summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/strsubr.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/os/strsubr.c')
-rw-r--r--usr/src/uts/common/os/strsubr.c8432
1 files changed, 8432 insertions, 0 deletions
diff --git a/usr/src/uts/common/os/strsubr.c b/usr/src/uts/common/os/strsubr.c
new file mode 100644
index 0000000000..703d4b8f03
--- /dev/null
+++ b/usr/src/uts/common/os/strsubr.c
@@ -0,0 +1,8432 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
+/* All Rights Reserved */
+
+
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/types.h>
+#include <sys/sysmacros.h>
+#include <sys/param.h>
+#include <sys/errno.h>
+#include <sys/signal.h>
+#include <sys/proc.h>
+#include <sys/conf.h>
+#include <sys/cred.h>
+#include <sys/user.h>
+#include <sys/vnode.h>
+#include <sys/file.h>
+#include <sys/session.h>
+#include <sys/stream.h>
+#include <sys/strsubr.h>
+#include <sys/stropts.h>
+#include <sys/poll.h>
+#include <sys/systm.h>
+#include <sys/cpuvar.h>
+#include <sys/uio.h>
+#include <sys/cmn_err.h>
+#include <sys/priocntl.h>
+#include <sys/procset.h>
+#include <sys/vmem.h>
+#include <sys/bitmap.h>
+#include <sys/kmem.h>
+#include <sys/siginfo.h>
+#include <sys/vtrace.h>
+#include <sys/callb.h>
+#include <sys/debug.h>
+#include <sys/modctl.h>
+#include <sys/vmsystm.h>
+#include <vm/page.h>
+#include <sys/atomic.h>
+#include <sys/suntpi.h>
+#include <sys/strlog.h>
+#include <sys/promif.h>
+#include <sys/project.h>
+#include <sys/vm.h>
+#include <sys/taskq.h>
+#include <sys/sunddi.h>
+#include <sys/sunldi_impl.h>
+#include <sys/strsun.h>
+#include <sys/isa_defs.h>
+#include <sys/multidata.h>
+#include <sys/pattr.h>
+#include <sys/strft.h>
+#include <sys/zone.h>
+
+#define O_SAMESTR(q) (((q)->q_next) && \
+ (((q)->q_flag & QREADR) == ((q)->q_next->q_flag & QREADR)))
+
+/*
+ * WARNING:
+ * The variables and routines in this file are private, belonging
+ * to the STREAMS subsystem. These should not be used by modules
+ * or drivers. Compatibility will not be guaranteed.
+ */
+
+/*
+ * Id value used to distinguish between different multiplexor links.
+ */
+static int32_t lnk_id = 0;
+
+#define STREAMS_LOPRI MINCLSYSPRI
+static pri_t streams_lopri = STREAMS_LOPRI;
+
+#define STRSTAT(x) (str_statistics.x.value.ui64++)
+typedef struct str_stat {
+ kstat_named_t sqenables;
+ kstat_named_t stenables;
+ kstat_named_t syncqservice;
+ kstat_named_t freebs;
+ kstat_named_t qwr_outer;
+ kstat_named_t rservice;
+ kstat_named_t strwaits;
+ kstat_named_t taskqfails;
+ kstat_named_t bufcalls;
+ kstat_named_t qhelps;
+ kstat_named_t qremoved;
+ kstat_named_t sqremoved;
+ kstat_named_t bcwaits;
+ kstat_named_t sqtoomany;
+} str_stat_t;
+
+static str_stat_t str_statistics = {
+ { "sqenables", KSTAT_DATA_UINT64 },
+ { "stenables", KSTAT_DATA_UINT64 },
+ { "syncqservice", KSTAT_DATA_UINT64 },
+ { "freebs", KSTAT_DATA_UINT64 },
+ { "qwr_outer", KSTAT_DATA_UINT64 },
+ { "rservice", KSTAT_DATA_UINT64 },
+ { "strwaits", KSTAT_DATA_UINT64 },
+ { "taskqfails", KSTAT_DATA_UINT64 },
+ { "bufcalls", KSTAT_DATA_UINT64 },
+ { "qhelps", KSTAT_DATA_UINT64 },
+ { "qremoved", KSTAT_DATA_UINT64 },
+ { "sqremoved", KSTAT_DATA_UINT64 },
+ { "bcwaits", KSTAT_DATA_UINT64 },
+ { "sqtoomany", KSTAT_DATA_UINT64 },
+};
+
+static kstat_t *str_kstat;
+
+/*
+ * qrunflag was used previously to control background scheduling of queues. It
+ * is not used anymore, but kept here in case some module still wants to access
+ * it via qready() and setqsched macros.
+ */
+char qrunflag; /* Unused */
+
+/*
+ * Most of the streams scheduling is done via task queues. Task queues may fail
+ * for non-sleep dispatches, so there are two backup threads servicing failed
+ * requests for queues and syncqs. Both of these threads also service failed
+ * dispatches freebs requests. Queues are put in the list specified by `qhead'
+ * and `qtail' pointers, syncqs use `sqhead' and `sqtail' pointers and freebs
+ * requests are put into `freebs_list' which has no tail pointer. All three
+ * lists are protected by a single `service_queue' lock and use
+ * `services_to_run' condition variable for signaling background threads. Use of
+ * a single lock should not be a problem because it is only used under heavy
+ * loads when task queues start to fail and at that time it may be a good idea
+ * to throttle scheduling requests.
+ *
+ * NOTE: queues and syncqs should be scheduled by two separate threads because
+ * queue servicing may be blocked waiting for a syncq which may be also
+ * scheduled for background execution. This may create a deadlock when only one
+ * thread is used for both.
+ */
+
+static taskq_t *streams_taskq; /* Used for most STREAMS scheduling */
+
+static kmutex_t service_queue; /* protects all of servicing vars */
+static kcondvar_t services_to_run; /* wake up background service thread */
+static kcondvar_t syncqs_to_run; /* wake up background service thread */
+
+/*
+ * List of queues scheduled for background processing dueue to lack of resources
+ * in the task queues. Protected by service_queue lock;
+ */
+static struct queue *qhead;
+static struct queue *qtail;
+
+/*
+ * Same list for syncqs
+ */
+static syncq_t *sqhead;
+static syncq_t *sqtail;
+
+static mblk_t *freebs_list; /* list of buffers to free */
+
+/*
+ * Backup threads for servicing queues and syncqs
+ */
+kthread_t *streams_qbkgrnd_thread;
+kthread_t *streams_sqbkgrnd_thread;
+
+/*
+ * Bufcalls related variables.
+ */
+struct bclist strbcalls; /* list of waiting bufcalls */
+kmutex_t strbcall_lock; /* protects bufcall list (strbcalls) */
+kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */
+kmutex_t bcall_monitor; /* sleep/wakeup style monitor */
+kcondvar_t bcall_cv; /* wait 'till executing bufcall completes */
+kthread_t *bc_bkgrnd_thread; /* Thread to service bufcall requests */
+
+kmutex_t strresources; /* protects global resources */
+kmutex_t muxifier; /* single-threads multiplexor creation */
+
+extern void time_to_wait(clock_t *, clock_t);
+
+/*
+ * run_queues is no longer used, but is kept in case some 3-d party
+ * module/driver decides to use it.
+ */
+int run_queues = 0;
+
+/*
+ * sq_max_size is the depth of the syncq (in number of messages) before
+ * qfill_syncq() starts QFULL'ing destination queues. As its primary
+ * consumer - IP is no longer D_MTPERMOD, but there may be other
+ * modules/drivers depend on this syncq flow control, we prefer to
+ * choose a large number as the default value. For potential
+ * performance gain, this value is tunable in /etc/system.
+ */
+int sq_max_size = 10000;
+
+/*
+ * the number of ciputctrl structures per syncq and stream we create when
+ * needed.
+ */
+int n_ciputctrl;
+int max_n_ciputctrl = 16;
+/*
+ * if n_ciputctrl is < min_n_ciputctrl don't even create ciputctrl_cache.
+ */
+int min_n_ciputctrl = 2;
+
+static struct mux_node *mux_nodes; /* mux info for cycle checking */
+
+/*
+ * Per-driver/module syncqs
+ * ========================
+ *
+ * For drivers/modules that use PERMOD or outer syncqs we keep a list of
+ * perdm structures, new entries being added (and new syncqs allocated) when
+ * setq() encounters a module/driver with a streamtab that it hasn't seen
+ * before.
+ * The reason for this mechanism is that some modules and drivers share a
+ * common streamtab and it is necessary for those modules and drivers to also
+ * share a common PERMOD syncq.
+ *
+ * perdm_list --> dm_str == streamtab_1
+ * dm_sq == syncq_1
+ * dm_ref
+ * dm_next --> dm_str == streamtab_2
+ * dm_sq == syncq_2
+ * dm_ref
+ * dm_next --> ... NULL
+ *
+ * The dm_ref field is incremented for each new driver/module that takes
+ * a reference to the perdm structure and hence shares the syncq.
+ * References are held in the fmodsw_impl_t structure for each STREAMS module
+ * or the dev_impl array (indexed by device major number) for each driver.
+ *
+ * perdm_list -> [dm_ref == 1] -> [dm_ref == 2] -> [dm_ref == 1] -> NULL
+ * ^ ^ ^ ^
+ * | ______________/ | |
+ * | / | |
+ * dev_impl: ...|x|y|... module A module B
+ *
+ * When a module/driver is unloaded the reference count is decremented and,
+ * when it falls to zero, the perdm structure is removed from the list and
+ * the syncq is freed (see rele_dm()).
+ */
+perdm_t *perdm_list = NULL;
+static krwlock_t perdm_rwlock;
+cdevsw_impl_t *devimpl;
+
+extern struct qinit strdata;
+extern struct qinit stwdata;
+
+static void runservice(queue_t *);
+static void streams_bufcall_service(void);
+static void streams_qbkgrnd_service(void);
+static void streams_sqbkgrnd_service(void);
+static syncq_t *new_syncq(void);
+static void free_syncq(syncq_t *);
+static void outer_insert(syncq_t *, syncq_t *);
+static void outer_remove(syncq_t *, syncq_t *);
+static void write_now(syncq_t *);
+static void clr_qfull(queue_t *);
+static void enable_svc(queue_t *);
+static void runbufcalls(void);
+static void sqenable(syncq_t *);
+static void sqfill_events(syncq_t *, queue_t *, mblk_t *, void (*)());
+static void wait_q_syncq(queue_t *);
+
+static void queue_service(queue_t *);
+static void stream_service(stdata_t *);
+static void syncq_service(syncq_t *);
+static void qwriter_outer_service(syncq_t *);
+static void mblk_free(mblk_t *);
+#ifdef DEBUG
+static int qprocsareon(queue_t *);
+#endif
+
+static void set_nfsrv_ptr(queue_t *, queue_t *, queue_t *, queue_t *);
+static void reset_nfsrv_ptr(queue_t *, queue_t *);
+
+static void sq_run_events(syncq_t *);
+static int propagate_syncq(queue_t *);
+
+static void blocksq(syncq_t *, ushort_t, int);
+static void unblocksq(syncq_t *, ushort_t, int);
+static int dropsq(syncq_t *, uint16_t);
+static void emptysq(syncq_t *);
+static sqlist_t *sqlist_alloc(struct stdata *, int);
+static void sqlist_free(sqlist_t *);
+static sqlist_t *sqlist_build(queue_t *, struct stdata *, boolean_t);
+static void sqlist_insert(sqlist_t *, syncq_t *);
+static void sqlist_insertall(sqlist_t *, queue_t *);
+
+static void strsetuio(stdata_t *);
+
+struct kmem_cache *stream_head_cache;
+struct kmem_cache *queue_cache;
+struct kmem_cache *syncq_cache;
+struct kmem_cache *qband_cache;
+struct kmem_cache *linkinfo_cache;
+struct kmem_cache *ciputctrl_cache = NULL;
+
+static linkinfo_t *linkinfo_list;
+
+/*
+ * Qinit structure and Module_info structures
+ * for passthru read and write queues
+ */
+
+static void pass_wput(queue_t *, mblk_t *);
+static queue_t *link_addpassthru(stdata_t *);
+static void link_rempassthru(queue_t *);
+
+struct module_info passthru_info = {
+ 0,
+ "passthru",
+ 0,
+ INFPSZ,
+ STRHIGH,
+ STRLOW
+};
+
+struct qinit passthru_rinit = {
+ (int (*)())putnext,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ &passthru_info,
+ NULL
+};
+
+struct qinit passthru_winit = {
+ (int (*)()) pass_wput,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ &passthru_info,
+ NULL
+};
+
+/*
+ * Special form of assertion: verify that X implies Y i.e. when X is true Y
+ * should also be true.
+ */
+#define IMPLY(X, Y) ASSERT(!(X) || (Y))
+
+/*
+ * Logical equivalence. Verify that both X and Y are either TRUE or FALSE.
+ */
+#define EQUIV(X, Y) { IMPLY(X, Y); IMPLY(Y, X); }
+
+/*
+ * Verify correctness of list head/tail pointers.
+ */
+#define LISTCHECK(head, tail, link) { \
+ EQUIV(head, tail); \
+ IMPLY(tail != NULL, tail->link == NULL); \
+}
+
+/*
+ * Enqueue a list element `el' in the end of a list denoted by `head' and `tail'
+ * using a `link' field.
+ */
+#define ENQUEUE(el, head, tail, link) { \
+ ASSERT(el->link == NULL); \
+ LISTCHECK(head, tail, link); \
+ if (head == NULL) \
+ head = el; \
+ else \
+ tail->link = el; \
+ tail = el; \
+}
+
+/*
+ * Dequeue the first element of the list denoted by `head' and `tail' pointers
+ * using a `link' field and put result into `el'.
+ */
+#define DQ(el, head, tail, link) { \
+ LISTCHECK(head, tail, link); \
+ el = head; \
+ if (head != NULL) { \
+ head = head->link; \
+ if (head == NULL) \
+ tail = NULL; \
+ el->link = NULL; \
+ } \
+}
+
+/*
+ * Remove `el' from the list using `chase' and `curr' pointers and return result
+ * in `succeed'.
+ */
+#define RMQ(el, head, tail, link, chase, curr, succeed) { \
+ LISTCHECK(head, tail, link); \
+ chase = NULL; \
+ succeed = 0; \
+ for (curr = head; (curr != el) && (curr != NULL); curr = curr->link) \
+ chase = curr; \
+ if (curr != NULL) { \
+ succeed = 1; \
+ ASSERT(curr == el); \
+ if (chase != NULL) \
+ chase->link = curr->link; \
+ else \
+ head = curr->link; \
+ curr->link = NULL; \
+ if (curr == tail) \
+ tail = chase; \
+ } \
+ LISTCHECK(head, tail, link); \
+}
+
+/* Handling of delayed messages on the inner syncq. */
+
+/*
+ * DEBUG versions should use function versions (to simplify tracing) and
+ * non-DEBUG kernels should use macro versions.
+ */
+
+/*
+ * Put a queue on the syncq list of queues.
+ * Assumes SQLOCK held.
+ */
+#define SQPUT_Q(sq, qp) \
+{ \
+ ASSERT(MUTEX_HELD(SQLOCK(sq))); \
+ if (!(qp->q_sqflags & Q_SQQUEUED)) { \
+ /* The queue should not be linked anywhere */ \
+ ASSERT((qp->q_sqprev == NULL) && (qp->q_sqnext == NULL)); \
+ /* Head and tail may only be NULL simultaneously */ \
+ EQUIV(sq->sq_head, sq->sq_tail); \
+ /* Queue may be only enqueyed on its syncq */ \
+ ASSERT(sq == qp->q_syncq); \
+ /* Check the correctness of SQ_MESSAGES flag */ \
+ EQUIV(sq->sq_head, (sq->sq_flags & SQ_MESSAGES)); \
+ /* Sanity check first/last elements of the list */ \
+ IMPLY(sq->sq_head != NULL, sq->sq_head->q_sqprev == NULL);\
+ IMPLY(sq->sq_tail != NULL, sq->sq_tail->q_sqnext == NULL);\
+ /* \
+ * Sanity check of priority field: empty queue should \
+ * have zero priority \
+ * and nqueues equal to zero. \
+ */ \
+ IMPLY(sq->sq_head == NULL, sq->sq_pri == 0); \
+ /* Sanity check of sq_nqueues field */ \
+ EQUIV(sq->sq_head, sq->sq_nqueues); \
+ if (sq->sq_head == NULL) { \
+ sq->sq_head = sq->sq_tail = qp; \
+ sq->sq_flags |= SQ_MESSAGES; \
+ } else if (qp->q_spri == 0) { \
+ qp->q_sqprev = sq->sq_tail; \
+ sq->sq_tail->q_sqnext = qp; \
+ sq->sq_tail = qp; \
+ } else { \
+ /* \
+ * Put this queue in priority order: higher \
+ * priority gets closer to the head. \
+ */ \
+ queue_t **qpp = &sq->sq_tail; \
+ queue_t *qnext = NULL; \
+ \
+ while (*qpp != NULL && qp->q_spri > (*qpp)->q_spri) { \
+ qnext = *qpp; \
+ qpp = &(*qpp)->q_sqprev; \
+ } \
+ qp->q_sqnext = qnext; \
+ qp->q_sqprev = *qpp; \
+ if (*qpp != NULL) { \
+ (*qpp)->q_sqnext = qp; \
+ } else { \
+ sq->sq_head = qp; \
+ sq->sq_pri = sq->sq_head->q_spri; \
+ } \
+ *qpp = qp; \
+ } \
+ qp->q_sqflags |= Q_SQQUEUED; \
+ qp->q_sqtstamp = lbolt; \
+ sq->sq_nqueues++; \
+ } \
+}
+
+/*
+ * Remove a queue from the syncq list
+ * Assumes SQLOCK held.
+ */
+#define SQRM_Q(sq, qp) \
+ { \
+ ASSERT(MUTEX_HELD(SQLOCK(sq))); \
+ ASSERT(qp->q_sqflags & Q_SQQUEUED); \
+ ASSERT(sq->sq_head != NULL && sq->sq_tail != NULL); \
+ ASSERT((sq->sq_flags & SQ_MESSAGES) != 0); \
+ /* Check that the queue is actually in the list */ \
+ ASSERT(qp->q_sqnext != NULL || sq->sq_tail == qp); \
+ ASSERT(qp->q_sqprev != NULL || sq->sq_head == qp); \
+ ASSERT(sq->sq_nqueues != 0); \
+ if (qp->q_sqprev == NULL) { \
+ /* First queue on list, make head q_sqnext */ \
+ sq->sq_head = qp->q_sqnext; \
+ } else { \
+ /* Make prev->next == next */ \
+ qp->q_sqprev->q_sqnext = qp->q_sqnext; \
+ } \
+ if (qp->q_sqnext == NULL) { \
+ /* Last queue on list, make tail sqprev */ \
+ sq->sq_tail = qp->q_sqprev; \
+ } else { \
+ /* Make next->prev == prev */ \
+ qp->q_sqnext->q_sqprev = qp->q_sqprev; \
+ } \
+ /* clear out references on this queue */ \
+ qp->q_sqprev = qp->q_sqnext = NULL; \
+ qp->q_sqflags &= ~Q_SQQUEUED; \
+ /* If there is nothing queued, clear SQ_MESSAGES */ \
+ if (sq->sq_head != NULL) { \
+ sq->sq_pri = sq->sq_head->q_spri; \
+ } else { \
+ sq->sq_flags &= ~SQ_MESSAGES; \
+ sq->sq_pri = 0; \
+ } \
+ sq->sq_nqueues--; \
+ ASSERT(sq->sq_head != NULL || sq->sq_evhead != NULL || \
+ (sq->sq_flags & SQ_QUEUED) == 0); \
+ }
+
+/* Hide the definition from the header file. */
+#ifdef SQPUT_MP
+#undef SQPUT_MP
+#endif
+
+/*
+ * Put a message on the queue syncq.
+ * Assumes QLOCK held.
+ */
+#define SQPUT_MP(qp, mp) \
+ { \
+ ASSERT(MUTEX_HELD(QLOCK(qp))); \
+ ASSERT(qp->q_sqhead == NULL || \
+ (qp->q_sqtail != NULL && \
+ qp->q_sqtail->b_next == NULL)); \
+ qp->q_syncqmsgs++; \
+ ASSERT(qp->q_syncqmsgs != 0); /* Wraparound */ \
+ if (qp->q_sqhead == NULL) { \
+ qp->q_sqhead = qp->q_sqtail = mp; \
+ } else { \
+ qp->q_sqtail->b_next = mp; \
+ qp->q_sqtail = mp; \
+ } \
+ ASSERT(qp->q_syncqmsgs > 0); \
+ }
+
+#define SQ_PUTCOUNT_SETFAST_LOCKED(sq) { \
+ ASSERT(MUTEX_HELD(SQLOCK(sq))); \
+ if ((sq)->sq_ciputctrl != NULL) { \
+ int i; \
+ int nlocks = (sq)->sq_nciputctrl; \
+ ciputctrl_t *cip = (sq)->sq_ciputctrl; \
+ ASSERT((sq)->sq_type & SQ_CIPUT); \
+ for (i = 0; i <= nlocks; i++) { \
+ ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
+ cip[i].ciputctrl_count |= SQ_FASTPUT; \
+ } \
+ } \
+ }
+
+
+#define SQ_PUTCOUNT_CLRFAST_LOCKED(sq) { \
+ ASSERT(MUTEX_HELD(SQLOCK(sq))); \
+ if ((sq)->sq_ciputctrl != NULL) { \
+ int i; \
+ int nlocks = (sq)->sq_nciputctrl; \
+ ciputctrl_t *cip = (sq)->sq_ciputctrl; \
+ ASSERT((sq)->sq_type & SQ_CIPUT); \
+ for (i = 0; i <= nlocks; i++) { \
+ ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \
+ cip[i].ciputctrl_count &= ~SQ_FASTPUT; \
+ } \
+ } \
+ }
+
+/*
+ * Run service procedures for all queues in the stream head.
+ */
+#define STR_SERVICE(stp, q) { \
+ ASSERT(MUTEX_HELD(&stp->sd_qlock)); \
+ while (stp->sd_qhead != NULL) { \
+ DQ(q, stp->sd_qhead, stp->sd_qtail, q_link); \
+ ASSERT(stp->sd_nqueues > 0); \
+ stp->sd_nqueues--; \
+ ASSERT(!(q->q_flag & QINSERVICE)); \
+ mutex_exit(&stp->sd_qlock); \
+ queue_service(q); \
+ mutex_enter(&stp->sd_qlock); \
+ } \
+ ASSERT(stp->sd_nqueues == 0); \
+ ASSERT((stp->sd_qhead == NULL) && (stp->sd_qtail == NULL)); \
+}
+
+/*
+ * constructor/destructor routines for the stream head cache
+ */
+/* ARGSUSED */
+static int
+stream_head_constructor(void *buf, void *cdrarg, int kmflags)
+{
+ stdata_t *stp = buf;
+
+ mutex_init(&stp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&stp->sd_reflock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&stp->sd_qlock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&stp->sd_monitor, NULL, CV_DEFAULT, NULL);
+ cv_init(&stp->sd_iocmonitor, NULL, CV_DEFAULT, NULL);
+ cv_init(&stp->sd_qcv, NULL, CV_DEFAULT, NULL);
+ cv_init(&stp->sd_zcopy_wait, NULL, CV_DEFAULT, NULL);
+ stp->sd_wrq = NULL;
+
+ return (0);
+}
+
+/* ARGSUSED */
+static void
+stream_head_destructor(void *buf, void *cdrarg)
+{
+ stdata_t *stp = buf;
+
+ mutex_destroy(&stp->sd_lock);
+ mutex_destroy(&stp->sd_reflock);
+ mutex_destroy(&stp->sd_qlock);
+ cv_destroy(&stp->sd_monitor);
+ cv_destroy(&stp->sd_iocmonitor);
+ cv_destroy(&stp->sd_qcv);
+ cv_destroy(&stp->sd_zcopy_wait);
+}
+
+/*
+ * constructor/destructor routines for the queue cache
+ */
+/* ARGSUSED */
+static int
+queue_constructor(void *buf, void *cdrarg, int kmflags)
+{
+ queinfo_t *qip = buf;
+ queue_t *qp = &qip->qu_rqueue;
+ queue_t *wqp = &qip->qu_wqueue;
+ syncq_t *sq = &qip->qu_syncq;
+
+ qp->q_first = NULL;
+ qp->q_link = NULL;
+ qp->q_count = 0;
+ qp->q_mblkcnt = 0;
+ qp->q_sqhead = NULL;
+ qp->q_sqtail = NULL;
+ qp->q_sqnext = NULL;
+ qp->q_sqprev = NULL;
+ qp->q_sqflags = 0;
+ qp->q_rwcnt = 0;
+ qp->q_spri = 0;
+
+ mutex_init(QLOCK(qp), NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&qp->q_wait, NULL, CV_DEFAULT, NULL);
+
+ wqp->q_first = NULL;
+ wqp->q_link = NULL;
+ wqp->q_count = 0;
+ wqp->q_mblkcnt = 0;
+ wqp->q_sqhead = NULL;
+ wqp->q_sqtail = NULL;
+ wqp->q_sqnext = NULL;
+ wqp->q_sqprev = NULL;
+ wqp->q_sqflags = 0;
+ wqp->q_rwcnt = 0;
+ wqp->q_spri = 0;
+
+ mutex_init(QLOCK(wqp), NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&wqp->q_wait, NULL, CV_DEFAULT, NULL);
+
+ sq->sq_head = NULL;
+ sq->sq_tail = NULL;
+ sq->sq_evhead = NULL;
+ sq->sq_evtail = NULL;
+ sq->sq_callbpend = NULL;
+ sq->sq_outer = NULL;
+ sq->sq_onext = NULL;
+ sq->sq_oprev = NULL;
+ sq->sq_next = NULL;
+ sq->sq_svcflags = 0;
+ sq->sq_servcount = 0;
+ sq->sq_needexcl = 0;
+ sq->sq_nqueues = 0;
+ sq->sq_pri = 0;
+
+ mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
+ cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
+
+ return (0);
+}
+
+/* ARGSUSED */
+static void
+queue_destructor(void *buf, void *cdrarg)
+{
+ queinfo_t *qip = buf;
+ queue_t *qp = &qip->qu_rqueue;
+ queue_t *wqp = &qip->qu_wqueue;
+ syncq_t *sq = &qip->qu_syncq;
+
+ ASSERT(qp->q_sqhead == NULL);
+ ASSERT(wqp->q_sqhead == NULL);
+ ASSERT(qp->q_sqnext == NULL);
+ ASSERT(wqp->q_sqnext == NULL);
+ ASSERT(qp->q_rwcnt == 0);
+ ASSERT(wqp->q_rwcnt == 0);
+
+ mutex_destroy(&qp->q_lock);
+ cv_destroy(&qp->q_wait);
+
+ mutex_destroy(&wqp->q_lock);
+ cv_destroy(&wqp->q_wait);
+
+ mutex_destroy(&sq->sq_lock);
+ cv_destroy(&sq->sq_wait);
+ cv_destroy(&sq->sq_exitwait);
+}
+
+/*
+ * constructor/destructor routines for the syncq cache
+ */
+/* ARGSUSED */
+static int
+syncq_constructor(void *buf, void *cdrarg, int kmflags)
+{
+ syncq_t *sq = buf;
+
+ bzero(buf, sizeof (syncq_t));
+
+ mutex_init(&sq->sq_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&sq->sq_wait, NULL, CV_DEFAULT, NULL);
+ cv_init(&sq->sq_exitwait, NULL, CV_DEFAULT, NULL);
+
+ return (0);
+}
+
+/* ARGSUSED */
+static void
+syncq_destructor(void *buf, void *cdrarg)
+{
+ syncq_t *sq = buf;
+
+ ASSERT(sq->sq_head == NULL);
+ ASSERT(sq->sq_tail == NULL);
+ ASSERT(sq->sq_evhead == NULL);
+ ASSERT(sq->sq_evtail == NULL);
+ ASSERT(sq->sq_callbpend == NULL);
+ ASSERT(sq->sq_callbflags == 0);
+ ASSERT(sq->sq_outer == NULL);
+ ASSERT(sq->sq_onext == NULL);
+ ASSERT(sq->sq_oprev == NULL);
+ ASSERT(sq->sq_next == NULL);
+ ASSERT(sq->sq_needexcl == 0);
+ ASSERT(sq->sq_svcflags == 0);
+ ASSERT(sq->sq_servcount == 0);
+ ASSERT(sq->sq_nqueues == 0);
+ ASSERT(sq->sq_pri == 0);
+ ASSERT(sq->sq_count == 0);
+ ASSERT(sq->sq_rmqcount == 0);
+ ASSERT(sq->sq_cancelid == 0);
+ ASSERT(sq->sq_ciputctrl == NULL);
+ ASSERT(sq->sq_nciputctrl == 0);
+ ASSERT(sq->sq_type == 0);
+ ASSERT(sq->sq_flags == 0);
+
+ mutex_destroy(&sq->sq_lock);
+ cv_destroy(&sq->sq_wait);
+ cv_destroy(&sq->sq_exitwait);
+}
+
+/* ARGSUSED */
+static int
+ciputctrl_constructor(void *buf, void *cdrarg, int kmflags)
+{
+ ciputctrl_t *cip = buf;
+ int i;
+
+ for (i = 0; i < n_ciputctrl; i++) {
+ cip[i].ciputctrl_count = SQ_FASTPUT;
+ mutex_init(&cip[i].ciputctrl_lock, NULL, MUTEX_DEFAULT, NULL);
+ }
+
+ return (0);
+}
+
+/* ARGSUSED */
+static void
+ciputctrl_destructor(void *buf, void *cdrarg)
+{
+ ciputctrl_t *cip = buf;
+ int i;
+
+ for (i = 0; i < n_ciputctrl; i++) {
+ ASSERT(cip[i].ciputctrl_count & SQ_FASTPUT);
+ mutex_destroy(&cip[i].ciputctrl_lock);
+ }
+}
+
+/*
+ * Init routine run from main at boot time.
+ */
+void
+strinit(void)
+{
+ int i;
+ int ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
+
+ /*
+ * Set up mux_node structures.
+ */
+ mux_nodes = kmem_zalloc((sizeof (struct mux_node) * devcnt), KM_SLEEP);
+ for (i = 0; i < devcnt; i++)
+ mux_nodes[i].mn_imaj = i;
+
+ stream_head_cache = kmem_cache_create("stream_head_cache",
+ sizeof (stdata_t), 0,
+ stream_head_constructor, stream_head_destructor, NULL,
+ NULL, NULL, 0);
+
+ queue_cache = kmem_cache_create("queue_cache", sizeof (queinfo_t), 0,
+ queue_constructor, queue_destructor, NULL, NULL, NULL, 0);
+
+ syncq_cache = kmem_cache_create("syncq_cache", sizeof (syncq_t), 0,
+ syncq_constructor, syncq_destructor, NULL, NULL, NULL, 0);
+
+ qband_cache = kmem_cache_create("qband_cache",
+ sizeof (qband_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
+
+ linkinfo_cache = kmem_cache_create("linkinfo_cache",
+ sizeof (linkinfo_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
+
+ n_ciputctrl = ncpus;
+ n_ciputctrl = 1 << highbit(n_ciputctrl - 1);
+ ASSERT(n_ciputctrl >= 1);
+ n_ciputctrl = MIN(n_ciputctrl, max_n_ciputctrl);
+ if (n_ciputctrl >= min_n_ciputctrl) {
+ ciputctrl_cache = kmem_cache_create("ciputctrl_cache",
+ sizeof (ciputctrl_t) * n_ciputctrl,
+ sizeof (ciputctrl_t), ciputctrl_constructor,
+ ciputctrl_destructor, NULL, NULL, NULL, 0);
+ }
+
+ streams_taskq = system_taskq;
+
+ if (streams_taskq == NULL)
+ panic("strinit: no memory for streams taskq!");
+
+ bc_bkgrnd_thread = thread_create(NULL, 0,
+ streams_bufcall_service, NULL, 0, &p0, TS_RUN, streams_lopri);
+
+ streams_qbkgrnd_thread = thread_create(NULL, 0,
+ streams_qbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
+
+ streams_sqbkgrnd_thread = thread_create(NULL, 0,
+ streams_sqbkgrnd_service, NULL, 0, &p0, TS_RUN, streams_lopri);
+
+ /*
+ * Create STREAMS kstats.
+ */
+ str_kstat = kstat_create("streams", 0, "strstat",
+ "net", KSTAT_TYPE_NAMED,
+ sizeof (str_statistics) / sizeof (kstat_named_t),
+ KSTAT_FLAG_VIRTUAL);
+
+ if (str_kstat != NULL) {
+ str_kstat->ks_data = &str_statistics;
+ kstat_install(str_kstat);
+ }
+
+ /*
+ * TPI support routine initialisation.
+ */
+ tpi_init();
+}
+
+void
+str_sendsig(vnode_t *vp, int event, uchar_t band, int error)
+{
+ struct stdata *stp;
+
+ ASSERT(vp->v_stream);
+ stp = vp->v_stream;
+ /* Have to hold sd_lock to prevent siglist from changing */
+ mutex_enter(&stp->sd_lock);
+ if (stp->sd_sigflags & event)
+ strsendsig(stp->sd_siglist, event, band, error);
+ mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * Send the "sevent" set of signals to a process.
+ * This might send more than one signal if the process is registered
+ * for multiple events. The caller should pass in an sevent that only
+ * includes the events for which the process has registered.
+ */
+static void
+dosendsig(proc_t *proc, int events, int sevent, k_siginfo_t *info,
+ uchar_t band, int error)
+{
+ ASSERT(MUTEX_HELD(&proc->p_lock));
+
+ info->si_band = 0;
+ info->si_errno = 0;
+
+ if (sevent & S_ERROR) {
+ sevent &= ~S_ERROR;
+ info->si_code = POLL_ERR;
+ info->si_errno = error;
+ TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
+ "strsendsig:proc %p info %p", proc, info);
+ sigaddq(proc, NULL, info, KM_NOSLEEP);
+ info->si_errno = 0;
+ }
+ if (sevent & S_HANGUP) {
+ sevent &= ~S_HANGUP;
+ info->si_code = POLL_HUP;
+ TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
+ "strsendsig:proc %p info %p", proc, info);
+ sigaddq(proc, NULL, info, KM_NOSLEEP);
+ }
+ if (sevent & S_HIPRI) {
+ sevent &= ~S_HIPRI;
+ info->si_code = POLL_PRI;
+ TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
+ "strsendsig:proc %p info %p", proc, info);
+ sigaddq(proc, NULL, info, KM_NOSLEEP);
+ }
+ if (sevent & S_RDBAND) {
+ sevent &= ~S_RDBAND;
+ if (events & S_BANDURG)
+ sigtoproc(proc, NULL, SIGURG);
+ else
+ sigtoproc(proc, NULL, SIGPOLL);
+ }
+ if (sevent & S_WRBAND) {
+ sevent &= ~S_WRBAND;
+ sigtoproc(proc, NULL, SIGPOLL);
+ }
+ if (sevent & S_INPUT) {
+ sevent &= ~S_INPUT;
+ info->si_code = POLL_IN;
+ info->si_band = band;
+ TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
+ "strsendsig:proc %p info %p", proc, info);
+ sigaddq(proc, NULL, info, KM_NOSLEEP);
+ info->si_band = 0;
+ }
+ if (sevent & S_OUTPUT) {
+ sevent &= ~S_OUTPUT;
+ info->si_code = POLL_OUT;
+ info->si_band = band;
+ TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
+ "strsendsig:proc %p info %p", proc, info);
+ sigaddq(proc, NULL, info, KM_NOSLEEP);
+ info->si_band = 0;
+ }
+ if (sevent & S_MSG) {
+ sevent &= ~S_MSG;
+ info->si_code = POLL_MSG;
+ info->si_band = band;
+ TRACE_2(TR_FAC_STREAMS_FR, TR_STRSENDSIG,
+ "strsendsig:proc %p info %p", proc, info);
+ sigaddq(proc, NULL, info, KM_NOSLEEP);
+ info->si_band = 0;
+ }
+ if (sevent & S_RDNORM) {
+ sevent &= ~S_RDNORM;
+ sigtoproc(proc, NULL, SIGPOLL);
+ }
+ if (sevent != 0) {
+ panic("strsendsig: unknown event(s) %x", sevent);
+ }
+}
+
+/*
+ * Send SIGPOLL/SIGURG signal to all processes and process groups
+ * registered on the given signal list that want a signal for at
+ * least one of the specified events.
+ *
+ * Must be called with exclusive access to siglist (caller holding sd_lock).
+ *
+ * strioctl(I_SETSIG/I_ESETSIG) will only change siglist when holding
+ * sd_lock and the ioctl code maintains a PID_HOLD on the pid structure
+ * while it is in the siglist.
+ *
+ * For performance reasons (MP scalability) the code drops pidlock
+ * when sending signals to a single process.
+ * When sending to a process group the code holds
+ * pidlock to prevent the membership in the process group from changing
+ * while walking the p_pglink list.
+ */
+void
+strsendsig(strsig_t *siglist, int event, uchar_t band, int error)
+{
+ strsig_t *ssp;
+ k_siginfo_t info;
+ struct pid *pidp;
+ proc_t *proc;
+
+ info.si_signo = SIGPOLL;
+ info.si_errno = 0;
+ for (ssp = siglist; ssp; ssp = ssp->ss_next) {
+ int sevent;
+
+ sevent = ssp->ss_events & event;
+ if (sevent == 0)
+ continue;
+
+ if ((pidp = ssp->ss_pidp) == NULL) {
+ /* pid was released but still on event list */
+ continue;
+ }
+
+
+ if (ssp->ss_pid > 0) {
+ /*
+ * XXX This unfortunately still generates
+ * a signal when a fd is closed but
+ * the proc is active.
+ */
+ ASSERT(ssp->ss_pid == pidp->pid_id);
+
+ mutex_enter(&pidlock);
+ proc = prfind_zone(pidp->pid_id, ALL_ZONES);
+ if (proc == NULL) {
+ mutex_exit(&pidlock);
+ continue;
+ }
+ mutex_enter(&proc->p_lock);
+ mutex_exit(&pidlock);
+ dosendsig(proc, ssp->ss_events, sevent, &info,
+ band, error);
+ mutex_exit(&proc->p_lock);
+ } else {
+ /*
+ * Send to process group. Hold pidlock across
+ * calls to dosendsig().
+ */
+ pid_t pgrp = -ssp->ss_pid;
+
+ mutex_enter(&pidlock);
+ proc = pgfind_zone(pgrp, ALL_ZONES);
+ while (proc != NULL) {
+ mutex_enter(&proc->p_lock);
+ dosendsig(proc, ssp->ss_events, sevent,
+ &info, band, error);
+ mutex_exit(&proc->p_lock);
+ proc = proc->p_pglink;
+ }
+ mutex_exit(&pidlock);
+ }
+ }
+}
+
+/*
+ * Attach a stream device or module.
+ * qp is a read queue; the new queue goes in so its next
+ * read ptr is the argument, and the write queue corresponding
+ * to the argument points to this queue. Return 0 on success,
+ * or a non-zero errno on failure.
+ */
+int
+qattach(queue_t *qp, dev_t *devp, int oflag, cred_t *crp, fmodsw_impl_t *fp,
+ boolean_t is_insert)
+{
+ major_t major;
+ cdevsw_impl_t *dp;
+ struct streamtab *str;
+ queue_t *rq;
+ queue_t *wrq;
+ uint32_t qflag;
+ uint32_t sqtype;
+ perdm_t *dmp;
+ int error;
+ int sflag;
+
+ rq = allocq();
+ wrq = _WR(rq);
+ STREAM(rq) = STREAM(wrq) = STREAM(qp);
+
+ if (fp != NULL) {
+ str = fp->f_str;
+ qflag = fp->f_qflag;
+ sqtype = fp->f_sqtype;
+ dmp = fp->f_dmp;
+ IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
+ sflag = MODOPEN;
+
+ /*
+ * stash away a pointer to the module structure so we can
+ * unref it in qdetach.
+ */
+ rq->q_fp = fp;
+ } else {
+ ASSERT(!is_insert);
+
+ major = getmajor(*devp);
+ dp = &devimpl[major];
+
+ str = dp->d_str;
+ ASSERT(str == STREAMSTAB(major));
+
+ qflag = dp->d_qflag;
+ ASSERT(qflag & QISDRV);
+ sqtype = dp->d_sqtype;
+
+ /* create perdm_t if needed */
+ if (NEED_DM(dp->d_dmp, qflag))
+ dp->d_dmp = hold_dm(str, qflag, sqtype);
+
+ dmp = dp->d_dmp;
+ sflag = 0;
+ }
+
+ TRACE_2(TR_FAC_STREAMS_FR, TR_QATTACH_FLAGS,
+ "qattach:qflag == %X(%X)", qflag, *devp);
+
+ /* setq might sleep in allocator - avoid holding locks. */
+ setq(rq, str->st_rdinit, str->st_wrinit, dmp, qflag, sqtype, B_FALSE);
+
+ /*
+ * Before calling the module's open routine, set up the q_next
+ * pointer for inserting a module in the middle of a stream.
+ *
+ * Note that we can always set _QINSERTING and set up q_next
+ * pointer for both inserting and pushing a module. Then there
+ * is no need for the is_insert parameter. In insertq(), called
+ * by qprocson(), assume that q_next of the new module always points
+ * to the correct queue and use it for insertion. Everything should
+ * work out fine. But in the first release of _I_INSERT, we
+ * distinguish between inserting and pushing to make sure that
+ * pushing a module follows the same code path as before.
+ */
+ if (is_insert) {
+ rq->q_flag |= _QINSERTING;
+ rq->q_next = qp;
+ }
+
+ /*
+ * If there is an outer perimeter get exclusive access during
+ * the open procedure. Bump up the reference count on the queue.
+ */
+ entersq(rq->q_syncq, SQ_OPENCLOSE);
+ error = (*rq->q_qinfo->qi_qopen)(rq, devp, oflag, sflag, crp);
+ if (error != 0)
+ goto failed;
+ leavesq(rq->q_syncq, SQ_OPENCLOSE);
+ ASSERT(qprocsareon(rq));
+ return (0);
+
+failed:
+ rq->q_flag &= ~_QINSERTING;
+ if (backq(wrq) != NULL && backq(wrq)->q_next == wrq)
+ qprocsoff(rq);
+ leavesq(rq->q_syncq, SQ_OPENCLOSE);
+ rq->q_next = wrq->q_next = NULL;
+ qdetach(rq, 0, 0, crp, B_FALSE);
+ return (error);
+}
+
+/*
+ * Handle second open of stream. For modules, set the
+ * last argument to MODOPEN and do not pass any open flags.
+ * Ignore dummydev since this is not the first open.
+ */
+int
+qreopen(queue_t *qp, dev_t *devp, int flag, cred_t *crp)
+{
+ int error;
+ dev_t dummydev;
+ queue_t *wqp = _WR(qp);
+
+ ASSERT(qp->q_flag & QREADR);
+ entersq(qp->q_syncq, SQ_OPENCLOSE);
+
+ dummydev = *devp;
+ if (error = ((*qp->q_qinfo->qi_qopen)(qp, &dummydev,
+ (wqp->q_next ? 0 : flag), (wqp->q_next ? MODOPEN : 0), crp))) {
+ leavesq(qp->q_syncq, SQ_OPENCLOSE);
+ mutex_enter(&STREAM(qp)->sd_lock);
+ qp->q_stream->sd_flag |= STREOPENFAIL;
+ mutex_exit(&STREAM(qp)->sd_lock);
+ return (error);
+ }
+ leavesq(qp->q_syncq, SQ_OPENCLOSE);
+
+ /*
+ * successful open should have done qprocson()
+ */
+ ASSERT(qprocsareon(_RD(qp)));
+ return (0);
+}
+
+/*
+ * Detach a stream module or device.
+ * If clmode == 1 then the module or driver was opened and its
+ * close routine must be called. If clmode == 0, the module
+ * or driver was never opened or the open failed, and so its close
+ * should not be called.
+ */
+void
+qdetach(queue_t *qp, int clmode, int flag, cred_t *crp, boolean_t is_remove)
+{
+ queue_t *wqp = _WR(qp);
+ ASSERT(STREAM(qp)->sd_flag & (STRCLOSE|STWOPEN|STRPLUMB));
+
+ if (STREAM_NEEDSERVICE(STREAM(qp)))
+ stream_runservice(STREAM(qp));
+
+ if (clmode) {
+ /*
+ * Make sure that all the messages on the write side syncq are
+ * processed and nothing is left. Since we are closing, no new
+ * messages may appear there.
+ */
+ wait_q_syncq(wqp);
+
+ entersq(qp->q_syncq, SQ_OPENCLOSE);
+ if (is_remove) {
+ mutex_enter(QLOCK(qp));
+ qp->q_flag |= _QREMOVING;
+ mutex_exit(QLOCK(qp));
+ }
+ (*qp->q_qinfo->qi_qclose)(qp, flag, crp);
+ /*
+ * Check that qprocsoff() was actually called.
+ */
+ ASSERT((qp->q_flag & QWCLOSE) && (wqp->q_flag & QWCLOSE));
+
+ leavesq(qp->q_syncq, SQ_OPENCLOSE);
+ } else {
+ disable_svc(qp);
+ }
+
+ /*
+ * Allow any threads blocked in entersq to proceed and discover
+ * the QWCLOSE is set.
+ * Note: This assumes that all users of entersq check QWCLOSE.
+ * Currently runservice is the only entersq that can happen
+ * after removeq has finished.
+ * Removeq will have discarded all messages destined to the closing
+ * pair of queues from the syncq.
+ * NOTE: Calling a function inside an assert is unconventional.
+ * However, it does not cause any problem since flush_syncq() does
+ * not change any state except when it returns non-zero i.e.
+ * when the assert will trigger.
+ */
+ ASSERT(flush_syncq(qp->q_syncq, qp) == 0);
+ ASSERT(flush_syncq(wqp->q_syncq, wqp) == 0);
+ ASSERT((qp->q_flag & QPERMOD) ||
+ ((qp->q_syncq->sq_head == NULL) &&
+ (wqp->q_syncq->sq_head == NULL)));
+
+ /*
+ * Flush the queues before q_next is set to NULL. This is needed
+ * in order to backenable any downstream queue before we go away.
+ * Note: we are already removed from the stream so that the
+ * backenabling will not cause any messages to be delivered to our
+ * put procedures.
+ */
+ flushq(qp, FLUSHALL);
+ flushq(wqp, FLUSHALL);
+
+ /*
+ * wait for any pending service processing to complete
+ */
+ wait_svc(qp);
+
+ /* Tidy up - removeq only does a half-remove from stream */
+ qp->q_next = wqp->q_next = NULL;
+ ASSERT(!(qp->q_flag & QENAB));
+ ASSERT(!(wqp->q_flag & QENAB));
+
+ /* release any fmodsw_impl_t structure held on behalf of the queue */
+
+ ASSERT(qp->q_fp != NULL || qp->q_flag & QISDRV);
+ if (qp->q_fp != NULL)
+ fmodsw_rele(qp->q_fp);
+
+ /* freeq removes us from the outer perimeter if any */
+ freeq(qp);
+}
+
+/* Prevent service procedures from being called */
+void
+disable_svc(queue_t *qp)
+{
+ queue_t *wqp = _WR(qp);
+
+ ASSERT(qp->q_flag & QREADR);
+ mutex_enter(QLOCK(qp));
+ qp->q_flag |= QWCLOSE;
+ mutex_exit(QLOCK(qp));
+ mutex_enter(QLOCK(wqp));
+ wqp->q_flag |= QWCLOSE;
+ mutex_exit(QLOCK(wqp));
+}
+
+/* allow service procedures to be called again */
+void
+enable_svc(queue_t *qp)
+{
+ queue_t *wqp = _WR(qp);
+
+ ASSERT(qp->q_flag & QREADR);
+ mutex_enter(QLOCK(qp));
+ qp->q_flag &= ~QWCLOSE;
+ mutex_exit(QLOCK(qp));
+ mutex_enter(QLOCK(wqp));
+ wqp->q_flag &= ~QWCLOSE;
+ mutex_exit(QLOCK(wqp));
+}
+
+/*
+ * Remove queue from qhead/qtail if it is enabled.
+ * Only reset QENAB if the queue was removed from the runlist.
+ * A queue goes through 3 stages:
+ * It is on the service list and QENAB is set.
+ * It is removed from the service list but QENAB is still set.
+ * QENAB gets changed to QINSERVICE.
+ * QINSERVICE is reset (when the service procedure is done)
+ * Thus we can not reset QENAB unless we actually removed it from the service
+ * queue.
+ */
+void
+remove_runlist(queue_t *qp)
+{
+ if (qp->q_flag & QENAB && qhead != NULL) {
+ queue_t *q_chase;
+ queue_t *q_curr;
+ int removed;
+
+ mutex_enter(&service_queue);
+ RMQ(qp, qhead, qtail, q_link, q_chase, q_curr, removed);
+ mutex_exit(&service_queue);
+ if (removed) {
+ STRSTAT(qremoved);
+ qp->q_flag &= ~QENAB;
+ }
+ }
+}
+
+
+/*
+ * wait for any pending service processing to complete.
+ * The removal of queues from the runlist is not atomic with the
+ * clearing of the QENABLED flag and setting the INSERVICE flag.
+ * consequently it is possible for remove_runlist in strclose
+ * to not find the queue on the runlist but for it to be QENABLED
+ * and not yet INSERVICE -> hence wait_svc needs to check QENABLED
+ * as well as INSERVICE.
+ */
+void
+wait_svc(queue_t *qp)
+{
+ queue_t *wqp = _WR(qp);
+
+ ASSERT(qp->q_flag & QREADR);
+
+ /*
+ * Try to remove queues from qhead/qtail list.
+ */
+ if (qhead != NULL) {
+ remove_runlist(qp);
+ remove_runlist(wqp);
+ }
+ /*
+ * Wait till the syncqs associated with the queue
+ * will dissapear from background processing list.
+ * This only needs to be done for non-PERMOD perimeters since
+ * for PERMOD perimeters the syncq may be shared and will only be freed
+ * when the last module/driver is unloaded.
+ * If for PERMOD perimeters queue was on the syncq list, removeq()
+ * should call propagate_syncq() or drain_syncq() for it. Both of these
+ * function remove the queue from its syncq list, so sqthread will not
+ * try to access the queue.
+ */
+ if (!(qp->q_flag & QPERMOD)) {
+ syncq_t *rsq = qp->q_syncq;
+ syncq_t *wsq = wqp->q_syncq;
+
+ /*
+ * Disable rsq and wsq and wait for any background processing of
+ * syncq to complete.
+ */
+ wait_sq_svc(rsq);
+ if (wsq != rsq)
+ wait_sq_svc(wsq);
+ }
+
+ mutex_enter(QLOCK(qp));
+ while (qp->q_flag & (QINSERVICE|QENAB))
+ cv_wait(&qp->q_wait, QLOCK(qp));
+ mutex_exit(QLOCK(qp));
+ mutex_enter(QLOCK(wqp));
+ while (wqp->q_flag & (QINSERVICE|QENAB))
+ cv_wait(&wqp->q_wait, QLOCK(wqp));
+ mutex_exit(QLOCK(wqp));
+}
+
+/*
+ * Put ioctl data from userland buffer `arg' into the mblk chain `bp'.
+ * `flag' must always contain either K_TO_K or U_TO_K; STR_NOSIG may
+ * also be set, and is passed through to allocb_cred_wait().
+ *
+ * Returns errno on failure, zero on success.
+ */
+int
+putiocd(mblk_t *bp, char *arg, int flag, cred_t *cr)
+{
+ mblk_t *tmp;
+ ssize_t count;
+ size_t n;
+ int error = 0;
+
+ ASSERT((flag & (U_TO_K | K_TO_K)) == U_TO_K ||
+ (flag & (U_TO_K | K_TO_K)) == K_TO_K);
+
+ if (bp->b_datap->db_type == M_IOCTL) {
+ count = ((struct iocblk *)bp->b_rptr)->ioc_count;
+ } else {
+ ASSERT(bp->b_datap->db_type == M_COPYIN);
+ count = ((struct copyreq *)bp->b_rptr)->cq_size;
+ }
+ /*
+ * strdoioctl validates ioc_count, so if this assert fails it
+ * cannot be due to user error.
+ */
+ ASSERT(count >= 0);
+
+ while (count > 0) {
+ n = MIN(MAXIOCBSZ, count);
+ if ((tmp = allocb_cred_wait(n, (flag & STR_NOSIG), &error,
+ cr)) == NULL) {
+ return (error);
+ }
+ error = strcopyin(arg, tmp->b_wptr, n, flag & (U_TO_K|K_TO_K));
+ if (error != 0) {
+ freeb(tmp);
+ return (error);
+ }
+ arg += n;
+ DB_CPID(tmp) = curproc->p_pid;
+ tmp->b_wptr += n;
+ count -= n;
+ bp = (bp->b_cont = tmp);
+ }
+
+ return (0);
+}
+
+/*
+ * Copy ioctl data to user-land. Return non-zero errno on failure,
+ * 0 for success.
+ */
+int
+getiocd(mblk_t *bp, char *arg, int copymode)
+{
+ ssize_t count;
+ size_t n;
+ int error;
+
+ if (bp->b_datap->db_type == M_IOCACK)
+ count = ((struct iocblk *)bp->b_rptr)->ioc_count;
+ else {
+ ASSERT(bp->b_datap->db_type == M_COPYOUT);
+ count = ((struct copyreq *)bp->b_rptr)->cq_size;
+ }
+ ASSERT(count >= 0);
+
+ for (bp = bp->b_cont; bp && count;
+ count -= n, bp = bp->b_cont, arg += n) {
+ n = MIN(count, bp->b_wptr - bp->b_rptr);
+ error = strcopyout(bp->b_rptr, arg, n, copymode);
+ if (error)
+ return (error);
+ }
+ ASSERT(count == 0);
+ return (0);
+}
+
+/*
+ * Allocate a linkinfo entry given the write queue of the
+ * bottom module of the top stream and the write queue of the
+ * stream head of the bottom stream.
+ */
+linkinfo_t *
+alloclink(queue_t *qup, queue_t *qdown, file_t *fpdown)
+{
+ linkinfo_t *linkp;
+
+ linkp = kmem_cache_alloc(linkinfo_cache, KM_SLEEP);
+
+ linkp->li_lblk.l_qtop = qup;
+ linkp->li_lblk.l_qbot = qdown;
+ linkp->li_fpdown = fpdown;
+
+ mutex_enter(&strresources);
+ linkp->li_next = linkinfo_list;
+ linkp->li_prev = NULL;
+ if (linkp->li_next)
+ linkp->li_next->li_prev = linkp;
+ linkinfo_list = linkp;
+ linkp->li_lblk.l_index = ++lnk_id;
+ ASSERT(lnk_id != 0); /* this should never wrap in practice */
+ mutex_exit(&strresources);
+
+ return (linkp);
+}
+
+/*
+ * Free a linkinfo entry.
+ */
+void
+lbfree(linkinfo_t *linkp)
+{
+ mutex_enter(&strresources);
+ if (linkp->li_next)
+ linkp->li_next->li_prev = linkp->li_prev;
+ if (linkp->li_prev)
+ linkp->li_prev->li_next = linkp->li_next;
+ else
+ linkinfo_list = linkp->li_next;
+ mutex_exit(&strresources);
+
+ kmem_cache_free(linkinfo_cache, linkp);
+}
+
+/*
+ * Check for a potential linking cycle.
+ * Return 1 if a link will result in a cycle,
+ * and 0 otherwise.
+ */
+int
+linkcycle(stdata_t *upstp, stdata_t *lostp)
+{
+ struct mux_node *np;
+ struct mux_edge *ep;
+ int i;
+ major_t lomaj;
+ major_t upmaj;
+ /*
+ * if the lower stream is a pipe/FIFO, return, since link
+ * cycles can not happen on pipes/FIFOs
+ */
+ if (lostp->sd_vnode->v_type == VFIFO)
+ return (0);
+
+ for (i = 0; i < devcnt; i++) {
+ np = &mux_nodes[i];
+ MUX_CLEAR(np);
+ }
+ lomaj = getmajor(lostp->sd_vnode->v_rdev);
+ upmaj = getmajor(upstp->sd_vnode->v_rdev);
+ np = &mux_nodes[lomaj];
+ for (;;) {
+ if (!MUX_DIDVISIT(np)) {
+ if (np->mn_imaj == upmaj)
+ return (1);
+ if (np->mn_outp == NULL) {
+ MUX_VISIT(np);
+ if (np->mn_originp == NULL)
+ return (0);
+ np = np->mn_originp;
+ continue;
+ }
+ MUX_VISIT(np);
+ np->mn_startp = np->mn_outp;
+ } else {
+ if (np->mn_startp == NULL) {
+ if (np->mn_originp == NULL)
+ return (0);
+ else {
+ np = np->mn_originp;
+ continue;
+ }
+ }
+ /*
+ * If ep->me_nodep is a FIFO (me_nodep == NULL),
+ * ignore the edge and move on. ep->me_nodep gets
+ * set to NULL in mux_addedge() if it is a FIFO.
+ *
+ */
+ ep = np->mn_startp;
+ np->mn_startp = ep->me_nextp;
+ if (ep->me_nodep == NULL)
+ continue;
+ ep->me_nodep->mn_originp = np;
+ np = ep->me_nodep;
+ }
+ }
+}
+
+/*
+ * Find linkinfo entry corresponding to the parameters.
+ */
+linkinfo_t *
+findlinks(stdata_t *stp, int index, int type)
+{
+ linkinfo_t *linkp;
+ struct mux_edge *mep;
+ struct mux_node *mnp;
+ queue_t *qup;
+
+ mutex_enter(&strresources);
+ if ((type & LINKTYPEMASK) == LINKNORMAL) {
+ qup = getendq(stp->sd_wrq);
+ for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
+ if ((qup == linkp->li_lblk.l_qtop) &&
+ (!index || (index == linkp->li_lblk.l_index))) {
+ mutex_exit(&strresources);
+ return (linkp);
+ }
+ }
+ } else {
+ ASSERT((type & LINKTYPEMASK) == LINKPERSIST);
+ mnp = &mux_nodes[getmajor(stp->sd_vnode->v_rdev)];
+ mep = mnp->mn_outp;
+ while (mep) {
+ if ((index == 0) || (index == mep->me_muxid))
+ break;
+ mep = mep->me_nextp;
+ }
+ if (!mep) {
+ mutex_exit(&strresources);
+ return (NULL);
+ }
+ for (linkp = linkinfo_list; linkp; linkp = linkp->li_next) {
+ if ((!linkp->li_lblk.l_qtop) &&
+ (mep->me_muxid == linkp->li_lblk.l_index)) {
+ mutex_exit(&strresources);
+ return (linkp);
+ }
+ }
+ }
+ mutex_exit(&strresources);
+ return (NULL);
+}
+
+/*
+ * Given a queue ptr, follow the chain of q_next pointers until you reach the
+ * last queue on the chain and return it.
+ */
+queue_t *
+getendq(queue_t *q)
+{
+ ASSERT(q != NULL);
+ while (_SAMESTR(q))
+ q = q->q_next;
+ return (q);
+}
+
+/*
+ * wait for the syncq count to drop to zero.
+ * sq could be either outer or inner.
+ */
+
+static void
+wait_syncq(syncq_t *sq)
+{
+ uint16_t count;
+
+ mutex_enter(SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ while (count != 0) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ SQ_PUTLOCKS_EXIT(sq);
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ SQ_PUTLOCKS_EXIT(sq);
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Wait while there are any messages for the queue in its syncq.
+ */
+static void
+wait_q_syncq(queue_t *q)
+{
+ if ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
+ syncq_t *sq = q->q_syncq;
+
+ mutex_enter(SQLOCK(sq));
+ while ((q->q_sqflags & Q_SQQUEUED) || (q->q_syncqmsgs > 0)) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ }
+ mutex_exit(SQLOCK(sq));
+ }
+}
+
+
+int
+mlink_file(vnode_t *vp, int cmd, struct file *fpdown, cred_t *crp, int *rvalp,
+ int lhlink)
+{
+ struct stdata *stp;
+ struct strioctl strioc;
+ struct linkinfo *linkp;
+ struct stdata *stpdown;
+ struct streamtab *str;
+ queue_t *passq;
+ syncq_t *passyncq;
+ queue_t *rq;
+ cdevsw_impl_t *dp;
+ uint32_t qflag;
+ uint32_t sqtype;
+ perdm_t *dmp;
+ int error = 0;
+
+ stp = vp->v_stream;
+ TRACE_1(TR_FAC_STREAMS_FR,
+ TR_I_LINK, "I_LINK/I_PLINK:stp %p", stp);
+ /*
+ * Test for invalid upper stream
+ */
+ if (stp->sd_flag & STRHUP) {
+ return (ENXIO);
+ }
+ if (vp->v_type == VFIFO) {
+ return (EINVAL);
+ }
+ if (stp->sd_strtab == NULL) {
+ return (EINVAL);
+ }
+ if (!stp->sd_strtab->st_muxwinit) {
+ return (EINVAL);
+ }
+ if (fpdown == NULL) {
+ return (EBADF);
+ }
+ if (getmajor(stp->sd_vnode->v_rdev) >= devcnt) {
+ return (EINVAL);
+ }
+ mutex_enter(&muxifier);
+ if (stp->sd_flag & STPLEX) {
+ mutex_exit(&muxifier);
+ return (ENXIO);
+ }
+
+ /*
+ * Test for invalid lower stream.
+ * The check for the v_type != VFIFO and having a major
+ * number not >= devcnt is done to avoid problems with
+ * adding mux_node entry past the end of mux_nodes[].
+ * For FIFO's we don't add an entry so this isn't a
+ * problem.
+ */
+ if (((stpdown = fpdown->f_vnode->v_stream) == NULL) ||
+ (stpdown == stp) || (stpdown->sd_flag &
+ (STPLEX|STRHUP|STRDERR|STWRERR|IOCWAIT|STRPLUMB)) ||
+ ((stpdown->sd_vnode->v_type != VFIFO) &&
+ (getmajor(stpdown->sd_vnode->v_rdev) >= devcnt)) ||
+ linkcycle(stp, stpdown)) {
+ mutex_exit(&muxifier);
+ return (EINVAL);
+ }
+ TRACE_1(TR_FAC_STREAMS_FR,
+ TR_STPDOWN, "stpdown:%p", stpdown);
+ rq = getendq(stp->sd_wrq);
+ if (cmd == I_PLINK)
+ rq = NULL;
+
+ linkp = alloclink(rq, stpdown->sd_wrq, fpdown);
+
+ strioc.ic_cmd = cmd;
+ strioc.ic_timout = INFTIM;
+ strioc.ic_len = sizeof (struct linkblk);
+ strioc.ic_dp = (char *)&linkp->li_lblk;
+
+ /*
+ * STRPLUMB protects plumbing changes and should be set before
+ * link_addpassthru()/link_rempassthru() are called, so it is set here
+ * and cleared in the end of mlink when passthru queue is removed.
+ * Setting of STRPLUMB prevents reopens of the stream while passthru
+ * queue is in-place (it is not a proper module and doesn't have open
+ * entry point).
+ *
+ * STPLEX prevents any threads from entering the stream from above. It
+ * can't be set before the call to link_addpassthru() because putnext
+ * from below may cause stream head I/O routines to be called and these
+ * routines assert that STPLEX is not set. After link_addpassthru()
+ * nothing may come from below since the pass queue syncq is blocked.
+ * Note also that STPLEX should be cleared before the call to
+ * link_remmpassthru() since when messages start flowing to the stream
+ * head (e.g. because of message propagation from the pass queue) stream
+ * head I/O routines may be called with STPLEX flag set.
+ *
+ * When STPLEX is set, nothing may come into the stream from above and
+ * it is safe to do a setq which will change stream head. So, the
+ * correct sequence of actions is:
+ *
+ * 1) Set STRPLUMB
+ * 2) Call link_addpassthru()
+ * 3) Set STPLEX
+ * 4) Call setq and update the stream state
+ * 5) Clear STPLEX
+ * 6) Call link_rempassthru()
+ * 7) Clear STRPLUMB
+ *
+ * The same sequence applies to munlink() code.
+ */
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag |= STRPLUMB;
+ mutex_exit(&stpdown->sd_lock);
+ /*
+ * Add passthru queue below lower mux. This will block
+ * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
+ */
+ passq = link_addpassthru(stpdown);
+
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag |= STPLEX;
+ mutex_exit(&stpdown->sd_lock);
+
+ rq = _RD(stpdown->sd_wrq);
+ /*
+ * There may be messages in the streamhead's syncq due to messages
+ * that arrived before link_addpassthru() was done. To avoid
+ * background processing of the syncq happening simultaneous with
+ * setq processing, we disable the streamhead syncq and wait until
+ * existing background thread finishes working on it.
+ */
+ wait_sq_svc(rq->q_syncq);
+ passyncq = passq->q_syncq;
+ if (!(passyncq->sq_flags & SQ_BLOCKED))
+ blocksq(passyncq, SQ_BLOCKED, 0);
+
+ ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
+ ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
+ rq->q_ptr = _WR(rq)->q_ptr = NULL;
+
+ /* setq might sleep in allocator - avoid holding locks. */
+ /* Note: we are holding muxifier here. */
+
+ str = stp->sd_strtab;
+ dp = &devimpl[getmajor(vp->v_rdev)];
+ ASSERT(dp->d_str == str);
+
+ qflag = dp->d_qflag;
+ sqtype = dp->d_sqtype;
+
+ /* create perdm_t if needed */
+ if (NEED_DM(dp->d_dmp, qflag))
+ dp->d_dmp = hold_dm(str, qflag, sqtype);
+
+ dmp = dp->d_dmp;
+
+ setq(rq, str->st_muxrinit, str->st_muxwinit, dmp, qflag, sqtype,
+ B_TRUE);
+
+ /*
+ * XXX Remove any "odd" messages from the queue.
+ * Keep only M_DATA, M_PROTO, M_PCPROTO.
+ */
+ error = strdoioctl(stp, &strioc, FNATIVE,
+ K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
+ if (error != 0) {
+ lbfree(linkp);
+
+ if (!(passyncq->sq_flags & SQ_BLOCKED))
+ blocksq(passyncq, SQ_BLOCKED, 0);
+ /*
+ * Restore the stream head queue and then remove
+ * the passq. Turn off STPLEX before we turn on
+ * the stream by removing the passq.
+ */
+ rq->q_ptr = _WR(rq)->q_ptr = stpdown;
+ setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO,
+ B_TRUE);
+
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag &= ~STPLEX;
+ mutex_exit(&stpdown->sd_lock);
+
+ link_rempassthru(passq);
+
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag &= ~STRPLUMB;
+ /* Wakeup anyone waiting for STRPLUMB to clear. */
+ cv_broadcast(&stpdown->sd_monitor);
+ mutex_exit(&stpdown->sd_lock);
+
+ mutex_exit(&muxifier);
+ return (error);
+ }
+ mutex_enter(&fpdown->f_tlock);
+ fpdown->f_count++;
+ mutex_exit(&fpdown->f_tlock);
+
+ /*
+ * if we've made it here the linkage is all set up so we should also
+ * set up the layered driver linkages
+ */
+
+ ASSERT((cmd == I_LINK) || (cmd == I_PLINK));
+ if (cmd == I_LINK) {
+ ldi_mlink_fp(stp, fpdown, lhlink, LINKNORMAL);
+ } else {
+ ldi_mlink_fp(stp, fpdown, lhlink, LINKPERSIST);
+ }
+
+ link_rempassthru(passq);
+
+ mux_addedge(stp, stpdown, linkp->li_lblk.l_index);
+
+ /*
+ * Mark the upper stream as having dependent links
+ * so that strclose can clean it up.
+ */
+ if (cmd == I_LINK) {
+ mutex_enter(&stp->sd_lock);
+ stp->sd_flag |= STRHASLINKS;
+ mutex_exit(&stp->sd_lock);
+ }
+ /*
+ * Wake up any other processes that may have been
+ * waiting on the lower stream. These will all
+ * error out.
+ */
+ mutex_enter(&stpdown->sd_lock);
+ /* The passthru module is removed so we may release STRPLUMB */
+ stpdown->sd_flag &= ~STRPLUMB;
+ cv_broadcast(&rq->q_wait);
+ cv_broadcast(&_WR(rq)->q_wait);
+ cv_broadcast(&stpdown->sd_monitor);
+ mutex_exit(&stpdown->sd_lock);
+ mutex_exit(&muxifier);
+ *rvalp = linkp->li_lblk.l_index;
+ return (0);
+}
+
+int
+mlink(vnode_t *vp, int cmd, int arg, cred_t *crp, int *rvalp, int lhlink)
+{
+ int ret;
+ struct file *fpdown;
+
+ fpdown = getf(arg);
+ ret = mlink_file(vp, cmd, fpdown, crp, rvalp, lhlink);
+ if (fpdown != NULL)
+ releasef(arg);
+ return (ret);
+}
+
+/*
+ * Unlink a multiplexor link. Stp is the controlling stream for the
+ * link, and linkp points to the link's entry in the linkinfo list.
+ * The muxifier lock must be held on entry and is dropped on exit.
+ *
+ * NOTE : Currently it is assumed that mux would process all the messages
+ * sitting on it's queue before ACKing the UNLINK. It is the responsibility
+ * of the mux to handle all the messages that arrive before UNLINK.
+ * If the mux has to send down messages on its lower stream before
+ * ACKing I_UNLINK, then it *should* know to handle messages even
+ * after the UNLINK is acked (actually it should be able to handle till we
+ * re-block the read side of the pass queue here). If the mux does not
+ * open up the lower stream, any messages that arrive during UNLINK
+ * will be put in the stream head. In the case of lower stream opening
+ * up, some messages might land in the stream head depending on when
+ * the message arrived and when the read side of the pass queue was
+ * re-blocked.
+ */
+int
+munlink(stdata_t *stp, linkinfo_t *linkp, int flag, cred_t *crp, int *rvalp)
+{
+ struct strioctl strioc;
+ struct stdata *stpdown;
+ queue_t *rq, *wrq;
+ queue_t *passq;
+ syncq_t *passyncq;
+ int error = 0;
+ file_t *fpdown;
+
+ ASSERT(MUTEX_HELD(&muxifier));
+
+ stpdown = linkp->li_fpdown->f_vnode->v_stream;
+
+ /*
+ * See the comment in mlink() concerning STRPLUMB/STPLEX flags.
+ */
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag |= STRPLUMB;
+ mutex_exit(&stpdown->sd_lock);
+
+ /*
+ * Add passthru queue below lower mux. This will block
+ * syncqs of lower muxs read queue during I_LINK/I_UNLINK.
+ */
+ passq = link_addpassthru(stpdown);
+
+ if ((flag & LINKTYPEMASK) == LINKNORMAL)
+ strioc.ic_cmd = I_UNLINK;
+ else
+ strioc.ic_cmd = I_PUNLINK;
+ strioc.ic_timout = INFTIM;
+ strioc.ic_len = sizeof (struct linkblk);
+ strioc.ic_dp = (char *)&linkp->li_lblk;
+
+ error = strdoioctl(stp, &strioc, FNATIVE,
+ K_TO_K | STR_NOERROR | STR_NOSIG, crp, rvalp);
+
+ /*
+ * If there was an error and this is not called via strclose,
+ * return to the user. Otherwise, pretend there was no error
+ * and close the link.
+ */
+ if (error) {
+ if (flag & LINKCLOSE) {
+ cmn_err(CE_WARN, "KERNEL: munlink: could not perform "
+ "unlink ioctl, closing anyway (%d)\n", error);
+ } else {
+ link_rempassthru(passq);
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag &= ~STRPLUMB;
+ cv_broadcast(&stpdown->sd_monitor);
+ mutex_exit(&stpdown->sd_lock);
+ mutex_exit(&muxifier);
+ return (error);
+ }
+ }
+
+ mux_rmvedge(stp, linkp->li_lblk.l_index);
+ fpdown = linkp->li_fpdown;
+ lbfree(linkp);
+
+ /*
+ * We go ahead and drop muxifier here--it's a nasty global lock that
+ * can slow others down. It's okay to since attempts to mlink() this
+ * stream will be stopped because STPLEX is still set in the stdata
+ * structure, and munlink() is stopped because mux_rmvedge() and
+ * lbfree() have removed it from mux_nodes[] and linkinfo_list,
+ * respectively. Note that we defer the closef() of fpdown until
+ * after we drop muxifier since strclose() can call munlinkall().
+ */
+ mutex_exit(&muxifier);
+
+ wrq = stpdown->sd_wrq;
+ rq = _RD(wrq);
+
+ /*
+ * Get rid of outstanding service procedure runs, before we make
+ * it a stream head, since a stream head doesn't have any service
+ * procedure.
+ */
+ disable_svc(rq);
+ wait_svc(rq);
+
+ /*
+ * Since we don't disable the syncq for QPERMOD, we wait for whatever
+ * is queued up to be finished. mux should take care that nothing is
+ * send down to this queue. We should do it now as we're going to block
+ * passyncq if it was unblocked.
+ */
+ if (wrq->q_flag & QPERMOD) {
+ syncq_t *sq = wrq->q_syncq;
+
+ mutex_enter(SQLOCK(sq));
+ while (wrq->q_sqflags & Q_SQQUEUED) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ }
+ mutex_exit(SQLOCK(sq));
+ }
+ passyncq = passq->q_syncq;
+ if (!(passyncq->sq_flags & SQ_BLOCKED)) {
+
+ syncq_t *sq, *outer;
+
+ /*
+ * Messages could be flowing from underneath. We will
+ * block the read side of the passq. This would be
+ * sufficient for QPAIR and QPERQ muxes to ensure
+ * that no data is flowing up into this queue
+ * and hence no thread active in this instance of
+ * lower mux. But for QPERMOD and QMTOUTPERIM there
+ * could be messages on the inner and outer/inner
+ * syncqs respectively. We will wait for them to drain.
+ * Because passq is blocked messages end up in the syncq
+ * And qfill_syncq could possibly end up setting QFULL
+ * which will access the rq->q_flag. Hence, we have to
+ * acquire the QLOCK in setq.
+ *
+ * XXX Messages can also flow from top into this
+ * queue though the unlink is over (Ex. some instance
+ * in putnext() called from top that has still not
+ * accessed this queue. And also putq(lowerq) ?).
+ * Solution : How about blocking the l_qtop queue ?
+ * Do we really care about such pure D_MP muxes ?
+ */
+
+ blocksq(passyncq, SQ_BLOCKED, 0);
+
+ sq = rq->q_syncq;
+ if ((outer = sq->sq_outer) != NULL) {
+
+ /*
+ * We have to just wait for the outer sq_count
+ * drop to zero. As this does not prevent new
+ * messages to enter the outer perimeter, this
+ * is subject to starvation.
+ *
+ * NOTE :Because of blocksq above, messages could
+ * be in the inner syncq only because of some
+ * thread holding the outer perimeter exclusively.
+ * Hence it would be sufficient to wait for the
+ * exclusive holder of the outer perimeter to drain
+ * the inner and outer syncqs. But we will not depend
+ * on this feature and hence check the inner syncqs
+ * separately.
+ */
+ wait_syncq(outer);
+ }
+
+
+ /*
+ * There could be messages destined for
+ * this queue. Let the exclusive holder
+ * drain it.
+ */
+
+ wait_syncq(sq);
+ ASSERT((rq->q_flag & QPERMOD) ||
+ ((rq->q_syncq->sq_head == NULL) &&
+ (_WR(rq)->q_syncq->sq_head == NULL)));
+ }
+
+ /*
+ * We haven't taken care of QPERMOD case yet. QPERMOD is a special
+ * case as we don't disable its syncq or remove it off the syncq
+ * service list.
+ */
+ if (rq->q_flag & QPERMOD) {
+ syncq_t *sq = rq->q_syncq;
+
+ mutex_enter(SQLOCK(sq));
+ while (rq->q_sqflags & Q_SQQUEUED) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ }
+ mutex_exit(SQLOCK(sq));
+ }
+
+ /*
+ * flush_syncq changes states only when there is some messages to
+ * free. ie when it returns non-zero value to return.
+ */
+ ASSERT(flush_syncq(rq->q_syncq, rq) == 0);
+ ASSERT(flush_syncq(wrq->q_syncq, wrq) == 0);
+
+ /*
+ * No body else should know about this queue now.
+ * If the mux did not process the messages before
+ * acking the I_UNLINK, free them now.
+ */
+
+ flushq(rq, FLUSHALL);
+ flushq(_WR(rq), FLUSHALL);
+
+ /*
+ * Convert the mux lower queue into a stream head queue.
+ * Turn off STPLEX before we turn on the stream by removing the passq.
+ */
+ rq->q_ptr = wrq->q_ptr = stpdown;
+ setq(rq, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_TRUE);
+
+ ASSERT((rq->q_flag & QMT_TYPEMASK) == QMTSAFE);
+ ASSERT(rq->q_syncq == SQ(rq) && _WR(rq)->q_syncq == SQ(rq));
+
+ enable_svc(rq);
+
+ /*
+ * Now it is a proper stream, so STPLEX is cleared. But STRPLUMB still
+ * needs to be set to prevent reopen() of the stream - such reopen may
+ * try to call non-existent pass queue open routine and panic.
+ */
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag &= ~STPLEX;
+ mutex_exit(&stpdown->sd_lock);
+
+ ASSERT(((flag & LINKTYPEMASK) == LINKNORMAL) ||
+ ((flag & LINKTYPEMASK) == LINKPERSIST));
+
+ /* clean up the layered driver linkages */
+ if ((flag & LINKTYPEMASK) == LINKNORMAL) {
+ ldi_munlink_fp(stp, fpdown, LINKNORMAL);
+ } else {
+ ldi_munlink_fp(stp, fpdown, LINKPERSIST);
+ }
+
+ link_rempassthru(passq);
+
+ /*
+ * Now all plumbing changes are finished and STRPLUMB is no
+ * longer needed.
+ */
+ mutex_enter(&stpdown->sd_lock);
+ stpdown->sd_flag &= ~STRPLUMB;
+ cv_broadcast(&stpdown->sd_monitor);
+ mutex_exit(&stpdown->sd_lock);
+
+ (void) closef(fpdown);
+ return (0);
+}
+
+/*
+ * Unlink all multiplexor links for which stp is the controlling stream.
+ * Return 0, or a non-zero errno on failure.
+ */
+int
+munlinkall(stdata_t *stp, int flag, cred_t *crp, int *rvalp)
+{
+ linkinfo_t *linkp;
+ int error = 0;
+
+ mutex_enter(&muxifier);
+ while (linkp = findlinks(stp, 0, flag)) {
+ /*
+ * munlink() releases the muxifier lock.
+ */
+ if (error = munlink(stp, linkp, flag, crp, rvalp))
+ return (error);
+ mutex_enter(&muxifier);
+ }
+ mutex_exit(&muxifier);
+ return (0);
+}
+
+/*
+ * A multiplexor link has been made. Add an
+ * edge to the directed graph.
+ */
+void
+mux_addedge(stdata_t *upstp, stdata_t *lostp, int muxid)
+{
+ struct mux_node *np;
+ struct mux_edge *ep;
+ major_t upmaj;
+ major_t lomaj;
+
+ upmaj = getmajor(upstp->sd_vnode->v_rdev);
+ lomaj = getmajor(lostp->sd_vnode->v_rdev);
+ np = &mux_nodes[upmaj];
+ if (np->mn_outp) {
+ ep = np->mn_outp;
+ while (ep->me_nextp)
+ ep = ep->me_nextp;
+ ep->me_nextp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
+ ep = ep->me_nextp;
+ } else {
+ np->mn_outp = kmem_alloc(sizeof (struct mux_edge), KM_SLEEP);
+ ep = np->mn_outp;
+ }
+ ep->me_nextp = NULL;
+ ep->me_muxid = muxid;
+ if (lostp->sd_vnode->v_type == VFIFO)
+ ep->me_nodep = NULL;
+ else
+ ep->me_nodep = &mux_nodes[lomaj];
+}
+
+/*
+ * A multiplexor link has been removed. Remove the
+ * edge in the directed graph.
+ */
+void
+mux_rmvedge(stdata_t *upstp, int muxid)
+{
+ struct mux_node *np;
+ struct mux_edge *ep;
+ struct mux_edge *pep = NULL;
+ major_t upmaj;
+
+ upmaj = getmajor(upstp->sd_vnode->v_rdev);
+ np = &mux_nodes[upmaj];
+ ASSERT(np->mn_outp != NULL);
+ ep = np->mn_outp;
+ while (ep) {
+ if (ep->me_muxid == muxid) {
+ if (pep)
+ pep->me_nextp = ep->me_nextp;
+ else
+ np->mn_outp = ep->me_nextp;
+ kmem_free(ep, sizeof (struct mux_edge));
+ return;
+ }
+ pep = ep;
+ ep = ep->me_nextp;
+ }
+ ASSERT(0); /* should not reach here */
+}
+
+/*
+ * Translate the device flags (from conf.h) to the corresponding
+ * qflag and sq_flag (type) values.
+ */
+int
+devflg_to_qflag(struct streamtab *stp, uint32_t devflag, uint32_t *qflagp,
+ uint32_t *sqtypep)
+{
+ uint32_t qflag = 0;
+ uint32_t sqtype = 0;
+
+ if (devflag & _D_OLD)
+ goto bad;
+
+ /* Inner perimeter presence and scope */
+ switch (devflag & D_MTINNER_MASK) {
+ case D_MP:
+ qflag |= QMTSAFE;
+ sqtype |= SQ_CI;
+ break;
+ case D_MTPERQ|D_MP:
+ qflag |= QPERQ;
+ break;
+ case D_MTQPAIR|D_MP:
+ qflag |= QPAIR;
+ break;
+ case D_MTPERMOD|D_MP:
+ qflag |= QPERMOD;
+ break;
+ default:
+ goto bad;
+ }
+
+ /* Outer perimeter */
+ if (devflag & D_MTOUTPERIM) {
+ switch (devflag & D_MTINNER_MASK) {
+ case D_MP:
+ case D_MTPERQ|D_MP:
+ case D_MTQPAIR|D_MP:
+ break;
+ default:
+ goto bad;
+ }
+ qflag |= QMTOUTPERIM;
+ }
+
+ /* Inner perimeter modifiers */
+ if (devflag & D_MTINNER_MOD) {
+ switch (devflag & D_MTINNER_MASK) {
+ case D_MP:
+ goto bad;
+ default:
+ break;
+ }
+ if (devflag & D_MTPUTSHARED)
+ sqtype |= SQ_CIPUT;
+ if (devflag & _D_MTOCSHARED) {
+ /*
+ * The code in putnext assumes that it has the
+ * highest concurrency by not checking sq_count.
+ * Thus _D_MTOCSHARED can only be supported when
+ * D_MTPUTSHARED is set.
+ */
+ if (!(devflag & D_MTPUTSHARED))
+ goto bad;
+ sqtype |= SQ_CIOC;
+ }
+ if (devflag & _D_MTCBSHARED) {
+ /*
+ * The code in putnext assumes that it has the
+ * highest concurrency by not checking sq_count.
+ * Thus _D_MTCBSHARED can only be supported when
+ * D_MTPUTSHARED is set.
+ */
+ if (!(devflag & D_MTPUTSHARED))
+ goto bad;
+ sqtype |= SQ_CICB;
+ }
+ if (devflag & _D_MTSVCSHARED) {
+ /*
+ * The code in putnext assumes that it has the
+ * highest concurrency by not checking sq_count.
+ * Thus _D_MTSVCSHARED can only be supported when
+ * D_MTPUTSHARED is set. Also _D_MTSVCSHARED is
+ * supported only for QPERMOD.
+ */
+ if (!(devflag & D_MTPUTSHARED) || !(qflag & QPERMOD))
+ goto bad;
+ sqtype |= SQ_CISVC;
+ }
+ }
+
+ /* Default outer perimeter concurrency */
+ sqtype |= SQ_CO;
+
+ /* Outer perimeter modifiers */
+ if (devflag & D_MTOCEXCL) {
+ if (!(devflag & D_MTOUTPERIM)) {
+ /* No outer perimeter */
+ goto bad;
+ }
+ sqtype &= ~SQ_COOC;
+ }
+
+ /* Synchronous Streams extended qinit structure */
+ if (devflag & D_SYNCSTR)
+ qflag |= QSYNCSTR;
+
+ *qflagp = qflag;
+ *sqtypep = sqtype;
+ return (0);
+
+bad:
+ cmn_err(CE_WARN,
+ "stropen: bad MT flags (0x%x) in driver '%s'",
+ (int)(qflag & D_MTSAFETY_MASK),
+ stp->st_rdinit->qi_minfo->mi_idname);
+
+ return (EINVAL);
+}
+
+/*
+ * Set the interface values for a pair of queues (qinit structure,
+ * packet sizes, water marks).
+ * setq assumes that the caller does not have a claim (entersq or claimq)
+ * on the queue.
+ */
+void
+setq(queue_t *rq, struct qinit *rinit, struct qinit *winit,
+ perdm_t *dmp, uint32_t qflag, uint32_t sqtype, boolean_t lock_needed)
+{
+ queue_t *wq;
+ syncq_t *sq, *outer;
+
+ ASSERT(rq->q_flag & QREADR);
+ ASSERT((qflag & QMT_TYPEMASK) != 0);
+ IMPLY((qflag & (QPERMOD | QMTOUTPERIM)), dmp != NULL);
+
+ wq = _WR(rq);
+ rq->q_qinfo = rinit;
+ rq->q_hiwat = rinit->qi_minfo->mi_hiwat;
+ rq->q_lowat = rinit->qi_minfo->mi_lowat;
+ rq->q_minpsz = rinit->qi_minfo->mi_minpsz;
+ rq->q_maxpsz = rinit->qi_minfo->mi_maxpsz;
+ wq->q_qinfo = winit;
+ wq->q_hiwat = winit->qi_minfo->mi_hiwat;
+ wq->q_lowat = winit->qi_minfo->mi_lowat;
+ wq->q_minpsz = winit->qi_minfo->mi_minpsz;
+ wq->q_maxpsz = winit->qi_minfo->mi_maxpsz;
+
+ /* Remove old syncqs */
+ sq = rq->q_syncq;
+ outer = sq->sq_outer;
+ if (outer != NULL) {
+ ASSERT(wq->q_syncq->sq_outer == outer);
+ outer_remove(outer, rq->q_syncq);
+ if (wq->q_syncq != rq->q_syncq)
+ outer_remove(outer, wq->q_syncq);
+ }
+ ASSERT(sq->sq_outer == NULL);
+ ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
+
+ if (sq != SQ(rq)) {
+ if (!(rq->q_flag & QPERMOD))
+ free_syncq(sq);
+ if (wq->q_syncq == rq->q_syncq)
+ wq->q_syncq = NULL;
+ rq->q_syncq = NULL;
+ }
+ if (wq->q_syncq != NULL && wq->q_syncq != sq &&
+ wq->q_syncq != SQ(rq)) {
+ free_syncq(wq->q_syncq);
+ wq->q_syncq = NULL;
+ }
+ ASSERT(rq->q_syncq == NULL || (rq->q_syncq->sq_head == NULL &&
+ rq->q_syncq->sq_tail == NULL));
+ ASSERT(wq->q_syncq == NULL || (wq->q_syncq->sq_head == NULL &&
+ wq->q_syncq->sq_tail == NULL));
+
+ if (!(rq->q_flag & QPERMOD) &&
+ rq->q_syncq != NULL && rq->q_syncq->sq_ciputctrl != NULL) {
+ ASSERT(rq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
+ SUMCHECK_CIPUTCTRL_COUNTS(rq->q_syncq->sq_ciputctrl,
+ rq->q_syncq->sq_nciputctrl, 0);
+ ASSERT(ciputctrl_cache != NULL);
+ kmem_cache_free(ciputctrl_cache, rq->q_syncq->sq_ciputctrl);
+ rq->q_syncq->sq_ciputctrl = NULL;
+ rq->q_syncq->sq_nciputctrl = 0;
+ }
+
+ if (!(wq->q_flag & QPERMOD) &&
+ wq->q_syncq != NULL && wq->q_syncq->sq_ciputctrl != NULL) {
+ ASSERT(wq->q_syncq->sq_nciputctrl == n_ciputctrl - 1);
+ SUMCHECK_CIPUTCTRL_COUNTS(wq->q_syncq->sq_ciputctrl,
+ wq->q_syncq->sq_nciputctrl, 0);
+ ASSERT(ciputctrl_cache != NULL);
+ kmem_cache_free(ciputctrl_cache, wq->q_syncq->sq_ciputctrl);
+ wq->q_syncq->sq_ciputctrl = NULL;
+ wq->q_syncq->sq_nciputctrl = 0;
+ }
+
+ sq = SQ(rq);
+ ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
+ ASSERT(sq->sq_outer == NULL);
+ ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
+
+ /*
+ * Create syncqs based on qflag and sqtype. Set the SQ_TYPES_IN_FLAGS
+ * bits in sq_flag based on the sqtype.
+ */
+ ASSERT((sq->sq_flags & ~SQ_TYPES_IN_FLAGS) == 0);
+
+ rq->q_syncq = wq->q_syncq = sq;
+ sq->sq_type = sqtype;
+ sq->sq_flags = (sqtype & SQ_TYPES_IN_FLAGS);
+
+ /*
+ * We are making sq_svcflags zero,
+ * resetting SQ_DISABLED in case it was set by
+ * wait_svc() in the munlink path.
+ *
+ */
+ ASSERT((sq->sq_svcflags & SQ_SERVICE) == 0);
+ sq->sq_svcflags = 0;
+
+ /*
+ * We need to acquire the lock here for the mlink and munlink case,
+ * where canputnext, backenable, etc can access the q_flag.
+ */
+ if (lock_needed) {
+ mutex_enter(QLOCK(rq));
+ rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
+ mutex_exit(QLOCK(rq));
+ mutex_enter(QLOCK(wq));
+ wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
+ mutex_exit(QLOCK(wq));
+ } else {
+ rq->q_flag = (rq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
+ wq->q_flag = (wq->q_flag & ~QMT_TYPEMASK) | QWANTR | qflag;
+ }
+
+ if (qflag & QPERQ) {
+ /* Allocate a separate syncq for the write side */
+ sq = new_syncq();
+ sq->sq_type = rq->q_syncq->sq_type;
+ sq->sq_flags = rq->q_syncq->sq_flags;
+ ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL);
+ wq->q_syncq = sq;
+ }
+ if (qflag & QPERMOD) {
+ sq = dmp->dm_sq;
+
+ /*
+ * Assert that we do have an inner perimeter syncq and that it
+ * does not have an outer perimeter associated with it.
+ */
+ ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL);
+ rq->q_syncq = wq->q_syncq = sq;
+ }
+ if (qflag & QMTOUTPERIM) {
+ outer = dmp->dm_sq;
+
+ ASSERT(outer->sq_outer == NULL);
+ outer_insert(outer, rq->q_syncq);
+ if (wq->q_syncq != rq->q_syncq)
+ outer_insert(outer, wq->q_syncq);
+ }
+ ASSERT((rq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
+ (rq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
+ ASSERT((wq->q_syncq->sq_flags & SQ_TYPES_IN_FLAGS) ==
+ (wq->q_syncq->sq_type & SQ_TYPES_IN_FLAGS));
+ ASSERT((rq->q_flag & QMT_TYPEMASK) == (qflag & QMT_TYPEMASK));
+
+ /*
+ * Initialize struio() types.
+ */
+ rq->q_struiot =
+ (rq->q_flag & QSYNCSTR) ? rinit->qi_struiot : STRUIOT_NONE;
+ wq->q_struiot =
+ (wq->q_flag & QSYNCSTR) ? winit->qi_struiot : STRUIOT_NONE;
+}
+
+perdm_t *
+hold_dm(struct streamtab *str, uint32_t qflag, uint32_t sqtype)
+{
+ syncq_t *sq;
+ perdm_t **pp;
+ perdm_t *p;
+ perdm_t *dmp;
+
+ ASSERT(str != NULL);
+ ASSERT(qflag & (QPERMOD | QMTOUTPERIM));
+
+ rw_enter(&perdm_rwlock, RW_READER);
+ for (p = perdm_list; p != NULL; p = p->dm_next) {
+ if (p->dm_str == str) { /* found one */
+ atomic_add_32(&(p->dm_ref), 1);
+ rw_exit(&perdm_rwlock);
+ return (p);
+ }
+ }
+ rw_exit(&perdm_rwlock);
+
+ sq = new_syncq();
+ if (qflag & QPERMOD) {
+ sq->sq_type = sqtype | SQ_PERMOD;
+ sq->sq_flags = sqtype & SQ_TYPES_IN_FLAGS;
+ } else {
+ ASSERT(qflag & QMTOUTPERIM);
+ sq->sq_onext = sq->sq_oprev = sq;
+ }
+
+ dmp = kmem_alloc(sizeof (perdm_t), KM_SLEEP);
+ dmp->dm_sq = sq;
+ dmp->dm_str = str;
+ dmp->dm_ref = 1;
+ dmp->dm_next = NULL;
+
+ rw_enter(&perdm_rwlock, RW_WRITER);
+ for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next)) {
+ if (p->dm_str == str) { /* already present */
+ p->dm_ref++;
+ rw_exit(&perdm_rwlock);
+ free_syncq(sq);
+ kmem_free(dmp, sizeof (perdm_t));
+ return (p);
+ }
+ }
+
+ *pp = dmp;
+ rw_exit(&perdm_rwlock);
+ return (dmp);
+}
+
+void
+rele_dm(perdm_t *dmp)
+{
+ perdm_t **pp;
+ perdm_t *p;
+
+ rw_enter(&perdm_rwlock, RW_WRITER);
+ ASSERT(dmp->dm_ref > 0);
+
+ if (--dmp->dm_ref > 0) {
+ rw_exit(&perdm_rwlock);
+ return;
+ }
+
+ for (pp = &perdm_list; (p = *pp) != NULL; pp = &(p->dm_next))
+ if (p == dmp)
+ break;
+ ASSERT(p == dmp);
+ *pp = p->dm_next;
+ rw_exit(&perdm_rwlock);
+
+ /*
+ * Wait for any background processing that relies on the
+ * syncq to complete before it is freed.
+ */
+ wait_sq_svc(p->dm_sq);
+ free_syncq(p->dm_sq);
+ kmem_free(p, sizeof (perdm_t));
+}
+
+/*
+ * Make a protocol message given control and data buffers.
+ * n.b., this can block; be careful of what locks you hold when calling it.
+ *
+ * If sd_maxblk is less than *iosize this routine can fail part way through
+ * (due to an allocation failure). In this case on return *iosize will contain
+ * the amount that was consumed. Otherwise *iosize will not be modified
+ * i.e. it will contain the amount that was consumed.
+ */
+int
+strmakemsg(
+ struct strbuf *mctl,
+ ssize_t *iosize,
+ struct uio *uiop,
+ stdata_t *stp,
+ int32_t flag,
+ mblk_t **mpp)
+{
+ mblk_t *mpctl = NULL;
+ mblk_t *mpdata = NULL;
+ int error;
+
+ ASSERT(uiop != NULL);
+
+ *mpp = NULL;
+ /* Create control part, if any */
+ if ((mctl != NULL) && (mctl->len >= 0)) {
+ error = strmakectl(mctl, flag, uiop->uio_fmode, &mpctl);
+ if (error)
+ return (error);
+ }
+ /* Create data part, if any */
+ if (*iosize >= 0) {
+ error = strmakedata(iosize, uiop, stp, flag, &mpdata);
+ if (error) {
+ freemsg(mpctl);
+ return (error);
+ }
+ }
+ if (mpctl != NULL) {
+ if (mpdata != NULL)
+ linkb(mpctl, mpdata);
+ *mpp = mpctl;
+ } else {
+ *mpp = mpdata;
+ }
+ return (0);
+}
+
+/*
+ * Make the control part of a protocol message given a control buffer.
+ * n.b., this can block; be careful of what locks you hold when calling it.
+ */
+int
+strmakectl(
+ struct strbuf *mctl,
+ int32_t flag,
+ int32_t fflag,
+ mblk_t **mpp)
+{
+ mblk_t *bp = NULL;
+ unsigned char msgtype;
+ int error = 0;
+
+ *mpp = NULL;
+ /*
+ * Create control part of message, if any.
+ */
+ if ((mctl != NULL) && (mctl->len >= 0)) {
+ caddr_t base;
+ int ctlcount;
+ int allocsz;
+
+ if (flag & RS_HIPRI)
+ msgtype = M_PCPROTO;
+ else
+ msgtype = M_PROTO;
+
+ ctlcount = mctl->len;
+ base = mctl->buf;
+
+ /*
+ * Give modules a better chance to reuse M_PROTO/M_PCPROTO
+ * blocks by increasing the size to something more usable.
+ */
+ allocsz = MAX(ctlcount, 64);
+
+ /*
+ * Range checking has already been done; simply try
+ * to allocate a message block for the ctl part.
+ */
+ while (!(bp = allocb(allocsz, BPRI_MED))) {
+ if (fflag & (FNDELAY|FNONBLOCK))
+ return (EAGAIN);
+ if (error = strwaitbuf(allocsz, BPRI_MED))
+ return (error);
+ }
+
+ bp->b_datap->db_type = msgtype;
+ if (copyin(base, bp->b_wptr, ctlcount)) {
+ freeb(bp);
+ return (EFAULT);
+ }
+ bp->b_wptr += ctlcount;
+ }
+ *mpp = bp;
+ return (0);
+}
+
+/*
+ * Make a protocol message given data buffers.
+ * n.b., this can block; be careful of what locks you hold when calling it.
+ *
+ * If sd_maxblk is less than *iosize this routine can fail part way through
+ * (due to an allocation failure). In this case on return *iosize will contain
+ * the amount that was consumed. Otherwise *iosize will not be modified
+ * i.e. it will contain the amount that was consumed.
+ */
+int
+strmakedata(
+ ssize_t *iosize,
+ struct uio *uiop,
+ stdata_t *stp,
+ int32_t flag,
+ mblk_t **mpp)
+{
+ mblk_t *mp = NULL;
+ mblk_t *bp;
+ int wroff = (int)stp->sd_wroff;
+ int error = 0;
+ ssize_t maxblk;
+ ssize_t count = *iosize;
+ cred_t *cr = CRED();
+
+ *mpp = NULL;
+ if (count < 0)
+ return (0);
+
+ maxblk = stp->sd_maxblk;
+ if (maxblk == INFPSZ)
+ maxblk = count;
+
+ /*
+ * Create data part of message, if any.
+ */
+ do {
+ ssize_t size;
+ dblk_t *dp;
+
+ ASSERT(uiop);
+
+ size = MIN(count, maxblk);
+
+ while ((bp = allocb_cred(size + wroff, cr)) == NULL) {
+ error = EAGAIN;
+ if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
+ (error = strwaitbuf(size + wroff, BPRI_MED)) != 0) {
+ if (count == *iosize) {
+ freemsg(mp);
+ return (error);
+ } else {
+ *iosize -= count;
+ *mpp = mp;
+ return (0);
+ }
+ }
+ }
+ dp = bp->b_datap;
+ dp->db_cpid = curproc->p_pid;
+ ASSERT(wroff <= dp->db_lim - bp->b_wptr);
+ bp->b_wptr = bp->b_rptr = bp->b_rptr + wroff;
+
+ if (flag & STRUIO_POSTPONE) {
+ /*
+ * Setup the stream uio portion of the
+ * dblk for subsequent use by struioget().
+ */
+ dp->db_struioflag = STRUIO_SPEC;
+ dp->db_cksumstart = 0;
+ dp->db_cksumstuff = 0;
+ dp->db_cksumend = size;
+ *(long long *)dp->db_struioun.data = 0ll;
+ } else {
+ if (stp->sd_copyflag & STRCOPYCACHED)
+ uiop->uio_extflg |= UIO_COPY_CACHED;
+
+ if (size != 0) {
+ error = uiomove(bp->b_wptr, size, UIO_WRITE,
+ uiop);
+ if (error != 0) {
+ freeb(bp);
+ freemsg(mp);
+ return (error);
+ }
+ }
+ }
+
+ bp->b_wptr += size;
+ count -= size;
+
+ if (mp == NULL)
+ mp = bp;
+ else
+ linkb(mp, bp);
+ } while (count > 0);
+
+ *mpp = mp;
+ return (0);
+}
+
+/*
+ * Wait for a buffer to become available. Return non-zero errno
+ * if not able to wait, 0 if buffer is probably there.
+ */
+int
+strwaitbuf(size_t size, int pri)
+{
+ bufcall_id_t id;
+
+ mutex_enter(&bcall_monitor);
+ if ((id = bufcall(size, pri, (void (*)(void *))cv_broadcast,
+ &ttoproc(curthread)->p_flag_cv)) == 0) {
+ mutex_exit(&bcall_monitor);
+ return (ENOSR);
+ }
+ if (!cv_wait_sig(&(ttoproc(curthread)->p_flag_cv), &bcall_monitor)) {
+ unbufcall(id);
+ mutex_exit(&bcall_monitor);
+ return (EINTR);
+ }
+ unbufcall(id);
+ mutex_exit(&bcall_monitor);
+ return (0);
+}
+
+/*
+ * This function waits for a read or write event to happen on a stream.
+ * fmode can specify FNDELAY and/or FNONBLOCK.
+ * The timeout is in ms with -1 meaning infinite.
+ * The flag values work as follows:
+ * READWAIT Check for read side errors, send M_READ
+ * GETWAIT Check for read side errors, no M_READ
+ * WRITEWAIT Check for write side errors.
+ * NOINTR Do not return error if nonblocking or timeout.
+ * STR_NOERROR Ignore all errors except STPLEX.
+ * STR_NOSIG Ignore/hold signals during the duration of the call.
+ * STR_PEEK Pass through the strgeterr().
+ */
+int
+strwaitq(stdata_t *stp, int flag, ssize_t count, int fmode, clock_t timout,
+ int *done)
+{
+ int slpflg, errs;
+ int error;
+ kcondvar_t *sleepon;
+ mblk_t *mp;
+ ssize_t *rd_count;
+ clock_t rval;
+
+ ASSERT(MUTEX_HELD(&stp->sd_lock));
+ if ((flag & READWAIT) || (flag & GETWAIT)) {
+ slpflg = RSLEEP;
+ sleepon = &_RD(stp->sd_wrq)->q_wait;
+ errs = STRDERR|STPLEX;
+ } else {
+ slpflg = WSLEEP;
+ sleepon = &stp->sd_wrq->q_wait;
+ errs = STWRERR|STRHUP|STPLEX;
+ }
+ if (flag & STR_NOERROR)
+ errs = STPLEX;
+
+ if (stp->sd_wakeq & slpflg) {
+ /*
+ * A strwakeq() is pending, no need to sleep.
+ */
+ stp->sd_wakeq &= ~slpflg;
+ *done = 0;
+ return (0);
+ }
+
+ if (fmode & (FNDELAY|FNONBLOCK)) {
+ if (!(flag & NOINTR))
+ error = EAGAIN;
+ else
+ error = 0;
+ *done = 1;
+ return (error);
+ }
+
+ if (stp->sd_flag & errs) {
+ /*
+ * Check for errors before going to sleep since the
+ * caller might not have checked this while holding
+ * sd_lock.
+ */
+ error = strgeterr(stp, errs, (flag & STR_PEEK));
+ if (error != 0) {
+ *done = 1;
+ return (error);
+ }
+ }
+
+ /*
+ * If any module downstream has requested read notification
+ * by setting SNDMREAD flag using M_SETOPTS, send a message
+ * down stream.
+ */
+ if ((flag & READWAIT) && (stp->sd_flag & SNDMREAD)) {
+ mutex_exit(&stp->sd_lock);
+ if (!(mp = allocb_wait(sizeof (ssize_t), BPRI_MED,
+ (flag & STR_NOSIG), &error))) {
+ mutex_enter(&stp->sd_lock);
+ *done = 1;
+ return (error);
+ }
+ mp->b_datap->db_type = M_READ;
+ rd_count = (ssize_t *)mp->b_wptr;
+ *rd_count = count;
+ mp->b_wptr += sizeof (ssize_t);
+ /*
+ * Send the number of bytes requested by the
+ * read as the argument to M_READ.
+ */
+ stream_willservice(stp);
+ putnext(stp->sd_wrq, mp);
+ stream_runservice(stp);
+ mutex_enter(&stp->sd_lock);
+
+ /*
+ * If any data arrived due to inline processing
+ * of putnext(), don't sleep.
+ */
+ if (_RD(stp->sd_wrq)->q_first != NULL) {
+ *done = 0;
+ return (0);
+ }
+ }
+
+ stp->sd_flag |= slpflg;
+ TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAIT2,
+ "strwaitq sleeps (2):%p, %X, %lX, %X, %p",
+ stp, flag, count, fmode, done);
+
+ rval = str_cv_wait(sleepon, &stp->sd_lock, timout, flag & STR_NOSIG);
+ if (rval > 0) {
+ /* EMPTY */
+ TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_WAKE2,
+ "strwaitq awakes(2):%X, %X, %X, %X, %X",
+ stp, flag, count, fmode, done);
+ } else if (rval == 0) {
+ TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_INTR2,
+ "strwaitq interrupt #2:%p, %X, %lX, %X, %p",
+ stp, flag, count, fmode, done);
+ stp->sd_flag &= ~slpflg;
+ cv_broadcast(sleepon);
+ if (!(flag & NOINTR))
+ error = EINTR;
+ else
+ error = 0;
+ *done = 1;
+ return (error);
+ } else {
+ /* timeout */
+ TRACE_5(TR_FAC_STREAMS_FR, TR_STRWAITQ_TIME,
+ "strwaitq timeout:%p, %X, %lX, %X, %p",
+ stp, flag, count, fmode, done);
+ *done = 1;
+ if (!(flag & NOINTR))
+ return (ETIME);
+ else
+ return (0);
+ }
+ /*
+ * If the caller implements delayed errors (i.e. queued after data)
+ * we can not check for errors here since data as well as an
+ * error might have arrived at the stream head. We return to
+ * have the caller check the read queue before checking for errors.
+ */
+ if ((stp->sd_flag & errs) && !(flag & STR_DELAYERR)) {
+ error = strgeterr(stp, errs, (flag & STR_PEEK));
+ if (error != 0) {
+ *done = 1;
+ return (error);
+ }
+ }
+ *done = 0;
+ return (0);
+}
+
+/*
+ * Perform job control discipline access checks.
+ * Return 0 for success and the errno for failure.
+ */
+
+#define cantsend(p, t, sig) \
+ (sigismember(&(p)->p_ignore, sig) || signal_is_blocked((t), sig))
+
+int
+straccess(struct stdata *stp, enum jcaccess mode)
+{
+ extern kcondvar_t lbolt_cv; /* XXX: should be in a header file */
+ kthread_t *t = curthread;
+ proc_t *p = ttoproc(t);
+ sess_t *sp;
+
+ if (stp->sd_sidp == NULL || stp->sd_vnode->v_type == VFIFO)
+ return (0);
+
+ mutex_enter(&p->p_lock);
+ sp = p->p_sessp;
+
+ for (;;) {
+ /*
+ * If this is not the calling process's controlling terminal
+ * or if the calling process is already in the foreground
+ * then allow access.
+ */
+ if (sp->s_dev != stp->sd_vnode->v_rdev ||
+ p->p_pgidp == stp->sd_pgidp) {
+ mutex_exit(&p->p_lock);
+ return (0);
+ }
+
+ /*
+ * Check to see if controlling terminal has been deallocated.
+ */
+ if (sp->s_vp == NULL) {
+ if (!cantsend(p, t, SIGHUP))
+ sigtoproc(p, t, SIGHUP);
+ mutex_exit(&p->p_lock);
+ return (EIO);
+ }
+
+ if (mode == JCGETP) {
+ mutex_exit(&p->p_lock);
+ return (0);
+ }
+
+ if (mode == JCREAD) {
+ if (p->p_detached || cantsend(p, t, SIGTTIN)) {
+ mutex_exit(&p->p_lock);
+ return (EIO);
+ }
+ mutex_exit(&p->p_lock);
+ pgsignal(p->p_pgidp, SIGTTIN);
+ mutex_enter(&p->p_lock);
+ } else { /* mode == JCWRITE or JCSETP */
+ if ((mode == JCWRITE && !(stp->sd_flag & STRTOSTOP)) ||
+ cantsend(p, t, SIGTTOU)) {
+ mutex_exit(&p->p_lock);
+ return (0);
+ }
+ if (p->p_detached) {
+ mutex_exit(&p->p_lock);
+ return (EIO);
+ }
+ mutex_exit(&p->p_lock);
+ pgsignal(p->p_pgidp, SIGTTOU);
+ mutex_enter(&p->p_lock);
+ }
+
+ /*
+ * We call cv_wait_sig_swap() to cause the appropriate
+ * action for the jobcontrol signal to take place.
+ * If the signal is being caught, we will take the
+ * EINTR error return. Otherwise, the default action
+ * of causing the process to stop will take place.
+ * In this case, we rely on the periodic cv_broadcast() on
+ * &lbolt_cv to wake us up to loop around and test again.
+ * We can't get here if the signal is ignored or
+ * if the current thread is blocking the signal.
+ */
+ if (!cv_wait_sig_swap(&lbolt_cv, &p->p_lock)) {
+ mutex_exit(&p->p_lock);
+ return (EINTR);
+ }
+ }
+}
+
+/*
+ * Return size of message of block type (bp->b_datap->db_type)
+ */
+size_t
+xmsgsize(mblk_t *bp)
+{
+ unsigned char type;
+ size_t count = 0;
+
+ type = bp->b_datap->db_type;
+
+ for (; bp; bp = bp->b_cont) {
+ if (type != bp->b_datap->db_type)
+ break;
+ ASSERT(bp->b_wptr >= bp->b_rptr);
+ count += bp->b_wptr - bp->b_rptr;
+ }
+ return (count);
+}
+
+/*
+ * Allocate a stream head.
+ */
+struct stdata *
+shalloc(queue_t *qp)
+{
+ stdata_t *stp;
+
+ stp = kmem_cache_alloc(stream_head_cache, KM_SLEEP);
+
+ stp->sd_wrq = _WR(qp);
+ stp->sd_strtab = NULL;
+ stp->sd_iocid = 0;
+ stp->sd_mate = NULL;
+ stp->sd_freezer = NULL;
+ stp->sd_refcnt = 0;
+ stp->sd_wakeq = 0;
+ stp->sd_anchor = 0;
+ stp->sd_struiowrq = NULL;
+ stp->sd_struiordq = NULL;
+ stp->sd_struiodnak = 0;
+ stp->sd_struionak = NULL;
+#ifdef C2_AUDIT
+ stp->sd_t_audit_data = NULL;
+#endif
+ stp->sd_rput_opt = 0;
+ stp->sd_wput_opt = 0;
+ stp->sd_read_opt = 0;
+ stp->sd_rprotofunc = strrput_proto;
+ stp->sd_rmiscfunc = strrput_misc;
+ stp->sd_rderrfunc = stp->sd_wrerrfunc = NULL;
+ stp->sd_ciputctrl = NULL;
+ stp->sd_nciputctrl = 0;
+ stp->sd_qhead = NULL;
+ stp->sd_qtail = NULL;
+ stp->sd_servid = NULL;
+ stp->sd_nqueues = 0;
+ stp->sd_svcflags = 0;
+ stp->sd_copyflag = 0;
+ return (stp);
+}
+
+/*
+ * Free a stream head.
+ */
+void
+shfree(stdata_t *stp)
+{
+ ASSERT(MUTEX_NOT_HELD(&stp->sd_lock));
+
+ stp->sd_wrq = NULL;
+
+ mutex_enter(&stp->sd_qlock);
+ while (stp->sd_svcflags & STRS_SCHEDULED) {
+ STRSTAT(strwaits);
+ cv_wait(&stp->sd_qcv, &stp->sd_qlock);
+ }
+ mutex_exit(&stp->sd_qlock);
+
+ if (stp->sd_ciputctrl != NULL) {
+ ASSERT(stp->sd_nciputctrl == n_ciputctrl - 1);
+ SUMCHECK_CIPUTCTRL_COUNTS(stp->sd_ciputctrl,
+ stp->sd_nciputctrl, 0);
+ ASSERT(ciputctrl_cache != NULL);
+ kmem_cache_free(ciputctrl_cache, stp->sd_ciputctrl);
+ stp->sd_ciputctrl = NULL;
+ stp->sd_nciputctrl = 0;
+ }
+ ASSERT(stp->sd_qhead == NULL);
+ ASSERT(stp->sd_qtail == NULL);
+ ASSERT(stp->sd_nqueues == 0);
+ kmem_cache_free(stream_head_cache, stp);
+}
+
+/*
+ * Allocate a pair of queues and a syncq for the pair
+ */
+queue_t *
+allocq(void)
+{
+ queinfo_t *qip;
+ queue_t *qp, *wqp;
+ syncq_t *sq;
+
+ qip = kmem_cache_alloc(queue_cache, KM_SLEEP);
+
+ qp = &qip->qu_rqueue;
+ wqp = &qip->qu_wqueue;
+ sq = &qip->qu_syncq;
+
+ qp->q_last = NULL;
+ qp->q_next = NULL;
+ qp->q_ptr = NULL;
+ qp->q_flag = QUSE | QREADR;
+ qp->q_bandp = NULL;
+ qp->q_stream = NULL;
+ qp->q_syncq = sq;
+ qp->q_nband = 0;
+ qp->q_nfsrv = NULL;
+ qp->q_draining = 0;
+ qp->q_syncqmsgs = 0;
+ qp->q_spri = 0;
+ qp->q_qtstamp = 0;
+ qp->q_sqtstamp = 0;
+ qp->q_fp = NULL;
+
+ wqp->q_last = NULL;
+ wqp->q_next = NULL;
+ wqp->q_ptr = NULL;
+ wqp->q_flag = QUSE;
+ wqp->q_bandp = NULL;
+ wqp->q_stream = NULL;
+ wqp->q_syncq = sq;
+ wqp->q_nband = 0;
+ wqp->q_nfsrv = NULL;
+ wqp->q_draining = 0;
+ wqp->q_syncqmsgs = 0;
+ wqp->q_qtstamp = 0;
+ wqp->q_sqtstamp = 0;
+ wqp->q_spri = 0;
+
+ sq->sq_count = 0;
+ sq->sq_rmqcount = 0;
+ sq->sq_flags = 0;
+ sq->sq_type = 0;
+ sq->sq_callbflags = 0;
+ sq->sq_cancelid = 0;
+ sq->sq_ciputctrl = NULL;
+ sq->sq_nciputctrl = 0;
+ sq->sq_needexcl = 0;
+ sq->sq_svcflags = 0;
+
+ return (qp);
+}
+
+/*
+ * Free a pair of queues and the "attached" syncq.
+ * Discard any messages left on the syncq(s), remove the syncq(s) from the
+ * outer perimeter, and free the syncq(s) if they are not the "attached" syncq.
+ */
+void
+freeq(queue_t *qp)
+{
+ qband_t *qbp, *nqbp;
+ syncq_t *sq, *outer;
+ queue_t *wqp = _WR(qp);
+
+ ASSERT(qp->q_flag & QREADR);
+
+ (void) flush_syncq(qp->q_syncq, qp);
+ (void) flush_syncq(wqp->q_syncq, wqp);
+ ASSERT(qp->q_syncqmsgs == 0 && wqp->q_syncqmsgs == 0);
+
+ outer = qp->q_syncq->sq_outer;
+ if (outer != NULL) {
+ outer_remove(outer, qp->q_syncq);
+ if (wqp->q_syncq != qp->q_syncq)
+ outer_remove(outer, wqp->q_syncq);
+ }
+ /*
+ * Free any syncqs that are outside what allocq returned.
+ */
+ if (qp->q_syncq != SQ(qp) && !(qp->q_flag & QPERMOD))
+ free_syncq(qp->q_syncq);
+ if (qp->q_syncq != wqp->q_syncq && wqp->q_syncq != SQ(qp))
+ free_syncq(wqp->q_syncq);
+
+ ASSERT((qp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
+ ASSERT((wqp->q_sqflags & (Q_SQQUEUED | Q_SQDRAINING)) == 0);
+ ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
+ ASSERT(MUTEX_NOT_HELD(QLOCK(wqp)));
+ sq = SQ(qp);
+ ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
+ ASSERT(sq->sq_head == NULL && sq->sq_tail == NULL);
+ ASSERT(sq->sq_outer == NULL);
+ ASSERT(sq->sq_onext == NULL && sq->sq_oprev == NULL);
+ ASSERT(sq->sq_callbpend == NULL);
+ ASSERT(sq->sq_needexcl == 0);
+
+ if (sq->sq_ciputctrl != NULL) {
+ ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
+ SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
+ sq->sq_nciputctrl, 0);
+ ASSERT(ciputctrl_cache != NULL);
+ kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
+ sq->sq_ciputctrl = NULL;
+ sq->sq_nciputctrl = 0;
+ }
+
+ ASSERT(qp->q_first == NULL && wqp->q_first == NULL);
+ ASSERT(qp->q_count == 0 && wqp->q_count == 0);
+ ASSERT(qp->q_mblkcnt == 0 && wqp->q_mblkcnt == 0);
+
+ qp->q_flag &= ~QUSE;
+ wqp->q_flag &= ~QUSE;
+
+ /* NOTE: Uncomment the assert below once bugid 1159635 is fixed. */
+ /* ASSERT((qp->q_flag & QWANTW) == 0 && (wqp->q_flag & QWANTW) == 0); */
+
+ qbp = qp->q_bandp;
+ while (qbp) {
+ nqbp = qbp->qb_next;
+ freeband(qbp);
+ qbp = nqbp;
+ }
+ qbp = wqp->q_bandp;
+ while (qbp) {
+ nqbp = qbp->qb_next;
+ freeband(qbp);
+ qbp = nqbp;
+ }
+ kmem_cache_free(queue_cache, qp);
+}
+
+/*
+ * Allocate a qband structure.
+ */
+qband_t *
+allocband(void)
+{
+ qband_t *qbp;
+
+ qbp = kmem_cache_alloc(qband_cache, KM_NOSLEEP);
+ if (qbp == NULL)
+ return (NULL);
+
+ qbp->qb_next = NULL;
+ qbp->qb_count = 0;
+ qbp->qb_mblkcnt = 0;
+ qbp->qb_first = NULL;
+ qbp->qb_last = NULL;
+ qbp->qb_flag = 0;
+
+ return (qbp);
+}
+
+/*
+ * Free a qband structure.
+ */
+void
+freeband(qband_t *qbp)
+{
+ kmem_cache_free(qband_cache, qbp);
+}
+
+/*
+ * Just like putnextctl(9F), except that allocb_wait() is used.
+ *
+ * Consolidation Private, and of course only callable from the stream head or
+ * routines that may block.
+ */
+int
+putnextctl_wait(queue_t *q, int type)
+{
+ mblk_t *bp;
+ int error;
+
+ if ((datamsg(type) && (type != M_DELAY)) ||
+ (bp = allocb_wait(0, BPRI_HI, 0, &error)) == NULL)
+ return (0);
+
+ bp->b_datap->db_type = (unsigned char)type;
+ putnext(q, bp);
+ return (1);
+}
+
+/*
+ * run any possible bufcalls.
+ */
+void
+runbufcalls(void)
+{
+ strbufcall_t *bcp;
+
+ mutex_enter(&bcall_monitor);
+ mutex_enter(&strbcall_lock);
+
+ if (strbcalls.bc_head) {
+ size_t count;
+ int nevent;
+
+ /*
+ * count how many events are on the list
+ * now so we can check to avoid looping
+ * in low memory situations
+ */
+ nevent = 0;
+ for (bcp = strbcalls.bc_head; bcp; bcp = bcp->bc_next)
+ nevent++;
+
+ /*
+ * get estimate of available memory from kmem_avail().
+ * awake all bufcall functions waiting for
+ * memory whose request could be satisfied
+ * by 'count' memory and let 'em fight for it.
+ */
+ count = kmem_avail();
+ while ((bcp = strbcalls.bc_head) != NULL && nevent) {
+ STRSTAT(bufcalls);
+ --nevent;
+ if (bcp->bc_size <= count) {
+ bcp->bc_executor = curthread;
+ mutex_exit(&strbcall_lock);
+ (*bcp->bc_func)(bcp->bc_arg);
+ mutex_enter(&strbcall_lock);
+ bcp->bc_executor = NULL;
+ cv_broadcast(&bcall_cv);
+ strbcalls.bc_head = bcp->bc_next;
+ kmem_free(bcp, sizeof (strbufcall_t));
+ } else {
+ /*
+ * too big, try again later - note
+ * that nevent was decremented above
+ * so we won't retry this one on this
+ * iteration of the loop
+ */
+ if (bcp->bc_next != NULL) {
+ strbcalls.bc_head = bcp->bc_next;
+ bcp->bc_next = NULL;
+ strbcalls.bc_tail->bc_next = bcp;
+ strbcalls.bc_tail = bcp;
+ }
+ }
+ }
+ if (strbcalls.bc_head == NULL)
+ strbcalls.bc_tail = NULL;
+ }
+
+ mutex_exit(&strbcall_lock);
+ mutex_exit(&bcall_monitor);
+}
+
+
+/*
+ * actually run queue's service routine.
+ */
+static void
+runservice(queue_t *q)
+{
+ qband_t *qbp;
+
+ ASSERT(q->q_qinfo->qi_srvp);
+again:
+ entersq(q->q_syncq, SQ_SVC);
+ TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_START,
+ "runservice starts:%p", q);
+
+ if (!(q->q_flag & QWCLOSE))
+ (*q->q_qinfo->qi_srvp)(q);
+
+ TRACE_1(TR_FAC_STREAMS_FR, TR_QRUNSERVICE_END,
+ "runservice ends:(%p)", q);
+
+ leavesq(q->q_syncq, SQ_SVC);
+
+ mutex_enter(QLOCK(q));
+ if (q->q_flag & QENAB) {
+ q->q_flag &= ~QENAB;
+ mutex_exit(QLOCK(q));
+ goto again;
+ }
+ q->q_flag &= ~QINSERVICE;
+ q->q_flag &= ~QBACK;
+ for (qbp = q->q_bandp; qbp; qbp = qbp->qb_next)
+ qbp->qb_flag &= ~QB_BACK;
+ /*
+ * Wakeup thread waiting for the service procedure
+ * to be run (strclose and qdetach).
+ */
+ cv_broadcast(&q->q_wait);
+
+ mutex_exit(QLOCK(q));
+}
+
+/*
+ * Background processing of bufcalls.
+ */
+void
+streams_bufcall_service(void)
+{
+ callb_cpr_t cprinfo;
+
+ CALLB_CPR_INIT(&cprinfo, &strbcall_lock, callb_generic_cpr,
+ "streams_bufcall_service");
+
+ mutex_enter(&strbcall_lock);
+
+ for (;;) {
+ if (strbcalls.bc_head != NULL && kmem_avail() > 0) {
+ mutex_exit(&strbcall_lock);
+ runbufcalls();
+ mutex_enter(&strbcall_lock);
+ }
+ if (strbcalls.bc_head != NULL) {
+ clock_t wt, tick;
+
+ STRSTAT(bcwaits);
+ /* Wait for memory to become available */
+ CALLB_CPR_SAFE_BEGIN(&cprinfo);
+ tick = SEC_TO_TICK(60);
+ time_to_wait(&wt, tick);
+ (void) cv_timedwait(&memavail_cv, &strbcall_lock, wt);
+ CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
+ }
+
+ /* Wait for new work to arrive */
+ if (strbcalls.bc_head == NULL) {
+ CALLB_CPR_SAFE_BEGIN(&cprinfo);
+ cv_wait(&strbcall_cv, &strbcall_lock);
+ CALLB_CPR_SAFE_END(&cprinfo, &strbcall_lock);
+ }
+ }
+}
+
+/*
+ * Background processing of streams background tasks which failed
+ * taskq_dispatch.
+ */
+static void
+streams_qbkgrnd_service(void)
+{
+ callb_cpr_t cprinfo;
+ queue_t *q;
+
+ CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
+ "streams_bkgrnd_service");
+
+ mutex_enter(&service_queue);
+
+ for (;;) {
+ /*
+ * Wait for work to arrive.
+ */
+ while ((freebs_list == NULL) && (qhead == NULL)) {
+ CALLB_CPR_SAFE_BEGIN(&cprinfo);
+ cv_wait(&services_to_run, &service_queue);
+ CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
+ }
+ /*
+ * Handle all pending freebs requests to free memory.
+ */
+ while (freebs_list != NULL) {
+ mblk_t *mp = freebs_list;
+ freebs_list = mp->b_next;
+ mutex_exit(&service_queue);
+ mblk_free(mp);
+ mutex_enter(&service_queue);
+ }
+ /*
+ * Run pending queues.
+ */
+ while (qhead != NULL) {
+ DQ(q, qhead, qtail, q_link);
+ ASSERT(q != NULL);
+ mutex_exit(&service_queue);
+ queue_service(q);
+ mutex_enter(&service_queue);
+ }
+ ASSERT(qhead == NULL && qtail == NULL);
+ }
+}
+
+/*
+ * Background processing of streams background tasks which failed
+ * taskq_dispatch.
+ */
+static void
+streams_sqbkgrnd_service(void)
+{
+ callb_cpr_t cprinfo;
+ syncq_t *sq;
+
+ CALLB_CPR_INIT(&cprinfo, &service_queue, callb_generic_cpr,
+ "streams_sqbkgrnd_service");
+
+ mutex_enter(&service_queue);
+
+ for (;;) {
+ /*
+ * Wait for work to arrive.
+ */
+ while (sqhead == NULL) {
+ CALLB_CPR_SAFE_BEGIN(&cprinfo);
+ cv_wait(&syncqs_to_run, &service_queue);
+ CALLB_CPR_SAFE_END(&cprinfo, &service_queue);
+ }
+
+ /*
+ * Run pending syncqs.
+ */
+ while (sqhead != NULL) {
+ DQ(sq, sqhead, sqtail, sq_next);
+ ASSERT(sq != NULL);
+ ASSERT(sq->sq_svcflags & SQ_BGTHREAD);
+ mutex_exit(&service_queue);
+ syncq_service(sq);
+ mutex_enter(&service_queue);
+ }
+ }
+}
+
+/*
+ * Disable the syncq and wait for background syncq processing to complete.
+ * If the syncq is placed on the sqhead/sqtail queue, try to remove it from the
+ * list.
+ */
+void
+wait_sq_svc(syncq_t *sq)
+{
+ mutex_enter(SQLOCK(sq));
+ sq->sq_svcflags |= SQ_DISABLED;
+ if (sq->sq_svcflags & SQ_BGTHREAD) {
+ syncq_t *sq_chase;
+ syncq_t *sq_curr;
+ int removed;
+
+ ASSERT(sq->sq_servcount == 1);
+ mutex_enter(&service_queue);
+ RMQ(sq, sqhead, sqtail, sq_next, sq_chase, sq_curr, removed);
+ mutex_exit(&service_queue);
+ if (removed) {
+ sq->sq_svcflags &= ~SQ_BGTHREAD;
+ sq->sq_servcount = 0;
+ STRSTAT(sqremoved);
+ goto done;
+ }
+ }
+ while (sq->sq_servcount != 0) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ }
+done:
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Put a syncq on the list of syncq's to be serviced by the sqthread.
+ * Add the argument to the end of the sqhead list and set the flag
+ * indicating this syncq has been enabled. If it has already been
+ * enabled, don't do anything.
+ * This routine assumes that SQLOCK is held.
+ * NOTE that the lock order is to have the SQLOCK first,
+ * so if the service_syncq lock is held, we need to release it
+ * before aquiring the SQLOCK (mostly relevant for the background
+ * thread, and this seems to be common among the STREAMS global locks).
+ * Note the the sq_svcflags are protected by the SQLOCK.
+ */
+void
+sqenable(syncq_t *sq)
+{
+ /*
+ * This is probably not important except for where I believe it
+ * is being called. At that point, it should be held (and it
+ * is a pain to release it just for this routine, so don't do
+ * it).
+ */
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+
+ IMPLY(sq->sq_servcount == 0, sq->sq_next == NULL);
+ IMPLY(sq->sq_next != NULL, sq->sq_svcflags & SQ_BGTHREAD);
+
+ /*
+ * Do not put on list if background thread is scheduled or
+ * syncq is disabled.
+ */
+ if (sq->sq_svcflags & (SQ_DISABLED | SQ_BGTHREAD))
+ return;
+
+ /*
+ * Check whether we should enable sq at all.
+ * Non PERMOD syncqs may be drained by at most one thread.
+ * PERMOD syncqs may be drained by several threads but we limit the
+ * total amount to the lesser of
+ * Number of queues on the squeue and
+ * Number of CPUs.
+ */
+ if (sq->sq_servcount != 0) {
+ if (((sq->sq_type & SQ_PERMOD) == 0) ||
+ (sq->sq_servcount >= MIN(sq->sq_nqueues, ncpus_online))) {
+ STRSTAT(sqtoomany);
+ return;
+ }
+ }
+
+ sq->sq_tstamp = lbolt;
+ STRSTAT(sqenables);
+
+ /* Attempt a taskq dispatch */
+ sq->sq_servid = (void *)taskq_dispatch(streams_taskq,
+ (task_func_t *)syncq_service, sq, TQ_NOSLEEP | TQ_NOQUEUE);
+ if (sq->sq_servid != NULL) {
+ sq->sq_servcount++;
+ return;
+ }
+
+ /*
+ * This taskq dispatch failed, but a previous one may have succeeded.
+ * Don't try to schedule on the background thread whilst there is
+ * outstanding taskq processing.
+ */
+ if (sq->sq_servcount != 0)
+ return;
+
+ /*
+ * System is low on resources and can't perform a non-sleeping
+ * dispatch. Schedule the syncq for a background thread and mark the
+ * syncq to avoid any further taskq dispatch attempts.
+ */
+ mutex_enter(&service_queue);
+ STRSTAT(taskqfails);
+ ENQUEUE(sq, sqhead, sqtail, sq_next);
+ sq->sq_svcflags |= SQ_BGTHREAD;
+ sq->sq_servcount = 1;
+ cv_signal(&syncqs_to_run);
+ mutex_exit(&service_queue);
+}
+
+/*
+ * Note: fifo_close() depends on the mblk_t on the queue being freed
+ * asynchronously. The asynchronous freeing of messages breaks the
+ * recursive call chain of fifo_close() while there are I_SENDFD type of
+ * messages refering other file pointers on the queue. Then when
+ * closing pipes it can avoid stack overflow in case of daisy-chained
+ * pipes, and also avoid deadlock in case of fifonode_t pairs (which
+ * share the same fifolock_t).
+ */
+
+/* ARGSUSED */
+void
+freebs_enqueue(mblk_t *mp, dblk_t *dbp)
+{
+ ASSERT(dbp->db_mblk == mp);
+
+ /*
+ * Check data sanity. The dblock should have non-empty free function.
+ * It is better to panic here then later when the dblock is freed
+ * asynchronously when the context is lost.
+ */
+ if (dbp->db_frtnp->free_func == NULL) {
+ panic("freebs_enqueue: dblock %p has a NULL free callback",
+ (void *) dbp);
+ }
+
+ STRSTAT(freebs);
+ if (taskq_dispatch(streams_taskq, (task_func_t *)mblk_free, mp,
+ TQ_NOSLEEP) == NULL) {
+ /*
+ * System is low on resources and can't perform a non-sleeping
+ * dispatch. Schedule for a background thread.
+ */
+ mutex_enter(&service_queue);
+ STRSTAT(taskqfails);
+ mp->b_next = freebs_list;
+ freebs_list = mp;
+ cv_signal(&services_to_run);
+ mutex_exit(&service_queue);
+ }
+}
+
+/*
+ * Set the QBACK or QB_BACK flag in the given queue for
+ * the given priority band.
+ */
+void
+setqback(queue_t *q, unsigned char pri)
+{
+ int i;
+ qband_t *qbp;
+ qband_t **qbpp;
+
+ ASSERT(MUTEX_HELD(QLOCK(q)));
+ if (pri != 0) {
+ if (pri > q->q_nband) {
+ qbpp = &q->q_bandp;
+ while (*qbpp)
+ qbpp = &(*qbpp)->qb_next;
+ while (pri > q->q_nband) {
+ if ((*qbpp = allocband()) == NULL) {
+ cmn_err(CE_WARN,
+ "setqback: can't allocate qband\n");
+ return;
+ }
+ (*qbpp)->qb_hiwat = q->q_hiwat;
+ (*qbpp)->qb_lowat = q->q_lowat;
+ q->q_nband++;
+ qbpp = &(*qbpp)->qb_next;
+ }
+ }
+ qbp = q->q_bandp;
+ i = pri;
+ while (--i)
+ qbp = qbp->qb_next;
+ qbp->qb_flag |= QB_BACK;
+ } else {
+ q->q_flag |= QBACK;
+ }
+}
+
+int
+strcopyin(void *from, void *to, size_t len, int copyflag)
+{
+ if (copyflag & U_TO_K) {
+ ASSERT((copyflag & K_TO_K) == 0);
+ if (copyin(from, to, len))
+ return (EFAULT);
+ } else {
+ ASSERT(copyflag & K_TO_K);
+ bcopy(from, to, len);
+ }
+ return (0);
+}
+
+int
+strcopyout(void *from, void *to, size_t len, int copyflag)
+{
+ if (copyflag & U_TO_K) {
+ if (copyout(from, to, len))
+ return (EFAULT);
+ } else {
+ ASSERT(copyflag & K_TO_K);
+ bcopy(from, to, len);
+ }
+ return (0);
+}
+
+/*
+ * strsignal_nolock() posts a signal to the process(es) at the stream head.
+ * It assumes that the stream head lock is already held, whereas strsignal()
+ * acquires the lock first. This routine was created because a few callers
+ * release the stream head lock before calling only to re-acquire it after
+ * it returns.
+ */
+void
+strsignal_nolock(stdata_t *stp, int sig, int32_t band)
+{
+ ASSERT(MUTEX_HELD(&stp->sd_lock));
+ switch (sig) {
+ case SIGPOLL:
+ if (stp->sd_sigflags & S_MSG)
+ strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
+ break;
+
+ default:
+ if (stp->sd_pgidp) {
+ pgsignal(stp->sd_pgidp, sig);
+ }
+ break;
+ }
+}
+
+void
+strsignal(stdata_t *stp, int sig, int32_t band)
+{
+ TRACE_3(TR_FAC_STREAMS_FR, TR_SENDSIG,
+ "strsignal:%p, %X, %X", stp, sig, band);
+
+ mutex_enter(&stp->sd_lock);
+ switch (sig) {
+ case SIGPOLL:
+ if (stp->sd_sigflags & S_MSG)
+ strsendsig(stp->sd_siglist, S_MSG, (uchar_t)band, 0);
+ break;
+
+ default:
+ if (stp->sd_pgidp) {
+ pgsignal(stp->sd_pgidp, sig);
+ }
+ break;
+ }
+ mutex_exit(&stp->sd_lock);
+}
+
+void
+strhup(stdata_t *stp)
+{
+ pollwakeup(&stp->sd_pollist, POLLHUP);
+ mutex_enter(&stp->sd_lock);
+ if (stp->sd_sigflags & S_HANGUP)
+ strsendsig(stp->sd_siglist, S_HANGUP, 0, 0);
+ mutex_exit(&stp->sd_lock);
+}
+
+void
+stralloctty(sess_t *sp, stdata_t *stp)
+{
+ mutex_enter(&stp->sd_lock);
+ mutex_enter(&pidlock);
+ stp->sd_sidp = sp->s_sidp;
+ stp->sd_pgidp = sp->s_sidp;
+ PID_HOLD(stp->sd_pgidp);
+ PID_HOLD(stp->sd_sidp);
+ mutex_exit(&pidlock);
+ mutex_exit(&stp->sd_lock);
+}
+
+void
+strfreectty(stdata_t *stp)
+{
+ mutex_enter(&stp->sd_lock);
+ pgsignal(stp->sd_pgidp, SIGHUP);
+ mutex_enter(&pidlock);
+ PID_RELE(stp->sd_pgidp);
+ PID_RELE(stp->sd_sidp);
+ stp->sd_pgidp = NULL;
+ stp->sd_sidp = NULL;
+ mutex_exit(&pidlock);
+ mutex_exit(&stp->sd_lock);
+ if (!(stp->sd_flag & STRHUP))
+ strhup(stp);
+}
+
+void
+strctty(stdata_t *stp)
+{
+ extern vnode_t *makectty();
+ proc_t *p = curproc;
+ sess_t *sp = p->p_sessp;
+
+ mutex_enter(&stp->sd_lock);
+ /*
+ * No need to hold the session lock or do a TTYHOLD,
+ * because this is the only thread that can be the
+ * session leader and not have a controlling tty.
+ */
+ if ((stp->sd_flag & (STRHUP|STRDERR|STWRERR|STPLEX)) == 0 &&
+ stp->sd_sidp == NULL && /* not allocated as ctty */
+ sp->s_sidp == p->p_pidp && /* session leader */
+ sp->s_flag != SESS_CLOSE && /* session is not closing */
+ sp->s_vp == NULL) { /* without ctty */
+ mutex_exit(&stp->sd_lock);
+ ASSERT(stp->sd_pgidp == NULL);
+ alloctty(p, makectty(stp->sd_vnode));
+ stralloctty(sp, stp);
+ mutex_enter(&stp->sd_lock);
+ stp->sd_flag |= STRISTTY; /* just to be sure */
+ }
+ mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * enable first back queue with svc procedure.
+ * Use pri == -1 to avoid the setqback
+ */
+void
+backenable(queue_t *q, int pri)
+{
+ queue_t *nq;
+
+ /*
+ * our presence might not prevent other modules in our own
+ * stream from popping/pushing since the caller of getq might not
+ * have a claim on the queue (some drivers do a getq on somebody
+ * else's queue - they know that the queue itself is not going away
+ * but the framework has to guarantee q_next in that stream.)
+ */
+ claimstr(q);
+
+ /* find nearest back queue with service proc */
+ for (nq = backq(q); nq && !nq->q_qinfo->qi_srvp; nq = backq(nq)) {
+ ASSERT(STRMATED(q->q_stream) || STREAM(q) == STREAM(nq));
+ }
+
+ if (nq) {
+ kthread_t *freezer;
+ /*
+ * backenable can be called either with no locks held
+ * or with the stream frozen (the latter occurs when a module
+ * calls rmvq with the stream frozen.) If the stream is frozen
+ * by the caller the caller will hold all qlocks in the stream.
+ */
+ freezer = STREAM(q)->sd_freezer;
+ if (freezer != curthread) {
+ mutex_enter(QLOCK(nq));
+ }
+#ifdef DEBUG
+ else {
+ ASSERT(frozenstr(q));
+ ASSERT(MUTEX_HELD(QLOCK(q)));
+ ASSERT(MUTEX_HELD(QLOCK(nq)));
+ }
+#endif
+ if (pri != -1)
+ setqback(nq, pri);
+ qenable_locked(nq);
+ if (freezer != curthread)
+ mutex_exit(QLOCK(nq));
+ }
+ releasestr(q);
+}
+
+/*
+ * Return the appropriate errno when one of flags_to_check is set
+ * in sd_flags. Uses the exported error routines if they are set.
+ * Will return 0 if non error is set (or if the exported error routines
+ * do not return an error).
+ *
+ * If there is both a read and write error to check we prefer the read error.
+ * Also, give preference to recorded errno's over the error functions.
+ * The flags that are handled are:
+ * STPLEX return EINVAL
+ * STRDERR return sd_rerror (and clear if STRDERRNONPERSIST)
+ * STWRERR return sd_werror (and clear if STWRERRNONPERSIST)
+ * STRHUP return sd_werror
+ *
+ * If the caller indicates that the operation is a peek a nonpersistent error
+ * is not cleared.
+ */
+int
+strgeterr(stdata_t *stp, int32_t flags_to_check, int ispeek)
+{
+ int32_t sd_flag = stp->sd_flag & flags_to_check;
+ int error = 0;
+
+ ASSERT(MUTEX_HELD(&stp->sd_lock));
+ ASSERT((flags_to_check & ~(STRDERR|STWRERR|STRHUP|STPLEX)) == 0);
+ if (sd_flag & STPLEX)
+ error = EINVAL;
+ else if (sd_flag & STRDERR) {
+ error = stp->sd_rerror;
+ if ((stp->sd_flag & STRDERRNONPERSIST) && !ispeek) {
+ /*
+ * Read errors are non-persistent i.e. discarded once
+ * returned to a non-peeking caller,
+ */
+ stp->sd_rerror = 0;
+ stp->sd_flag &= ~STRDERR;
+ }
+ if (error == 0 && stp->sd_rderrfunc != NULL) {
+ int clearerr = 0;
+
+ error = (*stp->sd_rderrfunc)(stp->sd_vnode, ispeek,
+ &clearerr);
+ if (clearerr) {
+ stp->sd_flag &= ~STRDERR;
+ stp->sd_rderrfunc = NULL;
+ }
+ }
+ } else if (sd_flag & STWRERR) {
+ error = stp->sd_werror;
+ if ((stp->sd_flag & STWRERRNONPERSIST) && !ispeek) {
+ /*
+ * Write errors are non-persistent i.e. discarded once
+ * returned to a non-peeking caller,
+ */
+ stp->sd_werror = 0;
+ stp->sd_flag &= ~STWRERR;
+ }
+ if (error == 0 && stp->sd_wrerrfunc != NULL) {
+ int clearerr = 0;
+
+ error = (*stp->sd_wrerrfunc)(stp->sd_vnode, ispeek,
+ &clearerr);
+ if (clearerr) {
+ stp->sd_flag &= ~STWRERR;
+ stp->sd_wrerrfunc = NULL;
+ }
+ }
+ } else if (sd_flag & STRHUP) {
+ /* sd_werror set when STRHUP */
+ error = stp->sd_werror;
+ }
+ return (error);
+}
+
+
+/*
+ * single-thread open/close/push/pop
+ * for twisted streams also
+ */
+int
+strstartplumb(stdata_t *stp, int flag, int cmd)
+{
+ int waited = 1;
+ int error = 0;
+
+ if (STRMATED(stp)) {
+ struct stdata *stmatep = stp->sd_mate;
+
+ STRLOCKMATES(stp);
+ while (waited) {
+ waited = 0;
+ while (stmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
+ if ((cmd == I_POP) &&
+ (flag & (FNDELAY|FNONBLOCK))) {
+ STRUNLOCKMATES(stp);
+ return (EAGAIN);
+ }
+ waited = 1;
+ mutex_exit(&stp->sd_lock);
+ if (!cv_wait_sig(&stmatep->sd_monitor,
+ &stmatep->sd_lock)) {
+ mutex_exit(&stmatep->sd_lock);
+ return (EINTR);
+ }
+ mutex_exit(&stmatep->sd_lock);
+ STRLOCKMATES(stp);
+ }
+ while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
+ if ((cmd == I_POP) &&
+ (flag & (FNDELAY|FNONBLOCK))) {
+ STRUNLOCKMATES(stp);
+ return (EAGAIN);
+ }
+ waited = 1;
+ mutex_exit(&stmatep->sd_lock);
+ if (!cv_wait_sig(&stp->sd_monitor,
+ &stp->sd_lock)) {
+ mutex_exit(&stp->sd_lock);
+ return (EINTR);
+ }
+ mutex_exit(&stp->sd_lock);
+ STRLOCKMATES(stp);
+ }
+ if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
+ error = strgeterr(stp,
+ STRDERR|STWRERR|STRHUP|STPLEX, 0);
+ if (error != 0) {
+ STRUNLOCKMATES(stp);
+ return (error);
+ }
+ }
+ }
+ stp->sd_flag |= STRPLUMB;
+ STRUNLOCKMATES(stp);
+ } else {
+ mutex_enter(&stp->sd_lock);
+ while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) {
+ if (((cmd == I_POP) || (cmd == _I_REMOVE)) &&
+ (flag & (FNDELAY|FNONBLOCK))) {
+ mutex_exit(&stp->sd_lock);
+ return (EAGAIN);
+ }
+ if (!cv_wait_sig(&stp->sd_monitor, &stp->sd_lock)) {
+ mutex_exit(&stp->sd_lock);
+ return (EINTR);
+ }
+ if (stp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
+ error = strgeterr(stp,
+ STRDERR|STWRERR|STRHUP|STPLEX, 0);
+ if (error != 0) {
+ mutex_exit(&stp->sd_lock);
+ return (error);
+ }
+ }
+ }
+ stp->sd_flag |= STRPLUMB;
+ mutex_exit(&stp->sd_lock);
+ }
+ return (0);
+}
+
+/*
+ * Complete the plumbing operation associated with stream `stp'.
+ */
+void
+strendplumb(stdata_t *stp)
+{
+ ASSERT(MUTEX_HELD(&stp->sd_lock));
+ ASSERT(stp->sd_flag & STRPLUMB);
+ stp->sd_flag &= ~STRPLUMB;
+ cv_broadcast(&stp->sd_monitor);
+}
+
+/*
+ * This describes how the STREAMS framework handles synchronization
+ * during open/push and close/pop.
+ * The key interfaces for open and close are qprocson and qprocsoff,
+ * respectively. While the close case in general is harder both open
+ * have close have significant similarities.
+ *
+ * During close the STREAMS framework has to both ensure that there
+ * are no stale references to the queue pair (and syncq) that
+ * are being closed and also provide the guarantees that are documented
+ * in qprocsoff(9F).
+ * If there are stale references to the queue that is closing it can
+ * result in kernel memory corruption or kernel panics.
+ *
+ * Note that is it up to the module/driver to ensure that it itself
+ * does not have any stale references to the closing queues once its close
+ * routine returns. This includes:
+ * - Cancelling any timeout/bufcall/qtimeout/qbufcall callback routines
+ * associated with the queues. For timeout and bufcall callbacks the
+ * module/driver also has to ensure (or wait for) any callbacks that
+ * are in progress.
+ * - If the module/driver is using esballoc it has to ensure that any
+ * esballoc free functions do not refer to a queue that has closed.
+ * (Note that in general the close routine can not wait for the esballoc'ed
+ * messages to be freed since that can cause a deadlock.)
+ * - Cancelling any interrupts that refer to the closing queues and
+ * also ensuring that there are no interrupts in progress that will
+ * refer to the closing queues once the close routine returns.
+ * - For multiplexors removing any driver global state that refers to
+ * the closing queue and also ensuring that there are no threads in
+ * the multiplexor that has picked up a queue pointer but not yet
+ * finished using it.
+ *
+ * In addition, a driver/module can only reference the q_next pointer
+ * in its open, close, put, or service procedures or in a
+ * qtimeout/qbufcall callback procedure executing "on" the correct
+ * stream. Thus it can not reference the q_next pointer in an interrupt
+ * routine or a timeout, bufcall or esballoc callback routine. Likewise
+ * it can not reference q_next of a different queue e.g. in a mux that
+ * passes messages from one queues put/service procedure to another queue.
+ * In all the cases when the driver/module can not access the q_next
+ * field it must use the *next* versions e.g. canputnext instead of
+ * canput(q->q_next) and putnextctl instead of putctl(q->q_next, ...).
+ *
+ *
+ * Assuming that the driver/module conforms to the above constraints
+ * the STREAMS framework has to avoid stale references to q_next for all
+ * the framework internal cases which include (but are not limited to):
+ * - Threads in canput/canputnext/backenable and elsewhere that are
+ * walking q_next.
+ * - Messages on a syncq that have a reference to the queue through b_queue.
+ * - Messages on an outer perimeter (syncq) that have a reference to the
+ * queue through b_queue.
+ * - Threads that use q_nfsrv (e.g. canput) to find a queue.
+ * Note that only canput and bcanput use q_nfsrv without any locking.
+ *
+ * The STREAMS framework providing the qprocsoff(9F) guarantees means that
+ * after qprocsoff returns, the framework has to ensure that no threads can
+ * enter the put or service routines for the closing read or write-side queue.
+ * In addition to preventing "direct" entry into the put procedures
+ * the framework also has to prevent messages being drained from
+ * the syncq or the outer perimeter.
+ * XXX Note that currently qdetach does relies on D_MTOCEXCL as the only
+ * mechanism to prevent qwriter(PERIM_OUTER) from running after
+ * qprocsoff has returned.
+ * Note that if a module/driver uses put(9F) on one of its own queues
+ * it is up to the module/driver to ensure that the put() doesn't
+ * get called when the queue is closing.
+ *
+ *
+ * The framework aspects of the above "contract" is implemented by
+ * qprocsoff, removeq, and strlock:
+ * - qprocsoff (disable_svc) sets QWCLOSE to prevent runservice from
+ * entering the service procedures.
+ * - strlock acquires the sd_lock and sd_reflock to prevent putnext,
+ * canputnext, backenable etc from dereferencing the q_next that will
+ * soon change.
+ * - strlock waits for sd_refcnt to be zero to wait for e.g. any canputnext
+ * or other q_next walker that uses claimstr/releasestr to finish.
+ * - optionally for every syncq in the stream strlock acquires all the
+ * sq_lock's and waits for all sq_counts to drop to a value that indicates
+ * that no thread executes in the put or service procedures and that no
+ * thread is draining into the module/driver. This ensures that no
+ * open, close, put, service, or qtimeout/qbufcall callback procedure is
+ * currently executing hence no such thread can end up with the old stale
+ * q_next value and no canput/backenable can have the old stale
+ * q_nfsrv/q_next.
+ * - qdetach (wait_svc) makes sure that any scheduled or running threads
+ * have either finished or observed the QWCLOSE flag and gone away.
+ */
+
+
+/*
+ * Get all the locks necessary to change q_next.
+ *
+ * Wait for sd_refcnt to reach 0 and, if sqlist is present, wait for the
+ * sq_count of each syncq in the list to drop to sq_rmqcount, indicating that
+ * the only threads inside the sqncq are threads currently calling removeq().
+ * Since threads calling removeq() are in the process of removing their queues
+ * from the stream, we do not need to worry about them accessing a stale q_next
+ * pointer and thus we do not need to wait for them to exit (in fact, waiting
+ * for them can cause deadlock).
+ *
+ * This routine is subject to starvation since it does not set any flag to
+ * prevent threads from entering a module in the stream(i.e. sq_count can
+ * increase on some syncq while it is waiting on some other syncq.)
+ *
+ * Assumes that only one thread attempts to call strlock for a given
+ * stream. If this is not the case the two threads would deadlock.
+ * This assumption is guaranteed since strlock is only called by insertq
+ * and removeq and streams plumbing changes are single-threaded for
+ * a given stream using the STWOPEN, STRCLOSE, and STRPLUMB flags.
+ *
+ * For pipes, it is not difficult to atomically designate a pair of streams
+ * to be mated. Once mated atomically by the framework the twisted pair remain
+ * configured that way until dismantled atomically by the framework.
+ * When plumbing takes place on a twisted stream it is necessary to ensure that
+ * this operation is done exclusively on the twisted stream since two such
+ * operations, each initiated on different ends of the pipe will deadlock
+ * waiting for each other to complete.
+ *
+ * On entry, no locks should be held.
+ * The locks acquired and held by strlock depends on a few factors.
+ * - If sqlist is non-NULL all the syncq locks in the sqlist will be acquired
+ * and held on exit and all sq_count are at an acceptable level.
+ * - In all cases, sd_lock and sd_reflock are acquired and held on exit with
+ * sd_refcnt being zero.
+ */
+
+static void
+strlock(struct stdata *stp, sqlist_t *sqlist)
+{
+ syncql_t *sql, *sql2;
+retry:
+ /*
+ * Wait for any claimstr to go away.
+ */
+ if (STRMATED(stp)) {
+ struct stdata *stp1, *stp2;
+
+ STRLOCKMATES(stp);
+ /*
+ * Note that the selection of locking order is not
+ * important, just that they are always aquired in
+ * the same order. To assure this, we choose this
+ * order based on the value of the pointer, and since
+ * the pointer will not change for the life of this
+ * pair, we will always grab the locks in the same
+ * order (and hence, prevent deadlocks).
+ */
+ if (&(stp->sd_lock) > &((stp->sd_mate)->sd_lock)) {
+ stp1 = stp;
+ stp2 = stp->sd_mate;
+ } else {
+ stp2 = stp;
+ stp1 = stp->sd_mate;
+ }
+ mutex_enter(&stp1->sd_reflock);
+ if (stp1->sd_refcnt > 0) {
+ STRUNLOCKMATES(stp);
+ cv_wait(&stp1->sd_monitor, &stp1->sd_reflock);
+ mutex_exit(&stp1->sd_reflock);
+ goto retry;
+ }
+ mutex_enter(&stp2->sd_reflock);
+ if (stp2->sd_refcnt > 0) {
+ STRUNLOCKMATES(stp);
+ mutex_exit(&stp1->sd_reflock);
+ cv_wait(&stp2->sd_monitor, &stp2->sd_reflock);
+ mutex_exit(&stp2->sd_reflock);
+ goto retry;
+ }
+ STREAM_PUTLOCKS_ENTER(stp1);
+ STREAM_PUTLOCKS_ENTER(stp2);
+ } else {
+ mutex_enter(&stp->sd_lock);
+ mutex_enter(&stp->sd_reflock);
+ while (stp->sd_refcnt > 0) {
+ mutex_exit(&stp->sd_lock);
+ cv_wait(&stp->sd_monitor, &stp->sd_reflock);
+ if (mutex_tryenter(&stp->sd_lock) == 0) {
+ mutex_exit(&stp->sd_reflock);
+ mutex_enter(&stp->sd_lock);
+ mutex_enter(&stp->sd_reflock);
+ }
+ }
+ STREAM_PUTLOCKS_ENTER(stp);
+ }
+
+ if (sqlist == NULL)
+ return;
+
+ for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
+ syncq_t *sq = sql->sql_sq;
+ uint16_t count;
+
+ mutex_enter(SQLOCK(sq));
+ count = sq->sq_count;
+ ASSERT(sq->sq_rmqcount <= count);
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ if (count == sq->sq_rmqcount)
+ continue;
+
+ /* Failed - drop all locks that we have acquired so far */
+ if (STRMATED(stp)) {
+ STREAM_PUTLOCKS_EXIT(stp);
+ STREAM_PUTLOCKS_EXIT(stp->sd_mate);
+ STRUNLOCKMATES(stp);
+ mutex_exit(&stp->sd_reflock);
+ mutex_exit(&stp->sd_mate->sd_reflock);
+ } else {
+ STREAM_PUTLOCKS_EXIT(stp);
+ mutex_exit(&stp->sd_lock);
+ mutex_exit(&stp->sd_reflock);
+ }
+ for (sql2 = sqlist->sqlist_head; sql2 != sql;
+ sql2 = sql2->sql_next) {
+ SQ_PUTLOCKS_EXIT(sql2->sql_sq);
+ mutex_exit(SQLOCK(sql2->sql_sq));
+ }
+
+ /*
+ * The wait loop below may starve when there are many threads
+ * claiming the syncq. This is especially a problem with permod
+ * syncqs (IP). To lessen the impact of the problem we increment
+ * sq_needexcl and clear fastbits so that putnexts will slow
+ * down and call sqenable instead of draining right away.
+ */
+ sq->sq_needexcl++;
+ SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
+ while (count > sq->sq_rmqcount) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ SQ_PUTLOCKS_EXIT(sq);
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ sq->sq_needexcl--;
+ if (sq->sq_needexcl == 0)
+ SQ_PUTCOUNT_SETFAST_LOCKED(sq);
+ SQ_PUTLOCKS_EXIT(sq);
+ ASSERT(count == sq->sq_rmqcount);
+ mutex_exit(SQLOCK(sq));
+ goto retry;
+ }
+}
+
+/*
+ * Drop all the locks that strlock acquired.
+ */
+static void
+strunlock(struct stdata *stp, sqlist_t *sqlist)
+{
+ syncql_t *sql;
+
+ if (STRMATED(stp)) {
+ STREAM_PUTLOCKS_EXIT(stp);
+ STREAM_PUTLOCKS_EXIT(stp->sd_mate);
+ STRUNLOCKMATES(stp);
+ mutex_exit(&stp->sd_reflock);
+ mutex_exit(&stp->sd_mate->sd_reflock);
+ } else {
+ STREAM_PUTLOCKS_EXIT(stp);
+ mutex_exit(&stp->sd_lock);
+ mutex_exit(&stp->sd_reflock);
+ }
+
+ if (sqlist == NULL)
+ return;
+
+ for (sql = sqlist->sqlist_head; sql; sql = sql->sql_next) {
+ SQ_PUTLOCKS_EXIT(sql->sql_sq);
+ mutex_exit(SQLOCK(sql->sql_sq));
+ }
+}
+
+
+/*
+ * Given two read queues, insert a new single one after another.
+ *
+ * This routine acquires all the necessary locks in order to change
+ * q_next and related pointer using strlock().
+ * It depends on the stream head ensuring that there are no concurrent
+ * insertq or removeq on the same stream. The stream head ensures this
+ * using the flags STWOPEN, STRCLOSE, and STRPLUMB.
+ *
+ * Note that no syncq locks are held during the q_next change. This is
+ * applied to all streams since, unlike removeq, there is no problem of stale
+ * pointers when adding a module to the stream. Thus drivers/modules that do a
+ * canput(rq->q_next) would never get a closed/freed queue pointer even if we
+ * applied this optimization to all streams.
+ */
+void
+insertq(struct stdata *stp, queue_t *new)
+{
+ queue_t *after;
+ queue_t *wafter;
+ queue_t *wnew = _WR(new);
+ boolean_t have_fifo = B_FALSE;
+
+ if (new->q_flag & _QINSERTING) {
+ ASSERT(stp->sd_vnode->v_type != VFIFO);
+ after = new->q_next;
+ wafter = _WR(new->q_next);
+ } else {
+ after = _RD(stp->sd_wrq);
+ wafter = stp->sd_wrq;
+ }
+
+ TRACE_2(TR_FAC_STREAMS_FR, TR_INSERTQ,
+ "insertq:%p, %p", after, new);
+ ASSERT(after->q_flag & QREADR);
+ ASSERT(new->q_flag & QREADR);
+
+ strlock(stp, NULL);
+
+ /* Do we have a FIFO? */
+ if (wafter->q_next == after) {
+ have_fifo = B_TRUE;
+ wnew->q_next = new;
+ } else {
+ wnew->q_next = wafter->q_next;
+ }
+ new->q_next = after;
+
+ set_nfsrv_ptr(new, wnew, after, wafter);
+ /*
+ * set_nfsrv_ptr() needs to know if this is an insertion or not,
+ * so only reset this flag after calling it.
+ */
+ new->q_flag &= ~_QINSERTING;
+
+ if (have_fifo) {
+ wafter->q_next = wnew;
+ } else {
+ if (wafter->q_next)
+ _OTHERQ(wafter->q_next)->q_next = new;
+ wafter->q_next = wnew;
+ }
+
+ set_qend(new);
+ /* The QEND flag might have to be updated for the upstream guy */
+ set_qend(after);
+
+ ASSERT(_SAMESTR(new) == O_SAMESTR(new));
+ ASSERT(_SAMESTR(wnew) == O_SAMESTR(wnew));
+ ASSERT(_SAMESTR(after) == O_SAMESTR(after));
+ ASSERT(_SAMESTR(wafter) == O_SAMESTR(wafter));
+ strsetuio(stp);
+
+ /*
+ * If this was a module insertion, bump the push count.
+ */
+ if (!(new->q_flag & QISDRV))
+ stp->sd_pushcnt++;
+
+ strunlock(stp, NULL);
+}
+
+/*
+ * Given a read queue, unlink it from any neighbors.
+ *
+ * This routine acquires all the necessary locks in order to
+ * change q_next and related pointers and also guard against
+ * stale references (e.g. through q_next) to the queue that
+ * is being removed. It also plays part of the role in ensuring
+ * that the module's/driver's put procedure doesn't get called
+ * after qprocsoff returns.
+ *
+ * Removeq depends on the stream head ensuring that there are
+ * no concurrent insertq or removeq on the same stream. The
+ * stream head ensures this using the flags STWOPEN, STRCLOSE and
+ * STRPLUMB.
+ *
+ * The set of locks needed to remove the queue is different in
+ * different cases:
+ *
+ * Acquire sd_lock, sd_reflock, and all the syncq locks in the stream after
+ * waiting for the syncq reference count to drop to 0 indicating that no
+ * non-close threads are present anywhere in the stream. This ensures that any
+ * module/driver can reference q_next in its open, close, put, or service
+ * procedures.
+ *
+ * The sq_rmqcount counter tracks the number of threads inside removeq().
+ * strlock() ensures that there is either no threads executing inside perimeter
+ * or there is only a thread calling qprocsoff().
+ *
+ * strlock() compares the value of sq_count with the number of threads inside
+ * removeq() and waits until sq_count is equal to sq_rmqcount. We need to wakeup
+ * any threads waiting in strlock() when the sq_rmqcount increases.
+ */
+
+void
+removeq(queue_t *qp)
+{
+ queue_t *wqp = _WR(qp);
+ struct stdata *stp = STREAM(qp);
+ sqlist_t *sqlist = NULL;
+ boolean_t isdriver;
+ int moved;
+ syncq_t *sq = qp->q_syncq;
+ syncq_t *wsq = wqp->q_syncq;
+
+ ASSERT(stp);
+
+ TRACE_2(TR_FAC_STREAMS_FR, TR_REMOVEQ,
+ "removeq:%p %p", qp, wqp);
+ ASSERT(qp->q_flag&QREADR);
+
+ /*
+ * For queues using Synchronous streams, we must wait for all threads in
+ * rwnext() to drain out before proceeding.
+ */
+ if (qp->q_flag & QSYNCSTR) {
+ /* First, we need wakeup any threads blocked in rwnext() */
+ mutex_enter(SQLOCK(sq));
+ if (sq->sq_flags & SQ_WANTWAKEUP) {
+ sq->sq_flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ mutex_exit(SQLOCK(sq));
+
+ if (wsq != sq) {
+ mutex_enter(SQLOCK(wsq));
+ if (wsq->sq_flags & SQ_WANTWAKEUP) {
+ wsq->sq_flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&wsq->sq_wait);
+ }
+ mutex_exit(SQLOCK(wsq));
+ }
+
+ mutex_enter(QLOCK(qp));
+ while (qp->q_rwcnt > 0) {
+ qp->q_flag |= QWANTRMQSYNC;
+ cv_wait(&qp->q_wait, QLOCK(qp));
+ }
+ mutex_exit(QLOCK(qp));
+
+ mutex_enter(QLOCK(wqp));
+ while (wqp->q_rwcnt > 0) {
+ wqp->q_flag |= QWANTRMQSYNC;
+ cv_wait(&wqp->q_wait, QLOCK(wqp));
+ }
+ mutex_exit(QLOCK(wqp));
+ }
+
+ mutex_enter(SQLOCK(sq));
+ sq->sq_rmqcount++;
+ if (sq->sq_flags & SQ_WANTWAKEUP) {
+ sq->sq_flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ mutex_exit(SQLOCK(sq));
+
+ isdriver = (qp->q_flag & QISDRV);
+
+ sqlist = sqlist_build(qp, stp, STRMATED(stp));
+ strlock(stp, sqlist);
+
+ reset_nfsrv_ptr(qp, wqp);
+
+ ASSERT(wqp->q_next == NULL || backq(qp)->q_next == qp);
+ ASSERT(qp->q_next == NULL || backq(wqp)->q_next == wqp);
+ /* Do we have a FIFO? */
+ if (wqp->q_next == qp) {
+ stp->sd_wrq->q_next = _RD(stp->sd_wrq);
+ } else {
+ if (wqp->q_next)
+ backq(qp)->q_next = qp->q_next;
+ if (qp->q_next)
+ backq(wqp)->q_next = wqp->q_next;
+ }
+
+ /* The QEND flag might have to be updated for the upstream guy */
+ if (qp->q_next)
+ set_qend(qp->q_next);
+
+ ASSERT(_SAMESTR(stp->sd_wrq) == O_SAMESTR(stp->sd_wrq));
+ ASSERT(_SAMESTR(_RD(stp->sd_wrq)) == O_SAMESTR(_RD(stp->sd_wrq)));
+
+ /*
+ * Move any messages destined for the put procedures to the next
+ * syncq in line. Otherwise free them.
+ */
+ moved = 0;
+ /*
+ * Quick check to see whether there are any messages or events.
+ */
+ if (qp->q_syncqmsgs != 0 || (qp->q_syncq->sq_flags & SQ_EVENTS))
+ moved += propagate_syncq(qp);
+ if (wqp->q_syncqmsgs != 0 ||
+ (wqp->q_syncq->sq_flags & SQ_EVENTS))
+ moved += propagate_syncq(wqp);
+
+ strsetuio(stp);
+
+ /*
+ * If this was a module removal, decrement the push count.
+ */
+ if (!isdriver)
+ stp->sd_pushcnt--;
+
+ strunlock(stp, sqlist);
+ sqlist_free(sqlist);
+
+ /*
+ * Make sure any messages that were propagated are drained.
+ * Also clear any QFULL bit caused by messages that were propagated.
+ */
+
+ if (qp->q_next != NULL) {
+ clr_qfull(qp);
+ /*
+ * For the driver calling qprocsoff, propagate_syncq
+ * frees all the messages instead of putting it in
+ * the stream head
+ */
+ if (!isdriver && (moved > 0))
+ emptysq(qp->q_next->q_syncq);
+ }
+ if (wqp->q_next != NULL) {
+ clr_qfull(wqp);
+ /*
+ * We come here for any pop of a module except for the
+ * case of driver being removed. We don't call emptysq
+ * if we did not move any messages. This will avoid holding
+ * PERMOD syncq locks in emptysq
+ */
+ if (moved > 0)
+ emptysq(wqp->q_next->q_syncq);
+ }
+
+ mutex_enter(SQLOCK(sq));
+ sq->sq_rmqcount--;
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Prevent further entry by setting a flag (like SQ_FROZEN, SQ_BLOCKED or
+ * SQ_WRITER) on a syncq.
+ * If maxcnt is not -1 it assumes that caller has "maxcnt" claim(s) on the
+ * sync queue and waits until sq_count reaches maxcnt.
+ *
+ * if maxcnt is -1 there's no need to grab sq_putlocks since the caller
+ * does not care about putnext threads that are in the middle of calling put
+ * entry points.
+ *
+ * This routine is used for both inner and outer syncqs.
+ */
+static void
+blocksq(syncq_t *sq, ushort_t flag, int maxcnt)
+{
+ uint16_t count = 0;
+
+ mutex_enter(SQLOCK(sq));
+ /*
+ * Wait for SQ_FROZEN/SQ_BLOCKED to be reset.
+ * SQ_FROZEN will be set if there is a frozen stream that has a
+ * queue which also refers to this "shared" syncq.
+ * SQ_BLOCKED will be set if there is "off" queue which also
+ * refers to this "shared" syncq.
+ */
+ if (maxcnt != -1) {
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ sq->sq_needexcl++;
+ ASSERT(sq->sq_needexcl != 0); /* wraparound */
+
+ while ((sq->sq_flags & flag) ||
+ (maxcnt != -1 && count > (unsigned)maxcnt)) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ if (maxcnt != -1) {
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ if (maxcnt != -1) {
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ }
+ sq->sq_needexcl--;
+ sq->sq_flags |= flag;
+ ASSERT(maxcnt == -1 || count == maxcnt);
+ if (maxcnt != -1) {
+ if (sq->sq_needexcl == 0) {
+ SQ_PUTCOUNT_SETFAST_LOCKED(sq);
+ }
+ SQ_PUTLOCKS_EXIT(sq);
+ } else if (sq->sq_needexcl == 0) {
+ SQ_PUTCOUNT_SETFAST(sq);
+ }
+
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Reset a flag that was set with blocksq.
+ *
+ * Can not use this routine to reset SQ_WRITER.
+ *
+ * If "isouter" is set then the syncq is assumed to be an outer perimeter
+ * and drain_syncq is not called. Instead we rely on the qwriter_outer thread
+ * to handle the queued qwriter operations.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ */
+static void
+unblocksq(syncq_t *sq, uint16_t resetflag, int isouter)
+{
+ uint16_t flags;
+
+ mutex_enter(SQLOCK(sq));
+ ASSERT(resetflag != SQ_WRITER);
+ ASSERT(sq->sq_flags & resetflag);
+ flags = sq->sq_flags & ~resetflag;
+ sq->sq_flags = flags;
+ if (flags & (SQ_QUEUED | SQ_WANTWAKEUP)) {
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ sq->sq_flags = flags;
+ if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
+ if (!isouter) {
+ /* drain_syncq drops SQLOCK */
+ drain_syncq(sq);
+ return;
+ }
+ }
+ }
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Reset a flag that was set with blocksq.
+ * Does not drain the syncq. Use emptysq() for that.
+ * Returns 1 if SQ_QUEUED is set. Otherwise 0.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ */
+static int
+dropsq(syncq_t *sq, uint16_t resetflag)
+{
+ uint16_t flags;
+
+ mutex_enter(SQLOCK(sq));
+ ASSERT(sq->sq_flags & resetflag);
+ flags = sq->sq_flags & ~resetflag;
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ sq->sq_flags = flags;
+ mutex_exit(SQLOCK(sq));
+ if (flags & SQ_QUEUED)
+ return (1);
+ return (0);
+}
+
+/*
+ * Empty all the messages on a syncq.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ */
+static void
+emptysq(syncq_t *sq)
+{
+ uint16_t flags;
+
+ mutex_enter(SQLOCK(sq));
+ flags = sq->sq_flags;
+ if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
+ /*
+ * To prevent potential recursive invocation of drain_syncq we
+ * do not call drain_syncq if count is non-zero.
+ */
+ if (sq->sq_count == 0) {
+ /* drain_syncq() drops SQLOCK */
+ drain_syncq(sq);
+ return;
+ } else
+ sqenable(sq);
+ }
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Ordered insert while removing duplicates.
+ */
+static void
+sqlist_insert(sqlist_t *sqlist, syncq_t *sqp)
+{
+ syncql_t *sqlp, **prev_sqlpp, *new_sqlp;
+
+ prev_sqlpp = &sqlist->sqlist_head;
+ while ((sqlp = *prev_sqlpp) != NULL) {
+ if (sqlp->sql_sq >= sqp) {
+ if (sqlp->sql_sq == sqp) /* duplicate */
+ return;
+ break;
+ }
+ prev_sqlpp = &sqlp->sql_next;
+ }
+ new_sqlp = &sqlist->sqlist_array[sqlist->sqlist_index++];
+ ASSERT((char *)new_sqlp < (char *)sqlist + sqlist->sqlist_size);
+ new_sqlp->sql_next = sqlp;
+ new_sqlp->sql_sq = sqp;
+ *prev_sqlpp = new_sqlp;
+}
+
+/*
+ * Walk the write side queues until we hit either the driver
+ * or a twist in the stream (_SAMESTR will return false in both
+ * these cases) then turn around and walk the read side queues
+ * back up to the stream head.
+ */
+static void
+sqlist_insertall(sqlist_t *sqlist, queue_t *q)
+{
+ while (q != NULL) {
+ sqlist_insert(sqlist, q->q_syncq);
+
+ if (_SAMESTR(q))
+ q = q->q_next;
+ else if (!(q->q_flag & QREADR))
+ q = _RD(q);
+ else
+ q = NULL;
+ }
+}
+
+/*
+ * Allocate and build a list of all syncqs in a stream and the syncq(s)
+ * associated with the "q" parameter. The resulting list is sorted in a
+ * canonical order and is free of duplicates.
+ * Assumes the passed queue is a _RD(q).
+ */
+static sqlist_t *
+sqlist_build(queue_t *q, struct stdata *stp, boolean_t do_twist)
+{
+ sqlist_t *sqlist = sqlist_alloc(stp, KM_SLEEP);
+
+ /*
+ * start with the current queue/qpair
+ */
+ ASSERT(q->q_flag & QREADR);
+
+ sqlist_insert(sqlist, q->q_syncq);
+ sqlist_insert(sqlist, _WR(q)->q_syncq);
+
+ sqlist_insertall(sqlist, stp->sd_wrq);
+ if (do_twist)
+ sqlist_insertall(sqlist, stp->sd_mate->sd_wrq);
+
+ return (sqlist);
+}
+
+static sqlist_t *
+sqlist_alloc(struct stdata *stp, int kmflag)
+{
+ size_t sqlist_size;
+ sqlist_t *sqlist;
+
+ /*
+ * Allocate 2 syncql_t's for each pushed module. Note that
+ * the sqlist_t structure already has 4 syncql_t's built in:
+ * 2 for the stream head, and 2 for the driver/other stream head.
+ */
+ sqlist_size = 2 * sizeof (syncql_t) * stp->sd_pushcnt +
+ sizeof (sqlist_t);
+ if (STRMATED(stp))
+ sqlist_size += 2 * sizeof (syncql_t) * stp->sd_mate->sd_pushcnt;
+ sqlist = kmem_alloc(sqlist_size, kmflag);
+
+ sqlist->sqlist_head = NULL;
+ sqlist->sqlist_size = sqlist_size;
+ sqlist->sqlist_index = 0;
+
+ return (sqlist);
+}
+
+/*
+ * Free the list created by sqlist_alloc()
+ */
+static void
+sqlist_free(sqlist_t *sqlist)
+{
+ kmem_free(sqlist, sqlist->sqlist_size);
+}
+
+/*
+ * Prevent any new entries into any syncq in this stream.
+ * Used by freezestr.
+ */
+void
+strblock(queue_t *q)
+{
+ struct stdata *stp;
+ syncql_t *sql;
+ sqlist_t *sqlist;
+
+ q = _RD(q);
+
+ stp = STREAM(q);
+ ASSERT(stp != NULL);
+
+ /*
+ * Get a sorted list with all the duplicates removed containing
+ * all the syncqs referenced by this stream.
+ */
+ sqlist = sqlist_build(q, stp, B_FALSE);
+ for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
+ blocksq(sql->sql_sq, SQ_FROZEN, -1);
+ sqlist_free(sqlist);
+}
+
+/*
+ * Release the block on new entries into this stream
+ */
+void
+strunblock(queue_t *q)
+{
+ struct stdata *stp;
+ syncql_t *sql;
+ sqlist_t *sqlist;
+ int drain_needed;
+
+ q = _RD(q);
+
+ /*
+ * Get a sorted list with all the duplicates removed containing
+ * all the syncqs referenced by this stream.
+ * Have to drop the SQ_FROZEN flag on all the syncqs before
+ * starting to drain them; otherwise the draining might
+ * cause a freezestr in some module on the stream (which
+ * would deadlock.)
+ */
+ stp = STREAM(q);
+ ASSERT(stp != NULL);
+ sqlist = sqlist_build(q, stp, B_FALSE);
+ drain_needed = 0;
+ for (sql = sqlist->sqlist_head; sql != NULL; sql = sql->sql_next)
+ drain_needed += dropsq(sql->sql_sq, SQ_FROZEN);
+ if (drain_needed) {
+ for (sql = sqlist->sqlist_head; sql != NULL;
+ sql = sql->sql_next)
+ emptysq(sql->sql_sq);
+ }
+ sqlist_free(sqlist);
+}
+
+#ifdef DEBUG
+static int
+qprocsareon(queue_t *rq)
+{
+ if (rq->q_next == NULL)
+ return (0);
+ return (_WR(rq->q_next)->q_next == _WR(rq));
+}
+
+int
+qclaimed(queue_t *q)
+{
+ uint_t count;
+
+ count = q->q_syncq->sq_count;
+ SUM_SQ_PUTCOUNTS(q->q_syncq, count);
+ return (count != 0);
+}
+
+/*
+ * Check if anyone has frozen this stream with freezestr
+ */
+int
+frozenstr(queue_t *q)
+{
+ return ((q->q_syncq->sq_flags & SQ_FROZEN) != 0);
+}
+#endif /* DEBUG */
+
+/*
+ * Enter a queue.
+ * Obsoleted interface. Should not be used.
+ */
+void
+enterq(queue_t *q)
+{
+ entersq(q->q_syncq, SQ_CALLBACK);
+}
+
+void
+leaveq(queue_t *q)
+{
+ leavesq(q->q_syncq, SQ_CALLBACK);
+}
+
+/*
+ * Enter a perimeter. c_inner and c_outer specifies which concurrency bits
+ * to check.
+ * Wait if SQ_QUEUED is set to preserve ordering between messages and qwriter
+ * calls and the running of open, close and service procedures.
+ *
+ * if c_inner bit is set no need to grab sq_putlocks since we don't care
+ * if other threads have entered or are entering put entry point.
+ *
+ * if c_inner bit is set it might have been posible to use
+ * sq_putlocks/sq_putcounts instead of SQLOCK/sq_count (e.g. to optimize
+ * open/close path for IP) but since the count may need to be decremented in
+ * qwait() we wouldn't know which counter to decrement. Currently counter is
+ * selected by current cpu_seqid and current CPU can change at any moment. XXX
+ * in the future we might use curthread id bits to select the counter and this
+ * would stay constant across routine calls.
+ */
+void
+entersq(syncq_t *sq, int entrypoint)
+{
+ uint16_t count = 0;
+ uint16_t flags;
+ uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
+ uint16_t type;
+ uint_t c_inner = entrypoint & SQ_CI;
+ uint_t c_outer = entrypoint & SQ_CO;
+
+ /*
+ * Increment ref count to keep closes out of this queue.
+ */
+ ASSERT(sq);
+ ASSERT(c_inner && c_outer);
+ mutex_enter(SQLOCK(sq));
+ flags = sq->sq_flags;
+ type = sq->sq_type;
+ if (!(type & c_inner)) {
+ /* Make sure all putcounts now use slowlock. */
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ sq->sq_needexcl++;
+ ASSERT(sq->sq_needexcl != 0); /* wraparound */
+ waitflags |= SQ_MESSAGES;
+ }
+ /*
+ * Wait until we can enter the inner perimeter.
+ * If we want exclusive access we wait until sq_count is 0.
+ * We have to do this before entering the outer perimeter in order
+ * to preserve put/close message ordering.
+ */
+ while ((flags & waitflags) || (!(type & c_inner) && count != 0)) {
+ sq->sq_flags = flags | SQ_WANTWAKEUP;
+ if (!(type & c_inner)) {
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ if (!(type & c_inner)) {
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ flags = sq->sq_flags;
+ }
+
+ if (!(type & c_inner)) {
+ ASSERT(sq->sq_needexcl > 0);
+ sq->sq_needexcl--;
+ if (sq->sq_needexcl == 0) {
+ SQ_PUTCOUNT_SETFAST_LOCKED(sq);
+ }
+ }
+
+ /* Check if we need to enter the outer perimeter */
+ if (!(type & c_outer)) {
+ /*
+ * We have to enter the outer perimeter exclusively before
+ * we can increment sq_count to avoid deadlock. This implies
+ * that we have to re-check sq_flags and sq_count.
+ *
+ * is it possible to have c_inner set when c_outer is not set?
+ */
+ if (!(type & c_inner)) {
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+ mutex_exit(SQLOCK(sq));
+ outer_enter(sq->sq_outer, SQ_GOAWAY);
+ mutex_enter(SQLOCK(sq));
+ flags = sq->sq_flags;
+ /*
+ * there should be no need to recheck sq_putcounts
+ * because outer_enter() has already waited for them to clear
+ * after setting SQ_WRITER.
+ */
+ count = sq->sq_count;
+#ifdef DEBUG
+ /*
+ * SUMCHECK_SQ_PUTCOUNTS should return the sum instead
+ * of doing an ASSERT internally. Others should do
+ * something like
+ * ASSERT(SUMCHECK_SQ_PUTCOUNTS(sq) == 0);
+ * without the need to #ifdef DEBUG it.
+ */
+ SUMCHECK_SQ_PUTCOUNTS(sq, 0);
+#endif
+ while ((flags & (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN)) ||
+ (!(type & c_inner) && count != 0)) {
+ sq->sq_flags = flags | SQ_WANTWAKEUP;
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ count = sq->sq_count;
+ flags = sq->sq_flags;
+ }
+ }
+
+ sq->sq_count++;
+ ASSERT(sq->sq_count != 0); /* Wraparound */
+ if (!(type & c_inner)) {
+ /* Exclusive entry */
+ ASSERT(sq->sq_count == 1);
+ sq->sq_flags |= SQ_EXCL;
+ if (type & c_outer) {
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+ }
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * leave a syncq. announce to framework that closes may proceed.
+ * c_inner and c_outer specifies which concurrency bits
+ * to check.
+ *
+ * must never be called from driver or module put entry point.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ */
+void
+leavesq(syncq_t *sq, int entrypoint)
+{
+ uint16_t flags;
+ uint16_t type;
+ uint_t c_outer = entrypoint & SQ_CO;
+#ifdef DEBUG
+ uint_t c_inner = entrypoint & SQ_CI;
+#endif
+
+ /*
+ * decrement ref count, drain the syncq if possible, and wake up
+ * any waiting close.
+ */
+ ASSERT(sq);
+ ASSERT(c_inner && c_outer);
+ mutex_enter(SQLOCK(sq));
+ flags = sq->sq_flags;
+ type = sq->sq_type;
+ if (flags & (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP)) {
+
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ if (flags & SQ_WANTEXWAKEUP) {
+ flags &= ~SQ_WANTEXWAKEUP;
+ cv_broadcast(&sq->sq_exitwait);
+ }
+
+ if ((flags & SQ_QUEUED) && !(flags & SQ_STAYAWAY)) {
+ /*
+ * The syncq needs to be drained. "Exit" the syncq
+ * before calling drain_syncq.
+ */
+ ASSERT(sq->sq_count != 0);
+ sq->sq_count--;
+ ASSERT((flags & SQ_EXCL) || (type & c_inner));
+ sq->sq_flags = flags & ~SQ_EXCL;
+ drain_syncq(sq);
+ ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
+ /* Check if we need to exit the outer perimeter */
+ /* XXX will this ever be true? */
+ if (!(type & c_outer))
+ outer_exit(sq->sq_outer);
+ return;
+ }
+ }
+ ASSERT(sq->sq_count != 0);
+ sq->sq_count--;
+ ASSERT((flags & SQ_EXCL) || (type & c_inner));
+ sq->sq_flags = flags & ~SQ_EXCL;
+ mutex_exit(SQLOCK(sq));
+
+ /* Check if we need to exit the outer perimeter */
+ if (!(sq->sq_type & c_outer))
+ outer_exit(sq->sq_outer);
+}
+
+/*
+ * Prevent q_next from changing in this stream by incrementing sq_count.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ */
+void
+claimq(queue_t *qp)
+{
+ syncq_t *sq = qp->q_syncq;
+
+ mutex_enter(SQLOCK(sq));
+ sq->sq_count++;
+ ASSERT(sq->sq_count != 0); /* Wraparound */
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Undo claimq.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ */
+void
+releaseq(queue_t *qp)
+{
+ syncq_t *sq = qp->q_syncq;
+ uint16_t flags;
+
+ mutex_enter(SQLOCK(sq));
+ ASSERT(sq->sq_count > 0);
+ sq->sq_count--;
+
+ flags = sq->sq_flags;
+ if (flags & (SQ_WANTWAKEUP|SQ_QUEUED)) {
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ sq->sq_flags = flags;
+ if ((flags & SQ_QUEUED) && !(flags & (SQ_STAYAWAY|SQ_EXCL))) {
+ /*
+ * To prevent potential recursive invocation of
+ * drain_syncq we do not call drain_syncq if count is
+ * non-zero.
+ */
+ if (sq->sq_count == 0) {
+ drain_syncq(sq);
+ return;
+ } else
+ sqenable(sq);
+ }
+ }
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Prevent q_next from changing in this stream by incrementing sd_refcnt.
+ */
+void
+claimstr(queue_t *qp)
+{
+ struct stdata *stp = STREAM(qp);
+
+ mutex_enter(&stp->sd_reflock);
+ stp->sd_refcnt++;
+ ASSERT(stp->sd_refcnt != 0); /* Wraparound */
+ mutex_exit(&stp->sd_reflock);
+}
+
+/*
+ * Undo claimstr.
+ */
+void
+releasestr(queue_t *qp)
+{
+ struct stdata *stp = STREAM(qp);
+
+ mutex_enter(&stp->sd_reflock);
+ ASSERT(stp->sd_refcnt != 0);
+ stp->sd_refcnt--;
+ cv_broadcast(&stp->sd_monitor);
+ mutex_exit(&stp->sd_reflock);
+}
+
+static syncq_t *
+new_syncq(void)
+{
+ return (kmem_cache_alloc(syncq_cache, KM_SLEEP));
+}
+
+static void
+free_syncq(syncq_t *sq)
+{
+ ASSERT(sq->sq_head == NULL);
+ ASSERT(sq->sq_outer == NULL);
+ ASSERT(sq->sq_callbpend == NULL);
+ ASSERT((sq->sq_onext == NULL && sq->sq_oprev == NULL) ||
+ (sq->sq_onext == sq && sq->sq_oprev == sq));
+
+ if (sq->sq_ciputctrl != NULL) {
+ ASSERT(sq->sq_nciputctrl == n_ciputctrl - 1);
+ SUMCHECK_CIPUTCTRL_COUNTS(sq->sq_ciputctrl,
+ sq->sq_nciputctrl, 0);
+ ASSERT(ciputctrl_cache != NULL);
+ kmem_cache_free(ciputctrl_cache, sq->sq_ciputctrl);
+ }
+
+ sq->sq_tail = NULL;
+ sq->sq_evhead = NULL;
+ sq->sq_evtail = NULL;
+ sq->sq_ciputctrl = NULL;
+ sq->sq_nciputctrl = 0;
+ sq->sq_count = 0;
+ sq->sq_rmqcount = 0;
+ sq->sq_callbflags = 0;
+ sq->sq_cancelid = 0;
+ sq->sq_next = NULL;
+ sq->sq_needexcl = 0;
+ sq->sq_svcflags = 0;
+ sq->sq_nqueues = 0;
+ sq->sq_pri = 0;
+ sq->sq_onext = NULL;
+ sq->sq_oprev = NULL;
+ sq->sq_flags = 0;
+ sq->sq_type = 0;
+ sq->sq_servcount = 0;
+
+ kmem_cache_free(syncq_cache, sq);
+}
+
+/* Outer perimeter code */
+
+/*
+ * The outer syncq uses the fields and flags in the syncq slightly
+ * differently from the inner syncqs.
+ * sq_count Incremented when there are pending or running
+ * writers at the outer perimeter to prevent the set of
+ * inner syncqs that belong to the outer perimeter from
+ * changing.
+ * sq_head/tail List of deferred qwriter(OUTER) operations.
+ *
+ * SQ_BLOCKED Set to prevent traversing of sq_next,sq_prev while
+ * inner syncqs are added to or removed from the
+ * outer perimeter.
+ * SQ_QUEUED sq_head/tail has messages or eventsqueued.
+ *
+ * SQ_WRITER A thread is currently traversing all the inner syncqs
+ * setting the SQ_WRITER flag.
+ */
+
+/*
+ * Get write access at the outer perimeter.
+ * Note that read access is done by entersq, putnext, and put by simply
+ * incrementing sq_count in the inner syncq.
+ *
+ * Waits until "flags" is no longer set in the outer to prevent multiple
+ * threads from having write access at the same time. SQ_WRITER has to be part
+ * of "flags".
+ *
+ * Increases sq_count on the outer syncq to keep away outer_insert/remove
+ * until the outer_exit is finished.
+ *
+ * outer_enter is vulnerable to starvation since it does not prevent new
+ * threads from entering the inner syncqs while it is waiting for sq_count to
+ * go to zero.
+ */
+void
+outer_enter(syncq_t *outer, uint16_t flags)
+{
+ syncq_t *sq;
+ int wait_needed;
+ uint16_t count;
+
+ ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
+ outer->sq_oprev != NULL);
+ ASSERT(flags & SQ_WRITER);
+
+retry:
+ mutex_enter(SQLOCK(outer));
+ while (outer->sq_flags & flags) {
+ outer->sq_flags |= SQ_WANTWAKEUP;
+ cv_wait(&outer->sq_wait, SQLOCK(outer));
+ }
+
+ ASSERT(!(outer->sq_flags & SQ_WRITER));
+ outer->sq_flags |= SQ_WRITER;
+ outer->sq_count++;
+ ASSERT(outer->sq_count != 0); /* wraparound */
+ wait_needed = 0;
+ /*
+ * Set SQ_WRITER on all the inner syncqs while holding
+ * the SQLOCK on the outer syncq. This ensures that the changing
+ * of SQ_WRITER is atomic under the outer SQLOCK.
+ */
+ for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
+ mutex_enter(SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ sq->sq_flags |= SQ_WRITER;
+ SUM_SQ_PUTCOUNTS(sq, count);
+ if (count != 0)
+ wait_needed = 1;
+ SQ_PUTLOCKS_EXIT(sq);
+ mutex_exit(SQLOCK(sq));
+ }
+ mutex_exit(SQLOCK(outer));
+
+ /*
+ * Get everybody out of the syncqs sequentially.
+ * Note that we don't actually need to aqiure the PUTLOCKS, since
+ * we have already cleared the fastbit, and set QWRITER. By
+ * definition, the count can not increase since putnext will
+ * take the slowlock path (and the purpose of aquiring the
+ * putlocks was to make sure it didn't increase while we were
+ * waiting).
+ *
+ * Note that we still aquire the PUTLOCKS to be safe.
+ */
+ if (wait_needed) {
+ for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
+ mutex_enter(SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ while (count != 0) {
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ SQ_PUTLOCKS_EXIT(sq);
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ SQ_PUTLOCKS_EXIT(sq);
+ mutex_exit(SQLOCK(sq));
+ }
+ /*
+ * Verify that none of the flags got set while we
+ * were waiting for the sq_counts to drop.
+ * If this happens we exit and retry entering the
+ * outer perimeter.
+ */
+ mutex_enter(SQLOCK(outer));
+ if (outer->sq_flags & (flags & ~SQ_WRITER)) {
+ mutex_exit(SQLOCK(outer));
+ outer_exit(outer);
+ goto retry;
+ }
+ mutex_exit(SQLOCK(outer));
+ }
+}
+
+/*
+ * Drop the write access at the outer perimeter.
+ * Read access is dropped implicitly (by putnext, put, and leavesq) by
+ * decrementing sq_count.
+ */
+void
+outer_exit(syncq_t *outer)
+{
+ syncq_t *sq;
+ int drain_needed;
+ uint16_t flags;
+
+ ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
+ outer->sq_oprev != NULL);
+ ASSERT(MUTEX_NOT_HELD(SQLOCK(outer)));
+
+ /*
+ * Atomically (from the perspective of threads calling become_writer)
+ * drop the write access at the outer perimeter by holding
+ * SQLOCK(outer) across all the dropsq calls and the resetting of
+ * SQ_WRITER.
+ * This defines a locking order between the outer perimeter
+ * SQLOCK and the inner perimeter SQLOCKs.
+ */
+ mutex_enter(SQLOCK(outer));
+ flags = outer->sq_flags;
+ ASSERT(outer->sq_flags & SQ_WRITER);
+ if (flags & SQ_QUEUED) {
+ write_now(outer);
+ flags = outer->sq_flags;
+ }
+
+ /*
+ * sq_onext is stable since sq_count has not yet been decreased.
+ * Reset the SQ_WRITER flags in all syncqs.
+ * After dropping SQ_WRITER on the outer syncq we empty all the
+ * inner syncqs.
+ */
+ drain_needed = 0;
+ for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
+ drain_needed += dropsq(sq, SQ_WRITER);
+ ASSERT(!(outer->sq_flags & SQ_QUEUED));
+ flags &= ~SQ_WRITER;
+ if (drain_needed) {
+ outer->sq_flags = flags;
+ mutex_exit(SQLOCK(outer));
+ for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext)
+ emptysq(sq);
+ mutex_enter(SQLOCK(outer));
+ flags = outer->sq_flags;
+ }
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&outer->sq_wait);
+ }
+ outer->sq_flags = flags;
+ ASSERT(outer->sq_count > 0);
+ outer->sq_count--;
+ mutex_exit(SQLOCK(outer));
+}
+
+/*
+ * Add another syncq to an outer perimeter.
+ * Block out all other access to the outer perimeter while it is being
+ * changed using blocksq.
+ * Assumes that the caller has *not* done an outer_enter.
+ *
+ * Vulnerable to starvation in blocksq.
+ */
+static void
+outer_insert(syncq_t *outer, syncq_t *sq)
+{
+ ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
+ outer->sq_oprev != NULL);
+ ASSERT(sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL); /* Can't be in an outer perimeter */
+
+ /* Get exclusive access to the outer perimeter list */
+ blocksq(outer, SQ_BLOCKED, 0);
+ ASSERT(outer->sq_flags & SQ_BLOCKED);
+ ASSERT(!(outer->sq_flags & SQ_WRITER));
+
+ mutex_enter(SQLOCK(sq));
+ sq->sq_outer = outer;
+ outer->sq_onext->sq_oprev = sq;
+ sq->sq_onext = outer->sq_onext;
+ outer->sq_onext = sq;
+ sq->sq_oprev = outer;
+ mutex_exit(SQLOCK(sq));
+ unblocksq(outer, SQ_BLOCKED, 1);
+}
+
+/*
+ * Remove a syncq from an outer perimeter.
+ * Block out all other access to the outer perimeter while it is being
+ * changed using blocksq.
+ * Assumes that the caller has *not* done an outer_enter.
+ *
+ * Vulnerable to starvation in blocksq.
+ */
+static void
+outer_remove(syncq_t *outer, syncq_t *sq)
+{
+ ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
+ outer->sq_oprev != NULL);
+ ASSERT(sq->sq_outer == outer);
+
+ /* Get exclusive access to the outer perimeter list */
+ blocksq(outer, SQ_BLOCKED, 0);
+ ASSERT(outer->sq_flags & SQ_BLOCKED);
+ ASSERT(!(outer->sq_flags & SQ_WRITER));
+
+ mutex_enter(SQLOCK(sq));
+ sq->sq_outer = NULL;
+ sq->sq_onext->sq_oprev = sq->sq_oprev;
+ sq->sq_oprev->sq_onext = sq->sq_onext;
+ sq->sq_oprev = sq->sq_onext = NULL;
+ mutex_exit(SQLOCK(sq));
+ unblocksq(outer, SQ_BLOCKED, 1);
+}
+
+/*
+ * Queue a deferred qwriter(OUTER) callback for this outer perimeter.
+ * If this is the first callback for this outer perimeter then add
+ * this outer perimeter to the list of outer perimeters that
+ * the qwriter_outer_thread will process.
+ *
+ * Increments sq_count in the outer syncq to prevent the membership
+ * of the outer perimeter (in terms of inner syncqs) to change while
+ * the callback is pending.
+ */
+static void
+queue_writer(syncq_t *outer, void (*func)(), queue_t *q, mblk_t *mp)
+{
+ ASSERT(MUTEX_HELD(SQLOCK(outer)));
+
+ mp->b_prev = (mblk_t *)func;
+ mp->b_queue = q;
+ mp->b_next = NULL;
+ outer->sq_count++; /* Decremented when dequeued */
+ ASSERT(outer->sq_count != 0); /* Wraparound */
+ if (outer->sq_evhead == NULL) {
+ /* First message. */
+ outer->sq_evhead = outer->sq_evtail = mp;
+ outer->sq_flags |= SQ_EVENTS;
+ mutex_exit(SQLOCK(outer));
+ STRSTAT(qwr_outer);
+ (void) taskq_dispatch(streams_taskq,
+ (task_func_t *)qwriter_outer_service, outer, TQ_SLEEP);
+ } else {
+ ASSERT(outer->sq_flags & SQ_EVENTS);
+ outer->sq_evtail->b_next = mp;
+ outer->sq_evtail = mp;
+ mutex_exit(SQLOCK(outer));
+ }
+}
+
+/*
+ * Try and upgrade to write access at the outer perimeter. If this can
+ * not be done without blocking then queue the callback to be done
+ * by the qwriter_outer_thread.
+ *
+ * This routine can only be called from put or service procedures plus
+ * asynchronous callback routines that have properly entered to
+ * queue (with entersq.) Thus qwriter(OUTER) assumes the caller has one claim
+ * on the syncq associated with q.
+ */
+void
+qwriter_outer(queue_t *q, mblk_t *mp, void (*func)())
+{
+ syncq_t *osq, *sq, *outer;
+ int failed;
+ uint16_t flags;
+
+ osq = q->q_syncq;
+ outer = osq->sq_outer;
+ if (outer == NULL)
+ panic("qwriter(PERIM_OUTER): no outer perimeter");
+ ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
+ outer->sq_oprev != NULL);
+
+ mutex_enter(SQLOCK(outer));
+ flags = outer->sq_flags;
+ /*
+ * If some thread is traversing sq_next, or if we are blocked by
+ * outer_insert or outer_remove, or if the we already have queued
+ * callbacks, then queue this callback for later processing.
+ *
+ * Also queue the qwriter for an interrupt thread in order
+ * to reduce the time spent running at high IPL.
+ * to identify there are events.
+ */
+ if ((flags & SQ_GOAWAY) || (curthread->t_pri >= kpreemptpri)) {
+ /*
+ * Queue the become_writer request.
+ * The queueing is atomic under SQLOCK(outer) in order
+ * to synchronize with outer_exit.
+ * queue_writer will drop the outer SQLOCK
+ */
+ if (flags & SQ_BLOCKED) {
+ /* Must set SQ_WRITER on inner perimeter */
+ mutex_enter(SQLOCK(osq));
+ osq->sq_flags |= SQ_WRITER;
+ mutex_exit(SQLOCK(osq));
+ } else {
+ if (!(flags & SQ_WRITER)) {
+ /*
+ * The outer could have been SQ_BLOCKED thus
+ * SQ_WRITER might not be set on the inner.
+ */
+ mutex_enter(SQLOCK(osq));
+ osq->sq_flags |= SQ_WRITER;
+ mutex_exit(SQLOCK(osq));
+ }
+ ASSERT(osq->sq_flags & SQ_WRITER);
+ }
+ queue_writer(outer, func, q, mp);
+ return;
+ }
+ /*
+ * We are half-way to exclusive access to the outer perimeter.
+ * Prevent any outer_enter, qwriter(OUTER), or outer_insert/remove
+ * while the inner syncqs are traversed.
+ */
+ outer->sq_count++;
+ ASSERT(outer->sq_count != 0); /* wraparound */
+ flags |= SQ_WRITER;
+ /*
+ * Check if we can run the function immediately. Mark all
+ * syncqs with the writer flag to prevent new entries into
+ * put and service procedures.
+ *
+ * Set SQ_WRITER on all the inner syncqs while holding
+ * the SQLOCK on the outer syncq. This ensures that the changing
+ * of SQ_WRITER is atomic under the outer SQLOCK.
+ */
+ failed = 0;
+ for (sq = outer->sq_onext; sq != outer; sq = sq->sq_onext) {
+ uint16_t count;
+ uint_t maxcnt = (sq == osq) ? 1 : 0;
+
+ mutex_enter(SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ if (sq->sq_count > maxcnt)
+ failed = 1;
+ sq->sq_flags |= SQ_WRITER;
+ SQ_PUTLOCKS_EXIT(sq);
+ mutex_exit(SQLOCK(sq));
+ }
+ if (failed) {
+ /*
+ * Some other thread has a read claim on the outer perimeter.
+ * Queue the callback for deferred processing.
+ *
+ * queue_writer will set SQ_QUEUED before we drop SQ_WRITER
+ * so that other qwriter(OUTER) calls will queue their
+ * callbacks as well. queue_writer increments sq_count so we
+ * decrement to compensate for the our increment.
+ *
+ * Dropping SQ_WRITER enables the writer thread to work
+ * on this outer perimeter.
+ */
+ outer->sq_flags = flags;
+ queue_writer(outer, func, q, mp);
+ /* queue_writer dropper the lock */
+ mutex_enter(SQLOCK(outer));
+ ASSERT(outer->sq_count > 0);
+ outer->sq_count--;
+ ASSERT(outer->sq_flags & SQ_WRITER);
+ flags = outer->sq_flags;
+ flags &= ~SQ_WRITER;
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&outer->sq_wait);
+ }
+ outer->sq_flags = flags;
+ mutex_exit(SQLOCK(outer));
+ return;
+ } else {
+ outer->sq_flags = flags;
+ mutex_exit(SQLOCK(outer));
+ }
+
+ /* Can run it immediately */
+ (*func)(q, mp);
+
+ outer_exit(outer);
+}
+
+/*
+ * Dequeue all writer callbacks from the outer perimeter and run them.
+ */
+static void
+write_now(syncq_t *outer)
+{
+ mblk_t *mp;
+ queue_t *q;
+ void (*func)();
+
+ ASSERT(MUTEX_HELD(SQLOCK(outer)));
+ ASSERT(outer->sq_outer == NULL && outer->sq_onext != NULL &&
+ outer->sq_oprev != NULL);
+ while ((mp = outer->sq_evhead) != NULL) {
+ /*
+ * queues cannot be placed on the queuelist on the outer
+ * perimiter.
+ */
+ ASSERT(!(outer->sq_flags & SQ_MESSAGES));
+ ASSERT((outer->sq_flags & SQ_EVENTS));
+
+ outer->sq_evhead = mp->b_next;
+ if (outer->sq_evhead == NULL) {
+ outer->sq_evtail = NULL;
+ outer->sq_flags &= ~SQ_EVENTS;
+ }
+ ASSERT(outer->sq_count != 0);
+ outer->sq_count--; /* Incremented when enqueued. */
+ mutex_exit(SQLOCK(outer));
+ /*
+ * Drop the message if the queue is closing.
+ * Make sure that the queue is "claimed" when the callback
+ * is run in order to satisfy various ASSERTs.
+ */
+ q = mp->b_queue;
+ func = (void (*)())mp->b_prev;
+ ASSERT(func != NULL);
+ mp->b_next = mp->b_prev = NULL;
+ if (q->q_flag & QWCLOSE) {
+ freemsg(mp);
+ } else {
+ claimq(q);
+ (*func)(q, mp);
+ releaseq(q);
+ }
+ mutex_enter(SQLOCK(outer));
+ }
+ ASSERT(MUTEX_HELD(SQLOCK(outer)));
+}
+
+/*
+ * The list of messages on the inner syncq is effectively hashed
+ * by destination queue. These destination queues are doubly
+ * linked lists (hopefully) in priority order. Messages are then
+ * put on the queue referenced by the q_sqhead/q_sqtail elements.
+ * Additional messages are linked together by the b_next/b_prev
+ * elements in the mblk, with (similar to putq()) the first message
+ * having a NULL b_prev and the last message having a NULL b_next.
+ *
+ * Events, such as qwriter callbacks, are put onto a list in FIFO
+ * order referenced by sq_evhead, and sq_evtail. This is a singly
+ * linked list, and messages here MUST be processed in the order queued.
+ */
+
+/*
+ * Run the events on the syncq event list (sq_evhead).
+ * Assumes there is only one claim on the syncq, it is
+ * already exclusive (SQ_EXCL set), and the SQLOCK held.
+ * Messages here are processed in order, with the SQ_EXCL bit
+ * held all the way through till the last message is processed.
+ */
+void
+sq_run_events(syncq_t *sq)
+{
+ mblk_t *bp;
+ queue_t *qp;
+ uint16_t flags = sq->sq_flags;
+ void (*func)();
+
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL) ||
+ (sq->sq_outer != NULL && sq->sq_onext != NULL &&
+ sq->sq_oprev != NULL));
+
+ ASSERT(flags & SQ_EXCL);
+ ASSERT(sq->sq_count == 1);
+
+ /*
+ * We need to process all of the events on this list. It
+ * is possible that new events will be added while we are
+ * away processing a callback, so on every loop, we start
+ * back at the beginning of the list.
+ */
+ /*
+ * We have to reaccess sq_evhead since there is a
+ * possibility of a new entry while we were running
+ * the callback.
+ */
+ for (bp = sq->sq_evhead; bp != NULL; bp = sq->sq_evhead) {
+ ASSERT(bp->b_queue->q_syncq == sq);
+ ASSERT(sq->sq_flags & SQ_EVENTS);
+
+ qp = bp->b_queue;
+ func = (void (*)())bp->b_prev;
+ ASSERT(func != NULL);
+
+ /*
+ * Messages from the event queue must be taken off in
+ * FIFO order.
+ */
+ ASSERT(sq->sq_evhead == bp);
+ sq->sq_evhead = bp->b_next;
+
+ if (bp->b_next == NULL) {
+ /* Deleting last */
+ ASSERT(sq->sq_evtail == bp);
+ sq->sq_evtail = NULL;
+ sq->sq_flags &= ~SQ_EVENTS;
+ }
+ bp->b_prev = bp->b_next = NULL;
+ ASSERT(bp->b_datap->db_ref != 0);
+
+ mutex_exit(SQLOCK(sq));
+
+ (*func)(qp, bp);
+
+ mutex_enter(SQLOCK(sq));
+ /*
+ * re-read the flags, since they could have changed.
+ */
+ flags = sq->sq_flags;
+ ASSERT(flags & SQ_EXCL);
+ }
+ ASSERT(sq->sq_evhead == NULL && sq->sq_evtail == NULL);
+ ASSERT(!(sq->sq_flags & SQ_EVENTS));
+
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ if (flags & SQ_WANTEXWAKEUP) {
+ flags &= ~SQ_WANTEXWAKEUP;
+ cv_broadcast(&sq->sq_exitwait);
+ }
+ sq->sq_flags = flags;
+}
+
+/*
+ * Put messages on the event list.
+ * If we can go exclusive now, do so and process the event list, otherwise
+ * let the last claim service this list (or wake the sqthread).
+ * This procedure assumes SQLOCK is held. To run the event list, it
+ * must be called with no claims.
+ */
+static void
+sqfill_events(syncq_t *sq, queue_t *q, mblk_t *mp, void (*func)())
+{
+ uint16_t count;
+
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ ASSERT(func != NULL);
+
+ /*
+ * This is a callback. Add it to the list of callbacks
+ * and see about upgrading.
+ */
+ mp->b_prev = (mblk_t *)func;
+ mp->b_queue = q;
+ mp->b_next = NULL;
+ if (sq->sq_evhead == NULL) {
+ sq->sq_evhead = sq->sq_evtail = mp;
+ sq->sq_flags |= SQ_EVENTS;
+ } else {
+ ASSERT(sq->sq_evtail != NULL);
+ ASSERT(sq->sq_evtail->b_next == NULL);
+ ASSERT(sq->sq_flags & SQ_EVENTS);
+ sq->sq_evtail->b_next = mp;
+ sq->sq_evtail = mp;
+ }
+ /*
+ * We have set SQ_EVENTS, so threads will have to
+ * unwind out of the perimiter, and new entries will
+ * not grab a putlock. But we still need to know
+ * how many threads have already made a claim to the
+ * syncq, so grab the putlocks, and sum the counts.
+ * If there are no claims on the syncq, we can upgrade
+ * to exclusive, and run the event list.
+ * NOTE: We hold the SQLOCK, so we can just grab the
+ * putlocks.
+ */
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ /*
+ * We have no claim, so we need to check if there
+ * are no others, then we can upgrade.
+ */
+ /*
+ * There are currently no claims on
+ * the syncq by this thread (at least on this entry). The thread who has
+ * the claim should drain syncq.
+ */
+ if (count > 0) {
+ /*
+ * Can't upgrade - other threads inside.
+ */
+ SQ_PUTLOCKS_EXIT(sq);
+ mutex_exit(SQLOCK(sq));
+ return;
+ }
+ /*
+ * Need to set SQ_EXCL and make a claim on the syncq.
+ */
+ ASSERT((sq->sq_flags & SQ_EXCL) == 0);
+ sq->sq_flags |= SQ_EXCL;
+ ASSERT(sq->sq_count == 0);
+ sq->sq_count++;
+ SQ_PUTLOCKS_EXIT(sq);
+
+ /* Process the events list */
+ sq_run_events(sq);
+
+ /*
+ * Release our claim...
+ */
+ sq->sq_count--;
+
+ /*
+ * And release SQ_EXCL.
+ * We don't need to acquire the putlocks to release
+ * SQ_EXCL, since we are exclusive, and hold the SQLOCK.
+ */
+ sq->sq_flags &= ~SQ_EXCL;
+
+ /*
+ * sq_run_events should have released SQ_EXCL
+ */
+ ASSERT(!(sq->sq_flags & SQ_EXCL));
+
+ /*
+ * If anything happened while we were running the
+ * events (or was there before), we need to process
+ * them now. We shouldn't be exclusive sine we
+ * released the perimiter above (plus, we asserted
+ * for it).
+ */
+ if (!(sq->sq_flags & SQ_STAYAWAY) && (sq->sq_flags & SQ_QUEUED))
+ drain_syncq(sq);
+ else
+ mutex_exit(SQLOCK(sq));
+}
+
+/*
+ * Perform delayed processing. The caller has to make sure that it is safe
+ * to enter the syncq (e.g. by checking that none of the SQ_STAYAWAY bits are
+ * set.)
+ *
+ * Assume that the caller has NO claims on the syncq. However, a claim
+ * on the syncq does not indicate that a thread is draining the syncq.
+ * There may be more claims on the syncq than there are threads draining
+ * (i.e. #_threads_draining <= sq_count)
+ *
+ * drain_syncq has to terminate when one of the SQ_STAYAWAY bits gets set
+ * in order to preserve qwriter(OUTER) ordering constraints.
+ *
+ * sq_putcount only needs to be checked when dispatching the queued
+ * writer call for CIPUT sync queue, but this is handled in sq_run_events.
+ */
+void
+drain_syncq(syncq_t *sq)
+{
+ queue_t *qp;
+ uint16_t count;
+ uint16_t type = sq->sq_type;
+ uint16_t flags = sq->sq_flags;
+ boolean_t bg_service = sq->sq_svcflags & SQ_SERVICE;
+
+ TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
+ "drain_syncq start:%p", sq);
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL) ||
+ (sq->sq_outer != NULL && sq->sq_onext != NULL &&
+ sq->sq_oprev != NULL));
+
+ /*
+ * Drop SQ_SERVICE flag.
+ */
+ if (bg_service)
+ sq->sq_svcflags &= ~SQ_SERVICE;
+
+ /*
+ * If SQ_EXCL is set, someone else is processing this syncq - let him
+ * finish the job.
+ */
+ if (flags & SQ_EXCL) {
+ if (bg_service) {
+ ASSERT(sq->sq_servcount != 0);
+ sq->sq_servcount--;
+ }
+ mutex_exit(SQLOCK(sq));
+ return;
+ }
+
+ /*
+ * This routine can be called by a background thread if
+ * it was scheduled by a hi-priority thread. SO, if there are
+ * NOT messages queued, return (remember, we have the SQLOCK,
+ * and it cannot change until we release it). Wakeup any waiters also.
+ */
+ if (!(flags & SQ_QUEUED)) {
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ if (flags & SQ_WANTEXWAKEUP) {
+ flags &= ~SQ_WANTEXWAKEUP;
+ cv_broadcast(&sq->sq_exitwait);
+ }
+ sq->sq_flags = flags;
+ if (bg_service) {
+ ASSERT(sq->sq_servcount != 0);
+ sq->sq_servcount--;
+ }
+ mutex_exit(SQLOCK(sq));
+ return;
+ }
+
+ /*
+ * If this is not a concurrent put perimiter, we need to
+ * become exclusive to drain. Also, if not CIPUT, we would
+ * not have acquired a putlock, so we don't need to check
+ * the putcounts. If not entering with a claim, we test
+ * for sq_count == 0.
+ */
+ type = sq->sq_type;
+ if (!(type & SQ_CIPUT)) {
+ if (sq->sq_count > 1) {
+ if (bg_service) {
+ ASSERT(sq->sq_servcount != 0);
+ sq->sq_servcount--;
+ }
+ mutex_exit(SQLOCK(sq));
+ return;
+ }
+ sq->sq_flags |= SQ_EXCL;
+ }
+
+ /*
+ * This is where we make a claim to the syncq.
+ * This can either be done by incrementing a putlock, or
+ * the sq_count. But since we already have the SQLOCK
+ * here, we just bump the sq_count.
+ *
+ * Note that after we make a claim, we need to let the code
+ * fall through to the end of this routine to clean itself
+ * up. A return in the while loop will put the syncq in a
+ * very bad state.
+ */
+ sq->sq_count++;
+ ASSERT(sq->sq_count != 0); /* wraparound */
+
+ while ((flags = sq->sq_flags) & SQ_QUEUED) {
+ /*
+ * If we are told to stayaway or went exclusive,
+ * we are done.
+ */
+ if (flags & (SQ_STAYAWAY)) {
+ break;
+ }
+
+ /*
+ * If there are events to run, do so.
+ * We have one claim to the syncq, so if there are
+ * more than one, other threads are running.
+ */
+ if (sq->sq_evhead != NULL) {
+ ASSERT(sq->sq_flags & SQ_EVENTS);
+
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ if (count > 1) {
+ SQ_PUTLOCKS_EXIT(sq);
+ /* Can't upgrade - other threads inside */
+ break;
+ }
+ ASSERT((flags & SQ_EXCL) == 0);
+ sq->sq_flags = flags | SQ_EXCL;
+ SQ_PUTLOCKS_EXIT(sq);
+ /*
+ * we have the only claim, run the events,
+ * sq_run_events will clear the SQ_EXCL flag.
+ */
+ sq_run_events(sq);
+
+ /*
+ * If this is a CIPUT perimiter, we need
+ * to drop the SQ_EXCL flag so we can properly
+ * continue draining the syncq.
+ */
+ if (type & SQ_CIPUT) {
+ ASSERT(sq->sq_flags & SQ_EXCL);
+ sq->sq_flags &= ~SQ_EXCL;
+ }
+
+ /*
+ * And go back to the beginning just in case
+ * anything changed while we were away.
+ */
+ ASSERT((sq->sq_flags & SQ_EXCL) || (type & SQ_CIPUT));
+ continue;
+ }
+
+ ASSERT(sq->sq_evhead == NULL);
+ ASSERT(!(sq->sq_flags & SQ_EVENTS));
+
+ /*
+ * Find the queue that is not draining.
+ *
+ * q_draining is protected by QLOCK which we do not hold.
+ * But if it was set, then a thread was draining, and if it gets
+ * cleared, then it was because the thread has successfully
+ * drained the syncq, or a GOAWAY state occured. For the GOAWAY
+ * state to happen, a thread needs the SQLOCK which we hold, and
+ * if there was such a flag, we whould have already seen it.
+ */
+
+ for (qp = sq->sq_head;
+ qp != NULL && (qp->q_draining ||
+ (qp->q_sqflags & Q_SQDRAINING));
+ qp = qp->q_sqnext)
+ ;
+
+ if (qp == NULL)
+ break;
+
+ /*
+ * We have a queue to work on, and we hold the
+ * SQLOCK and one claim, call qdrain_syncq.
+ * This means we need to release the SQLOCK and
+ * aquire the QLOCK (OK since we have a claim).
+ * Note that qdrain_syncq will actually dequeue
+ * this queue from the sq_head list when it is
+ * convinced all the work is done and release
+ * the QLOCK before returning.
+ */
+ qp->q_sqflags |= Q_SQDRAINING;
+ mutex_exit(SQLOCK(sq));
+ mutex_enter(QLOCK(qp));
+ qdrain_syncq(sq, qp);
+ mutex_enter(SQLOCK(sq));
+
+ /* The queue is drained */
+ ASSERT(qp->q_sqflags & Q_SQDRAINING);
+ qp->q_sqflags &= ~Q_SQDRAINING;
+ /*
+ * NOTE: After this point qp should not be used since it may be
+ * closed.
+ */
+ }
+
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ flags = sq->sq_flags;
+
+ /*
+ * sq->sq_head cannot change because we hold the
+ * sqlock. However, a thread CAN decide that it is no longer
+ * going to drain that queue. However, this should be due to
+ * a GOAWAY state, and we should see that here.
+ *
+ * This loop is not very efficient. One solution may be adding a second
+ * pointer to the "draining" queue, but it is difficult to do when
+ * queues are inserted in the middle due to priority ordering. Another
+ * possibility is to yank the queue out of the sq list and put it onto
+ * the "draining list" and then put it back if it can't be drained.
+ */
+
+ ASSERT((sq->sq_head == NULL) || (flags & SQ_GOAWAY) ||
+ (type & SQ_CI) || sq->sq_head->q_draining);
+
+ /* Drop SQ_EXCL for non-CIPUT perimiters */
+ if (!(type & SQ_CIPUT))
+ flags &= ~SQ_EXCL;
+ ASSERT((flags & SQ_EXCL) == 0);
+
+ /* Wake up any waiters. */
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ if (flags & SQ_WANTEXWAKEUP) {
+ flags &= ~SQ_WANTEXWAKEUP;
+ cv_broadcast(&sq->sq_exitwait);
+ }
+ sq->sq_flags = flags;
+
+ ASSERT(sq->sq_count != 0);
+ /* Release our claim. */
+ sq->sq_count--;
+
+ if (bg_service) {
+ ASSERT(sq->sq_servcount != 0);
+ sq->sq_servcount--;
+ }
+
+ mutex_exit(SQLOCK(sq));
+
+ TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
+ "drain_syncq end:%p", sq);
+}
+
+
+/*
+ *
+ * qdrain_syncq can be called (currently) from only one of two places:
+ * drain_syncq
+ * putnext (or some variation of it).
+ * and eventually
+ * qwait(_sig)
+ *
+ * If called from drain_syncq, we found it in the list
+ * of queue's needing service, so there is work to be done (or it
+ * wouldn't be on the list).
+ *
+ * If called from some putnext variation, it was because the
+ * perimiter is open, but messages are blocking a putnext and
+ * there is not a thread working on it. Now a thread could start
+ * working on it while we are getting ready to do so ourself, but
+ * the thread would set the q_draining flag, and we can spin out.
+ *
+ * As for qwait(_sig), I think I shall let it continue to call
+ * drain_syncq directly (after all, it will get here eventually).
+ *
+ * qdrain_syncq has to terminate when:
+ * - one of the SQ_STAYAWAY bits gets set to preserve qwriter(OUTER) ordering
+ * - SQ_EVENTS gets set to preserve qwriter(INNER) ordering
+ *
+ * ASSUMES:
+ * One claim
+ * QLOCK held
+ * SQLOCK not held
+ * Will release QLOCK before returning
+ */
+void
+qdrain_syncq(syncq_t *sq, queue_t *q)
+{
+ mblk_t *bp;
+ boolean_t do_clr;
+#ifdef DEBUG
+ uint16_t count;
+#endif
+
+ TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_START,
+ "drain_syncq start:%p", sq);
+ ASSERT(q->q_syncq == sq);
+ ASSERT(MUTEX_HELD(QLOCK(q)));
+ ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
+ /*
+ * For non-CIPUT perimiters, we should be called with the
+ * exclusive bit set already. For non-CIPUT perimiters we
+ * will be doing a concurrent drain, so it better not be set.
+ */
+ ASSERT((sq->sq_flags & (SQ_EXCL|SQ_CIPUT)));
+ ASSERT(!((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)));
+ ASSERT((sq->sq_type & SQ_CIPUT) || (sq->sq_flags & SQ_EXCL));
+ /*
+ * All outer pointers are set, or none of them are
+ */
+ ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL) ||
+ (sq->sq_outer != NULL && sq->sq_onext != NULL &&
+ sq->sq_oprev != NULL));
+#ifdef DEBUG
+ count = sq->sq_count;
+ /*
+ * This is OK without the putlocks, because we have one
+ * claim either from the sq_count, or a putcount. We could
+ * get an erroneous value from other counts, but ours won't
+ * change, so one way or another, we will have at least a
+ * value of one.
+ */
+ SUM_SQ_PUTCOUNTS(sq, count);
+ ASSERT(count >= 1);
+#endif /* DEBUG */
+
+ /*
+ * The first thing to do here, is find out if a thread is already
+ * draining this queue or the queue is closing. If so, we are done,
+ * just return. Also, if there are no messages, we are done as well.
+ * Note that we check the q_sqhead since there is s window of
+ * opportunity for us to enter here because Q_SQQUEUED was set, but is
+ * not anymore.
+ */
+ if (q->q_draining || (q->q_sqhead == NULL)) {
+ mutex_exit(QLOCK(q));
+ return;
+ }
+
+ /*
+ * If the perimiter is exclusive, there is nothing we can
+ * do right now, go away.
+ * Note that there is nothing to prevent this case from changing
+ * right after this check, but the spin-out will catch it.
+ */
+
+ /* Tell other threads that we are draining this queue */
+ q->q_draining = 1; /* Protected by QLOCK */
+
+ for (bp = q->q_sqhead; bp != NULL; bp = q->q_sqhead) {
+
+ /*
+ * Because we can enter this routine just because
+ * a putnext is blocked, we need to spin out if
+ * the perimiter wants to go exclusive as well
+ * as just blocked. We need to spin out also if
+ * events are queued on the syncq.
+ * Don't check for SQ_EXCL, because non-CIPUT
+ * perimiters would set it, and it can't become
+ * exclusive while we hold a claim.
+ */
+ if (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)) {
+ break;
+ }
+
+#ifdef DEBUG
+ /*
+ * Since we are in qdrain_syncq, we already know the queue,
+ * but for sanity, we want to check this against the qp that
+ * was passed in by bp->b_queue.
+ */
+
+ ASSERT(bp->b_queue == q);
+ ASSERT(bp->b_queue->q_syncq == sq);
+ bp->b_queue = NULL;
+
+ /*
+ * We would have the following check in the DEBUG code:
+ *
+ * if (bp->b_prev != NULL) {
+ * ASSERT(bp->b_prev == (void (*)())q->q_qinfo->qi_putp);
+ * }
+ *
+ * This can't be done, however, since IP modifies qinfo
+ * structure at run-time (switching between IPv4 qinfo and IPv6
+ * qinfo), invalidating the check.
+ * So the assignment to func is left here, but the ASSERT itself
+ * is removed until the whole issue is resolved.
+ */
+#endif
+ ASSERT(q->q_sqhead == bp);
+ q->q_sqhead = bp->b_next;
+ bp->b_prev = bp->b_next = NULL;
+ ASSERT(q->q_syncqmsgs > 0);
+ mutex_exit(QLOCK(q));
+
+ ASSERT(bp->b_datap->db_ref != 0);
+
+ (void) (*q->q_qinfo->qi_putp)(q, bp);
+
+ mutex_enter(QLOCK(q));
+ /*
+ * We should decrement q_syncqmsgs only after executing the
+ * put procedure to avoid a possible race with putnext().
+ * In putnext() though it sees Q_SQQUEUED is set, there is
+ * an optimization which allows putnext to call the put
+ * procedure directly if (q_syncqmsgs == 0) and thus
+ * a message reodering could otherwise occur.
+ */
+ q->q_syncqmsgs--;
+
+ /*
+ * Clear QFULL in the next service procedure queue if
+ * this is the last message destined to that queue.
+ *
+ * It would make better sense to have some sort of
+ * tunable for the low water mark, but these symantics
+ * are not yet defined. So, alas, we use a constant.
+ */
+ do_clr = (q->q_syncqmsgs == 0);
+ mutex_exit(QLOCK(q));
+
+ if (do_clr)
+ clr_qfull(q);
+
+ mutex_enter(QLOCK(q));
+ /*
+ * Always clear SQ_EXCL when CIPUT in order to handle
+ * qwriter(INNER).
+ */
+ /*
+ * The putp() can call qwriter and get exclusive access
+ * IFF this is the only claim. So, we need to test for
+ * this possibility so we can aquire the mutex and clear
+ * the bit.
+ */
+ if ((sq->sq_type & SQ_CIPUT) && (sq->sq_flags & SQ_EXCL)) {
+ mutex_enter(SQLOCK(sq));
+ sq->sq_flags &= ~SQ_EXCL;
+ mutex_exit(SQLOCK(sq));
+ }
+ }
+
+ /*
+ * We should either have no queues on the syncq, or we were
+ * told to goaway by a waiter (which we will wake up at the
+ * end of this function).
+ */
+ ASSERT((q->q_sqhead == NULL) ||
+ (sq->sq_flags & (SQ_STAYAWAY | SQ_EVENTS)));
+
+ ASSERT(MUTEX_HELD(QLOCK(q)));
+ ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
+
+ /*
+ * Remove the q from the syncq list if all the messages are
+ * drained.
+ */
+ if (q->q_sqhead == NULL) {
+ mutex_enter(SQLOCK(sq));
+ if (q->q_sqflags & Q_SQQUEUED)
+ SQRM_Q(sq, q);
+ mutex_exit(SQLOCK(sq));
+ /*
+ * Since the queue is removed from the list, reset its priority.
+ */
+ q->q_spri = 0;
+ }
+
+ /*
+ * Remember, the q_draining flag is used to let another
+ * thread know that there is a thread currently draining
+ * the messages for a queue. Since we are now done with
+ * this queue (even if there may be messages still there),
+ * we need to clear this flag so some thread will work
+ * on it if needed.
+ */
+ ASSERT(q->q_draining);
+ q->q_draining = 0;
+
+ /* called with a claim, so OK to drop all locks. */
+ mutex_exit(QLOCK(q));
+
+ TRACE_1(TR_FAC_STREAMS_FR, TR_DRAIN_SYNCQ_END,
+ "drain_syncq end:%p", sq);
+}
+/* END OF QDRAIN_SYNCQ */
+
+
+/*
+ * This is the mate to qdrain_syncq, except that it is putting the
+ * message onto the the queue instead draining. Since the
+ * message is destined for the queue that is selected, there is
+ * no need to identify the function because the message is
+ * intended for the put routine for the queue. But this
+ * routine will do it anyway just in case (but only for debug kernels).
+ *
+ * After the message is enqueued on the syncq, it calls putnext_tail()
+ * which will schedule a background thread to actually process the message.
+ *
+ * Assumes that there is a claim on the syncq (sq->sq_count > 0) and
+ * SQLOCK(sq) and QLOCK(q) are not held.
+ */
+void
+qfill_syncq(syncq_t *sq, queue_t *q, mblk_t *mp)
+{
+ queue_t *fq = NULL;
+
+ ASSERT(MUTEX_NOT_HELD(SQLOCK(sq)));
+ ASSERT(MUTEX_NOT_HELD(QLOCK(q)));
+ ASSERT(sq->sq_count > 0);
+ ASSERT(q->q_syncq == sq);
+ ASSERT((sq->sq_outer == NULL && sq->sq_onext == NULL &&
+ sq->sq_oprev == NULL) ||
+ (sq->sq_outer != NULL && sq->sq_onext != NULL &&
+ sq->sq_oprev != NULL));
+
+ mutex_enter(QLOCK(q));
+
+ /*
+ * Set QFULL in next service procedure queue (that cares) if not
+ * already set and if there are already more messages on the syncq
+ * than sq_max_size. If sq_max_size is 0, no flow control will be
+ * asserted on any syncq.
+ *
+ * The fq here is the next queue with a service procedure.
+ * This is where we would fail canputnext, so this is where we
+ * need to set QFULL.
+ *
+ * LOCKING HIERARCHY: In the case when fq != q we need to
+ * a) Take QLOCK(fq) to set QFULL flag and
+ * b) Take sd_reflock in the case of the hot stream to update
+ * sd_refcnt.
+ * We already have QLOCK at this point. To avoid cross-locks with
+ * freezestr() which grabs all QLOCKs and with strlock() which grabs
+ * both SQLOCK and sd_reflock, we need to drop respective locks first.
+ */
+ if ((sq_max_size != 0) && (!(q->q_nfsrv->q_flag & QFULL)) &&
+ (q->q_syncqmsgs > sq_max_size)) {
+ if ((fq = q->q_nfsrv) == q) {
+ fq->q_flag |= QFULL;
+ } else {
+ mutex_exit(QLOCK(q));
+ mutex_enter(QLOCK(fq));
+ fq->q_flag |= QFULL;
+ mutex_exit(QLOCK(fq));
+ mutex_enter(QLOCK(q));
+ }
+ }
+
+#ifdef DEBUG
+ /*
+ * This is used for debug in the qfill_syncq/qdrain_syncq case
+ * to trace the queue that the message is intended for. Note
+ * that the original use was to identify the queue and function
+ * to call on the drain. In the new syncq, we have the context
+ * of the queue that we are draining, so call it's putproc and
+ * don't rely on the saved values. But for debug this is still
+ * usefull information.
+ */
+ mp->b_prev = (mblk_t *)q->q_qinfo->qi_putp;
+ mp->b_queue = q;
+ mp->b_next = NULL;
+#endif
+ ASSERT(q->q_syncq == sq);
+ /*
+ * Enqueue the message on the list.
+ * SQPUT_MP() accesses q_syncqmsgs. We are already holding QLOCK to
+ * protect it. So its ok to acquire SQLOCK after SQPUT_MP().
+ */
+ SQPUT_MP(q, mp);
+ mutex_enter(SQLOCK(sq));
+
+ /*
+ * And queue on syncq for scheduling, if not already queued.
+ * Note that we need the SQLOCK for this, and for testing flags
+ * at the end to see if we will drain. So grab it now, and
+ * release it before we call qdrain_syncq or return.
+ */
+ if (!(q->q_sqflags & Q_SQQUEUED)) {
+ q->q_spri = curthread->t_pri;
+ SQPUT_Q(sq, q);
+ }
+#ifdef DEBUG
+ else {
+ /*
+ * All of these conditions MUST be true!
+ */
+ ASSERT(sq->sq_tail != NULL);
+ if (sq->sq_tail == sq->sq_head) {
+ ASSERT((q->q_sqprev == NULL) &&
+ (q->q_sqnext == NULL));
+ } else {
+ ASSERT((q->q_sqprev != NULL) ||
+ (q->q_sqnext != NULL));
+ }
+ ASSERT(sq->sq_flags & SQ_QUEUED);
+ ASSERT(q->q_syncqmsgs != 0);
+ ASSERT(q->q_sqflags & Q_SQQUEUED);
+ }
+#endif
+ mutex_exit(QLOCK(q));
+ /*
+ * SQLOCK is still held, so sq_count can be safely decremented.
+ */
+ sq->sq_count--;
+
+ putnext_tail(sq, q, 0);
+ /* Should not reference sq or q after this point. */
+}
+
+/* End of qfill_syncq */
+
+/*
+ * Remove all messages from a syncq (if qp is NULL) or remove all messages
+ * that would be put into qp by drain_syncq.
+ * Used when deleting the syncq (qp == NULL) or when detaching
+ * a queue (qp != NULL).
+ * Return non-zero if one or more messages were freed.
+ *
+ * no need to grab sq_putlocks here. See comment in strsubr.h that explains when
+ * sq_putlocks are used.
+ *
+ * NOTE: This function assumes that it is called from the close() context and
+ * that all the queues in the syncq are going aay. For this reason it doesn't
+ * acquire QLOCK for modifying q_sqhead/q_sqtail fields. This assumption is
+ * currently valid, but it is useful to rethink this function to behave properly
+ * in other cases.
+ */
+int
+flush_syncq(syncq_t *sq, queue_t *qp)
+{
+ mblk_t *bp, *mp_head, *mp_next, *mp_prev;
+ queue_t *q;
+ int ret = 0;
+
+ mutex_enter(SQLOCK(sq));
+
+ /*
+ * Before we leave, we need to make sure there are no
+ * events listed for this queue. All events for this queue
+ * will just be freed.
+ */
+ if (qp != NULL && sq->sq_evhead != NULL) {
+ ASSERT(sq->sq_flags & SQ_EVENTS);
+
+ mp_prev = NULL;
+ for (bp = sq->sq_evhead; bp != NULL; bp = mp_next) {
+ mp_next = bp->b_next;
+ if (bp->b_queue == qp) {
+ /* Delete this message */
+ if (mp_prev != NULL) {
+ mp_prev->b_next = mp_next;
+ /*
+ * Update sq_evtail if the last element
+ * is removed.
+ */
+ if (bp == sq->sq_evtail) {
+ ASSERT(mp_next == NULL);
+ sq->sq_evtail = mp_prev;
+ }
+ } else
+ sq->sq_evhead = mp_next;
+ if (sq->sq_evhead == NULL)
+ sq->sq_flags &= ~SQ_EVENTS;
+ bp->b_prev = bp->b_next = NULL;
+ freemsg(bp);
+ ret++;
+ } else {
+ mp_prev = bp;
+ }
+ }
+ }
+
+ /*
+ * Walk sq_head and:
+ * - match qp if qp is set, remove it's messages
+ * - all if qp is not set
+ */
+ q = sq->sq_head;
+ while (q != NULL) {
+ ASSERT(q->q_syncq == sq);
+ if ((qp == NULL) || (qp == q)) {
+ /*
+ * Yank the messages as a list off the queue
+ */
+ mp_head = q->q_sqhead;
+ /*
+ * We do not have QLOCK(q) here (which is safe due to
+ * assumptions mentioned above). To obtain the lock we
+ * need to release SQLOCK which may allow lots of things
+ * to change upon us. This place requires more analysis.
+ */
+ q->q_sqhead = q->q_sqtail = NULL;
+ ASSERT(mp_head->b_queue &&
+ mp_head->b_queue->q_syncq == sq);
+
+ /*
+ * Free each of the messages.
+ */
+ for (bp = mp_head; bp != NULL; bp = mp_next) {
+ mp_next = bp->b_next;
+ bp->b_prev = bp->b_next = NULL;
+ freemsg(bp);
+ ret++;
+ }
+ /*
+ * Now remove the queue from the syncq.
+ */
+ ASSERT(q->q_sqflags & Q_SQQUEUED);
+ SQRM_Q(sq, q);
+ q->q_spri = 0;
+ q->q_syncqmsgs = 0;
+
+ /*
+ * If qp was specified, we are done with it and are
+ * going to drop SQLOCK(sq) and return. We wakeup syncq
+ * waiters while we still have the SQLOCK.
+ */
+ if ((qp != NULL) && (sq->sq_flags & SQ_WANTWAKEUP)) {
+ sq->sq_flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ /* Drop SQLOCK across clr_qfull */
+ mutex_exit(SQLOCK(sq));
+
+ /*
+ * We avoid doing the test that drain_syncq does and
+ * unconditionally clear qfull for every flushed
+ * message. Since flush_syncq is only called during
+ * close this should not be a problem.
+ */
+ clr_qfull(q);
+ if (qp != NULL) {
+ return (ret);
+ } else {
+ mutex_enter(SQLOCK(sq));
+ /*
+ * The head was removed by SQRM_Q above.
+ * reread the new head and flush it.
+ */
+ q = sq->sq_head;
+ }
+ } else {
+ q = q->q_sqnext;
+ }
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ }
+
+ if (sq->sq_flags & SQ_WANTWAKEUP) {
+ sq->sq_flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+
+ mutex_exit(SQLOCK(sq));
+ return (ret);
+}
+
+/*
+ * Propagate all messages from a syncq to the next syncq that are associated
+ * with the specified queue. If the queue is attached to a driver or if the
+ * messages have been added due to a qwriter(PERIM_INNER), free the messages.
+ *
+ * Assumes that the stream is strlock()'ed. We don't come here if there
+ * are no messages to propagate.
+ *
+ * NOTE : If the queue is attached to a driver, all the messages are freed
+ * as there is no point in propagating the messages from the driver syncq
+ * to the closing stream head which will in turn get freed later.
+ */
+static int
+propagate_syncq(queue_t *qp)
+{
+ mblk_t *bp, *head, *tail, *prev, *next;
+ syncq_t *sq;
+ queue_t *nqp;
+ syncq_t *nsq;
+ boolean_t isdriver;
+ int moved = 0;
+ uint16_t flags;
+ pri_t priority = curthread->t_pri;
+#ifdef DEBUG
+ void (*func)();
+#endif
+
+ sq = qp->q_syncq;
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ /* debug macro */
+ SQ_PUTLOCKS_HELD(sq);
+ /*
+ * As entersq() does not increment the sq_count for
+ * the write side, check sq_count for non-QPERQ
+ * perimeters alone.
+ */
+ ASSERT((qp->q_flag & QPERQ) || (sq->sq_count >= 1));
+
+ /*
+ * propagate_syncq() can be called because of either messages on the
+ * queue syncq or because on events on the queue syncq. Do actual
+ * message propagations if there are any messages.
+ */
+ if (qp->q_syncqmsgs) {
+ isdriver = (qp->q_flag & QISDRV);
+
+ if (!isdriver) {
+ nqp = qp->q_next;
+ nsq = nqp->q_syncq;
+ ASSERT(MUTEX_HELD(SQLOCK(nsq)));
+ /* debug macro */
+ SQ_PUTLOCKS_HELD(nsq);
+#ifdef DEBUG
+ func = (void (*)())nqp->q_qinfo->qi_putp;
+#endif
+ }
+
+ SQRM_Q(sq, qp);
+ priority = MAX(qp->q_spri, priority);
+ qp->q_spri = 0;
+ head = qp->q_sqhead;
+ tail = qp->q_sqtail;
+ qp->q_sqhead = qp->q_sqtail = NULL;
+ qp->q_syncqmsgs = 0;
+
+ /*
+ * Walk the list of messages, and free them if this is a driver,
+ * otherwise reset the b_prev and b_queue value to the new putp.
+ * Afterward, we will just add the head to the end of the next
+ * syncq, and point the tail to the end of this one.
+ */
+
+ for (bp = head; bp != NULL; bp = next) {
+ next = bp->b_next;
+ if (isdriver) {
+ bp->b_prev = bp->b_next = NULL;
+ freemsg(bp);
+ continue;
+ }
+ /* Change the q values for this message */
+ bp->b_queue = nqp;
+#ifdef DEBUG
+ bp->b_prev = (mblk_t *)func;
+#endif
+ moved++;
+ }
+ /*
+ * Attach list of messages to the end of the new queue (if there
+ * is a list of messages).
+ */
+
+ if (!isdriver && head != NULL) {
+ ASSERT(tail != NULL);
+ if (nqp->q_sqhead == NULL) {
+ nqp->q_sqhead = head;
+ } else {
+ ASSERT(nqp->q_sqtail != NULL);
+ nqp->q_sqtail->b_next = head;
+ }
+ nqp->q_sqtail = tail;
+ /*
+ * When messages are moved from high priority queue to
+ * another queue, the destination queue priority is
+ * upgraded.
+ */
+
+ if (priority > nqp->q_spri)
+ nqp->q_spri = priority;
+
+ SQPUT_Q(nsq, nqp);
+
+ nqp->q_syncqmsgs += moved;
+ ASSERT(nqp->q_syncqmsgs != 0);
+ }
+ }
+
+ /*
+ * Before we leave, we need to make sure there are no
+ * events listed for this queue. All events for this queue
+ * will just be freed.
+ */
+ if (sq->sq_evhead != NULL) {
+ ASSERT(sq->sq_flags & SQ_EVENTS);
+ prev = NULL;
+ for (bp = sq->sq_evhead; bp != NULL; bp = next) {
+ next = bp->b_next;
+ if (bp->b_queue == qp) {
+ /* Delete this message */
+ if (prev != NULL) {
+ prev->b_next = next;
+ /*
+ * Update sq_evtail if the last element
+ * is removed.
+ */
+ if (bp == sq->sq_evtail) {
+ ASSERT(next == NULL);
+ sq->sq_evtail = prev;
+ }
+ } else
+ sq->sq_evhead = next;
+ if (sq->sq_evhead == NULL)
+ sq->sq_flags &= ~SQ_EVENTS;
+ bp->b_prev = bp->b_next = NULL;
+ freemsg(bp);
+ } else {
+ prev = bp;
+ }
+ }
+ }
+
+ flags = sq->sq_flags;
+
+ /* Wake up any waiter before leaving. */
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ sq->sq_flags = flags;
+
+ return (moved);
+}
+
+/*
+ * Try and upgrade to exclusive access at the inner perimeter. If this can
+ * not be done without blocking then request will be queued on the syncq
+ * and drain_syncq will run it later.
+ *
+ * This routine can only be called from put or service procedures plus
+ * asynchronous callback routines that have properly entered to
+ * queue (with entersq.) Thus qwriter_inner assumes the caller has one claim
+ * on the syncq associated with q.
+ */
+void
+qwriter_inner(queue_t *q, mblk_t *mp, void (*func)())
+{
+ syncq_t *sq = q->q_syncq;
+ uint16_t count;
+
+ mutex_enter(SQLOCK(sq));
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ ASSERT(count >= 1);
+ ASSERT(sq->sq_type & (SQ_CIPUT|SQ_CISVC));
+
+ if (count == 1) {
+ /*
+ * Can upgrade. This case also handles nested qwriter calls
+ * (when the qwriter callback function calls qwriter). In that
+ * case SQ_EXCL is already set.
+ */
+ sq->sq_flags |= SQ_EXCL;
+ SQ_PUTLOCKS_EXIT(sq);
+ mutex_exit(SQLOCK(sq));
+ (*func)(q, mp);
+ /*
+ * Assumes that leavesq, putnext, and drain_syncq will reset
+ * SQ_EXCL for SQ_CIPUT/SQ_CISVC queues. We leave SQ_EXCL on
+ * until putnext, leavesq, or drain_syncq drops it.
+ * That way we handle nested qwriter(INNER) without dropping
+ * SQ_EXCL until the outermost qwriter callback routine is
+ * done.
+ */
+ return;
+ }
+ SQ_PUTLOCKS_EXIT(sq);
+ sqfill_events(sq, q, mp, func);
+}
+
+/*
+ * Synchronous callback support functions
+ */
+
+/*
+ * Allocate a callback parameter structure.
+ * Assumes that caller initializes the flags and the id.
+ * Acquires SQLOCK(sq) if non-NULL is returned.
+ */
+callbparams_t *
+callbparams_alloc(syncq_t *sq, void (*func)(void *), void *arg, int kmflags)
+{
+ callbparams_t *cbp;
+ size_t size = sizeof (callbparams_t);
+
+ cbp = kmem_alloc(size, kmflags & ~KM_PANIC);
+
+ /*
+ * Only try tryhard allocation if the caller is ready to panic.
+ * Otherwise just fail.
+ */
+ if (cbp == NULL) {
+ if (kmflags & KM_PANIC)
+ cbp = kmem_alloc_tryhard(sizeof (callbparams_t),
+ &size, kmflags);
+ else
+ return (NULL);
+ }
+
+ ASSERT(size >= sizeof (callbparams_t));
+ cbp->cbp_size = size;
+ cbp->cbp_sq = sq;
+ cbp->cbp_func = func;
+ cbp->cbp_arg = arg;
+ mutex_enter(SQLOCK(sq));
+ cbp->cbp_next = sq->sq_callbpend;
+ sq->sq_callbpend = cbp;
+ return (cbp);
+}
+
+void
+callbparams_free(syncq_t *sq, callbparams_t *cbp)
+{
+ callbparams_t **pp, *p;
+
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+
+ for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
+ if (p == cbp) {
+ *pp = p->cbp_next;
+ kmem_free(p, p->cbp_size);
+ return;
+ }
+ }
+ (void) (STRLOG(0, 0, 0, SL_CONSOLE,
+ "callbparams_free: not found\n"));
+}
+
+void
+callbparams_free_id(syncq_t *sq, callbparams_id_t id, int32_t flag)
+{
+ callbparams_t **pp, *p;
+
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+
+ for (pp = &sq->sq_callbpend; (p = *pp) != NULL; pp = &p->cbp_next) {
+ if (p->cbp_id == id && p->cbp_flags == flag) {
+ *pp = p->cbp_next;
+ kmem_free(p, p->cbp_size);
+ return;
+ }
+ }
+ (void) (STRLOG(0, 0, 0, SL_CONSOLE,
+ "callbparams_free_id: not found\n"));
+}
+
+/*
+ * Callback wrapper function used by once-only callbacks that can be
+ * cancelled (qtimeout and qbufcall)
+ * Contains inline version of entersq(sq, SQ_CALLBACK) that can be
+ * cancelled by the qun* functions.
+ */
+void
+qcallbwrapper(void *arg)
+{
+ callbparams_t *cbp = arg;
+ syncq_t *sq;
+ uint16_t count = 0;
+ uint16_t waitflags = SQ_STAYAWAY | SQ_EVENTS | SQ_EXCL;
+ uint16_t type;
+
+ sq = cbp->cbp_sq;
+ mutex_enter(SQLOCK(sq));
+ type = sq->sq_type;
+ if (!(type & SQ_CICB)) {
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SQ_PUTCOUNT_CLRFAST_LOCKED(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ sq->sq_needexcl++;
+ ASSERT(sq->sq_needexcl != 0); /* wraparound */
+ waitflags |= SQ_MESSAGES;
+ }
+ /* Can not handle exlusive entry at outer perimeter */
+ ASSERT(type & SQ_COCB);
+
+ while ((sq->sq_flags & waitflags) || (!(type & SQ_CICB) &&count != 0)) {
+ if ((sq->sq_callbflags & cbp->cbp_flags) &&
+ (sq->sq_cancelid == cbp->cbp_id)) {
+ /* timeout has been cancelled */
+ sq->sq_callbflags |= SQ_CALLB_BYPASSED;
+ callbparams_free(sq, cbp);
+ if (!(type & SQ_CICB)) {
+ ASSERT(sq->sq_needexcl > 0);
+ sq->sq_needexcl--;
+ if (sq->sq_needexcl == 0) {
+ SQ_PUTCOUNT_SETFAST_LOCKED(sq);
+ }
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+ mutex_exit(SQLOCK(sq));
+ return;
+ }
+ sq->sq_flags |= SQ_WANTWAKEUP;
+ if (!(type & SQ_CICB)) {
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+ cv_wait(&sq->sq_wait, SQLOCK(sq));
+ if (!(type & SQ_CICB)) {
+ count = sq->sq_count;
+ SQ_PUTLOCKS_ENTER(sq);
+ SUM_SQ_PUTCOUNTS(sq, count);
+ }
+ }
+
+ sq->sq_count++;
+ ASSERT(sq->sq_count != 0); /* Wraparound */
+ if (!(type & SQ_CICB)) {
+ ASSERT(count == 0);
+ sq->sq_flags |= SQ_EXCL;
+ ASSERT(sq->sq_needexcl > 0);
+ sq->sq_needexcl--;
+ if (sq->sq_needexcl == 0) {
+ SQ_PUTCOUNT_SETFAST_LOCKED(sq);
+ }
+ SQ_PUTLOCKS_EXIT(sq);
+ }
+
+ mutex_exit(SQLOCK(sq));
+
+ cbp->cbp_func(cbp->cbp_arg);
+
+ /*
+ * We drop the lock only for leavesq to re-acquire it.
+ * Possible optimization is inline of leavesq.
+ */
+ mutex_enter(SQLOCK(sq));
+ callbparams_free(sq, cbp);
+ mutex_exit(SQLOCK(sq));
+ leavesq(sq, SQ_CALLBACK);
+}
+
+/*
+ * no need to grab sq_putlocks here. See comment in strsubr.h that
+ * explains when sq_putlocks are used.
+ *
+ * sq_count (or one of the sq_putcounts) has already been
+ * decremented by the caller, and if SQ_QUEUED, we need to call
+ * drain_syncq (the global syncq drain).
+ * If putnext_tail is called with the SQ_EXCL bit set, we are in
+ * one of two states, non-CIPUT perimiter, and we need to clear
+ * it, or we went exclusive in the put procedure. In any case,
+ * we want to clear the bit now, and it is probably easier to do
+ * this at the beginning of this function (remember, we hold
+ * the SQLOCK). Lastly, if there are other messages queued
+ * on the syncq (and not for our destination), enable the syncq
+ * for background work.
+ */
+
+/* ARGSUSED */
+void
+putnext_tail(syncq_t *sq, queue_t *qp, uint32_t passflags)
+{
+ uint16_t flags = sq->sq_flags;
+
+ ASSERT(MUTEX_HELD(SQLOCK(sq)));
+ ASSERT(MUTEX_NOT_HELD(QLOCK(qp)));
+
+ /* Clear SQ_EXCL if set in passflags */
+ if (passflags & SQ_EXCL) {
+ flags &= ~SQ_EXCL;
+ }
+ if (flags & SQ_WANTWAKEUP) {
+ flags &= ~SQ_WANTWAKEUP;
+ cv_broadcast(&sq->sq_wait);
+ }
+ if (flags & SQ_WANTEXWAKEUP) {
+ flags &= ~SQ_WANTEXWAKEUP;
+ cv_broadcast(&sq->sq_exitwait);
+ }
+ sq->sq_flags = flags;
+
+ /*
+ * We have cleared SQ_EXCL if we were asked to, and started
+ * the wakeup process for waiters. If there are no writers
+ * then we need to drain the syncq if we were told to, or
+ * enable the background thread to do it.
+ */
+ if (!(flags & (SQ_STAYAWAY|SQ_EXCL))) {
+ if ((passflags & SQ_QUEUED) ||
+ (sq->sq_svcflags & SQ_DISABLED)) {
+ /* drain_syncq will take care of events in the list */
+ drain_syncq(sq);
+ return;
+ } else if (flags & SQ_QUEUED) {
+ sqenable(sq);
+ }
+ }
+ /* Drop the SQLOCK on exit */
+ mutex_exit(SQLOCK(sq));
+ TRACE_3(TR_FAC_STREAMS_FR, TR_PUTNEXT_END,
+ "putnext_end:(%p, %p, %p) done", NULL, qp, sq);
+}
+
+void
+set_qend(queue_t *q)
+{
+ mutex_enter(QLOCK(q));
+ if (!O_SAMESTR(q))
+ q->q_flag |= QEND;
+ else
+ q->q_flag &= ~QEND;
+ mutex_exit(QLOCK(q));
+ q = _OTHERQ(q);
+ mutex_enter(QLOCK(q));
+ if (!O_SAMESTR(q))
+ q->q_flag |= QEND;
+ else
+ q->q_flag &= ~QEND;
+ mutex_exit(QLOCK(q));
+}
+
+
+void
+clr_qfull(queue_t *q)
+{
+ queue_t *oq = q;
+
+ q = q->q_nfsrv;
+ /* Fast check if there is any work to do before getting the lock. */
+ if ((q->q_flag & (QFULL|QWANTW)) == 0) {
+ return;
+ }
+
+ /*
+ * Do not reset QFULL (and backenable) if the q_count is the reason
+ * for QFULL being set.
+ */
+ mutex_enter(QLOCK(q));
+ /*
+ * If both q_count and q_mblkcnt are less than the hiwat mark
+ */
+ if ((q->q_count < q->q_hiwat) && (q->q_mblkcnt < q->q_hiwat)) {
+ q->q_flag &= ~QFULL;
+ /*
+ * A little more confusing, how about this way:
+ * if someone wants to write,
+ * AND
+ * both counts are less than the lowat mark
+ * OR
+ * the lowat mark is zero
+ * THEN
+ * backenable
+ */
+ if ((q->q_flag & QWANTW) &&
+ (((q->q_count < q->q_lowat) &&
+ (q->q_mblkcnt < q->q_lowat)) || q->q_lowat == 0)) {
+ q->q_flag &= ~QWANTW;
+ mutex_exit(QLOCK(q));
+ backenable(oq, 0);
+ } else
+ mutex_exit(QLOCK(q));
+ } else
+ mutex_exit(QLOCK(q));
+}
+
+/*
+ * Set the forward service procedure pointer.
+ *
+ * Called at insert-time to cache a queue's next forward service procedure in
+ * q_nfsrv; used by canput() and canputnext(). If the queue to be inserted
+ * has a service procedure then q_nfsrv points to itself. If the queue to be
+ * inserted does not have a service procedure, then q_nfsrv points to the next
+ * queue forward that has a service procedure. If the queue is at the logical
+ * end of the stream (driver for write side, stream head for the read side)
+ * and does not have a service procedure, then q_nfsrv also points to itself.
+ */
+void
+set_nfsrv_ptr(
+ queue_t *rnew, /* read queue pointer to new module */
+ queue_t *wnew, /* write queue pointer to new module */
+ queue_t *prev_rq, /* read queue pointer to the module above */
+ queue_t *prev_wq) /* write queue pointer to the module above */
+{
+ queue_t *qp;
+
+ if (prev_wq->q_next == NULL) {
+ /*
+ * Insert the driver, initialize the driver and stream head.
+ * In this case, prev_rq/prev_wq should be the stream head.
+ * _I_INSERT does not allow inserting a driver. Make sure
+ * that it is not an insertion.
+ */
+ ASSERT(!(rnew->q_flag & _QINSERTING));
+ wnew->q_nfsrv = wnew;
+ if (rnew->q_qinfo->qi_srvp)
+ rnew->q_nfsrv = rnew;
+ else
+ rnew->q_nfsrv = prev_rq;
+ prev_rq->q_nfsrv = prev_rq;
+ prev_wq->q_nfsrv = prev_wq;
+ } else {
+ /*
+ * set up read side q_nfsrv pointer. This MUST be done
+ * before setting the write side, because the setting of
+ * the write side for a fifo may depend on it.
+ *
+ * Suppose we have a fifo that only has pipemod pushed.
+ * pipemod has no read or write service procedures, so
+ * nfsrv for both pipemod queues points to prev_rq (the
+ * stream read head). Now push bufmod (which has only a
+ * read service procedure). Doing the write side first,
+ * wnew->q_nfsrv is set to pipemod's writeq nfsrv, which
+ * is WRONG; the next queue forward from wnew with a
+ * service procedure will be rnew, not the stream read head.
+ * Since the downstream queue (which in the case of a fifo
+ * is the read queue rnew) can affect upstream queues, it
+ * needs to be done first. Setting up the read side first
+ * sets nfsrv for both pipemod queues to rnew and then
+ * when the write side is set up, wnew-q_nfsrv will also
+ * point to rnew.
+ */
+ if (rnew->q_qinfo->qi_srvp) {
+ /*
+ * use _OTHERQ() because, if this is a pipe, next
+ * module may have been pushed from other end and
+ * q_next could be a read queue.
+ */
+ qp = _OTHERQ(prev_wq->q_next);
+ while (qp && qp->q_nfsrv != qp) {
+ qp->q_nfsrv = rnew;
+ qp = backq(qp);
+ }
+ rnew->q_nfsrv = rnew;
+ } else
+ rnew->q_nfsrv = prev_rq->q_nfsrv;
+
+ /* set up write side q_nfsrv pointer */
+ if (wnew->q_qinfo->qi_srvp) {
+ wnew->q_nfsrv = wnew;
+
+ /*
+ * For insertion, need to update nfsrv of the modules
+ * above which do not have a service routine.
+ */
+ if (rnew->q_flag & _QINSERTING) {
+ for (qp = prev_wq;
+ qp != NULL && qp->q_nfsrv != qp;
+ qp = backq(qp)) {
+ qp->q_nfsrv = wnew->q_nfsrv;
+ }
+ }
+ } else {
+ if (prev_wq->q_next == prev_rq)
+ /*
+ * Since prev_wq/prev_rq are the middle of a
+ * fifo, wnew/rnew will also be the middle of
+ * a fifo and wnew's nfsrv is same as rnew's.
+ */
+ wnew->q_nfsrv = rnew->q_nfsrv;
+ else
+ wnew->q_nfsrv = prev_wq->q_next->q_nfsrv;
+ }
+ }
+}
+
+/*
+ * Reset the forward service procedure pointer; called at remove-time.
+ */
+void
+reset_nfsrv_ptr(queue_t *rqp, queue_t *wqp)
+{
+ queue_t *tmp_qp;
+
+ /* Reset the write side q_nfsrv pointer for _I_REMOVE */
+ if ((rqp->q_flag & _QREMOVING) && (wqp->q_qinfo->qi_srvp != NULL)) {
+ for (tmp_qp = backq(wqp);
+ tmp_qp != NULL && tmp_qp->q_nfsrv == wqp;
+ tmp_qp = backq(tmp_qp)) {
+ tmp_qp->q_nfsrv = wqp->q_nfsrv;
+ }
+ }
+
+ /* reset the read side q_nfsrv pointer */
+ if (rqp->q_qinfo->qi_srvp) {
+ if (wqp->q_next) { /* non-driver case */
+ tmp_qp = _OTHERQ(wqp->q_next);
+ while (tmp_qp && tmp_qp->q_nfsrv == rqp) {
+ /* Note that rqp->q_next cannot be NULL */
+ ASSERT(rqp->q_next != NULL);
+ tmp_qp->q_nfsrv = rqp->q_next->q_nfsrv;
+ tmp_qp = backq(tmp_qp);
+ }
+ }
+ }
+}
+
+/*
+ * This routine should be called after all stream geometry changes to update
+ * the stream head cached struio() rd/wr queue pointers. Note must be called
+ * with the streamlock()ed.
+ *
+ * Note: only enables Synchronous STREAMS for a side of a Stream which has
+ * an explicit synchronous barrier module queue. That is, a queue that
+ * has specified a struio() type.
+ */
+static void
+strsetuio(stdata_t *stp)
+{
+ queue_t *wrq;
+
+ if (stp->sd_flag & STPLEX) {
+ /*
+ * Not stremahead, but a mux, so no Synchronous STREAMS.
+ */
+ stp->sd_struiowrq = NULL;
+ stp->sd_struiordq = NULL;
+ return;
+ }
+ /*
+ * Scan the write queue(s) while synchronous
+ * until we find a qinfo uio type specified.
+ */
+ wrq = stp->sd_wrq->q_next;
+ while (wrq) {
+ if (wrq->q_struiot == STRUIOT_NONE) {
+ wrq = 0;
+ break;
+ }
+ if (wrq->q_struiot != STRUIOT_DONTCARE)
+ break;
+ if (! _SAMESTR(wrq)) {
+ wrq = 0;
+ break;
+ }
+ wrq = wrq->q_next;
+ }
+ stp->sd_struiowrq = wrq;
+ /*
+ * Scan the read queue(s) while synchronous
+ * until we find a qinfo uio type specified.
+ */
+ wrq = stp->sd_wrq->q_next;
+ while (wrq) {
+ if (_RD(wrq)->q_struiot == STRUIOT_NONE) {
+ wrq = 0;
+ break;
+ }
+ if (_RD(wrq)->q_struiot != STRUIOT_DONTCARE)
+ break;
+ if (! _SAMESTR(wrq)) {
+ wrq = 0;
+ break;
+ }
+ wrq = wrq->q_next;
+ }
+ stp->sd_struiordq = wrq ? _RD(wrq) : 0;
+}
+
+/*
+ * pass_wput, unblocks the passthru queues, so that
+ * messages can arrive at muxs lower read queue, before
+ * I_LINK/I_UNLINK is acked/nacked.
+ */
+static void
+pass_wput(queue_t *q, mblk_t *mp)
+{
+ syncq_t *sq;
+
+ sq = _RD(q)->q_syncq;
+ if (sq->sq_flags & SQ_BLOCKED)
+ unblocksq(sq, SQ_BLOCKED, 0);
+ putnext(q, mp);
+}
+
+/*
+ * Set up queues for the link/unlink.
+ * Create a new queue and block it and then insert it
+ * below the stream head on the lower stream.
+ * This prevents any messages from arriving during the setq
+ * as well as while the mux is processing the LINK/I_UNLINK.
+ * The blocked passq is unblocked once the LINK/I_UNLINK has
+ * been acked or nacked or if a message is generated and sent
+ * down muxs write put procedure.
+ * see pass_wput().
+ *
+ * After the new queue is inserted, all messages coming from below are
+ * blocked. The call to strlock will ensure that all activity in the stream head
+ * read queue syncq is stopped (sq_count drops to zero).
+ */
+static queue_t *
+link_addpassthru(stdata_t *stpdown)
+{
+ queue_t *passq;
+ sqlist_t sqlist;
+
+ passq = allocq();
+ STREAM(passq) = STREAM(_WR(passq)) = stpdown;
+ /* setq might sleep in allocator - avoid holding locks. */
+ setq(passq, &passthru_rinit, &passthru_winit, NULL, QPERQ,
+ SQ_CI|SQ_CO, B_FALSE);
+ claimq(passq);
+ blocksq(passq->q_syncq, SQ_BLOCKED, 1);
+ insertq(STREAM(passq), passq);
+
+ /*
+ * Use strlock() to wait for the stream head sq_count to drop to zero
+ * since we are going to change q_ptr in the stream head. Note that
+ * insertq() doesn't wait for any syncq counts to drop to zero.
+ */
+ sqlist.sqlist_head = NULL;
+ sqlist.sqlist_index = 0;
+ sqlist.sqlist_size = sizeof (sqlist_t);
+ sqlist_insert(&sqlist, _RD(stpdown->sd_wrq)->q_syncq);
+ strlock(stpdown, &sqlist);
+ strunlock(stpdown, &sqlist);
+
+ releaseq(passq);
+ return (passq);
+}
+
+/*
+ * Let messages flow up into the mux by removing
+ * the passq.
+ */
+static void
+link_rempassthru(queue_t *passq)
+{
+ claimq(passq);
+ removeq(passq);
+ releaseq(passq);
+ freeq(passq);
+}
+
+/*
+ * wait for an event with optional timeout and optional return if
+ * a signal is sent to the thread
+ * tim: -1 : no timeout
+ * otherwise the value is relative time in milliseconds to wait
+ * nosig: if 0 then signals will be ignored, otherwise signals
+ * will terminate wait
+ * returns >0 on success, 0 if signal was encountered, -1 if timeout
+ * was reached.
+ */
+clock_t
+str_cv_wait(kcondvar_t *cvp, kmutex_t *mp, clock_t tim, int nosigs)
+{
+ clock_t ret, now, tick;
+
+ if (tim < 0) {
+ if (nosigs) {
+ cv_wait(cvp, mp);
+ ret = 1;
+ } else {
+ ret = cv_wait_sig(cvp, mp);
+ }
+ } else if (tim > 0) {
+ /*
+ * convert milliseconds to clock ticks
+ */
+ tick = MSEC_TO_TICK_ROUNDUP(tim);
+ time_to_wait(&now, tick);
+ if (nosigs) {
+ ret = cv_timedwait(cvp, mp, now);
+ } else {
+ ret = cv_timedwait_sig(cvp, mp, now);
+ }
+ } else {
+ ret = -1;
+ }
+ return (ret);
+}
+
+/*
+ * Wait until the stream head can determine if it is at the mark but
+ * don't wait forever to prevent a race condition between the "mark" state
+ * in the stream head and any mark state in the caller/user of this routine.
+ *
+ * This is used by sockets and for a socket it would be incorrect
+ * to return a failure for SIOCATMARK when there is no data in the receive
+ * queue and the marked urgent data is traveling up the stream.
+ *
+ * This routine waits until the mark is known by waiting for one of these
+ * three events:
+ * The stream head read queue becoming non-empty (including an EOF)
+ * The STRATMARK flag being set. (Due to a MSGMARKNEXT message.)
+ * The STRNOTATMARK flag being set (which indicates that the transport
+ * has sent a MSGNOTMARKNEXT message to indicate that it is not at
+ * the mark).
+ *
+ * The routine returns 1 if the stream is at the mark; 0 if it can
+ * be determined that the stream is not at the mark.
+ * If the wait times out and it can't determine
+ * whether or not the stream might be at the mark the routine will return -1.
+ *
+ * Note: This routine should only be used when a mark is pending i.e.,
+ * in the socket case the SIGURG has been posted.
+ * Note2: This can not wakeup just because synchronous streams indicate
+ * that data is available since it is not possible to use the synchronous
+ * streams interfaces to determine the b_flag value for the data queued below
+ * the stream head.
+ */
+int
+strwaitmark(vnode_t *vp)
+{
+ struct stdata *stp = vp->v_stream;
+ queue_t *rq = _RD(stp->sd_wrq);
+ int mark;
+
+ mutex_enter(&stp->sd_lock);
+ while (rq->q_first == NULL &&
+ !(stp->sd_flag & (STRATMARK|STRNOTATMARK|STREOF))) {
+ stp->sd_flag |= RSLEEP;
+
+ /* Wait for 100 milliseconds for any state change. */
+ if (str_cv_wait(&rq->q_wait, &stp->sd_lock, 100, 1) == -1) {
+ mutex_exit(&stp->sd_lock);
+ return (-1);
+ }
+ }
+ if (stp->sd_flag & STRATMARK)
+ mark = 1;
+ else if (rq->q_first != NULL && (rq->q_first->b_flag & MSGMARK))
+ mark = 1;
+ else
+ mark = 0;
+
+ mutex_exit(&stp->sd_lock);
+ return (mark);
+}
+
+/*
+ * Set a read side error. If persist is set change the socket error
+ * to persistent. If errfunc is set install the function as the exported
+ * error handler.
+ */
+void
+strsetrerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
+{
+ struct stdata *stp = vp->v_stream;
+
+ mutex_enter(&stp->sd_lock);
+ stp->sd_rerror = error;
+ if (error == 0 && errfunc == NULL)
+ stp->sd_flag &= ~STRDERR;
+ else
+ stp->sd_flag |= STRDERR;
+ if (persist) {
+ stp->sd_flag &= ~STRDERRNONPERSIST;
+ } else {
+ stp->sd_flag |= STRDERRNONPERSIST;
+ }
+ stp->sd_rderrfunc = errfunc;
+ if (error != 0 || errfunc != NULL) {
+ cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
+ cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
+ cv_broadcast(&stp->sd_monitor); /* ioctllers */
+
+ mutex_exit(&stp->sd_lock);
+ pollwakeup(&stp->sd_pollist, POLLERR);
+ mutex_enter(&stp->sd_lock);
+
+ if (stp->sd_sigflags & S_ERROR)
+ strsendsig(stp->sd_siglist, S_ERROR, 0, error);
+ }
+ mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * Set a write side error. If persist is set change the socket error
+ * to persistent.
+ */
+void
+strsetwerror(vnode_t *vp, int error, int persist, errfunc_t errfunc)
+{
+ struct stdata *stp = vp->v_stream;
+
+ mutex_enter(&stp->sd_lock);
+ stp->sd_werror = error;
+ if (error == 0 && errfunc == NULL)
+ stp->sd_flag &= ~STWRERR;
+ else
+ stp->sd_flag |= STWRERR;
+ if (persist) {
+ stp->sd_flag &= ~STWRERRNONPERSIST;
+ } else {
+ stp->sd_flag |= STWRERRNONPERSIST;
+ }
+ stp->sd_wrerrfunc = errfunc;
+ if (error != 0 || errfunc != NULL) {
+ cv_broadcast(&_RD(stp->sd_wrq)->q_wait); /* readers */
+ cv_broadcast(&stp->sd_wrq->q_wait); /* writers */
+ cv_broadcast(&stp->sd_monitor); /* ioctllers */
+
+ mutex_exit(&stp->sd_lock);
+ pollwakeup(&stp->sd_pollist, POLLERR);
+ mutex_enter(&stp->sd_lock);
+
+ if (stp->sd_sigflags & S_ERROR)
+ strsendsig(stp->sd_siglist, S_ERROR, 0, error);
+ }
+ mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * Make the stream return 0 (EOF) when all data has been read.
+ * No effect on write side.
+ */
+void
+strseteof(vnode_t *vp, int eof)
+{
+ struct stdata *stp = vp->v_stream;
+
+ mutex_enter(&stp->sd_lock);
+ if (!eof) {
+ stp->sd_flag &= ~STREOF;
+ mutex_exit(&stp->sd_lock);
+ return;
+ }
+ stp->sd_flag |= STREOF;
+ if (stp->sd_flag & RSLEEP) {
+ stp->sd_flag &= ~RSLEEP;
+ cv_broadcast(&_RD(stp->sd_wrq)->q_wait);
+ }
+
+ mutex_exit(&stp->sd_lock);
+ pollwakeup(&stp->sd_pollist, POLLIN|POLLRDNORM);
+ mutex_enter(&stp->sd_lock);
+
+ if (stp->sd_sigflags & (S_INPUT|S_RDNORM))
+ strsendsig(stp->sd_siglist, S_INPUT|S_RDNORM, 0, 0);
+ mutex_exit(&stp->sd_lock);
+}
+
+void
+strflushrq(vnode_t *vp, int flag)
+{
+ struct stdata *stp = vp->v_stream;
+
+ mutex_enter(&stp->sd_lock);
+ flushq(_RD(stp->sd_wrq), flag);
+ mutex_exit(&stp->sd_lock);
+}
+
+void
+strsetrputhooks(vnode_t *vp, uint_t flags,
+ msgfunc_t protofunc, msgfunc_t miscfunc)
+{
+ struct stdata *stp = vp->v_stream;
+
+ mutex_enter(&stp->sd_lock);
+
+ if (protofunc == NULL)
+ stp->sd_rprotofunc = strrput_proto;
+ else
+ stp->sd_rprotofunc = protofunc;
+
+ if (miscfunc == NULL)
+ stp->sd_rmiscfunc = strrput_misc;
+ else
+ stp->sd_rmiscfunc = miscfunc;
+
+ if (flags & SH_CONSOL_DATA)
+ stp->sd_rput_opt |= SR_CONSOL_DATA;
+ else
+ stp->sd_rput_opt &= ~SR_CONSOL_DATA;
+
+ if (flags & SH_SIGALLDATA)
+ stp->sd_rput_opt |= SR_SIGALLDATA;
+ else
+ stp->sd_rput_opt &= ~SR_SIGALLDATA;
+
+ if (flags & SH_IGN_ZEROLEN)
+ stp->sd_rput_opt |= SR_IGN_ZEROLEN;
+ else
+ stp->sd_rput_opt &= ~SR_IGN_ZEROLEN;
+
+ mutex_exit(&stp->sd_lock);
+}
+
+void
+strsetwputhooks(vnode_t *vp, uint_t flags, clock_t closetime)
+{
+ struct stdata *stp = vp->v_stream;
+
+ mutex_enter(&stp->sd_lock);
+ stp->sd_closetime = closetime;
+
+ if (flags & SH_SIGPIPE)
+ stp->sd_wput_opt |= SW_SIGPIPE;
+ else
+ stp->sd_wput_opt &= ~SW_SIGPIPE;
+ if (flags & SH_RECHECK_ERR)
+ stp->sd_wput_opt |= SW_RECHECK_ERR;
+ else
+ stp->sd_wput_opt &= ~SW_RECHECK_ERR;
+
+ mutex_exit(&stp->sd_lock);
+}
+
+/* Used within framework when the queue is already locked */
+void
+qenable_locked(queue_t *q)
+{
+ stdata_t *stp = STREAM(q);
+
+ ASSERT(MUTEX_HELD(QLOCK(q)));
+
+ if (!q->q_qinfo->qi_srvp)
+ return;
+
+ /*
+ * Do not place on run queue if already enabled or closing.
+ */
+ if (q->q_flag & (QWCLOSE|QENAB))
+ return;
+
+ /*
+ * mark queue enabled and place on run list if it is not already being
+ * serviced. If it is serviced, the runservice() function will detect
+ * that QENAB is set and call service procedure before clearing
+ * QINSERVICE flag.
+ */
+ q->q_flag |= QENAB;
+ if (q->q_flag & QINSERVICE)
+ return;
+
+ /* Record the time of qenable */
+ q->q_qtstamp = lbolt;
+
+ /*
+ * Put the queue in the stp list and schedule it for background
+ * processing if it is not already scheduled or if stream head does not
+ * intent to process it in the foreground later by setting
+ * STRS_WILLSERVICE flag.
+ */
+ mutex_enter(&stp->sd_qlock);
+ /*
+ * If there are already something on the list, stp flags should show
+ * intention to drain it.
+ */
+ IMPLY(STREAM_NEEDSERVICE(stp),
+ (stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED)));
+
+ ENQUEUE(q, stp->sd_qhead, stp->sd_qtail, q_link);
+ stp->sd_nqueues++;
+
+ /*
+ * If no one will drain this stream we are the first producer and
+ * need to schedule it for background thread.
+ */
+ if (!(stp->sd_svcflags & (STRS_WILLSERVICE | STRS_SCHEDULED))) {
+ /*
+ * No one will service this stream later, so we have to
+ * schedule it now.
+ */
+ STRSTAT(stenables);
+ stp->sd_svcflags |= STRS_SCHEDULED;
+ stp->sd_servid = (void *)taskq_dispatch(streams_taskq,
+ (task_func_t *)stream_service, stp, TQ_NOSLEEP|TQ_NOQUEUE);
+
+ if (stp->sd_servid == NULL) {
+ /*
+ * Task queue failed so fail over to the backup
+ * servicing thread.
+ */
+ STRSTAT(taskqfails);
+ /*
+ * It is safe to clear STRS_SCHEDULED flag because it
+ * was set by this thread above.
+ */
+ stp->sd_svcflags &= ~STRS_SCHEDULED;
+
+ /*
+ * Failover scheduling is protected by service_queue
+ * lock.
+ */
+ mutex_enter(&service_queue);
+ ASSERT((stp->sd_qhead == q) && (stp->sd_qtail == q));
+ ASSERT(q->q_link == NULL);
+ /*
+ * Append the queue to qhead/qtail list.
+ */
+ if (qhead == NULL)
+ qhead = q;
+ else
+ qtail->q_link = q;
+ qtail = q;
+ /*
+ * Clear stp queue list.
+ */
+ stp->sd_qhead = stp->sd_qtail = NULL;
+ stp->sd_nqueues = 0;
+ /*
+ * Wakeup background queue processing thread.
+ */
+ cv_signal(&services_to_run);
+ mutex_exit(&service_queue);
+ }
+ }
+ mutex_exit(&stp->sd_qlock);
+}
+
+static void
+queue_service(queue_t *q)
+{
+ /*
+ * The queue in the list should have
+ * QENAB flag set and should not have
+ * QINSERVICE flag set. QINSERVICE is
+ * set when the queue is dequeued and
+ * qenable_locked doesn't enqueue a
+ * queue with QINSERVICE set.
+ */
+
+ ASSERT(!(q->q_flag & QINSERVICE));
+ ASSERT((q->q_flag & QENAB));
+ mutex_enter(QLOCK(q));
+ q->q_flag &= ~QENAB;
+ q->q_flag |= QINSERVICE;
+ mutex_exit(QLOCK(q));
+ runservice(q);
+}
+
+static void
+syncq_service(syncq_t *sq)
+{
+ STRSTAT(syncqservice);
+ mutex_enter(SQLOCK(sq));
+ ASSERT(!(sq->sq_svcflags & SQ_SERVICE));
+ ASSERT(sq->sq_servcount != 0);
+ ASSERT(sq->sq_next == NULL);
+
+ /* if we came here from the background thread, clear the flag */
+ if (sq->sq_svcflags & SQ_BGTHREAD)
+ sq->sq_svcflags &= ~SQ_BGTHREAD;
+
+ /* let drain_syncq know that it's being called in the background */
+ sq->sq_svcflags |= SQ_SERVICE;
+ drain_syncq(sq);
+}
+
+static void
+qwriter_outer_service(syncq_t *outer)
+{
+ /*
+ * Note that SQ_WRITER is used on the outer perimeter
+ * to signal that a qwriter(OUTER) is either investigating
+ * running or that it is actually running a function.
+ */
+ outer_enter(outer, SQ_BLOCKED|SQ_WRITER);
+
+ /*
+ * All inner syncq are empty and have SQ_WRITER set
+ * to block entering the outer perimeter.
+ *
+ * We do not need to explicitly call write_now since
+ * outer_exit does it for us.
+ */
+ outer_exit(outer);
+}
+
+static void
+mblk_free(mblk_t *mp)
+{
+ dblk_t *dbp = mp->b_datap;
+ frtn_t *frp = dbp->db_frtnp;
+
+ mp->b_next = NULL;
+ if (dbp->db_fthdr != NULL)
+ str_ftfree(dbp);
+
+ ASSERT(dbp->db_fthdr == NULL);
+ frp->free_func(frp->free_arg);
+ ASSERT(dbp->db_mblk == mp);
+
+ if (dbp->db_credp != NULL) {
+ crfree(dbp->db_credp);
+ dbp->db_credp = NULL;
+ }
+ dbp->db_cpid = -1;
+ dbp->db_struioflag = 0;
+ dbp->db_struioun.cksum.flags = 0;
+
+ kmem_cache_free(dbp->db_cache, dbp);
+}
+
+/*
+ * Background processing of the stream queue list.
+ */
+static void
+stream_service(stdata_t *stp)
+{
+ queue_t *q;
+
+ mutex_enter(&stp->sd_qlock);
+
+ STR_SERVICE(stp, q);
+
+ stp->sd_svcflags &= ~STRS_SCHEDULED;
+ stp->sd_servid = NULL;
+ cv_signal(&stp->sd_qcv);
+ mutex_exit(&stp->sd_qlock);
+}
+
+/*
+ * Foreground processing of the stream queue list.
+ */
+void
+stream_runservice(stdata_t *stp)
+{
+ queue_t *q;
+
+ mutex_enter(&stp->sd_qlock);
+ STRSTAT(rservice);
+ /*
+ * We are going to drain this stream queue list, so qenable_locked will
+ * not schedule it until we finish.
+ */
+ stp->sd_svcflags |= STRS_WILLSERVICE;
+
+ STR_SERVICE(stp, q);
+
+ stp->sd_svcflags &= ~STRS_WILLSERVICE;
+ mutex_exit(&stp->sd_qlock);
+ /*
+ * Help backup background thread to drain the qhead/qtail list.
+ */
+ while (qhead != NULL) {
+ STRSTAT(qhelps);
+ mutex_enter(&service_queue);
+ DQ(q, qhead, qtail, q_link);
+ mutex_exit(&service_queue);
+ if (q != NULL)
+ queue_service(q);
+ }
+}
+
+void
+stream_willservice(stdata_t *stp)
+{
+ mutex_enter(&stp->sd_qlock);
+ stp->sd_svcflags |= STRS_WILLSERVICE;
+ mutex_exit(&stp->sd_qlock);
+}
+
+/*
+ * Replace the cred currently in the mblk with a different one.
+ */
+void
+mblk_setcred(mblk_t *mp, cred_t *cr)
+{
+ cred_t *ocr = DB_CRED(mp);
+
+ ASSERT(cr != NULL);
+
+ if (cr != ocr) {
+ crhold(mp->b_datap->db_credp = cr);
+ if (ocr != NULL)
+ crfree(ocr);
+ }
+}
+
+int
+hcksum_assoc(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
+ uint32_t start, uint32_t stuff, uint32_t end, uint32_t value,
+ uint32_t flags, int km_flags)
+{
+ int rc = 0;
+
+ ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
+ if (mp->b_datap->db_type == M_DATA) {
+ /* Associate values for M_DATA type */
+ mp->b_datap->db_cksumstart = (intptr_t)start;
+ mp->b_datap->db_cksumstuff = (intptr_t)stuff;
+ mp->b_datap->db_cksumend = (intptr_t)end;
+ mp->b_datap->db_struioun.cksum.flags = flags;
+ mp->b_datap->db_cksum16 = (uint16_t)value;
+
+ } else {
+ pattrinfo_t pa_info;
+
+ ASSERT(mmd != NULL);
+
+ pa_info.type = PATTR_HCKSUM;
+ pa_info.len = sizeof (pattr_hcksum_t);
+
+ if (mmd_addpattr(mmd, pd, &pa_info, B_TRUE, km_flags) != NULL) {
+ pattr_hcksum_t *hck = (pattr_hcksum_t *)pa_info.buf;
+
+ hck->hcksum_start_offset = start;
+ hck->hcksum_stuff_offset = stuff;
+ hck->hcksum_end_offset = end;
+ hck->hcksum_cksum_val.inet_cksum = (uint16_t)value;
+ hck->hcksum_flags = flags;
+ }
+ }
+ return (rc);
+}
+
+void
+hcksum_retrieve(mblk_t *mp, multidata_t *mmd, pdesc_t *pd,
+ uint32_t *start, uint32_t *stuff, uint32_t *end,
+ uint32_t *value, uint32_t *flags)
+{
+ ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
+ if (mp->b_datap->db_type == M_DATA) {
+ if (flags != NULL) {
+ *flags = mp->b_datap->db_struioun.cksum.flags;
+ if (*flags & HCK_PARTIALCKSUM) {
+ if (start != NULL)
+ *start = (uint32_t)
+ mp->b_datap->db_cksumstart;
+ if (stuff != NULL)
+ *stuff = (uint32_t)
+ mp->b_datap->db_cksumstuff;
+ if (end != NULL)
+ *end =
+ (uint32_t)mp->b_datap->db_cksumend;
+ if (value != NULL)
+ *value =
+ (uint32_t)mp->b_datap->db_cksum16;
+ }
+ }
+ } else {
+ pattrinfo_t hck_attr = {PATTR_HCKSUM};
+
+ ASSERT(mmd != NULL);
+
+ /* get hardware checksum attribute */
+ if (mmd_getpattr(mmd, pd, &hck_attr) != NULL) {
+ pattr_hcksum_t *hck = (pattr_hcksum_t *)hck_attr.buf;
+
+ ASSERT(hck_attr.len >= sizeof (pattr_hcksum_t));
+ if (flags != NULL)
+ *flags = hck->hcksum_flags;
+ if (start != NULL)
+ *start = hck->hcksum_start_offset;
+ if (stuff != NULL)
+ *stuff = hck->hcksum_stuff_offset;
+ if (end != NULL)
+ *end = hck->hcksum_end_offset;
+ if (value != NULL)
+ *value = (uint32_t)
+ hck->hcksum_cksum_val.inet_cksum;
+ }
+ }
+}
+
+/*
+ * Checksum buffer *bp for len bytes with psum partial checksum,
+ * or 0 if none, and return the 16 bit partial checksum.
+ */
+unsigned
+bcksum(uchar_t *bp, int len, unsigned int psum)
+{
+ int odd = len & 1;
+ extern unsigned int ip_ocsum();
+
+ if (((intptr_t)bp & 1) == 0 && !odd) {
+ /*
+ * Bp is 16 bit aligned and len is multiple of 16 bit word.
+ */
+ return (ip_ocsum((ushort_t *)bp, len >> 1, psum));
+ }
+ if (((intptr_t)bp & 1) != 0) {
+ /*
+ * Bp isn't 16 bit aligned.
+ */
+ unsigned int tsum;
+
+#ifdef _LITTLE_ENDIAN
+ psum += *bp;
+#else
+ psum += *bp << 8;
+#endif
+ len--;
+ bp++;
+ tsum = ip_ocsum((ushort_t *)bp, len >> 1, 0);
+ psum += (tsum << 8) & 0xffff | (tsum >> 8);
+ if (len & 1) {
+ bp += len - 1;
+#ifdef _LITTLE_ENDIAN
+ psum += *bp << 8;
+#else
+ psum += *bp;
+#endif
+ }
+ } else {
+ /*
+ * Bp is 16 bit aligned.
+ */
+ psum = ip_ocsum((ushort_t *)bp, len >> 1, psum);
+ if (odd) {
+ bp += len - 1;
+#ifdef _LITTLE_ENDIAN
+ psum += *bp;
+#else
+ psum += *bp << 8;
+#endif
+ }
+ }
+ /*
+ * Normalize psum to 16 bits before returning the new partial
+ * checksum. The max psum value before normalization is 0x3FDFE.
+ */
+ return ((psum >> 16) + (psum & 0xFFFF));
+}
+
+boolean_t
+is_vmloaned_mblk(mblk_t *mp, multidata_t *mmd, pdesc_t *pd)
+{
+ boolean_t rc;
+
+ ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_MULTIDATA);
+ if (DB_TYPE(mp) == M_DATA) {
+ rc = (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0);
+ } else {
+ pattrinfo_t zcopy_attr = {PATTR_ZCOPY};
+
+ ASSERT(mmd != NULL);
+ rc = (mmd_getpattr(mmd, pd, &zcopy_attr) != NULL);
+ }
+ return (rc);
+}
+
+void
+freemsgchain(mblk_t *mp)
+{
+ mblk_t *next;
+
+ while (mp != NULL) {
+ next = mp->b_next;
+ mp->b_next = NULL;
+
+ freemsg(mp);
+ mp = next;
+ }
+}
+
+mblk_t *
+copymsgchain(mblk_t *mp)
+{
+ mblk_t *nmp = NULL;
+ mblk_t **nmpp = &nmp;
+
+ for (; mp != NULL; mp = mp->b_next) {
+ if ((*nmpp = copymsg(mp)) == NULL) {
+ freemsgchain(nmp);
+ return (NULL);
+ }
+
+ nmpp = &((*nmpp)->b_next);
+ }
+
+ return (nmp);
+}
+
+/* NOTE: Do not add code after this point. */
+#undef QLOCK
+
+/*
+ * replacement for QLOCK macro for those that can't use it.
+ */
+kmutex_t *
+QLOCK(queue_t *q)
+{
+ return (&(q)->q_lock);
+}
+
+/*
+ * Dummy runqueues/queuerun functions functions for backwards compatibility.
+ */
+#undef runqueues
+void
+runqueues(void)
+{
+}
+
+#undef queuerun
+void
+queuerun(void)
+{
+}