this file). Either define on the command line, for example: - * - * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c - * - * or define below: - * - * #define SHA2_UNROLL_TRANSFORM - * - */ - -/*** SHA-256/384/512 Machine Architecture Definitions *****************/ - -#if _PACKAGE_ast - -#ifndef __USE_BSD -#define __undef__USE_BSD -#define __USE_BSD -#endif -#include <endian.h> -#ifdef __undef__USE_BSD -#undef __undef__USE_BSD -#undef __USE_BSD -#endif - -typedef uint8_t sha2_byte; /* Exactly 1 byte */ -typedef uint32_t sha2_word32; /* Exactly 4 bytes */ -typedef uint64_t sha2_word64; /* Exactly 8 bytes */ - -#define assert(x) - -#undef R -#undef S32 -#undef S64 - -#else /* _PACKAGE_ast */ - -/* - * BYTE_ORDER NOTE: - * - * Please make sure that your system defines BYTE_ORDER. If your - * architecture is little-endian, make sure it also defines - * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are - * equivilent. - * - * If your system does not define the above, then you can do so by - * hand like this: - * - * #define LITTLE_ENDIAN 1234 - * #define BIG_ENDIAN 4321 - * - * And for little-endian machines, add: - * - * #define BYTE_ORDER LITTLE_ENDIAN - * - * Or for big-endian machines: - * - * #define BYTE_ORDER BIG_ENDIAN - * - * The FreeBSD machine this was written on defines BYTE_ORDER - * appropriately by including <sys/types.h> (which in turn includes - * <machine/endian.h> where the appropriate definitions are actually - * made). - */ - -#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) -#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN -#endif - -/* - * Define the following sha2_* types to types of the correct length on - * the native archtecture. Most BSD systems and Linux define u_intXX_t - * types. Machines with very recent ANSI C headers, can use the - * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H - * during compile or in the sha.h header file. - * - * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t - * will need to define these three typedefs below (and the appropriate - * ones in sha.h too) by hand according to their system architecture. - * - * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t - * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. - */ - -#ifdef SHA2_USE_INTTYPES_H - -typedef uint8_t sha2_byte; /* Exactly 1 byte */ -typedef uint32_t sha2_word32; /* Exactly 4 bytes */ -typedef uint64_t sha2_word64; /* Exactly 8 bytes */ - -#else /* SHA2_USE_INTTYPES_H */ - -typedef u_int8_t sha2_byte; /* Exactly 1 byte */ -typedef u_int32_t sha2_word32; /* Exactly 4 bytes */ -typedef u_int64_t sha2_word64; /* Exactly 8 bytes */ - -#endif /* SHA2_USE_INTTYPES_H */ - -#endif /* _PACKAGE_ast */ - -/*** SHA-256/384/512 Various Length Definitions ***********************/ - -#define SHA256_BLOCK_LENGTH 64 -#define SHA256_DIGEST_LENGTH 32 -#define SHA384_BLOCK_LENGTH 128 -#define SHA384_DIGEST_LENGTH 48 -#define SHA512_BLOCK_LENGTH 128 -#define SHA512_DIGEST_LENGTH 64 - -#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) -#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) -#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) - -/*** ENDIAN REVERSAL MACROS *******************************************/ -#if BYTE_ORDER == LITTLE_ENDIAN -#define REVERSE32(w,x) { \ - sha2_word32 tmp = (w); \ - tmp = (tmp >> 16) | (tmp << 16); \ - (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ -} -#if _ast_LL -#define REVERSE64(w,x) { \ - sha2_word64 tmp = (w); \ - tmp = (tmp >> 32) | (tmp << 32); \ - tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ - ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ - (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ - ((tmp & 0x0000ffff0000ffffULL) << 16); \ -} -#else -#define REVERSE64(w,x) { \ - sha2_word64 tmp = (w); \ - tmp = (tmp >> 32) | (tmp << 32); \ - tmp = ((tmp & ((sha2_word64)0xff00ff00ff00ff00)) >> 8) | \ - ((tmp & ((sha2_word64)0x00ff00ff00ff00ff)) << 8); \ - (x) = ((tmp & ((sha2_word64)0xffff0000ffff0000)) >> 16) | \ - ((tmp & ((sha2_word64)0x0000ffff0000ffff)) << 16); \ -} -#endif -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -/* - * Macro for incrementally adding the unsigned 64-bit integer n to the - * unsigned 128-bit integer (represented using a two-element array of - * 64-bit words): - */ - -#define ADDINC128(w,n) { \ - (w)[0] += (sha2_word64)(n); \ - if ((w)[0] < (n)) { \ - (w)[1]++; \ - } \ -} - -/* - * Macros for copying blocks of memory and for zeroing out ranges - * of memory. Using these macros makes it easy to switch from - * using memset()/memcpy() and using bzero()/bcopy(). - * - * Please define either SHA2_USE_MEMSET_MEMCPY or define - * SHA2_USE_BZERO_BCOPY depending on which function set you - * choose to use: - */ - -#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) -/* Default to memset()/memcpy() if no option is specified */ -#define SHA2_USE_MEMSET_MEMCPY 1 -#endif -#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) -/* Abort with an error if BOTH options are defined */ -#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! -#endif - -#ifdef SHA2_USE_MEMSET_MEMCPY -#define MEMSET_BZERO(p,l) memset((p), 0, (l)) -#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) -#endif -#ifdef SHA2_USE_BZERO_BCOPY -#define MEMSET_BZERO(p,l) bzero((p), (l)) -#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) -#endif - - -/*** THE SIX LOGICAL FUNCTIONS ****************************************/ -/* - * Bit shifting and rotation (used by the six SHA-XYZ logical functions: - * - * NOTE: The naming of R and S appears backwards here (R is a SHIFT and - * S is a ROTATION) because the SHA-256/384/512 description document - * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this - * same "backwards" definition. - */ - -/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ -#define R(b,x) ((x) >> (b)) -/* 32-bit Rotate-right (used in SHA-256): */ -#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) -/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ -#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) - -/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ -#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) -#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) - -/* Four of six logical functions used in SHA-256: */ -#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) -#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) -#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) -#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) - -/* Four of six logical functions used in SHA-384 and SHA-512: */ -#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) -#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) -#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) -#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) - -/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ -/* Hash constant words K for SHA-256: */ -static const sha2_word32 K256[64] = { - 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, - 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, - 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, - 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, - 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, - 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, - 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, - 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, - 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, - 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, - 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, - 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, - 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, - 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, - 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, - 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL -}; - -/* Initial hash value H for SHA-256: */ -static const sha2_word32 sha256_initial_hash_value[8] = { - 0x6a09e667UL, - 0xbb67ae85UL, - 0x3c6ef372UL, - 0xa54ff53aUL, - 0x510e527fUL, - 0x9b05688cUL, - 0x1f83d9abUL, - 0x5be0cd19UL -}; - -/* Hash constant words K for SHA-384 and SHA-512: */ -static const sha2_word64 K512[80] = { -#if _ast_LL - 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, - 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, - 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, - 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, - 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, - 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, - 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, - 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, - 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, - 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, - 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, - 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, - 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, - 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, - 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, - 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, - 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, - 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, - 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, - 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, - 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, - 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, - 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, - 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, - 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, - 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, - 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, - 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, - 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, - 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, - 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, - 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, - 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, - 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, - 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, - 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, - 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, - 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, - 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, - 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL -#else - ((sha2_word64)0x428a2f98d728ae22), ((sha2_word64)0x7137449123ef65cd), - ((sha2_word64)0xb5c0fbcfec4d3b2f), ((sha2_word64)0xe9b5dba58189dbbc), - ((sha2_word64)0x3956c25bf348b538), ((sha2_word64)0x59f111f1b605d019), - ((sha2_word64)0x923f82a4af194f9b), ((sha2_word64)0xab1c5ed5da6d8118), - ((sha2_word64)0xd807aa98a3030242), ((sha2_word64)0x12835b0145706fbe), - ((sha2_word64)0x243185be4ee4b28c), ((sha2_word64)0x550c7dc3d5ffb4e2), - ((sha2_word64)0x72be5d74f27b896f), ((sha2_word64)0x80deb1fe3b1696b1), - ((sha2_word64)0x9bdc06a725c71235), ((sha2_word64)0xc19bf174cf692694), - ((sha2_word64)0xe49b69c19ef14ad2), ((sha2_word64)0xefbe4786384f25e3), - ((sha2_word64)0x0fc19dc68b8cd5b5), ((sha2_word64)0x240ca1cc77ac9c65), - ((sha2_word64)0x2de92c6f592b0275), ((sha2_word64)0x4a7484aa6ea6e483), - ((sha2_word64)0x5cb0a9dcbd41fbd4), ((sha2_word64)0x76f988da831153b5), - ((sha2_word64)0x983e5152ee66dfab), ((sha2_word64)0xa831c66d2db43210), - ((sha2_word64)0xb00327c898fb213f), ((sha2_word64)0xbf597fc7beef0ee4), - ((sha2_word64)0xc6e00bf33da88fc2), ((sha2_word64)0xd5a79147930aa725), - ((sha2_word64)0x06ca6351e003826f), ((sha2_word64)0x142929670a0e6e70), - ((sha2_word64)0x27b70a8546d22ffc), ((sha2_word64)0x2e1b21385c26c926), - ((sha2_word64)0x4d2c6dfc5ac42aed), ((sha2_word64)0x53380d139d95b3df), - ((sha2_word64)0x650a73548baf63de), ((sha2_word64)0x766a0abb3c77b2a8), - ((sha2_word64)0x81c2c92e47edaee6), ((sha2_word64)0x92722c851482353b), - ((sha2_word64)0xa2bfe8a14cf10364), ((sha2_word64)0xa81a664bbc423001), - ((sha2_word64)0xc24b8b70d0f89791), ((sha2_word64)0xc76c51a30654be30), - ((sha2_word64)0xd192e819d6ef5218), ((sha2_word64)0xd69906245565a910), - ((sha2_word64)0xf40e35855771202a), ((sha2_word64)0x106aa07032bbd1b8), - ((sha2_word64)0x19a4c116b8d2d0c8), ((sha2_word64)0x1e376c085141ab53), - ((sha2_word64)0x2748774cdf8eeb99), ((sha2_word64)0x34b0bcb5e19b48a8), - ((sha2_word64)0x391c0cb3c5c95a63), ((sha2_word64)0x4ed8aa4ae3418acb), - ((sha2_word64)0x5b9cca4f7763e373), ((sha2_word64)0x682e6ff3d6b2b8a3), - ((sha2_word64)0x748f82ee5defb2fc), ((sha2_word64)0x78a5636f43172f60), - ((sha2_word64)0x84c87814a1f0ab72), ((sha2_word64)0x8cc702081a6439ec), - ((sha2_word64)0x90befffa23631e28), ((sha2_word64)0xa4506cebde82bde9), - ((sha2_word64)0xbef9a3f7b2c67915), ((sha2_word64)0xc67178f2e372532b), - ((sha2_word64)0xca273eceea26619c), ((sha2_word64)0xd186b8c721c0c207), - ((sha2_word64)0xeada7dd6cde0eb1e), ((sha2_word64)0xf57d4f7fee6ed178), - ((sha2_word64)0x06f067aa72176fba), ((sha2_word64)0x0a637dc5a2c898a6), - ((sha2_word64)0x113f9804bef90dae), ((sha2_word64)0x1b710b35131c471b), - ((sha2_word64)0x28db77f523047d84), ((sha2_word64)0x32caab7b40c72493), - ((sha2_word64)0x3c9ebe0a15c9bebc), ((sha2_word64)0x431d67c49c100d4c), - ((sha2_word64)0x4cc5d4becb3e42b6), ((sha2_word64)0x597f299cfc657e2a), - ((sha2_word64)0x5fcb6fab3ad6faec), ((sha2_word64)0x6c44198c4a475817) -#endif -}; - -/* Initial hash value H for SHA-384 */ -static const sha2_word64 sha384_initial_hash_value[8] = { -#if _ast_LL - 0xcbbb9d5dc1059ed8ULL, - 0x629a292a367cd507ULL, - 0x9159015a3070dd17ULL, - 0x152fecd8f70e5939ULL, - 0x67332667ffc00b31ULL, - 0x8eb44a8768581511ULL, - 0xdb0c2e0d64f98fa7ULL, - 0x47b5481dbefa4fa4ULL -#else - ((sha2_word64)0xcbbb9d5dc1059ed8), - ((sha2_word64)0x629a292a367cd507), - ((sha2_word64)0x9159015a3070dd17), - ((sha2_word64)0x152fecd8f70e5939), - ((sha2_word64)0x67332667ffc00b31), - ((sha2_word64)0x8eb44a8768581511), - ((sha2_word64)0xdb0c2e0d64f98fa7), - ((sha2_word64)0x47b5481dbefa4fa4) -#endif -}; - -/* Initial hash value H for SHA-512 */ -static const sha2_word64 sha512_initial_hash_value[8] = { -#if _ast_LL - 0x6a09e667f3bcc908ULL, - 0xbb67ae8584caa73bULL, - 0x3c6ef372fe94f82bULL, - 0xa54ff53a5f1d36f1ULL, - 0x510e527fade682d1ULL, - 0x9b05688c2b3e6c1fULL, - 0x1f83d9abfb41bd6bULL, - 0x5be0cd19137e2179ULL -#else - ((sha2_word64)0x6a09e667f3bcc908), - ((sha2_word64)0xbb67ae8584caa73b), - ((sha2_word64)0x3c6ef372fe94f82b), - ((sha2_word64)0xa54ff53a5f1d36f1), - ((sha2_word64)0x510e527fade682d1), - ((sha2_word64)0x9b05688c2b3e6c1f), - ((sha2_word64)0x1f83d9abfb41bd6b), - ((sha2_word64)0x5be0cd19137e2179) -#endif -}; - -/*** SHA-256: *********************************************************/ - -#define sha256_description "FIPS SHA-256 secure hash algorithm." -#define sha256_options "\ -[+(version)?sha-256 (FIPS) 2000-01-01]\ -[+(author)?Aaron D. Gifford]\ -" -#define sha256_match "sha256|sha-256|SHA256|SHA-256" -#define sha256_scale 0 - -#define sha256_padding md5_pad - -#define SHA256_CTX Sha256_t - -typedef struct Sha256_s -{ - _SUM_PUBLIC_ - _SUM_PRIVATE_ - sha2_byte digest[SHA256_DIGEST_LENGTH]; - sha2_byte digest_sum[SHA256_DIGEST_LENGTH]; - sha2_word32 state[8]; - sha2_word64 bitcount; - sha2_byte buffer[SHA256_BLOCK_LENGTH]; -} Sha256_t; - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-256 round macros: */ - -#if BYTE_ORDER == LITTLE_ENDIAN - -#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ - REVERSE32(*data++, W256[j]); \ - T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ - K256[j] + W256[j]; \ - (d) += T1; \ - (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ - j++ - - -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ - T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ - K256[j] + (W256[j] = *data++); \ - (d) += T1; \ - (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ - j++ - -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND256(a,b,c,d,e,f,g,h) \ - s0 = W256[(j+1)&0x0f]; \ - s0 = sigma0_256(s0); \ - s1 = W256[(j+14)&0x0f]; \ - s1 = sigma1_256(s1); \ - T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ - (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ - (d) += T1; \ - (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ - j++ - -static void SHA256_Transform(SHA256_CTX* sha, const sha2_word32* data) { - sha2_word32 a, b, c, d, e, f, g, h, s0, s1; - sha2_word32 T1, *W256; - int j; - - W256 = (sha2_word32*)sha->buffer; - - /* Initialize registers with the prev. intermediate value */ - a = sha->state[0]; - b = sha->state[1]; - c = sha->state[2]; - d = sha->state[3]; - e = sha->state[4]; - f = sha->state[5]; - g = sha->state[6]; - h = sha->state[7]; - - j = 0; - do { - /* Rounds 0 to 15 (unrolled): */ - ROUND256_0_TO_15(a,b,c,d,e,f,g,h); - ROUND256_0_TO_15(h,a,b,c,d,e,f,g); - ROUND256_0_TO_15(g,h,a,b,c,d,e,f); - ROUND256_0_TO_15(f,g,h,a,b,c,d,e); - ROUND256_0_TO_15(e,f,g,h,a,b,c,d); - ROUND256_0_TO_15(d,e,f,g,h,a,b,c); - ROUND256_0_TO_15(c,d,e,f,g,h,a,b); - ROUND256_0_TO_15(b,c,d,e,f,g,h,a); - } while (j < 16); - - /* Now for the remaining rounds to 64: */ - do { - ROUND256(a,b,c,d,e,f,g,h); - ROUND256(h,a,b,c,d,e,f,g); - ROUND256(g,h,a,b,c,d,e,f); - ROUND256(f,g,h,a,b,c,d,e); - ROUND256(e,f,g,h,a,b,c,d); - ROUND256(d,e,f,g,h,a,b,c); - ROUND256(c,d,e,f,g,h,a,b); - ROUND256(b,c,d,e,f,g,h,a); - } while (j < 64); - - /* Compute the current intermediate hash value */ - sha->state[0] += a; - sha->state[1] += b; - sha->state[2] += c; - sha->state[3] += d; - sha->state[4] += e; - sha->state[5] += f; - sha->state[6] += g; - sha->state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -static void SHA256_Transform(SHA256_CTX* sha, const sha2_word32* data) { - sha2_word32 a, b, c, d, e, f, g, h, s0, s1; - sha2_word32 T1, T2, *W256; - int j; - - W256 = (sha2_word32*)sha->buffer; - - /* Initialize registers with the prev. intermediate value */ - a = sha->state[0]; - b = sha->state[1]; - c = sha->state[2]; - d = sha->state[3]; - e = sha->state[4]; - f = sha->state[5]; - g = sha->state[6]; - h = sha->state[7]; - - j = 0; - do { -#if BYTE_ORDER == LITTLE_ENDIAN - /* Copy data while converting to host byte order */ - REVERSE32(*data++,W256[j]); - /* Apply the SHA-256 compression function to update a..h */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - /* Apply the SHA-256 compression function to update a..h with copy */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - T2 = Sigma0_256(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 16); - - do { - /* Part of the message block expansion: */ - s0 = W256[(j+1)&0x0f]; - s0 = sigma0_256(s0); - s1 = W256[(j+14)&0x0f]; - s1 = sigma1_256(s1); - - /* Apply the SHA-256 compression function to update a..h */ - T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + - (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); - T2 = Sigma0_256(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 64); - - /* Compute the current intermediate hash value */ - sha->state[0] += a; - sha->state[1] += b; - sha->state[2] += c; - sha->state[3] += d; - sha->state[4] += e; - sha->state[5] += f; - sha->state[6] += g; - sha->state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = T2 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -static int -sha256_block(register Sum_t* p, const void* s, size_t len) -{ - Sha256_t* sha = (Sha256_t*)p; - sha2_byte* data = (sha2_byte*)s; - unsigned int freespace, usedspace; - - if (!len) - return 0; - usedspace = (sha->bitcount >> 3) % SHA256_BLOCK_LENGTH; - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = SHA256_BLOCK_LENGTH - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - MEMCPY_BCOPY(&sha->buffer[usedspace], data, freespace); - sha->bitcount += freespace << 3; - len -= freespace; - data += freespace; - SHA256_Transform(sha, (sha2_word32*)sha->buffer); - } else { - /* The buffer is not yet full */ - MEMCPY_BCOPY(&sha->buffer[usedspace], data, len); - sha->bitcount += len << 3; - /* Clean up: */ - usedspace = freespace = 0; - return 0; - } - } - while (len >= SHA256_BLOCK_LENGTH) { - /* Process as many complete blocks as we can */ - SHA256_Transform(sha, (sha2_word32*)data); - sha->bitcount += SHA256_BLOCK_LENGTH << 3; - len -= SHA256_BLOCK_LENGTH; - data += SHA256_BLOCK_LENGTH; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - MEMCPY_BCOPY(sha->buffer, data, len); - sha->bitcount += len << 3; - } - /* Clean up: */ - usedspace = freespace = 0; - - return 0; -} - -static int -sha256_init(Sum_t* p) -{ - register Sha256_t* sha = (Sha256_t*)p; - - MEMCPY_BCOPY(sha->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); - MEMSET_BZERO(sha->buffer, SHA256_BLOCK_LENGTH); - sha->bitcount = 0; - - return 0; -} - -static Sum_t* -sha256_open(const Method_t* method, const char* name) -{ - Sha256_t* sha; - - if (sha = newof(0, Sha256_t, 1, 0)) - { - sha->method = (Method_t*)method; - sha->name = name; - sha256_init((Sum_t*)sha); - } - return (Sum_t*)sha; -} - -static int -sha256_done(Sum_t* p) -{ - Sha256_t* sha = (Sha256_t*)p; - unsigned int usedspace; - register int i; - - /* Sanity check: */ - assert(sha != (SHA256_CTX*)0); - - usedspace = (sha->bitcount >> 3) % SHA256_BLOCK_LENGTH; -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert FROM host byte order */ - REVERSE64(sha->bitcount,sha->bitcount); -#endif - if (usedspace > 0) { - /* Begin padding with a 1 bit: */ - sha->buffer[usedspace++] = 0x80; - - if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { - /* Set-up for the last transform: */ - MEMSET_BZERO(&sha->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); - } else { - if (usedspace < SHA256_BLOCK_LENGTH) { - MEMSET_BZERO(&sha->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); - } - /* Do second-to-last transform: */ - SHA256_Transform(sha, (sha2_word32*)sha->buffer); - - /* And set-up for the last transform: */ - MEMSET_BZERO(sha->buffer, SHA256_SHORT_BLOCK_LENGTH); - } - } else { - /* Set-up for the last transform: */ - MEMSET_BZERO(sha->buffer, SHA256_SHORT_BLOCK_LENGTH); - - /* Begin padding with a 1 bit: */ - *sha->buffer = 0x80; - } - /* Set the bit count: */ - *(sha2_word64*)&sha->buffer[SHA256_SHORT_BLOCK_LENGTH] = sha->bitcount; - - /* Final transform: */ - SHA256_Transform(sha, (sha2_word32*)sha->buffer); - -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - int j; - sha2_word32* d = (sha2_word32*)sha->digest; - for (j = 0; j < 8; j++) { - REVERSE32(sha->state[j],sha->state[j]); - *d++ = sha->state[j]; - } - } -#else - MEMCPY_BCOPY(sha->digest, sha->state, SHA256_DIGEST_LENGTH); -#endif - - /* accumulate the digests */ - for (i = 0; i < SHA256_DIGEST_LENGTH; i++) - sha->digest_sum[i] ^= sha->digest[i]; - - /* Clean up state data: */ - MEMSET_BZERO(&sha->state, sizeof(*sha) - offsetof(Sha256_t, state)); - usedspace = 0; - - return 0; -} - -static int -sha256_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) -{ - register Sha256_t* sha = (Sha256_t*)p; - register sha2_byte* d; - register sha2_byte* e; - - d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; - e = d + SHA256_DIGEST_LENGTH; - while (d < e) - sfprintf(sp, "%02x", *d++); - return 0; -} - -static int -sha256_data(Sum_t* p, Sumdata_t* data) -{ - register Sha256_t* sha = (Sha256_t*)p; - - data->size = SHA256_DIGEST_LENGTH; - data->num = 0; - data->buf = sha->digest; - return 0; -} - -/*** SHA-512: *********************************************************/ - -#define sha512_description "FIPS SHA-512 secure hash algorithm." -#define sha512_options "\ -[+(version)?sha-512 (FIPS) 2000-01-01]\ -[+(author)?Aaron D. Gifford]\ -" -#define sha512_match "sha512|sha-512|SHA512|SHA-512" -#define sha512_scale 0 - -#define sha512_padding md5_pad - -#define SHA512_CTX Sha512_t - -typedef struct Sha512_s -{ - _SUM_PUBLIC_ - _SUM_PRIVATE_ - sha2_byte digest[SHA512_DIGEST_LENGTH]; - sha2_byte digest_sum[SHA512_DIGEST_LENGTH]; - sha2_word64 state[8]; - sha2_word64 bitcount[2]; - sha2_byte buffer[SHA512_BLOCK_LENGTH]; -} Sha512_t; - -#ifdef SHA2_UNROLL_TRANSFORM - -/* Unrolled SHA-512 round macros: */ -#if BYTE_ORDER == LITTLE_ENDIAN - -#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ - REVERSE64(*data++, W512[j]); \ - T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ - K512[j] + W512[j]; \ - (d) += T1, \ - (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ - j++ - - -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ - T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ - K512[j] + (W512[j] = *data++); \ - (d) += T1; \ - (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ - j++ - -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - -#define ROUND512(a,b,c,d,e,f,g,h) \ - s0 = W512[(j+1)&0x0f]; \ - s0 = sigma0_512(s0); \ - s1 = W512[(j+14)&0x0f]; \ - s1 = sigma1_512(s1); \ - T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ - (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ - (d) += T1; \ - (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ - j++ - -static void SHA512_Transform(SHA512_CTX* sha, const sha2_word64* data) { - sha2_word64 a, b, c, d, e, f, g, h, s0, s1; - sha2_word64 T1, *W512 = (sha2_word64*)sha->buffer; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = sha->state[0]; - b = sha->state[1]; - c = sha->state[2]; - d = sha->state[3]; - e = sha->state[4]; - f = sha->state[5]; - g = sha->state[6]; - h = sha->state[7]; - - j = 0; - do { - ROUND512_0_TO_15(a,b,c,d,e,f,g,h); - ROUND512_0_TO_15(h,a,b,c,d,e,f,g); - ROUND512_0_TO_15(g,h,a,b,c,d,e,f); - ROUND512_0_TO_15(f,g,h,a,b,c,d,e); - ROUND512_0_TO_15(e,f,g,h,a,b,c,d); - ROUND512_0_TO_15(d,e,f,g,h,a,b,c); - ROUND512_0_TO_15(c,d,e,f,g,h,a,b); - ROUND512_0_TO_15(b,c,d,e,f,g,h,a); - } while (j < 16); - - /* Now for the remaining rounds up to 79: */ - do { - ROUND512(a,b,c,d,e,f,g,h); - ROUND512(h,a,b,c,d,e,f,g); - ROUND512(g,h,a,b,c,d,e,f); - ROUND512(f,g,h,a,b,c,d,e); - ROUND512(e,f,g,h,a,b,c,d); - ROUND512(d,e,f,g,h,a,b,c); - ROUND512(c,d,e,f,g,h,a,b); - ROUND512(b,c,d,e,f,g,h,a); - } while (j < 80); - - /* Compute the current intermediate hash value */ - sha->state[0] += a; - sha->state[1] += b; - sha->state[2] += c; - sha->state[3] += d; - sha->state[4] += e; - sha->state[5] += f; - sha->state[6] += g; - sha->state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = 0; -} - -#else /* SHA2_UNROLL_TRANSFORM */ - -static void SHA512_Transform(SHA512_CTX* sha, const sha2_word64* data) { - sha2_word64 a, b, c, d, e, f, g, h, s0, s1; - sha2_word64 T1, T2, *W512 = (sha2_word64*)sha->buffer; - int j; - - /* Initialize registers with the prev. intermediate value */ - a = sha->state[0]; - b = sha->state[1]; - c = sha->state[2]; - d = sha->state[3]; - e = sha->state[4]; - f = sha->state[5]; - g = sha->state[6]; - h = sha->state[7]; - - j = 0; - do { -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert TO host byte order */ - REVERSE64(*data++, W512[j]); - /* Apply the SHA-512 compression function to update a..h */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; -#else /* BYTE_ORDER == LITTLE_ENDIAN */ - /* Apply the SHA-512 compression function to update a..h with copy */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); -#endif /* BYTE_ORDER == LITTLE_ENDIAN */ - T2 = Sigma0_512(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 16); - - do { - /* Part of the message block expansion: */ - s0 = W512[(j+1)&0x0f]; - s0 = sigma0_512(s0); - s1 = W512[(j+14)&0x0f]; - s1 = sigma1_512(s1); - - /* Apply the SHA-512 compression function to update a..h */ - T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + - (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); - T2 = Sigma0_512(a) + Maj(a, b, c); - h = g; - g = f; - f = e; - e = d + T1; - d = c; - c = b; - b = a; - a = T1 + T2; - - j++; - } while (j < 80); - - /* Compute the current intermediate hash value */ - sha->state[0] += a; - sha->state[1] += b; - sha->state[2] += c; - sha->state[3] += d; - sha->state[4] += e; - sha->state[5] += f; - sha->state[6] += g; - sha->state[7] += h; - - /* Clean up */ - a = b = c = d = e = f = g = h = T1 = T2 = 0; -} - -#endif /* SHA2_UNROLL_TRANSFORM */ - -static int -sha512_block(register Sum_t* p, const void* s, size_t len) -{ - Sha512_t* sha = (Sha512_t*)p; - sha2_byte* data = (sha2_byte*)s; - unsigned int freespace, usedspace; - - if (!len) - return 0; - usedspace = (sha->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; - if (usedspace > 0) { - /* Calculate how much free space is available in the buffer */ - freespace = SHA512_BLOCK_LENGTH - usedspace; - - if (len >= freespace) { - /* Fill the buffer completely and process it */ - MEMCPY_BCOPY(&sha->buffer[usedspace], data, freespace); - ADDINC128(sha->bitcount, freespace << 3); - len -= freespace; - data += freespace; - SHA512_Transform(sha, (sha2_word64*)sha->buffer); - } else { - /* The buffer is not yet full */ - MEMCPY_BCOPY(&sha->buffer[usedspace], data, len); - ADDINC128(sha->bitcount, len << 3); - /* Clean up: */ - usedspace = freespace = 0; - return 0; - } - } - while (len >= SHA512_BLOCK_LENGTH) { - /* Process as many complete blocks as we can */ - SHA512_Transform(sha, (sha2_word64*)data); - ADDINC128(sha->bitcount, SHA512_BLOCK_LENGTH << 3); - len -= SHA512_BLOCK_LENGTH; - data += SHA512_BLOCK_LENGTH; - } - if (len > 0) { - /* There's left-overs, so save 'em */ - MEMCPY_BCOPY(sha->buffer, data, len); - ADDINC128(sha->bitcount, len << 3); - } - /* Clean up: */ - usedspace = freespace = 0; - - return 0; -} - -static int -sha512_init(Sum_t* p) -{ - register Sha512_t* sha = (Sha512_t*)p; - - MEMCPY_BCOPY(sha->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); - MEMSET_BZERO(sha->buffer, SHA512_BLOCK_LENGTH); - sha->bitcount[0] = sha->bitcount[1] = 0; - - return 0; -} - -static Sum_t* -sha512_open(const Method_t* method, const char* name) -{ - Sha512_t* sha; - - if (sha = newof(0, Sha512_t, 1, 0)) - { - sha->method = (Method_t*)method; - sha->name = name; - sha512_init((Sum_t*)sha); - } - return (Sum_t*)sha; -} - -static int -sha512_done(Sum_t* p) -{ - Sha512_t* sha = (Sha512_t*)p; - unsigned int usedspace; - register int i; - - usedspace = (sha->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; -#if BYTE_ORDER == LITTLE_ENDIAN - /* Convert FROM host byte order */ - REVERSE64(sha->bitcount[0],sha->bitcount[0]); - REVERSE64(sha->bitcount[1],sha->bitcount[1]); -#endif - if (usedspace > 0) { - /* Begin padding with a 1 bit: */ - sha->buffer[usedspace++] = 0x80; - - if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { - /* Set-up for the last transform: */ - MEMSET_BZERO(&sha->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); - } else { - if (usedspace < SHA512_BLOCK_LENGTH) { - MEMSET_BZERO(&sha->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); - } - /* Do second-to-last transform: */ - SHA512_Transform(sha, (sha2_word64*)sha->buffer); - - /* And set-up for the last transform: */ - MEMSET_BZERO(sha->buffer, SHA512_BLOCK_LENGTH - 2); - } - } else { - /* Prepare for final transform: */ - MEMSET_BZERO(sha->buffer, SHA512_SHORT_BLOCK_LENGTH); - - /* Begin padding with a 1 bit: */ - *sha->buffer = 0x80; - } - /* Store the length of input data (in bits): */ - *(sha2_word64*)&sha->buffer[SHA512_SHORT_BLOCK_LENGTH] = sha->bitcount[1]; - *(sha2_word64*)&sha->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = sha->bitcount[0]; - - /* Final transform: */ - SHA512_Transform(sha, (sha2_word64*)sha->buffer); - -#if BYTE_ORDER == LITTLE_ENDIAN - { - /* Convert TO host byte order */ - sha2_word64* d = (sha2_word64*)sha->digest; - int j; - for (j = 0; j < 8; j++) { - REVERSE64(sha->state[j],sha->state[j]); - *d++ = sha->state[j]; - } - } -#else - MEMCPY_BCOPY(sha->digest, sha->state, SHA512_DIGEST_LENGTH); -#endif - - /* accumulate the digests */ - for (i = 0; i < SHA512_DIGEST_LENGTH; i++) - sha->digest_sum[i] ^= sha->digest[i]; - - /* Clean up state data: */ - MEMSET_BZERO(&sha->state, sizeof(*sha) - offsetof(Sha512_t, state)); - usedspace = 0; - - return 0; -} - -static int -sha512_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) -{ - register Sha512_t* sha = (Sha512_t*)p; - register sha2_byte* d; - register sha2_byte* e; - - d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; - e = d + SHA512_DIGEST_LENGTH; - while (d < e) - sfprintf(sp, "%02x", *d++); - return 0; -} - -static int -sha512_data(Sum_t* p, Sumdata_t* data) -{ - register Sha512_t* sha = (Sha512_t*)p; - - data->size = SHA512_DIGEST_LENGTH; - data->num = 0; - data->buf = sha->digest; - return 0; -} - -/*** SHA-384: *********************************************************/ - -#define sha384_description "FIPS SHA-384 secure hash algorithm." -#define sha384_options "\ -[+(version)?sha-384 (FIPS) 2000-01-01]\ -[+(author)?Aaron D. Gifford]\ -" -#define sha384_match "sha384|sha-384|SHA384|SHA-384" -#define sha384_scale 0 -#define sha384_block sha512_block -#define sha384_done sha512_done - -#define sha384_padding md5_pad - -#define Sha384_t Sha512_t -#define SHA384_CTX Sha384_t -#define SHA384_DIGEST_LENGTH 48 - -static int -sha384_init(Sum_t* p) -{ - register Sha384_t* sha = (Sha384_t*)p; - - MEMCPY_BCOPY(sha->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); - MEMSET_BZERO(sha->buffer, SHA384_BLOCK_LENGTH); - sha->bitcount[0] = sha->bitcount[1] = 0; - - return 0; -} - -static Sum_t* -sha384_open(const Method_t* method, const char* name) -{ - Sha384_t* sha; - - if (sha = newof(0, Sha384_t, 1, 0)) - { - sha->method = (Method_t*)method; - sha->name = name; - sha384_init((Sum_t*)sha); - } - return (Sum_t*)sha; -} - -static int -sha384_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) -{ - register Sha384_t* sha = (Sha384_t*)p; - register sha2_byte* d; - register sha2_byte* e; - - d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; - e = d + SHA384_DIGEST_LENGTH; - while (d < e) - sfprintf(sp, "%02x", *d++); - return 0; -} - -static int -sha384_data(Sum_t* p, Sumdata_t* data) -{ - register Sha384_t* sha = (Sha384_t*)p; - - data->size = SHA384_DIGEST_LENGTH; - data->num = 0; - data->buf = sha->digest; - return 0; -} - -#endif /* _typ_int64_t */ |