diff options
Diffstat (limited to 'usr/src/uts/common/os/task.c')
-rw-r--r-- | usr/src/uts/common/os/task.c | 887 |
1 files changed, 887 insertions, 0 deletions
diff --git a/usr/src/uts/common/os/task.c b/usr/src/uts/common/os/task.c new file mode 100644 index 0000000000..562e3596b5 --- /dev/null +++ b/usr/src/uts/common/os/task.c @@ -0,0 +1,887 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License, Version 1.0 only + * (the "License"). You may not use this file except in compliance + * with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2004 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +#include <sys/atomic.h> +#include <sys/cmn_err.h> +#include <sys/exacct.h> +#include <sys/id_space.h> +#include <sys/kmem.h> +#include <sys/modhash.h> +#include <sys/mutex.h> +#include <sys/proc.h> +#include <sys/project.h> +#include <sys/rctl.h> +#include <sys/systm.h> +#include <sys/task.h> +#include <sys/time.h> +#include <sys/types.h> +#include <sys/zone.h> +#include <sys/cpuvar.h> +#include <sys/fss.h> +#include <sys/class.h> +#include <sys/project.h> + +/* + * Tasks + * + * A task is a collection of processes, associated with a common project ID + * and related by a common initial parent. The task primarily represents a + * natural process sequence with known resource usage, although it can also be + * viewed as a convenient grouping of processes for signal delivery, processor + * binding, and administrative operations. + * + * Membership and observership + * We can conceive of situations where processes outside of the task may wish + * to examine the resource usage of the task. Similarly, a number of the + * administrative operations on a task can be performed by processes who are + * not members of the task. Accordingly, we must design a locking strategy + * where observers of the task, who wish to examine or operate on the task, + * and members of task, who can perform the mentioned operations, as well as + * leave the task, see a consistent and correct representation of the task at + * all times. + * + * Locking + * Because the task membership is a new relation between processes, its + * locking becomes an additional responsibility of the pidlock/p_lock locking + * sequence; however, tasks closely resemble sessions and the session locking + * model is mostly appropriate for the interaction of tasks, processes, and + * procfs. + * + * kmutex_t task_hash_lock + * task_hash_lock is a global lock protecting the contents of the task + * ID-to-task pointer hash. Holders of task_hash_lock must not attempt to + * acquire pidlock or p_lock. + * uint_t tk_hold_count + * tk_hold_count, the number of members and observers of the current task, + * must be manipulated atomically. + * proc_t *tk_memb_list + * proc_t *p_tasknext + * proc_t *p_taskprev + * The task's membership list is protected by pidlock, and is therefore + * always acquired before any of its members' p_lock mutexes. The p_task + * member of the proc structure is protected by pidlock or p_lock for + * reading, and by both pidlock and p_lock for modification, as is done for + * p_sessp. The key point is that only the process can modify its p_task, + * and not any entity on the system. (/proc will use prlock() to prevent + * the process from leaving, as opposed to pidlock.) + * kmutex_t tk_usage_lock + * tk_usage_lock is a per-task lock protecting the contents of the task + * usage structure and tk_nlwps counter for the task.max-lwps resource + * control. + */ + +int task_hash_size = 256; +static kmutex_t task_hash_lock; +static mod_hash_t *task_hash; + +static id_space_t *taskid_space; /* global taskid space */ +static kmem_cache_t *task_cache; /* kmem cache for task structures */ + +rctl_hndl_t rc_task_lwps; +rctl_hndl_t rc_task_cpu_time; + +/* + * static rctl_qty_t task_usage_lwps(void *taskp) + * + * Overview + * task_usage_lwps() is the usage operation for the resource control + * associated with the number of LWPs in a task. + * + * Return values + * The number of LWPs in the given task is returned. + * + * Caller's context + * The p->p_lock must be held across the call. + */ +/*ARGSUSED*/ +static rctl_qty_t +task_lwps_usage(rctl_t *r, proc_t *p) +{ + task_t *t; + rctl_qty_t nlwps; + + ASSERT(MUTEX_HELD(&p->p_lock)); + + t = p->p_task; + mutex_enter(&p->p_zone->zone_nlwps_lock); + nlwps = t->tk_nlwps; + mutex_exit(&p->p_zone->zone_nlwps_lock); + + return (nlwps); +} + +/* + * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr, + * int flags) + * + * Overview + * task_test_lwps() is the test-if-valid-increment for the resource control + * for the number of processes in a task. + * + * Return values + * 0 if the threshold limit was not passed, 1 if the limit was passed. + * + * Caller's context + * p->p_lock must be held across the call. + */ +/*ARGSUSED*/ +static int +task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, + rctl_qty_t incr, + uint_t flags) +{ + rctl_qty_t nlwps; + + ASSERT(MUTEX_HELD(&p->p_lock)); + ASSERT(e->rcep_t == RCENTITY_TASK); + if (e->rcep_p.task == NULL) + return (0); + + ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock))); + nlwps = e->rcep_p.task->tk_nlwps; + + if (nlwps + incr > rcntl->rcv_value) + return (1); + + return (0); +} +/*ARGSUSED*/ +static int +task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { + + ASSERT(MUTEX_HELD(&p->p_lock)); + ASSERT(e->rcep_t == RCENTITY_TASK); + if (e->rcep_p.task == NULL) + return (0); + + e->rcep_p.task->tk_nlwps_ctl = nv; + return (0); +} + +/* + * static rctl_qty_t task_usage_cpu_secs(void *taskp) + * + * Overview + * task_usage_cpu_secs() is the usage operation for the resource control + * associated with the total accrued CPU seconds for a task. + * + * Return values + * The number of CPU seconds consumed by the task is returned. + * + * Caller's context + * The given task must be held across the call. + */ +/*ARGSUSED*/ +static rctl_qty_t +task_cpu_time_usage(rctl_t *r, proc_t *p) +{ + task_t *t = p->p_task; + + ASSERT(MUTEX_HELD(&p->p_lock)); + return (t->tk_cpu_time / hz); +} + +/* + * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr, + * int flags) + * + * Overview + * task_test_cpu_secs() is the test-if-valid-increment for the resource + * control for the total accrued CPU seconds for a task. + * + * Return values + * 0 if the threshold limit was not passed, 1 if the limit was passed. + * + * Caller's context + * The given task must be held across the call. + */ +/*ARGSUSED*/ +static int +task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, + struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags) +{ + task_t *t; + + ASSERT(MUTEX_HELD(&p->p_lock)); + ASSERT(e->rcep_t == RCENTITY_TASK); + if (e->rcep_p.task == NULL) + return (0); + + t = e->rcep_p.task; + if ((t->tk_cpu_time + incr) / hz >= rcntl->rcv_value) + return (1); + + return (0); +} + +static task_t * +task_find(taskid_t id, zoneid_t zoneid) +{ + task_t *tk; + + ASSERT(MUTEX_HELD(&task_hash_lock)); + + if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id, + (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND || + (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id)) + return (NULL); + + return (tk); +} + +/* + * task_hold_by_id(), task_hold_by_id_zone() + * + * Overview + * task_hold_by_id() is used to take a reference on a task by its task id, + * supporting the various system call interfaces for obtaining resource data, + * delivering signals, and so forth. + * + * Return values + * Returns a pointer to the task_t with taskid_t id. The task is returned + * with its hold count incremented by one. Returns NULL if there + * is no task with the requested id. + * + * Caller's context + * Caller must not be holding task_hash_lock. No restrictions on context. + */ +task_t * +task_hold_by_id_zone(taskid_t id, zoneid_t zoneid) +{ + task_t *tk; + + mutex_enter(&task_hash_lock); + if ((tk = task_find(id, zoneid)) != NULL) + atomic_add_32(&tk->tk_hold_count, 1); + mutex_exit(&task_hash_lock); + + return (tk); +} + +task_t * +task_hold_by_id(taskid_t id) +{ + zoneid_t zoneid; + + if (INGLOBALZONE(curproc)) + zoneid = ALL_ZONES; + else + zoneid = getzoneid(); + return (task_hold_by_id_zone(id, zoneid)); +} + +/* + * void task_hold(task_t *) + * + * Overview + * task_hold() is used to take an additional reference to the given task. + * + * Return values + * None. + * + * Caller's context + * No restriction on context. + */ +void +task_hold(task_t *tk) +{ + atomic_add_32(&tk->tk_hold_count, 1); +} + +/* + * void task_rele(task_t *) + * + * Overview + * task_rele() relinquishes a reference on the given task, which was acquired + * via task_hold() or task_hold_by_id(). If this is the last member or + * observer of the task, dispatch it for commitment via the accounting + * subsystem. + * + * Return values + * None. + * + * Caller's context + * Caller must not be holding the task_hash_lock. + * Caller's context must be acceptable for KM_SLEEP allocations. + */ +void +task_rele(task_t *tk) +{ + mutex_enter(&task_hash_lock); + if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) { + mutex_exit(&task_hash_lock); + return; + } + + mutex_enter(&tk->tk_zone->zone_nlwps_lock); + tk->tk_proj->kpj_ntasks--; + mutex_exit(&tk->tk_zone->zone_nlwps_lock); + + if (mod_hash_destroy(task_hash, + (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0) + panic("unable to delete task %d", tk->tk_tkid); + mutex_exit(&task_hash_lock); + + /* + * At this point, there are no members or observers of the task, so we + * can safely send it on for commitment to the accounting subsystem. + * The task will be destroyed in task_end() subsequent to commitment. + */ + (void) taskq_dispatch(exacct_queue, exacct_commit_task, tk, KM_SLEEP); +} + +/* + * task_t *task_create(projid_t, zone *) + * + * Overview + * A process constructing a new task calls task_create() to construct and + * preinitialize the task for the appropriate destination project. Only one + * task, the primordial task0, is not created with task_create(). + * + * Return values + * None. + * + * Caller's context + * Caller's context should be safe for KM_SLEEP allocations. + * The caller should appropriately bump the kpj_ntasks counter on the + * project that contains this task. + */ +task_t * +task_create(projid_t projid, zone_t *zone) +{ + task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP); + task_t *ancestor_tk; + taskid_t tkid; + task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP); + mod_hash_hndl_t hndl; + rctl_set_t *set = rctl_set_create(); + rctl_alloc_gp_t *gp; + rctl_entity_p_t e; + + bzero(tk, sizeof (task_t)); + + tk->tk_tkid = tkid = id_alloc(taskid_space); + tk->tk_nlwps = 0; + tk->tk_nlwps_ctl = INT_MAX; + tk->tk_usage = tu; + tk->tk_proj = project_hold_by_id(projid, zone->zone_id, + PROJECT_HOLD_INSERT); + tk->tk_flags = TASK_NORMAL; + + /* + * Copy ancestor task's resource controls. + */ + zone_task_hold(zone); + mutex_enter(&curproc->p_lock); + ancestor_tk = curproc->p_task; + task_hold(ancestor_tk); + tk->tk_zone = zone; + mutex_exit(&curproc->p_lock); + + for (;;) { + gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls); + + mutex_enter(&ancestor_tk->tk_rctls->rcs_lock); + if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp)) + break; + + mutex_exit(&ancestor_tk->tk_rctls->rcs_lock); + + rctl_prealloc_destroy(gp); + } + + /* + * At this point, curproc does not have the appropriate linkage + * through the task to the project. So, rctl_set_dup should only + * copy the rctls, and leave the callbacks for later. + */ + e.rcep_p.task = tk; + e.rcep_t = RCENTITY_TASK; + tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e, + set, gp, RCD_DUP); + mutex_exit(&ancestor_tk->tk_rctls->rcs_lock); + + rctl_prealloc_destroy(gp); + + /* + * Record the ancestor task's ID for use by extended accounting. + */ + tu->tu_anctaskid = ancestor_tk->tk_tkid; + task_rele(ancestor_tk); + + /* + * Put new task structure in the hash table. + */ + (void) mod_hash_reserve(task_hash, &hndl); + mutex_enter(&task_hash_lock); + ASSERT(task_find(tkid, getzoneid()) == NULL); + if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid, + (mod_hash_val_t *)tk, hndl) != 0) { + mod_hash_cancel(task_hash, &hndl); + panic("unable to insert task %d(%p)", tkid, (void *)tk); + } + mutex_exit(&task_hash_lock); + + return (tk); +} + +/* + * void task_attach(task_t *, proc_t *) + * + * Overview + * task_attach() is used to attach a process to a task; this operation is only + * performed as a result of a fork() or settaskid() system call. The proc_t's + * p_tasknext and p_taskprev fields will be set such that the proc_t is a + * member of the doubly-linked list of proc_t's that make up the task. + * + * Return values + * None. + * + * Caller's context + * pidlock and p->p_lock must be held on entry. + */ +void +task_attach(task_t *tk, proc_t *p) +{ + proc_t *first, *prev; + rctl_entity_p_t e; + ASSERT(tk != NULL); + ASSERT(p != NULL); + ASSERT(MUTEX_HELD(&pidlock)); + ASSERT(MUTEX_HELD(&p->p_lock)); + + if (tk->tk_memb_list == NULL) { + p->p_tasknext = p; + p->p_taskprev = p; + } else { + first = tk->tk_memb_list; + prev = first->p_taskprev; + first->p_taskprev = p; + p->p_tasknext = first; + p->p_taskprev = prev; + prev->p_tasknext = p; + } + tk->tk_memb_list = p; + task_hold(tk); + p->p_task = tk; + + /* + * Now that the linkage from process to task and project is + * complete, do the required callbacks for the task and project + * rctl sets. + */ + e.rcep_p.proj = tk->tk_proj; + e.rcep_t = RCENTITY_PROJECT; + (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_proj->kpj_rctls, NULL, + RCD_CALLBACK); + + e.rcep_p.task = tk; + e.rcep_t = RCENTITY_TASK; + (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL, + RCD_CALLBACK); + +} + +/* + * task_begin() + * + * Overview + * A process constructing a new task calls task_begin() to initialize the + * task, by attaching itself as a member. + * + * Return values + * None. + * + * Caller's context + * pidlock and p_lock must be held across the call to task_begin(). + */ +void +task_begin(task_t *tk, proc_t *p) +{ + timestruc_t ts; + task_usage_t *tu; + + ASSERT(MUTEX_HELD(&pidlock)); + ASSERT(MUTEX_HELD(&p->p_lock)); + + mutex_enter(&tk->tk_usage_lock); + tu = tk->tk_usage; + gethrestime(&ts); + tu->tu_startsec = (uint64_t)ts.tv_sec; + tu->tu_startnsec = (uint64_t)ts.tv_nsec; + mutex_exit(&tk->tk_usage_lock); + + /* + * Join process to the task as a member. + */ + task_attach(tk, p); +} + +/* + * void task_detach(proc_t *) + * + * Overview + * task_detach() removes the specified process from its task. task_detach + * sets the process's task membership to NULL, in anticipation of a final exit + * or of joining a new task. Because task_rele() requires a context safe for + * KM_SLEEP allocations, a task_detach() is followed by a subsequent + * task_rele() once appropriate context is available. + * + * Because task_detach() involves relinquishing the process's membership in + * the project, any observational rctls the process may have had on the task + * or project are destroyed. + * + * Return values + * None. + * + * Caller's context + * pidlock and p_lock held across task_detach(). + */ +void +task_detach(proc_t *p) +{ + task_t *tk = p->p_task; + + ASSERT(MUTEX_HELD(&pidlock)); + ASSERT(MUTEX_HELD(&p->p_lock)); + ASSERT(p->p_task != NULL); + ASSERT(tk->tk_memb_list != NULL); + + if (tk->tk_memb_list == p) + tk->tk_memb_list = p->p_tasknext; + if (tk->tk_memb_list == p) + tk->tk_memb_list = NULL; + p->p_taskprev->p_tasknext = p->p_tasknext; + p->p_tasknext->p_taskprev = p->p_taskprev; + + rctl_set_tearoff(p->p_task->tk_rctls, p); + rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p); + + p->p_task = NULL; + p->p_tasknext = p->p_taskprev = NULL; +} + +/* + * task_change(task_t *, proc_t *) + * + * Overview + * task_change() removes the specified process from its current task. The + * process is then attached to the specified task. This routine is called + * from settaskid() when process is being moved to a new task. + * + * Return values + * None. + * + * Caller's context + * pidlock and p_lock held across task_change() + */ +void +task_change(task_t *newtk, proc_t *p) +{ + task_t *oldtk = p->p_task; + + ASSERT(MUTEX_HELD(&pidlock)); + ASSERT(MUTEX_HELD(&p->p_lock)); + ASSERT(oldtk != NULL); + ASSERT(oldtk->tk_memb_list != NULL); + + mutex_enter(&p->p_zone->zone_nlwps_lock); + oldtk->tk_nlwps -= p->p_lwpcnt; + mutex_exit(&p->p_zone->zone_nlwps_lock); + + mutex_enter(&newtk->tk_zone->zone_nlwps_lock); + newtk->tk_nlwps += p->p_lwpcnt; + mutex_exit(&newtk->tk_zone->zone_nlwps_lock); + + task_detach(p); + task_begin(newtk, p); +} + +/* + * task_end() + * + * Overview + * task_end() contains the actions executed once the final member of + * a task has released the task, and all actions connected with the task, such + * as committing an accounting record to a file, are completed. It is called + * by the known last consumer of the task information. Additionally, + * task_end() must never refer to any process in the system. + * + * Return values + * None. + * + * Caller's context + * No restrictions on context, beyond that given above. + */ +void +task_end(task_t *tk) +{ + ASSERT(tk->tk_hold_count == 0); + + project_rele(tk->tk_proj); + kmem_free(tk->tk_usage, sizeof (task_usage_t)); + if (tk->tk_prevusage != NULL) + kmem_free(tk->tk_prevusage, sizeof (task_usage_t)); + if (tk->tk_zoneusage != NULL) + kmem_free(tk->tk_zoneusage, sizeof (task_usage_t)); + rctl_set_free(tk->tk_rctls); + id_free(taskid_space, tk->tk_tkid); + zone_task_rele(tk->tk_zone); + kmem_cache_free(task_cache, tk); +} + +static void +changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf, + void *zonebuf) +{ + kproject_t *oldkpj; + kthread_t *t; + + ASSERT(MUTEX_HELD(&pidlock)); + ASSERT(MUTEX_HELD(&p->p_lock)); + + if ((t = p->p_tlist) != NULL) { + do { + (void) project_hold(kpj); + + thread_lock(t); + oldkpj = ttoproj(t); + t->t_proj = kpj; + t->t_pre_sys = 1; /* For cred update */ + thread_unlock(t); + fss_changeproj(t, kpj, zone, projbuf, zonebuf); + + project_rele(oldkpj); + } while ((t = t->t_forw) != p->p_tlist); + } +} + +/* + * task_join() + * + * Overview + * task_join() contains the actions that must be executed when the first + * member (curproc) of a newly created task joins it. It may never fail. + * + * The caller must make sure holdlwps() is called so that all other lwps are + * stopped prior to calling this function. + * + * NB: It returns with curproc->p_lock held. + * + * Return values + * Pointer to the old task. + * + * Caller's context + * cpu_lock must be held entering the function. It will acquire pidlock, + * p_crlock and p_lock during execution. + */ +task_t * +task_join(task_t *tk, uint_t flags) +{ + proc_t *p = ttoproc(curthread); + task_t *prev_tk; + void *projbuf, *zonebuf; + zone_t *zone = tk->tk_zone; + projid_t projid = tk->tk_proj->kpj_id; + cred_t *oldcr; + + /* + * We can't know for sure if holdlwps() was called, but we can check to + * ensure we're single-threaded. + */ + ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1); + + /* + * Changing the credential is always hard because we cannot + * allocate memory when holding locks but we don't know whether + * we need to change it. We first get a reference to the current + * cred if we need to change it. Then we create a credential + * with an updated project id. Finally we install it, first + * releasing the reference we had on the p_cred at the time we + * acquired the lock the first time and later we release the + * reference to p_cred at the time we acquired the lock the + * second time. + */ + mutex_enter(&p->p_crlock); + if (crgetprojid(p->p_cred) == projid) + oldcr = NULL; + else + crhold(oldcr = p->p_cred); + mutex_exit(&p->p_crlock); + + if (oldcr != NULL) { + cred_t *newcr = crdup(oldcr); + crsetprojid(newcr, projid); + crfree(oldcr); + + mutex_enter(&p->p_crlock); + oldcr = p->p_cred; + p->p_cred = newcr; + mutex_exit(&p->p_crlock); + crfree(oldcr); + } + + /* + * Make sure that the number of processor sets is constant + * across this operation. + */ + ASSERT(MUTEX_HELD(&cpu_lock)); + + projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ); + zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE); + + mutex_enter(&pidlock); + mutex_enter(&p->p_lock); + + prev_tk = p->p_task; + task_change(tk, p); + + /* + * Now move threads one by one to their new project. + */ + changeproj(p, tk->tk_proj, zone, projbuf, zonebuf); + if (flags & TASK_FINAL) + p->p_task->tk_flags |= TASK_FINAL; + + mutex_exit(&pidlock); + + fss_freebuf(zonebuf, FSS_ALLOC_ZONE); + fss_freebuf(projbuf, FSS_ALLOC_PROJ); + return (prev_tk); +} + +/* + * rctl ops vectors + */ +static rctl_ops_t task_lwps_ops = { + rcop_no_action, + task_lwps_usage, + task_lwps_set, + task_lwps_test +}; + +static rctl_ops_t task_cpu_time_ops = { + rcop_no_action, + task_cpu_time_usage, + rcop_no_set, + task_cpu_time_test +}; + +/*ARGSUSED*/ +/* + * void task_init(void) + * + * Overview + * task_init() initializes task-related hashes, caches, and the task id + * space. Additionally, task_init() establishes p0 as a member of task0. + * Called by main(). + * + * Return values + * None. + * + * Caller's context + * task_init() must be called prior to MP startup. + */ +void +task_init(void) +{ + proc_t *p = &p0; + mod_hash_hndl_t hndl; + rctl_set_t *set; + rctl_alloc_gp_t *gp; + rctl_entity_p_t e; + /* + * Initialize task_cache and taskid_space. + */ + task_cache = kmem_cache_create("task_cache", sizeof (task_t), + 0, NULL, NULL, NULL, NULL, NULL, 0); + taskid_space = id_space_create("taskid_space", 0, MAX_TASKID); + + /* + * Initialize task hash table. + */ + task_hash = mod_hash_create_idhash("task_hash", task_hash_size, + mod_hash_null_valdtor); + + /* + * Initialize task-based rctls. + */ + rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK, + RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX, + &task_lwps_ops); + rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK, + RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER | + RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE | + RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX, + UINT64_MAX, &task_cpu_time_ops); + + /* + * Create task0 and place p0 in it as a member. + */ + task0p = kmem_cache_alloc(task_cache, KM_SLEEP); + bzero(task0p, sizeof (task_t)); + + task0p->tk_tkid = id_alloc(taskid_space); + task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP); + task0p->tk_proj = project_hold_by_id(0, GLOBAL_ZONEID, + PROJECT_HOLD_INSERT); + task0p->tk_flags = TASK_NORMAL; + task0p->tk_nlwps = p->p_lwpcnt; + task0p->tk_zone = global_zone; + + set = rctl_set_create(); + gp = rctl_set_init_prealloc(RCENTITY_TASK); + mutex_enter(&curproc->p_lock); + e.rcep_p.task = task0p; + e.rcep_t = RCENTITY_TASK; + task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp); + mutex_exit(&curproc->p_lock); + rctl_prealloc_destroy(gp); + + (void) mod_hash_reserve(task_hash, &hndl); + mutex_enter(&task_hash_lock); + ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL); + if (mod_hash_insert_reserve(task_hash, + (mod_hash_key_t)(uintptr_t)task0p->tk_tkid, + (mod_hash_val_t *)task0p, hndl) != 0) { + mod_hash_cancel(task_hash, &hndl); + panic("unable to insert task %d(%p)", task0p->tk_tkid, + (void *)task0p); + } + mutex_exit(&task_hash_lock); + + task0p->tk_memb_list = p; + + /* + * Initialize task pointers for p0, including doubly linked list of task + * members. + */ + p->p_task = task0p; + p->p_taskprev = p->p_tasknext = p; + task_hold(task0p); +} |