summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/fio.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/os/fio.c')
-rw-r--r--usr/src/uts/common/os/fio.c1691
1 files changed, 1691 insertions, 0 deletions
diff --git a/usr/src/uts/common/os/fio.c b/usr/src/uts/common/os/fio.c
new file mode 100644
index 0000000000..f5622f82ee
--- /dev/null
+++ b/usr/src/uts/common/os/fio.c
@@ -0,0 +1,1691 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
+/* All Rights Reserved */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/types.h>
+#include <sys/sysmacros.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/errno.h>
+#include <sys/signal.h>
+#include <sys/cred.h>
+#include <sys/user.h>
+#include <sys/conf.h>
+#include <sys/vfs.h>
+#include <sys/vnode.h>
+#include <sys/pathname.h>
+#include <sys/file.h>
+#include <sys/proc.h>
+#include <sys/var.h>
+#include <sys/cpuvar.h>
+#include <sys/open.h>
+#include <sys/cmn_err.h>
+#include <sys/priocntl.h>
+#include <sys/procset.h>
+#include <sys/prsystm.h>
+#include <sys/debug.h>
+#include <sys/kmem.h>
+#include <sys/atomic.h>
+#include <sys/fcntl.h>
+#include <sys/poll.h>
+#include <sys/rctl.h>
+#include <sys/port_impl.h>
+
+#include <c2/audit.h>
+#include <sys/nbmlock.h>
+
+#ifdef DEBUG
+
+static uint32_t afd_maxfd; /* # of entries in maximum allocated array */
+static uint32_t afd_alloc; /* count of kmem_alloc()s */
+static uint32_t afd_free; /* count of kmem_free()s */
+static uint32_t afd_wait; /* count of waits on non-zero ref count */
+#define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
+#define COUNT(x) atomic_add_32(&x, 1)
+
+#else /* DEBUG */
+
+#define MAXFD(x)
+#define COUNT(x)
+
+#endif /* DEBUG */
+
+kmem_cache_t *file_cache;
+static int vpsetattr(vnode_t *, vattr_t *, int);
+
+static void port_close_fd(portfd_t *, int);
+
+/*
+ * File descriptor allocation.
+ *
+ * fd_find(fip, minfd) finds the first available descriptor >= minfd.
+ * The most common case is open(2), in which minfd = 0, but we must also
+ * support fcntl(fd, F_DUPFD, minfd).
+ *
+ * The algorithm is as follows: we keep all file descriptors in an infix
+ * binary tree in which each node records the number of descriptors
+ * allocated in its right subtree, including itself. Starting at minfd,
+ * we ascend the tree until we find a non-fully allocated right subtree.
+ * We then descend that subtree in a binary search for the smallest fd.
+ * Finally, we ascend the tree again to increment the allocation count
+ * of every subtree containing the newly-allocated fd. Freeing an fd
+ * requires only the last step: we ascend the tree to decrement allocation
+ * counts. Each of these three steps (ascent to find non-full subtree,
+ * descent to find lowest fd, ascent to update allocation counts) is
+ * O(log n), thus the algorithm as a whole is O(log n).
+ *
+ * We don't implement the fd tree using the customary left/right/parent
+ * pointers, but instead take advantage of the glorious mathematics of
+ * full infix binary trees. For reference, here's an illustration of the
+ * logical structure of such a tree, rooted at 4 (binary 100), covering
+ * the range 1-7 (binary 001-111). Our canonical trees do not include
+ * fd 0; we'll deal with that later.
+ *
+ * 100
+ * / \
+ * / \
+ * 010 110
+ * / \ / \
+ * 001 011 101 111
+ *
+ * We make the following observations, all of which are easily proven by
+ * induction on the depth of the tree:
+ *
+ * (T1) The least-significant bit (LSB) of any node is equal to its level
+ * in the tree. In our example, nodes 001, 011, 101 and 111 are at
+ * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
+ *
+ * (T2) The child size (CSIZE) of node N -- that is, the total number of
+ * right-branch descendants in a child of node N, including itself -- is
+ * given by clearing all but the least significant bit of N. This
+ * follows immediately from (T1). Applying this rule to our example, we
+ * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
+ *
+ * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
+ * ancestor containing node N in its right child -- is given by clearing
+ * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100.
+ * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
+ * the fact that these are leftmost nodes. Note that this algorithm
+ * automatically skips generations as necessary. For example, the parent
+ * of node 101 is 110, which is a *right* ancestor (not what we want);
+ * but its grandparent is 100, which is a left ancestor. Clearing the LSB
+ * of 101 gets us to 100 directly, skipping right past the uninteresting
+ * generation (110).
+ *
+ * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
+ * the LSB, we can express LPARENT() nicely in terms of CSIZE():
+ *
+ * LPARENT(N) = N - CSIZE(N)
+ *
+ * (T4) The nearest right ancestor (RPARENT) of node N is given by:
+ *
+ * RPARENT(N) = N + CSIZE(N)
+ *
+ * (T5) For every interior node, the children differ from their parent by
+ * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary,
+ * and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
+ *
+ * Next, we'll need a few two's-complement math tricks. Suppose a number,
+ * N, has the following form:
+ *
+ * N = xxxx10...0
+ *
+ * That is, the binary representation of N consists of some string of bits,
+ * then a 1, then all zeroes. This amounts to nothing more than saying that
+ * N has a least-significant bit, which is true for any N != 0. If we look
+ * at N and N - 1 together, we see that we can combine them in useful ways:
+ *
+ * N = xxxx10...0
+ * N - 1 = xxxx01...1
+ * ------------------------
+ * N & (N - 1) = xxxx000000
+ * N | (N - 1) = xxxx111111
+ * N ^ (N - 1) = 111111
+ *
+ * In particular, this suggests several easy ways to clear all but the LSB,
+ * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
+ * We'll opt for this formulation:
+ *
+ * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
+ *
+ * Similarly, we have an easy way to determine LPARENT(N), which requires
+ * that we clear the LSB of N:
+ *
+ * (L1) LPARENT(N) = N & (N - 1)
+ *
+ * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
+ * When combined with (T4), this yields an easy way to compute RPARENT(N):
+ *
+ * (R1) RPARENT(N) = (N | (N - 1)) + 1
+ *
+ * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
+ * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward,
+ * so there's no need to belabor the algebra; the revised relations become:
+ *
+ * (C1a) CSIZE(N) = N ^ (N | (N + 1))
+ *
+ * (L1a) LPARENT(N) = (N & (N + 1)) - 1
+ *
+ * (R1a) RPARENT(N) = N | (N + 1)
+ *
+ * This completes the mathematical framework. We now have all the tools
+ * we need to implement fd_find() and fd_reserve().
+ *
+ * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
+ * It does not actually allocate the descriptor; that's done by fd_reserve().
+ * fd_find() proceeds in two steps:
+ *
+ * (1) Find the leftmost subtree that contains a descriptor >= minfd.
+ * We start at the right subtree rooted at minfd. If this subtree is
+ * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
+ * step 1 is done. Otherwise, we know that all fds in this subtree
+ * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat
+ * this process until we either find a candidate subtree or exceed
+ * fip->fi_nfiles. We use (C1a) to compute CSIZE().
+ *
+ * (2) Find the smallest fd in the subtree discovered by step 1.
+ * Starting at the root of this subtree, we descend to find the
+ * smallest available fd. Since the left children have the smaller
+ * fds, we will descend rightward only when the left child is full.
+ *
+ * We begin by comparing the number of allocated fds in the root
+ * to the number of allocated fds in its right child; if they differ
+ * by exactly CSIZE(child), we know the left subtree is full, so we
+ * descend right; that is, the right child becomes the search root.
+ * Otherwise we leave the root alone and start following the right
+ * child's left children. As fortune would have it, this is very
+ * simple computationally: by (T5), the right child of fd is just
+ * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again,
+ * we find that the right child's left child is fd + size - (size / 2) =
+ * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
+ * fd + (size / 4), and so on. In general, fd's right child's
+ * leftmost nth descendant is fd + (size >> n). Thus, to follow
+ * the right child's left descendants, we just halve the size in
+ * each iteration of the search.
+ *
+ * When we descend leftward, we must keep track of the number of fds
+ * that were allocated in all the right subtrees we rejected, so we
+ * know how many of the root fd's allocations are in the remaining
+ * (as yet unexplored) leftmost part of its right subtree. When we
+ * encounter a fully-allocated left child -- that is, when we find
+ * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
+ * (as described earlier), resetting ralloc to zero.
+ *
+ * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
+ * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends
+ * the leftmost ancestors (see (T3)) and updates the allocation counts.
+ * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
+ *
+ * flist_minsize() finds the minimal tree that still covers all
+ * used fds; as long as the allocation count of a root node is zero, we
+ * don't need that node or its right subtree.
+ *
+ * flist_nalloc() counts the number of allocated fds in the tree, by starting
+ * at the top of the tree and summing the right-subtree allocation counts as
+ * it descends leftwards.
+ *
+ * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
+ * 2^n - 1. This ensures that the fd trees are always full, which saves
+ * quite a bit of boundary checking.
+ */
+static int
+fd_find(uf_info_t *fip, int minfd)
+{
+ int size, ralloc, fd;
+
+ ASSERT(MUTEX_HELD(&fip->fi_lock));
+ ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
+
+ for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
+ size = fd ^ (fd | (fd + 1));
+ if (fip->fi_list[fd].uf_alloc == size)
+ continue;
+ for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
+ ralloc += fip->fi_list[fd + size].uf_alloc;
+ if (fip->fi_list[fd].uf_alloc == ralloc + size) {
+ fd += size;
+ ralloc = 0;
+ }
+ }
+ return (fd);
+ }
+ return (-1);
+}
+
+static void
+fd_reserve(uf_info_t *fip, int fd, int incr)
+{
+ int pfd;
+ uf_entry_t *ufp = &fip->fi_list[fd];
+
+ ASSERT((uint_t)fd < fip->fi_nfiles);
+ ASSERT((ufp->uf_busy == 0 && incr == 1) ||
+ (ufp->uf_busy == 1 && incr == -1));
+ ASSERT(MUTEX_HELD(&ufp->uf_lock));
+ ASSERT(MUTEX_HELD(&fip->fi_lock));
+
+ for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
+ fip->fi_list[pfd].uf_alloc += incr;
+
+ ufp->uf_busy += incr;
+}
+
+static int
+flist_minsize(uf_info_t *fip)
+{
+ int fd;
+
+ /*
+ * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
+ * by flist_fork(), which relies on other mechanisms for mutual
+ * exclusion.
+ */
+ ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
+
+ for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
+ if (fip->fi_list[fd >> 1].uf_alloc != 0)
+ break;
+
+ return (fd);
+}
+
+static int
+flist_nalloc(uf_info_t *fip)
+{
+ int fd;
+ int nalloc = 0;
+
+ ASSERT(MUTEX_HELD(&fip->fi_lock));
+ ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
+
+ for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
+ nalloc += fip->fi_list[fd >> 1].uf_alloc;
+
+ return (nalloc);
+}
+
+/*
+ * Increase size of the fi_list array to accommodate at least maxfd.
+ * We keep the size of the form 2^n - 1 for benefit of fd_find().
+ */
+static void
+flist_grow(int maxfd)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ int newcnt, oldcnt;
+ uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
+ uf_rlist_t *urp;
+
+ for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
+ continue;
+
+ newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
+
+ mutex_enter(&fip->fi_lock);
+ oldcnt = fip->fi_nfiles;
+ if (newcnt <= oldcnt) {
+ mutex_exit(&fip->fi_lock);
+ kmem_free(newlist, newcnt * sizeof (uf_entry_t));
+ return;
+ }
+ ASSERT((newcnt & (newcnt + 1)) == 0);
+ oldlist = fip->fi_list;
+ oldend = oldlist + oldcnt;
+ newend = newlist + oldcnt; /* no need to lock beyond old end */
+
+ /*
+ * fi_list and fi_nfiles cannot change while any uf_lock is held,
+ * so we must grab all the old locks *and* the new locks up to oldcnt.
+ * (Locks beyond the end of oldcnt aren't visible until we store
+ * the new fi_nfiles, which is the last thing we do before dropping
+ * all the locks, so there's no need to acquire these locks).
+ * Holding the new locks is necessary because when fi_list changes
+ * to point to the new list, fi_nfiles won't have been stored yet.
+ * If we *didn't* hold the new locks, someone doing a UF_ENTER()
+ * could see the new fi_list, grab the new uf_lock, and then see
+ * fi_nfiles change while the lock is held -- in violation of
+ * UF_ENTER() semantics.
+ */
+ for (src = oldlist; src < oldend; src++)
+ mutex_enter(&src->uf_lock);
+
+ for (dst = newlist; dst < newend; dst++)
+ mutex_enter(&dst->uf_lock);
+
+ for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
+ dst->uf_file = src->uf_file;
+ dst->uf_fpollinfo = src->uf_fpollinfo;
+ dst->uf_refcnt = src->uf_refcnt;
+ dst->uf_alloc = src->uf_alloc;
+ dst->uf_flag = src->uf_flag;
+ dst->uf_busy = src->uf_busy;
+ dst->uf_portfd = src->uf_portfd;
+ }
+
+ /*
+ * As soon as we store the new flist, future locking operations
+ * will use it. Therefore, we must ensure that all the state
+ * we've just established reaches global visibility before the
+ * new flist does.
+ */
+ membar_producer();
+ fip->fi_list = newlist;
+
+ /*
+ * Routines like getf() make an optimistic check on the validity
+ * of the supplied file descriptor: if it's less than the current
+ * value of fi_nfiles -- examined without any locks -- then it's
+ * safe to attempt a UF_ENTER() on that fd (which is a valid
+ * assumption because fi_nfiles only increases). Therefore, it
+ * is critical that the new value of fi_nfiles not reach global
+ * visibility until after the new fi_list: if it happened the
+ * other way around, getf() could see the new fi_nfiles and attempt
+ * a UF_ENTER() on the old fi_list, which would write beyond its
+ * end if the fd exceeded the old fi_nfiles.
+ */
+ membar_producer();
+ fip->fi_nfiles = newcnt;
+
+ /*
+ * The new state is consistent now, so we can drop all the locks.
+ */
+ for (dst = newlist; dst < newend; dst++)
+ mutex_exit(&dst->uf_lock);
+
+ for (src = oldlist; src < oldend; src++) {
+ /*
+ * If any threads are blocked on the old cvs, wake them.
+ * This will force them to wake up, discover that fi_list
+ * has changed, and go back to sleep on the new cvs.
+ */
+ cv_broadcast(&src->uf_wanted_cv);
+ cv_broadcast(&src->uf_closing_cv);
+ mutex_exit(&src->uf_lock);
+ }
+
+ mutex_exit(&fip->fi_lock);
+
+ /*
+ * Retire the old flist. We can't actually kmem_free() it now
+ * because someone may still have a pointer to it. Instead,
+ * we link it onto a list of retired flists. The new flist
+ * is at least double the size of the previous flist, so the
+ * total size of all retired flists will be less than the size
+ * of the current one (to prove, consider the sum of a geometric
+ * series in powers of 2). exit() frees the retired flists.
+ */
+ urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
+ urp->ur_list = oldlist;
+ urp->ur_nfiles = oldcnt;
+
+ mutex_enter(&fip->fi_lock);
+ urp->ur_next = fip->fi_rlist;
+ fip->fi_rlist = urp;
+ mutex_exit(&fip->fi_lock);
+}
+
+/*
+ * Utility functions for keeping track of the active file descriptors.
+ */
+void
+clear_stale_fd() /* called from post_syscall() */
+{
+ afd_t *afd = &curthread->t_activefd;
+ int i;
+
+ /* uninitialized is ok here, a_nfd is then zero */
+ for (i = 0; i < afd->a_nfd; i++) {
+ /* assert that this should not be necessary */
+ ASSERT(afd->a_fd[i] == -1);
+ afd->a_fd[i] = -1;
+ }
+ afd->a_stale = 0;
+}
+
+void
+free_afd(afd_t *afd) /* called below and from thread_free() */
+{
+ int i;
+
+ /* free the buffer if it was kmem_alloc()ed */
+ if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
+ COUNT(afd_free);
+ kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
+ }
+
+ /* (re)initialize the structure */
+ afd->a_fd = &afd->a_buf[0];
+ afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
+ afd->a_stale = 0;
+ for (i = 0; i < afd->a_nfd; i++)
+ afd->a_fd[i] = -1;
+}
+
+static void
+set_active_fd(int fd)
+{
+ afd_t *afd = &curthread->t_activefd;
+ int i;
+ int *old_fd;
+ int old_nfd;
+
+ if (afd->a_nfd == 0) /* first time initialization */
+ free_afd(afd);
+
+ /* insert fd into vacant slot, if any */
+ for (i = 0; i < afd->a_nfd; i++) {
+ if (afd->a_fd[i] == -1) {
+ afd->a_fd[i] = fd;
+ return;
+ }
+ }
+
+ /*
+ * Reallocate the a_fd[] array to add one more slot.
+ */
+ old_fd = afd->a_fd;
+ old_nfd = afd->a_nfd;
+ afd->a_nfd = old_nfd + 1;
+ MAXFD(afd->a_nfd);
+ COUNT(afd_alloc);
+ afd->a_fd = kmem_alloc(afd->a_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
+ for (i = 0; i < old_nfd; i++)
+ afd->a_fd[i] = old_fd[i];
+ afd->a_fd[i] = fd;
+
+ if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
+ COUNT(afd_free);
+ kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
+ }
+}
+
+void
+clear_active_fd(int fd) /* called below and from aio.c */
+{
+ afd_t *afd = &curthread->t_activefd;
+ int i;
+
+ for (i = 0; i < afd->a_nfd; i++) {
+ if (afd->a_fd[i] == fd) {
+ afd->a_fd[i] = -1;
+ break;
+ }
+ }
+ ASSERT(i < afd->a_nfd); /* not found is not ok */
+}
+
+/*
+ * Does this thread have this fd active?
+ */
+static int
+is_active_fd(kthread_t *t, int fd)
+{
+ afd_t *afd = &t->t_activefd;
+ int i;
+
+ /* uninitialized is ok here, a_nfd is then zero */
+ for (i = 0; i < afd->a_nfd; i++) {
+ if (afd->a_fd[i] == fd)
+ return (1);
+ }
+ return (0);
+}
+
+/*
+ * Convert a user supplied file descriptor into a pointer to a file
+ * structure. Only task is to check range of the descriptor (soft
+ * resource limit was enforced at open time and shouldn't be checked
+ * here).
+ */
+file_t *
+getf(int fd)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+ file_t *fp;
+
+ if ((uint_t)fd >= fip->fi_nfiles)
+ return (NULL);
+
+ UF_ENTER(ufp, fip, fd);
+ if ((fp = ufp->uf_file) == NULL) {
+ UF_EXIT(ufp);
+ return (NULL);
+ }
+ ufp->uf_refcnt++;
+
+#ifdef C2_AUDIT
+ /*
+ * archive per file audit data
+ */
+ if (audit_active)
+ (void) audit_getf(fd);
+#endif
+ UF_EXIT(ufp);
+
+ set_active_fd(fd); /* record the active file descriptor */
+
+ return (fp);
+}
+
+/*
+ * Close whatever file currently occupies the file descriptor slot
+ * and install the new file, usually NULL, in the file descriptor slot.
+ * The close must complete before we release the file descriptor slot.
+ * We return the error number from closef().
+ */
+int
+closeandsetf(int fd, file_t *newfp)
+{
+ proc_t *p = curproc;
+ uf_info_t *fip = P_FINFO(p);
+ uf_entry_t *ufp;
+ file_t *fp;
+ fpollinfo_t *fpip;
+ portfd_t *pfd;
+ int error;
+
+ if ((uint_t)fd >= fip->fi_nfiles) {
+ if (newfp == NULL)
+ return (EBADF);
+ flist_grow(fd);
+ }
+
+ if (newfp != NULL) {
+ /*
+ * If ufp is reserved but has no file pointer, it's in the
+ * transition between ufalloc() and setf(). We must wait
+ * for this transition to complete before assigning the
+ * new non-NULL file pointer.
+ */
+ mutex_enter(&fip->fi_lock);
+ UF_ENTER(ufp, fip, fd);
+ while (ufp->uf_busy && ufp->uf_file == NULL) {
+ mutex_exit(&fip->fi_lock);
+ cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
+ UF_EXIT(ufp);
+ mutex_enter(&fip->fi_lock);
+ UF_ENTER(ufp, fip, fd);
+ }
+ if ((fp = ufp->uf_file) == NULL) {
+ ASSERT(ufp->uf_fpollinfo == NULL);
+ ASSERT(ufp->uf_flag == 0);
+ fd_reserve(fip, fd, 1);
+ ufp->uf_file = newfp;
+ UF_EXIT(ufp);
+ mutex_exit(&fip->fi_lock);
+ return (0);
+ }
+ mutex_exit(&fip->fi_lock);
+ } else {
+ UF_ENTER(ufp, fip, fd);
+ if ((fp = ufp->uf_file) == NULL) {
+ UF_EXIT(ufp);
+ return (EBADF);
+ }
+ }
+
+#ifdef C2_AUDIT
+ /*
+ * archive per file audit data
+ */
+ if (audit_active)
+ (void) audit_getf(fd);
+#endif
+ ASSERT(ufp->uf_busy);
+ ufp->uf_file = NULL;
+ ufp->uf_flag = 0;
+
+ /*
+ * If the file descriptor reference count is non-zero, then
+ * some other lwp in the process is performing system call
+ * activity on the file. To avoid blocking here for a long
+ * time (the other lwp might be in a long term sleep in its
+ * system call), we stop all other lwps in the process and
+ * scan them to find the ones with this fd as one of their
+ * active fds and set their a_stale flag so they will emerge
+ * from their system calls immediately. post_syscall() will
+ * test the a_stale flag and set errno to EBADF.
+ */
+ ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
+ if (ufp->uf_refcnt > 0) {
+ UF_EXIT(ufp);
+ COUNT(afd_wait);
+
+ /*
+ * Make all other lwps hold in place, as if doing fork1().
+ * holdlwps(SHOLDFORK1) fails only if another lwp wants to
+ * perform a forkall() or the process is exiting. In either
+ * case, all other lwps are either returning from their
+ * system calls (because of SHOLDFORK) or calling lwp_exit()
+ * (because of SEXITLWPS) so we don't need to scan them.
+ */
+ if (holdlwps(SHOLDFORK1)) {
+ kthread_t *t;
+
+ mutex_enter(&p->p_lock);
+ for (t = curthread->t_forw; t != curthread;
+ t = t->t_forw) {
+ if (is_active_fd(t, fd)) {
+ t->t_activefd.a_stale = 1;
+ t->t_post_sys = 1;
+ }
+ }
+ continuelwps(p);
+ mutex_exit(&p->p_lock);
+ }
+ UF_ENTER(ufp, fip, fd);
+ ASSERT(ufp->uf_file == NULL);
+ }
+
+ /*
+ * Wait for other lwps to stop using this file descriptor.
+ */
+ while (ufp->uf_refcnt > 0) {
+ cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
+ /*
+ * cv_wait_stop() drops ufp->uf_lock, so the file list
+ * can change. Drop the lock on our (possibly) stale
+ * ufp and let UF_ENTER() find and lock the current ufp.
+ */
+ UF_EXIT(ufp);
+ UF_ENTER(ufp, fip, fd);
+ }
+
+#ifdef DEBUG
+ /*
+ * catch a watchfd on device's pollhead list but not on fpollinfo list
+ */
+ if (ufp->uf_fpollinfo != NULL)
+ checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
+#endif /* DEBUG */
+
+ /*
+ * We may need to cleanup some cached poll states in t_pollstate
+ * before the fd can be reused. It is important that we don't
+ * access a stale thread structure. We will do the cleanup in two
+ * phases to avoid deadlock and holding uf_lock for too long.
+ * In phase 1, hold the uf_lock and call pollblockexit() to set
+ * state in t_pollstate struct so that a thread does not exit on
+ * us. In phase 2, we drop the uf_lock and call pollcacheclean().
+ */
+ pfd = ufp->uf_portfd;
+ ufp->uf_portfd = NULL;
+ fpip = ufp->uf_fpollinfo;
+ ufp->uf_fpollinfo = NULL;
+ if (fpip != NULL)
+ pollblockexit(fpip);
+ UF_EXIT(ufp);
+ if (fpip != NULL)
+ pollcacheclean(fpip, fd);
+ if (pfd)
+ port_close_fd(pfd, fd);
+
+ /*
+ * Keep the file descriptor entry reserved across the closef().
+ */
+ error = closef(fp);
+
+ setf(fd, newfp);
+
+ return (error);
+}
+
+/*
+ * Decrement uf_refcnt; wakeup anyone waiting to close the file.
+ */
+void
+releasef(int fd)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+
+ clear_active_fd(fd); /* clear the active file descriptor */
+
+ UF_ENTER(ufp, fip, fd);
+ ASSERT(ufp->uf_refcnt > 0);
+ if (--ufp->uf_refcnt == 0)
+ cv_broadcast(&ufp->uf_closing_cv);
+ UF_EXIT(ufp);
+}
+
+/*
+ * Identical to releasef() but can be called from another process.
+ */
+void
+areleasef(int fd, uf_info_t *fip)
+{
+ uf_entry_t *ufp;
+
+ UF_ENTER(ufp, fip, fd);
+ ASSERT(ufp->uf_refcnt > 0);
+ if (--ufp->uf_refcnt == 0)
+ cv_broadcast(&ufp->uf_closing_cv);
+ UF_EXIT(ufp);
+}
+
+/*
+ * Duplicate all file descriptors across a fork.
+ */
+void
+flist_fork(uf_info_t *pfip, uf_info_t *cfip)
+{
+ int fd, nfiles;
+ uf_entry_t *pufp, *cufp;
+
+ mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
+ cfip->fi_rlist = NULL;
+
+ /*
+ * We don't need to hold fi_lock because all other lwp's in the
+ * parent have been held.
+ */
+ cfip->fi_nfiles = nfiles = flist_minsize(pfip);
+
+ cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
+
+ for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
+ fd++, pufp++, cufp++) {
+ cufp->uf_file = pufp->uf_file;
+ cufp->uf_alloc = pufp->uf_alloc;
+ cufp->uf_flag = pufp->uf_flag;
+ cufp->uf_busy = pufp->uf_busy;
+ if (pufp->uf_file == NULL) {
+ ASSERT(pufp->uf_flag == 0);
+ if (pufp->uf_busy) {
+ /*
+ * Grab locks to appease ASSERTs in fd_reserve
+ */
+ mutex_enter(&cfip->fi_lock);
+ mutex_enter(&cufp->uf_lock);
+ fd_reserve(cfip, fd, -1);
+ mutex_exit(&cufp->uf_lock);
+ mutex_exit(&cfip->fi_lock);
+ }
+ }
+ }
+}
+
+/*
+ * Close all open file descriptors for the current process.
+ * This is only called from exit(), which is single-threaded,
+ * so we don't need any locking.
+ */
+void
+closeall(uf_info_t *fip)
+{
+ int fd;
+ file_t *fp;
+ uf_entry_t *ufp;
+
+ ufp = fip->fi_list;
+ for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
+ if ((fp = ufp->uf_file) != NULL) {
+ ufp->uf_file = NULL;
+ if (ufp->uf_portfd != NULL) {
+ /* remove event port association */
+ port_close_fd(ufp->uf_portfd, fd);
+ ufp->uf_portfd = NULL;
+ }
+ ASSERT(ufp->uf_fpollinfo == NULL);
+ (void) closef(fp);
+ }
+ }
+
+ kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
+ fip->fi_list = NULL;
+ fip->fi_nfiles = 0;
+ while (fip->fi_rlist != NULL) {
+ uf_rlist_t *urp = fip->fi_rlist;
+ fip->fi_rlist = urp->ur_next;
+ kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
+ kmem_free(urp, sizeof (uf_rlist_t));
+ }
+}
+
+/*
+ * Internal form of close. Decrement reference count on file
+ * structure. Decrement reference count on the vnode following
+ * removal of the referencing file structure.
+ */
+int
+closef(file_t *fp)
+{
+ vnode_t *vp;
+ int error;
+ int count;
+ int flag;
+ offset_t offset;
+
+#ifdef C2_AUDIT
+ /*
+ * audit close of file (may be exit)
+ */
+ if (audit_active)
+ audit_closef(fp);
+#endif
+ ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
+
+ mutex_enter(&fp->f_tlock);
+
+ ASSERT(fp->f_count > 0);
+
+ count = fp->f_count--;
+ flag = fp->f_flag;
+ offset = fp->f_offset;
+
+ vp = fp->f_vnode;
+
+ error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred);
+
+ if (count > 1) {
+ mutex_exit(&fp->f_tlock);
+ return (error);
+ }
+ ASSERT(fp->f_count == 0);
+ mutex_exit(&fp->f_tlock);
+
+ VN_RELE(vp);
+#ifdef C2_AUDIT
+ /*
+ * deallocate resources to audit_data
+ */
+ if (audit_active)
+ audit_unfalloc(fp);
+#endif
+ crfree(fp->f_cred);
+ kmem_cache_free(file_cache, fp);
+ return (error);
+}
+
+/*
+ * This is a combination of ufalloc() and setf().
+ */
+int
+ufalloc_file(int start, file_t *fp)
+{
+ proc_t *p = curproc;
+ uf_info_t *fip = P_FINFO(p);
+ int filelimit;
+ uf_entry_t *ufp;
+ int nfiles;
+ int fd;
+
+ /*
+ * Assertion is to convince the correctness of the following
+ * assignment for filelimit after casting to int.
+ */
+ ASSERT(p->p_fno_ctl <= INT_MAX);
+ filelimit = (int)p->p_fno_ctl;
+
+ for (;;) {
+ mutex_enter(&fip->fi_lock);
+ fd = fd_find(fip, start);
+ if ((uint_t)fd < filelimit)
+ break;
+ if (fd >= filelimit) {
+ mutex_exit(&fip->fi_lock);
+ mutex_enter(&p->p_lock);
+ (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
+ p->p_rctls, p, RCA_SAFE);
+ mutex_exit(&p->p_lock);
+ return (-1);
+ }
+ /* fd_find() returned -1 */
+ nfiles = fip->fi_nfiles;
+ mutex_exit(&fip->fi_lock);
+ flist_grow(MAX(start, nfiles));
+ }
+
+ UF_ENTER(ufp, fip, fd);
+ fd_reserve(fip, fd, 1);
+ ASSERT(ufp->uf_file == NULL);
+ ufp->uf_file = fp;
+ UF_EXIT(ufp);
+ mutex_exit(&fip->fi_lock);
+ return (fd);
+}
+
+/*
+ * Allocate a user file descriptor greater than or equal to "start".
+ */
+int
+ufalloc(int start)
+{
+ return (ufalloc_file(start, NULL));
+}
+
+/*
+ * Check that a future allocation of count fds on proc p has a good
+ * chance of succeeding. If not, do rctl processing as if we'd failed
+ * the allocation.
+ *
+ * Our caller must guarantee that p cannot disappear underneath us.
+ */
+int
+ufcanalloc(proc_t *p, uint_t count)
+{
+ uf_info_t *fip = P_FINFO(p);
+ int filelimit;
+ int current;
+
+ if (count == 0)
+ return (1);
+
+ ASSERT(p->p_fno_ctl <= INT_MAX);
+ filelimit = (int)p->p_fno_ctl;
+
+ mutex_enter(&fip->fi_lock);
+ current = flist_nalloc(fip); /* # of in-use descriptors */
+ mutex_exit(&fip->fi_lock);
+
+ /*
+ * If count is a positive integer, the worst that can happen is
+ * an overflow to a negative value, which is caught by the >= 0 check.
+ */
+ current += count;
+ if (count <= INT_MAX && current >= 0 && current <= filelimit)
+ return (1);
+
+ mutex_enter(&p->p_lock);
+ (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
+ p->p_rctls, p, RCA_SAFE);
+ mutex_exit(&p->p_lock);
+ return (0);
+}
+
+/*
+ * Allocate a user file descriptor and a file structure.
+ * Initialize the descriptor to point at the file structure.
+ * If fdp is NULL, the user file descriptor will not be allocated.
+ */
+int
+falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
+{
+ file_t *fp;
+ int fd;
+
+ if (fdp) {
+ if ((fd = ufalloc(0)) == -1)
+ return (EMFILE);
+ }
+ fp = kmem_cache_alloc(file_cache, KM_SLEEP);
+ /*
+ * Note: falloc returns the fp locked
+ */
+ mutex_enter(&fp->f_tlock);
+ fp->f_count = 1;
+ fp->f_flag = (ushort_t)flag;
+ fp->f_vnode = vp;
+ fp->f_offset = 0;
+ fp->f_audit_data = 0;
+ crhold(fp->f_cred = CRED());
+#ifdef C2_AUDIT
+ /*
+ * allocate resources to audit_data
+ */
+ if (audit_active)
+ audit_falloc(fp);
+#endif
+ *fpp = fp;
+ if (fdp)
+ *fdp = fd;
+ return (0);
+}
+
+/*ARGSUSED*/
+static int
+file_cache_constructor(void *buf, void *cdrarg, int kmflags)
+{
+ file_t *fp = buf;
+
+ mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
+ return (0);
+}
+
+/*ARGSUSED*/
+static void
+file_cache_destructor(void *buf, void *cdrarg)
+{
+ file_t *fp = buf;
+
+ mutex_destroy(&fp->f_tlock);
+}
+
+void
+finit()
+{
+ file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
+ file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
+}
+
+void
+unfalloc(file_t *fp)
+{
+ ASSERT(MUTEX_HELD(&fp->f_tlock));
+ if (--fp->f_count <= 0) {
+#ifdef C2_AUDIT
+ /*
+ * deallocate resources to audit_data
+ */
+ if (audit_active)
+ audit_unfalloc(fp);
+#endif
+ crfree(fp->f_cred);
+ mutex_exit(&fp->f_tlock);
+ kmem_cache_free(file_cache, fp);
+ } else
+ mutex_exit(&fp->f_tlock);
+}
+
+/*
+ * Given a file descriptor, set the user's
+ * file pointer to the given parameter.
+ */
+void
+setf(int fd, file_t *fp)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+
+#ifdef C2_AUDIT
+ if (audit_active)
+ audit_setf(fp, fd);
+#endif /* C2_AUDIT */
+
+ if (fp == NULL) {
+ mutex_enter(&fip->fi_lock);
+ UF_ENTER(ufp, fip, fd);
+ fd_reserve(fip, fd, -1);
+ mutex_exit(&fip->fi_lock);
+ } else {
+ UF_ENTER(ufp, fip, fd);
+ ASSERT(ufp->uf_busy);
+ }
+ ASSERT(ufp->uf_fpollinfo == NULL);
+ ASSERT(ufp->uf_flag == 0);
+ ufp->uf_file = fp;
+ cv_broadcast(&ufp->uf_wanted_cv);
+ UF_EXIT(ufp);
+}
+
+/*
+ * Given a file descriptor, return the file table flags, plus,
+ * if this is a socket in asynchronous mode, the FASYNC flag.
+ * getf() may or may not have been called before calling f_getfl().
+ */
+int
+f_getfl(int fd, int *flagp)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+ file_t *fp;
+ int error;
+
+ if ((uint_t)fd >= fip->fi_nfiles)
+ error = EBADF;
+ else {
+ UF_ENTER(ufp, fip, fd);
+ if ((fp = ufp->uf_file) == NULL)
+ error = EBADF;
+ else {
+ vnode_t *vp = fp->f_vnode;
+ int flag = fp->f_flag;
+
+ /*
+ * BSD fcntl() FASYNC compatibility.
+ *
+ * SCTP doesn't have an associated stream and thus
+ * doesn't store flags on it.
+ */
+ if ((vp->v_type == VSOCK) && (vp->v_stream != NULL))
+ flag |= sock_getfasync(vp);
+ *flagp = flag;
+ error = 0;
+ }
+ UF_EXIT(ufp);
+ }
+
+ return (error);
+}
+
+/*
+ * Given a file descriptor, return the user's file flags.
+ * Force the FD_CLOEXEC flag for writable self-open /proc files.
+ * getf() may or may not have been called before calling f_getfd_error().
+ */
+int
+f_getfd_error(int fd, int *flagp)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+ file_t *fp;
+ int flag;
+ int error;
+
+ if ((uint_t)fd >= fip->fi_nfiles)
+ error = EBADF;
+ else {
+ UF_ENTER(ufp, fip, fd);
+ if ((fp = ufp->uf_file) == NULL)
+ error = EBADF;
+ else {
+ flag = ufp->uf_flag;
+ if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
+ flag |= FD_CLOEXEC;
+ *flagp = flag;
+ error = 0;
+ }
+ UF_EXIT(ufp);
+ }
+
+ return (error);
+}
+
+/*
+ * getf() must have been called before calling f_getfd().
+ */
+char
+f_getfd(int fd)
+{
+ int flag = 0;
+ (void) f_getfd_error(fd, &flag);
+ return ((char)flag);
+}
+
+/*
+ * Given a file descriptor and file flags, set the user's file flags.
+ * At present, the only valid flag is FD_CLOEXEC.
+ * getf() may or may not have been called before calling f_setfd_error().
+ */
+int
+f_setfd_error(int fd, int flags)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+ int error;
+
+ if ((uint_t)fd >= fip->fi_nfiles)
+ error = EBADF;
+ else {
+ UF_ENTER(ufp, fip, fd);
+ if (ufp->uf_file == NULL)
+ error = EBADF;
+ else {
+ ufp->uf_flag = flags & FD_CLOEXEC;
+ error = 0;
+ }
+ UF_EXIT(ufp);
+ }
+ return (error);
+}
+
+void
+f_setfd(int fd, char flags)
+{
+ (void) f_setfd_error(fd, flags);
+}
+
+/*
+ * Allocate a file descriptor and assign it to the vnode "*vpp",
+ * performing the usual open protocol upon it and returning the
+ * file descriptor allocated. It is the responsibility of the
+ * caller to dispose of "*vpp" if any error occurs.
+ */
+int
+fassign(vnode_t **vpp, int mode, int *fdp)
+{
+ file_t *fp;
+ int error;
+ int fd;
+
+ if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
+ return (error);
+ if (error = VOP_OPEN(vpp, mode, fp->f_cred)) {
+ setf(fd, NULL);
+ unfalloc(fp);
+ return (error);
+ }
+ fp->f_vnode = *vpp;
+ mutex_exit(&fp->f_tlock);
+ /*
+ * Fill in the slot falloc reserved.
+ */
+ setf(fd, fp);
+ *fdp = fd;
+ return (0);
+}
+
+/*
+ * When a process forks it must increment the f_count of all file pointers
+ * since there is a new process pointing at them. fcnt_add(fip, 1) does this.
+ * Since we are called when there is only 1 active lwp we don't need to
+ * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls
+ * fcnt_add(fip, -1) to restore the counts.
+ */
+void
+fcnt_add(uf_info_t *fip, int incr)
+{
+ int i;
+ uf_entry_t *ufp;
+ file_t *fp;
+
+ ufp = fip->fi_list;
+ for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
+ if ((fp = ufp->uf_file) != NULL) {
+ mutex_enter(&fp->f_tlock);
+ ASSERT((incr == 1 && fp->f_count >= 1) ||
+ (incr == -1 && fp->f_count >= 2));
+ fp->f_count += incr;
+ mutex_exit(&fp->f_tlock);
+ }
+ }
+}
+
+/*
+ * This is called from exec to close all fd's that have the FD_CLOEXEC flag
+ * set and also to close all self-open for write /proc file descriptors.
+ */
+void
+close_exec(uf_info_t *fip)
+{
+ int fd;
+ file_t *fp;
+ fpollinfo_t *fpip;
+ uf_entry_t *ufp;
+ portfd_t *pfd;
+
+ ufp = fip->fi_list;
+ for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
+ if ((fp = ufp->uf_file) != NULL &&
+ ((ufp->uf_flag & FD_CLOEXEC) ||
+ ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
+ fpip = ufp->uf_fpollinfo;
+ mutex_enter(&fip->fi_lock);
+ mutex_enter(&ufp->uf_lock);
+ fd_reserve(fip, fd, -1);
+ mutex_exit(&fip->fi_lock);
+ ufp->uf_file = NULL;
+ ufp->uf_fpollinfo = NULL;
+ ufp->uf_flag = 0;
+ /*
+ * We may need to cleanup some cached poll states
+ * in t_pollstate before the fd can be reused. It
+ * is important that we don't access a stale thread
+ * structure. We will do the cleanup in two
+ * phases to avoid deadlock and holding uf_lock for
+ * too long. In phase 1, hold the uf_lock and call
+ * pollblockexit() to set state in t_pollstate struct
+ * so that a thread does not exit on us. In phase 2,
+ * we drop the uf_lock and call pollcacheclean().
+ */
+ pfd = ufp->uf_portfd;
+ ufp->uf_portfd = NULL;
+ if (fpip != NULL)
+ pollblockexit(fpip);
+ mutex_exit(&ufp->uf_lock);
+ if (fpip != NULL)
+ pollcacheclean(fpip, fd);
+ if (pfd)
+ port_close_fd(pfd, fd);
+ (void) closef(fp);
+ }
+ }
+}
+
+/*
+ * Common routine for modifying attributes of named files.
+ */
+int
+namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags)
+{
+ vnode_t *vp;
+ int error = 0;
+
+ if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp))
+ return (set_errno(error));
+ if (error = vpsetattr(vp, vap, flags))
+ (void) set_errno(error);
+ VN_RELE(vp);
+ return (error);
+}
+
+/*
+ * Common routine for modifying attributes of files referenced
+ * by descriptor.
+ */
+int
+fdsetattr(int fd, vattr_t *vap)
+{
+ file_t *fp;
+ vnode_t *vp;
+ int error = 0;
+
+ if ((fp = getf(fd)) != NULL) {
+ vp = fp->f_vnode;
+ if (error = vpsetattr(vp, vap, 0)) {
+ (void) set_errno(error);
+ }
+ releasef(fd);
+ } else
+ error = set_errno(EBADF);
+ return (error);
+}
+
+/*
+ * Common routine to set the attributes for the given vnode.
+ * If the vnode is a file and the filesize is being manipulated,
+ * this makes sure that there are no conflicting non-blocking
+ * mandatory locks in that region.
+ */
+static int
+vpsetattr(vnode_t *vp, vattr_t *vap, int flags)
+{
+ int error = 0;
+ int in_crit = 0;
+ u_offset_t begin;
+ vattr_t vattr;
+ ssize_t length;
+
+ if (vn_is_readonly(vp)) {
+ error = EROFS;
+ }
+ if (!error && (vap->va_mask & AT_SIZE) &&
+ nbl_need_check(vp)) {
+ nbl_start_crit(vp, RW_READER);
+ in_crit = 1;
+ vattr.va_mask = AT_SIZE;
+ if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
+ begin = vap->va_size > vattr.va_size ?
+ vattr.va_size : vap->va_size;
+ length = vattr.va_size > vap->va_size ?
+ vattr.va_size - vap->va_size :
+ vap->va_size - vattr.va_size;
+
+ if (nbl_conflict(vp, NBL_WRITE, begin, length, 0)) {
+ error = EACCES;
+ }
+ }
+ }
+ if (!error)
+ error = VOP_SETATTR(vp, vap, flags, CRED(), NULL);
+
+ if (in_crit)
+ nbl_end_crit(vp);
+
+ return (error);
+}
+
+/*
+ * Return true if the given vnode is referenced by any
+ * entry in the current process's file descriptor table.
+ */
+int
+fisopen(vnode_t *vp)
+{
+ int fd;
+ file_t *fp;
+ vnode_t *ovp;
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+
+ mutex_enter(&fip->fi_lock);
+ for (fd = 0; fd < fip->fi_nfiles; fd++) {
+ UF_ENTER(ufp, fip, fd);
+ if ((fp = ufp->uf_file) != NULL &&
+ (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
+ UF_EXIT(ufp);
+ mutex_exit(&fip->fi_lock);
+ return (1);
+ }
+ UF_EXIT(ufp);
+ }
+ mutex_exit(&fip->fi_lock);
+ return (0);
+}
+
+/*
+ * Return zero if at least one file currently open (by curproc) shouldn't be
+ * allowed to change zones.
+ */
+int
+files_can_change_zones(void)
+{
+ int fd;
+ file_t *fp;
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+
+ mutex_enter(&fip->fi_lock);
+ for (fd = 0; fd < fip->fi_nfiles; fd++) {
+ UF_ENTER(ufp, fip, fd);
+ if ((fp = ufp->uf_file) != NULL &&
+ !vn_can_change_zones(fp->f_vnode)) {
+ UF_EXIT(ufp);
+ mutex_exit(&fip->fi_lock);
+ return (0);
+ }
+ UF_EXIT(ufp);
+ }
+ mutex_exit(&fip->fi_lock);
+ return (1);
+}
+
+#ifdef DEBUG
+
+/*
+ * The following functions are only used in ASSERT()s elsewhere.
+ * They do not modify the state of the system.
+ */
+
+/*
+ * Return true (1) if the current thread is in the fpollinfo
+ * list for this file descriptor, else false (0).
+ */
+static int
+curthread_in_plist(uf_entry_t *ufp)
+{
+ fpollinfo_t *fpip;
+
+ ASSERT(MUTEX_HELD(&ufp->uf_lock));
+ for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
+ if (fpip->fp_thread == curthread)
+ return (1);
+ return (0);
+}
+
+/*
+ * Sanity check to make sure that after lwp_exit(),
+ * curthread does not appear on any fd's fpollinfo list.
+ */
+void
+checkfpollinfo(void)
+{
+ int fd;
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+
+ mutex_enter(&fip->fi_lock);
+ for (fd = 0; fd < fip->fi_nfiles; fd++) {
+ UF_ENTER(ufp, fip, fd);
+ ASSERT(!curthread_in_plist(ufp));
+ UF_EXIT(ufp);
+ }
+ mutex_exit(&fip->fi_lock);
+}
+
+/*
+ * Return true (1) if the current thread is in the fpollinfo
+ * list for this file descriptor, else false (0).
+ * This is the same as curthread_in_plist(),
+ * but is called w/o holding uf_lock.
+ */
+int
+infpollinfo(int fd)
+{
+ uf_info_t *fip = P_FINFO(curproc);
+ uf_entry_t *ufp;
+ int rc;
+
+ UF_ENTER(ufp, fip, fd);
+ rc = curthread_in_plist(ufp);
+ UF_EXIT(ufp);
+ return (rc);
+}
+
+#endif /* DEBUG */
+
+/*
+ * Add the curthread to fpollinfo list, meaning this fd is currently in the
+ * thread's poll cache. Each lwp polling this file descriptor should call
+ * this routine once.
+ */
+void
+addfpollinfo(int fd)
+{
+ struct uf_entry *ufp;
+ fpollinfo_t *fpip;
+ uf_info_t *fip = P_FINFO(curproc);
+
+ fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
+ fpip->fp_thread = curthread;
+ UF_ENTER(ufp, fip, fd);
+ /*
+ * Assert we are not already on the list, that is, that
+ * this lwp did not call addfpollinfo twice for the same fd.
+ */
+ ASSERT(!curthread_in_plist(ufp));
+ /*
+ * addfpollinfo is always done inside the getf/releasef pair.
+ */
+ ASSERT(ufp->uf_refcnt >= 1);
+ fpip->fp_next = ufp->uf_fpollinfo;
+ ufp->uf_fpollinfo = fpip;
+ UF_EXIT(ufp);
+}
+
+/*
+ * delete curthread from fpollinfo list.
+ */
+/*ARGSUSED*/
+void
+delfpollinfo(int fd)
+{
+ struct uf_entry *ufp;
+ struct fpollinfo *fpip;
+ struct fpollinfo **fpipp;
+ uf_info_t *fip = P_FINFO(curproc);
+
+ UF_ENTER(ufp, fip, fd);
+ if (ufp->uf_fpollinfo == NULL) {
+ UF_EXIT(ufp);
+ return;
+ }
+ ASSERT(ufp->uf_busy);
+ /*
+ * Find and delete curthread from the list.
+ */
+ fpipp = &ufp->uf_fpollinfo;
+ while ((fpip = *fpipp)->fp_thread != curthread)
+ fpipp = &fpip->fp_next;
+ *fpipp = fpip->fp_next;
+ kmem_free(fpip, sizeof (fpollinfo_t));
+ /*
+ * Assert that we are not still on the list, that is, that
+ * this lwp did not call addfpollinfo twice for the same fd.
+ */
+ ASSERT(!curthread_in_plist(ufp));
+ UF_EXIT(ufp);
+}
+
+/*
+ * fd is associated with a port. pfd is a pointer to the fd entry in the
+ * cache of the port.
+ */
+
+void
+addfd_port(int fd, portfd_t *pfd)
+{
+ struct uf_entry *ufp;
+ uf_info_t *fip = P_FINFO(curproc);
+
+ UF_ENTER(ufp, fip, fd);
+ /*
+ * addfd_port is always done inside the getf/releasef pair.
+ */
+ ASSERT(ufp->uf_refcnt >= 1);
+ if (ufp->uf_portfd == NULL) {
+ /* first entry */
+ ufp->uf_portfd = pfd;
+ pfd->pfd_next = NULL;
+ } else {
+ pfd->pfd_next = ufp->uf_portfd;
+ ufp->uf_portfd = pfd;
+ pfd->pfd_next->pfd_prev = pfd;
+ }
+ UF_EXIT(ufp);
+}
+
+void
+delfd_port(int fd, portfd_t *pfd)
+{
+ struct uf_entry *ufp;
+ uf_info_t *fip = P_FINFO(curproc);
+
+ UF_ENTER(ufp, fip, fd);
+ /*
+ * delfd_port is always done inside the getf/releasef pair.
+ */
+ ASSERT(ufp->uf_refcnt >= 1);
+ if (ufp->uf_portfd == pfd) {
+ /* remove first entry */
+ ufp->uf_portfd = pfd->pfd_next;
+ } else {
+ pfd->pfd_prev->pfd_next = pfd->pfd_next;
+ if (pfd->pfd_next != NULL)
+ pfd->pfd_next->pfd_prev = pfd->pfd_prev;
+ }
+ UF_EXIT(ufp);
+}
+
+static void
+port_close_fd(portfd_t *pfd, int fd)
+{
+ portfd_t *pfdn;
+ struct uf_entry *ufp;
+ uf_info_t *fip = P_FINFO(curproc);
+
+ UF_ENTER(ufp, fip, fd);
+ for (; pfd != NULL; pfd = pfdn) {
+ pfdn = pfd->pfd_next;
+ port_close_pfd(pfd);
+ }
+ UF_EXIT(ufp);
+}