summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/task.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/os/task.c')
-rw-r--r--usr/src/uts/common/os/task.c887
1 files changed, 887 insertions, 0 deletions
diff --git a/usr/src/uts/common/os/task.c b/usr/src/uts/common/os/task.c
new file mode 100644
index 0000000000..562e3596b5
--- /dev/null
+++ b/usr/src/uts/common/os/task.c
@@ -0,0 +1,887 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/atomic.h>
+#include <sys/cmn_err.h>
+#include <sys/exacct.h>
+#include <sys/id_space.h>
+#include <sys/kmem.h>
+#include <sys/modhash.h>
+#include <sys/mutex.h>
+#include <sys/proc.h>
+#include <sys/project.h>
+#include <sys/rctl.h>
+#include <sys/systm.h>
+#include <sys/task.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <sys/zone.h>
+#include <sys/cpuvar.h>
+#include <sys/fss.h>
+#include <sys/class.h>
+#include <sys/project.h>
+
+/*
+ * Tasks
+ *
+ * A task is a collection of processes, associated with a common project ID
+ * and related by a common initial parent. The task primarily represents a
+ * natural process sequence with known resource usage, although it can also be
+ * viewed as a convenient grouping of processes for signal delivery, processor
+ * binding, and administrative operations.
+ *
+ * Membership and observership
+ * We can conceive of situations where processes outside of the task may wish
+ * to examine the resource usage of the task. Similarly, a number of the
+ * administrative operations on a task can be performed by processes who are
+ * not members of the task. Accordingly, we must design a locking strategy
+ * where observers of the task, who wish to examine or operate on the task,
+ * and members of task, who can perform the mentioned operations, as well as
+ * leave the task, see a consistent and correct representation of the task at
+ * all times.
+ *
+ * Locking
+ * Because the task membership is a new relation between processes, its
+ * locking becomes an additional responsibility of the pidlock/p_lock locking
+ * sequence; however, tasks closely resemble sessions and the session locking
+ * model is mostly appropriate for the interaction of tasks, processes, and
+ * procfs.
+ *
+ * kmutex_t task_hash_lock
+ * task_hash_lock is a global lock protecting the contents of the task
+ * ID-to-task pointer hash. Holders of task_hash_lock must not attempt to
+ * acquire pidlock or p_lock.
+ * uint_t tk_hold_count
+ * tk_hold_count, the number of members and observers of the current task,
+ * must be manipulated atomically.
+ * proc_t *tk_memb_list
+ * proc_t *p_tasknext
+ * proc_t *p_taskprev
+ * The task's membership list is protected by pidlock, and is therefore
+ * always acquired before any of its members' p_lock mutexes. The p_task
+ * member of the proc structure is protected by pidlock or p_lock for
+ * reading, and by both pidlock and p_lock for modification, as is done for
+ * p_sessp. The key point is that only the process can modify its p_task,
+ * and not any entity on the system. (/proc will use prlock() to prevent
+ * the process from leaving, as opposed to pidlock.)
+ * kmutex_t tk_usage_lock
+ * tk_usage_lock is a per-task lock protecting the contents of the task
+ * usage structure and tk_nlwps counter for the task.max-lwps resource
+ * control.
+ */
+
+int task_hash_size = 256;
+static kmutex_t task_hash_lock;
+static mod_hash_t *task_hash;
+
+static id_space_t *taskid_space; /* global taskid space */
+static kmem_cache_t *task_cache; /* kmem cache for task structures */
+
+rctl_hndl_t rc_task_lwps;
+rctl_hndl_t rc_task_cpu_time;
+
+/*
+ * static rctl_qty_t task_usage_lwps(void *taskp)
+ *
+ * Overview
+ * task_usage_lwps() is the usage operation for the resource control
+ * associated with the number of LWPs in a task.
+ *
+ * Return values
+ * The number of LWPs in the given task is returned.
+ *
+ * Caller's context
+ * The p->p_lock must be held across the call.
+ */
+/*ARGSUSED*/
+static rctl_qty_t
+task_lwps_usage(rctl_t *r, proc_t *p)
+{
+ task_t *t;
+ rctl_qty_t nlwps;
+
+ ASSERT(MUTEX_HELD(&p->p_lock));
+
+ t = p->p_task;
+ mutex_enter(&p->p_zone->zone_nlwps_lock);
+ nlwps = t->tk_nlwps;
+ mutex_exit(&p->p_zone->zone_nlwps_lock);
+
+ return (nlwps);
+}
+
+/*
+ * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
+ * int flags)
+ *
+ * Overview
+ * task_test_lwps() is the test-if-valid-increment for the resource control
+ * for the number of processes in a task.
+ *
+ * Return values
+ * 0 if the threshold limit was not passed, 1 if the limit was passed.
+ *
+ * Caller's context
+ * p->p_lock must be held across the call.
+ */
+/*ARGSUSED*/
+static int
+task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
+ rctl_qty_t incr,
+ uint_t flags)
+{
+ rctl_qty_t nlwps;
+
+ ASSERT(MUTEX_HELD(&p->p_lock));
+ ASSERT(e->rcep_t == RCENTITY_TASK);
+ if (e->rcep_p.task == NULL)
+ return (0);
+
+ ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
+ nlwps = e->rcep_p.task->tk_nlwps;
+
+ if (nlwps + incr > rcntl->rcv_value)
+ return (1);
+
+ return (0);
+}
+/*ARGSUSED*/
+static int
+task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
+
+ ASSERT(MUTEX_HELD(&p->p_lock));
+ ASSERT(e->rcep_t == RCENTITY_TASK);
+ if (e->rcep_p.task == NULL)
+ return (0);
+
+ e->rcep_p.task->tk_nlwps_ctl = nv;
+ return (0);
+}
+
+/*
+ * static rctl_qty_t task_usage_cpu_secs(void *taskp)
+ *
+ * Overview
+ * task_usage_cpu_secs() is the usage operation for the resource control
+ * associated with the total accrued CPU seconds for a task.
+ *
+ * Return values
+ * The number of CPU seconds consumed by the task is returned.
+ *
+ * Caller's context
+ * The given task must be held across the call.
+ */
+/*ARGSUSED*/
+static rctl_qty_t
+task_cpu_time_usage(rctl_t *r, proc_t *p)
+{
+ task_t *t = p->p_task;
+
+ ASSERT(MUTEX_HELD(&p->p_lock));
+ return (t->tk_cpu_time / hz);
+}
+
+/*
+ * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
+ * int flags)
+ *
+ * Overview
+ * task_test_cpu_secs() is the test-if-valid-increment for the resource
+ * control for the total accrued CPU seconds for a task.
+ *
+ * Return values
+ * 0 if the threshold limit was not passed, 1 if the limit was passed.
+ *
+ * Caller's context
+ * The given task must be held across the call.
+ */
+/*ARGSUSED*/
+static int
+task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
+ struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
+{
+ task_t *t;
+
+ ASSERT(MUTEX_HELD(&p->p_lock));
+ ASSERT(e->rcep_t == RCENTITY_TASK);
+ if (e->rcep_p.task == NULL)
+ return (0);
+
+ t = e->rcep_p.task;
+ if ((t->tk_cpu_time + incr) / hz >= rcntl->rcv_value)
+ return (1);
+
+ return (0);
+}
+
+static task_t *
+task_find(taskid_t id, zoneid_t zoneid)
+{
+ task_t *tk;
+
+ ASSERT(MUTEX_HELD(&task_hash_lock));
+
+ if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
+ (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
+ (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
+ return (NULL);
+
+ return (tk);
+}
+
+/*
+ * task_hold_by_id(), task_hold_by_id_zone()
+ *
+ * Overview
+ * task_hold_by_id() is used to take a reference on a task by its task id,
+ * supporting the various system call interfaces for obtaining resource data,
+ * delivering signals, and so forth.
+ *
+ * Return values
+ * Returns a pointer to the task_t with taskid_t id. The task is returned
+ * with its hold count incremented by one. Returns NULL if there
+ * is no task with the requested id.
+ *
+ * Caller's context
+ * Caller must not be holding task_hash_lock. No restrictions on context.
+ */
+task_t *
+task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
+{
+ task_t *tk;
+
+ mutex_enter(&task_hash_lock);
+ if ((tk = task_find(id, zoneid)) != NULL)
+ atomic_add_32(&tk->tk_hold_count, 1);
+ mutex_exit(&task_hash_lock);
+
+ return (tk);
+}
+
+task_t *
+task_hold_by_id(taskid_t id)
+{
+ zoneid_t zoneid;
+
+ if (INGLOBALZONE(curproc))
+ zoneid = ALL_ZONES;
+ else
+ zoneid = getzoneid();
+ return (task_hold_by_id_zone(id, zoneid));
+}
+
+/*
+ * void task_hold(task_t *)
+ *
+ * Overview
+ * task_hold() is used to take an additional reference to the given task.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * No restriction on context.
+ */
+void
+task_hold(task_t *tk)
+{
+ atomic_add_32(&tk->tk_hold_count, 1);
+}
+
+/*
+ * void task_rele(task_t *)
+ *
+ * Overview
+ * task_rele() relinquishes a reference on the given task, which was acquired
+ * via task_hold() or task_hold_by_id(). If this is the last member or
+ * observer of the task, dispatch it for commitment via the accounting
+ * subsystem.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * Caller must not be holding the task_hash_lock.
+ * Caller's context must be acceptable for KM_SLEEP allocations.
+ */
+void
+task_rele(task_t *tk)
+{
+ mutex_enter(&task_hash_lock);
+ if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
+ mutex_exit(&task_hash_lock);
+ return;
+ }
+
+ mutex_enter(&tk->tk_zone->zone_nlwps_lock);
+ tk->tk_proj->kpj_ntasks--;
+ mutex_exit(&tk->tk_zone->zone_nlwps_lock);
+
+ if (mod_hash_destroy(task_hash,
+ (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
+ panic("unable to delete task %d", tk->tk_tkid);
+ mutex_exit(&task_hash_lock);
+
+ /*
+ * At this point, there are no members or observers of the task, so we
+ * can safely send it on for commitment to the accounting subsystem.
+ * The task will be destroyed in task_end() subsequent to commitment.
+ */
+ (void) taskq_dispatch(exacct_queue, exacct_commit_task, tk, KM_SLEEP);
+}
+
+/*
+ * task_t *task_create(projid_t, zone *)
+ *
+ * Overview
+ * A process constructing a new task calls task_create() to construct and
+ * preinitialize the task for the appropriate destination project. Only one
+ * task, the primordial task0, is not created with task_create().
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * Caller's context should be safe for KM_SLEEP allocations.
+ * The caller should appropriately bump the kpj_ntasks counter on the
+ * project that contains this task.
+ */
+task_t *
+task_create(projid_t projid, zone_t *zone)
+{
+ task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
+ task_t *ancestor_tk;
+ taskid_t tkid;
+ task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
+ mod_hash_hndl_t hndl;
+ rctl_set_t *set = rctl_set_create();
+ rctl_alloc_gp_t *gp;
+ rctl_entity_p_t e;
+
+ bzero(tk, sizeof (task_t));
+
+ tk->tk_tkid = tkid = id_alloc(taskid_space);
+ tk->tk_nlwps = 0;
+ tk->tk_nlwps_ctl = INT_MAX;
+ tk->tk_usage = tu;
+ tk->tk_proj = project_hold_by_id(projid, zone->zone_id,
+ PROJECT_HOLD_INSERT);
+ tk->tk_flags = TASK_NORMAL;
+
+ /*
+ * Copy ancestor task's resource controls.
+ */
+ zone_task_hold(zone);
+ mutex_enter(&curproc->p_lock);
+ ancestor_tk = curproc->p_task;
+ task_hold(ancestor_tk);
+ tk->tk_zone = zone;
+ mutex_exit(&curproc->p_lock);
+
+ for (;;) {
+ gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
+
+ mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
+ if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
+ break;
+
+ mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
+
+ rctl_prealloc_destroy(gp);
+ }
+
+ /*
+ * At this point, curproc does not have the appropriate linkage
+ * through the task to the project. So, rctl_set_dup should only
+ * copy the rctls, and leave the callbacks for later.
+ */
+ e.rcep_p.task = tk;
+ e.rcep_t = RCENTITY_TASK;
+ tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
+ set, gp, RCD_DUP);
+ mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
+
+ rctl_prealloc_destroy(gp);
+
+ /*
+ * Record the ancestor task's ID for use by extended accounting.
+ */
+ tu->tu_anctaskid = ancestor_tk->tk_tkid;
+ task_rele(ancestor_tk);
+
+ /*
+ * Put new task structure in the hash table.
+ */
+ (void) mod_hash_reserve(task_hash, &hndl);
+ mutex_enter(&task_hash_lock);
+ ASSERT(task_find(tkid, getzoneid()) == NULL);
+ if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
+ (mod_hash_val_t *)tk, hndl) != 0) {
+ mod_hash_cancel(task_hash, &hndl);
+ panic("unable to insert task %d(%p)", tkid, (void *)tk);
+ }
+ mutex_exit(&task_hash_lock);
+
+ return (tk);
+}
+
+/*
+ * void task_attach(task_t *, proc_t *)
+ *
+ * Overview
+ * task_attach() is used to attach a process to a task; this operation is only
+ * performed as a result of a fork() or settaskid() system call. The proc_t's
+ * p_tasknext and p_taskprev fields will be set such that the proc_t is a
+ * member of the doubly-linked list of proc_t's that make up the task.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * pidlock and p->p_lock must be held on entry.
+ */
+void
+task_attach(task_t *tk, proc_t *p)
+{
+ proc_t *first, *prev;
+ rctl_entity_p_t e;
+ ASSERT(tk != NULL);
+ ASSERT(p != NULL);
+ ASSERT(MUTEX_HELD(&pidlock));
+ ASSERT(MUTEX_HELD(&p->p_lock));
+
+ if (tk->tk_memb_list == NULL) {
+ p->p_tasknext = p;
+ p->p_taskprev = p;
+ } else {
+ first = tk->tk_memb_list;
+ prev = first->p_taskprev;
+ first->p_taskprev = p;
+ p->p_tasknext = first;
+ p->p_taskprev = prev;
+ prev->p_tasknext = p;
+ }
+ tk->tk_memb_list = p;
+ task_hold(tk);
+ p->p_task = tk;
+
+ /*
+ * Now that the linkage from process to task and project is
+ * complete, do the required callbacks for the task and project
+ * rctl sets.
+ */
+ e.rcep_p.proj = tk->tk_proj;
+ e.rcep_t = RCENTITY_PROJECT;
+ (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_proj->kpj_rctls, NULL,
+ RCD_CALLBACK);
+
+ e.rcep_p.task = tk;
+ e.rcep_t = RCENTITY_TASK;
+ (void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
+ RCD_CALLBACK);
+
+}
+
+/*
+ * task_begin()
+ *
+ * Overview
+ * A process constructing a new task calls task_begin() to initialize the
+ * task, by attaching itself as a member.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * pidlock and p_lock must be held across the call to task_begin().
+ */
+void
+task_begin(task_t *tk, proc_t *p)
+{
+ timestruc_t ts;
+ task_usage_t *tu;
+
+ ASSERT(MUTEX_HELD(&pidlock));
+ ASSERT(MUTEX_HELD(&p->p_lock));
+
+ mutex_enter(&tk->tk_usage_lock);
+ tu = tk->tk_usage;
+ gethrestime(&ts);
+ tu->tu_startsec = (uint64_t)ts.tv_sec;
+ tu->tu_startnsec = (uint64_t)ts.tv_nsec;
+ mutex_exit(&tk->tk_usage_lock);
+
+ /*
+ * Join process to the task as a member.
+ */
+ task_attach(tk, p);
+}
+
+/*
+ * void task_detach(proc_t *)
+ *
+ * Overview
+ * task_detach() removes the specified process from its task. task_detach
+ * sets the process's task membership to NULL, in anticipation of a final exit
+ * or of joining a new task. Because task_rele() requires a context safe for
+ * KM_SLEEP allocations, a task_detach() is followed by a subsequent
+ * task_rele() once appropriate context is available.
+ *
+ * Because task_detach() involves relinquishing the process's membership in
+ * the project, any observational rctls the process may have had on the task
+ * or project are destroyed.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * pidlock and p_lock held across task_detach().
+ */
+void
+task_detach(proc_t *p)
+{
+ task_t *tk = p->p_task;
+
+ ASSERT(MUTEX_HELD(&pidlock));
+ ASSERT(MUTEX_HELD(&p->p_lock));
+ ASSERT(p->p_task != NULL);
+ ASSERT(tk->tk_memb_list != NULL);
+
+ if (tk->tk_memb_list == p)
+ tk->tk_memb_list = p->p_tasknext;
+ if (tk->tk_memb_list == p)
+ tk->tk_memb_list = NULL;
+ p->p_taskprev->p_tasknext = p->p_tasknext;
+ p->p_tasknext->p_taskprev = p->p_taskprev;
+
+ rctl_set_tearoff(p->p_task->tk_rctls, p);
+ rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
+
+ p->p_task = NULL;
+ p->p_tasknext = p->p_taskprev = NULL;
+}
+
+/*
+ * task_change(task_t *, proc_t *)
+ *
+ * Overview
+ * task_change() removes the specified process from its current task. The
+ * process is then attached to the specified task. This routine is called
+ * from settaskid() when process is being moved to a new task.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * pidlock and p_lock held across task_change()
+ */
+void
+task_change(task_t *newtk, proc_t *p)
+{
+ task_t *oldtk = p->p_task;
+
+ ASSERT(MUTEX_HELD(&pidlock));
+ ASSERT(MUTEX_HELD(&p->p_lock));
+ ASSERT(oldtk != NULL);
+ ASSERT(oldtk->tk_memb_list != NULL);
+
+ mutex_enter(&p->p_zone->zone_nlwps_lock);
+ oldtk->tk_nlwps -= p->p_lwpcnt;
+ mutex_exit(&p->p_zone->zone_nlwps_lock);
+
+ mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
+ newtk->tk_nlwps += p->p_lwpcnt;
+ mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
+
+ task_detach(p);
+ task_begin(newtk, p);
+}
+
+/*
+ * task_end()
+ *
+ * Overview
+ * task_end() contains the actions executed once the final member of
+ * a task has released the task, and all actions connected with the task, such
+ * as committing an accounting record to a file, are completed. It is called
+ * by the known last consumer of the task information. Additionally,
+ * task_end() must never refer to any process in the system.
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * No restrictions on context, beyond that given above.
+ */
+void
+task_end(task_t *tk)
+{
+ ASSERT(tk->tk_hold_count == 0);
+
+ project_rele(tk->tk_proj);
+ kmem_free(tk->tk_usage, sizeof (task_usage_t));
+ if (tk->tk_prevusage != NULL)
+ kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
+ if (tk->tk_zoneusage != NULL)
+ kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
+ rctl_set_free(tk->tk_rctls);
+ id_free(taskid_space, tk->tk_tkid);
+ zone_task_rele(tk->tk_zone);
+ kmem_cache_free(task_cache, tk);
+}
+
+static void
+changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
+ void *zonebuf)
+{
+ kproject_t *oldkpj;
+ kthread_t *t;
+
+ ASSERT(MUTEX_HELD(&pidlock));
+ ASSERT(MUTEX_HELD(&p->p_lock));
+
+ if ((t = p->p_tlist) != NULL) {
+ do {
+ (void) project_hold(kpj);
+
+ thread_lock(t);
+ oldkpj = ttoproj(t);
+ t->t_proj = kpj;
+ t->t_pre_sys = 1; /* For cred update */
+ thread_unlock(t);
+ fss_changeproj(t, kpj, zone, projbuf, zonebuf);
+
+ project_rele(oldkpj);
+ } while ((t = t->t_forw) != p->p_tlist);
+ }
+}
+
+/*
+ * task_join()
+ *
+ * Overview
+ * task_join() contains the actions that must be executed when the first
+ * member (curproc) of a newly created task joins it. It may never fail.
+ *
+ * The caller must make sure holdlwps() is called so that all other lwps are
+ * stopped prior to calling this function.
+ *
+ * NB: It returns with curproc->p_lock held.
+ *
+ * Return values
+ * Pointer to the old task.
+ *
+ * Caller's context
+ * cpu_lock must be held entering the function. It will acquire pidlock,
+ * p_crlock and p_lock during execution.
+ */
+task_t *
+task_join(task_t *tk, uint_t flags)
+{
+ proc_t *p = ttoproc(curthread);
+ task_t *prev_tk;
+ void *projbuf, *zonebuf;
+ zone_t *zone = tk->tk_zone;
+ projid_t projid = tk->tk_proj->kpj_id;
+ cred_t *oldcr;
+
+ /*
+ * We can't know for sure if holdlwps() was called, but we can check to
+ * ensure we're single-threaded.
+ */
+ ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
+
+ /*
+ * Changing the credential is always hard because we cannot
+ * allocate memory when holding locks but we don't know whether
+ * we need to change it. We first get a reference to the current
+ * cred if we need to change it. Then we create a credential
+ * with an updated project id. Finally we install it, first
+ * releasing the reference we had on the p_cred at the time we
+ * acquired the lock the first time and later we release the
+ * reference to p_cred at the time we acquired the lock the
+ * second time.
+ */
+ mutex_enter(&p->p_crlock);
+ if (crgetprojid(p->p_cred) == projid)
+ oldcr = NULL;
+ else
+ crhold(oldcr = p->p_cred);
+ mutex_exit(&p->p_crlock);
+
+ if (oldcr != NULL) {
+ cred_t *newcr = crdup(oldcr);
+ crsetprojid(newcr, projid);
+ crfree(oldcr);
+
+ mutex_enter(&p->p_crlock);
+ oldcr = p->p_cred;
+ p->p_cred = newcr;
+ mutex_exit(&p->p_crlock);
+ crfree(oldcr);
+ }
+
+ /*
+ * Make sure that the number of processor sets is constant
+ * across this operation.
+ */
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
+ zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
+
+ mutex_enter(&pidlock);
+ mutex_enter(&p->p_lock);
+
+ prev_tk = p->p_task;
+ task_change(tk, p);
+
+ /*
+ * Now move threads one by one to their new project.
+ */
+ changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
+ if (flags & TASK_FINAL)
+ p->p_task->tk_flags |= TASK_FINAL;
+
+ mutex_exit(&pidlock);
+
+ fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
+ fss_freebuf(projbuf, FSS_ALLOC_PROJ);
+ return (prev_tk);
+}
+
+/*
+ * rctl ops vectors
+ */
+static rctl_ops_t task_lwps_ops = {
+ rcop_no_action,
+ task_lwps_usage,
+ task_lwps_set,
+ task_lwps_test
+};
+
+static rctl_ops_t task_cpu_time_ops = {
+ rcop_no_action,
+ task_cpu_time_usage,
+ rcop_no_set,
+ task_cpu_time_test
+};
+
+/*ARGSUSED*/
+/*
+ * void task_init(void)
+ *
+ * Overview
+ * task_init() initializes task-related hashes, caches, and the task id
+ * space. Additionally, task_init() establishes p0 as a member of task0.
+ * Called by main().
+ *
+ * Return values
+ * None.
+ *
+ * Caller's context
+ * task_init() must be called prior to MP startup.
+ */
+void
+task_init(void)
+{
+ proc_t *p = &p0;
+ mod_hash_hndl_t hndl;
+ rctl_set_t *set;
+ rctl_alloc_gp_t *gp;
+ rctl_entity_p_t e;
+ /*
+ * Initialize task_cache and taskid_space.
+ */
+ task_cache = kmem_cache_create("task_cache", sizeof (task_t),
+ 0, NULL, NULL, NULL, NULL, NULL, 0);
+ taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
+
+ /*
+ * Initialize task hash table.
+ */
+ task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
+ mod_hash_null_valdtor);
+
+ /*
+ * Initialize task-based rctls.
+ */
+ rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
+ RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
+ &task_lwps_ops);
+ rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
+ RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
+ RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
+ RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
+ UINT64_MAX, &task_cpu_time_ops);
+
+ /*
+ * Create task0 and place p0 in it as a member.
+ */
+ task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
+ bzero(task0p, sizeof (task_t));
+
+ task0p->tk_tkid = id_alloc(taskid_space);
+ task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
+ task0p->tk_proj = project_hold_by_id(0, GLOBAL_ZONEID,
+ PROJECT_HOLD_INSERT);
+ task0p->tk_flags = TASK_NORMAL;
+ task0p->tk_nlwps = p->p_lwpcnt;
+ task0p->tk_zone = global_zone;
+
+ set = rctl_set_create();
+ gp = rctl_set_init_prealloc(RCENTITY_TASK);
+ mutex_enter(&curproc->p_lock);
+ e.rcep_p.task = task0p;
+ e.rcep_t = RCENTITY_TASK;
+ task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
+ mutex_exit(&curproc->p_lock);
+ rctl_prealloc_destroy(gp);
+
+ (void) mod_hash_reserve(task_hash, &hndl);
+ mutex_enter(&task_hash_lock);
+ ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
+ if (mod_hash_insert_reserve(task_hash,
+ (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
+ (mod_hash_val_t *)task0p, hndl) != 0) {
+ mod_hash_cancel(task_hash, &hndl);
+ panic("unable to insert task %d(%p)", task0p->tk_tkid,
+ (void *)task0p);
+ }
+ mutex_exit(&task_hash_lock);
+
+ task0p->tk_memb_list = p;
+
+ /*
+ * Initialize task pointers for p0, including doubly linked list of task
+ * members.
+ */
+ p->p_task = task0p;
+ p->p_taskprev = p->p_tasknext = p;
+ task_hold(task0p);
+}