diff options
Diffstat (limited to 'usr/src/uts/i86pc/os/gipt.c')
-rw-r--r-- | usr/src/uts/i86pc/os/gipt.c | 566 |
1 files changed, 566 insertions, 0 deletions
diff --git a/usr/src/uts/i86pc/os/gipt.c b/usr/src/uts/i86pc/os/gipt.c new file mode 100644 index 0000000000..ace7e03438 --- /dev/null +++ b/usr/src/uts/i86pc/os/gipt.c @@ -0,0 +1,566 @@ +/* + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + */ + +/* + * Copyright 2019 Joyent, Inc. + */ + +#include <sys/gipt.h> +#include <sys/malloc.h> +#include <sys/kmem.h> +#include <sys/sysmacros.h> +#include <sys/sunddi.h> +#include <sys/panic.h> +#include <vm/hat.h> +#include <vm/as.h> + +/* + * Generic Indexed Page Table + * + * There are several applications, such as hardware virtualization or IOMMU + * control, which require construction of a page table tree to represent a + * virtual address space. Many features of the existing htable system would be + * convenient for this, but its tight coupling to the VM system make it + * undesirable for independent consumers. The GIPT interface exists to provide + * page table allocation and indexing on top of which a table hierarchy + * (EPT, VT-d, etc) can be built by upstack logic. + * + * Types: + * + * gipt_t - Represents a single page table with a physical backing page and + * associated metadata. + * gipt_map_t - The workhorse of this facility, it contains an hash table to + * index all of the gipt_t entries which make up the page table tree. + * struct gipt_cbs - Callbacks used by the gipt_map_t: + * gipt_pte_type_cb_t - Given a PTE, emit the type (empty/page/table) + * gipt_pte_map_cb_t - Given a PFN, emit a (child) table mapping + */ + +/* + * For now, the level shifts are hard-coded to match with standard 4-level + * 64-bit paging structures. + */ + +#define GIPT_HASH(map, va, lvl) \ + ((((va) >> 12) + ((va) >> 28) + (lvl)) & ((map)->giptm_table_cnt - 1)) + +const uint_t gipt_level_shift[GIPT_MAX_LEVELS+1] = { + 12, /* 4K */ + 21, /* 2M */ + 30, /* 1G */ + 39, /* 512G */ + 48 /* MAX */ +}; +const uint64_t gipt_level_mask[GIPT_MAX_LEVELS+1] = { + 0xfffffffffffff000ull, /* 4K */ + 0xffffffffffe00000ull, /* 2M */ + 0xffffffffc0000000ull, /* 1G */ + 0xffffff8000000000ull, /* 512G */ + 0xffff000000000000ull /* MAX */ +}; +const uint64_t gipt_level_size[GIPT_MAX_LEVELS+1] = { + 0x0000000000001000ull, /* 4K */ + 0x0000000000200000ull, /* 2M */ + 0x0000000040000000ull, /* 1G */ + 0x0000008000000000ull, /* 512G */ + 0x0001000000000000ull /* MAX */ +}; +const uint64_t gipt_level_count[GIPT_MAX_LEVELS+1] = { + 0x0000000000000001ull, /* 4K */ + 0x0000000000000200ull, /* 2M */ + 0x0000000000040000ull, /* 1G */ + 0x0000000008000000ull, /* 512G */ + 0x0000001000000000ull /* MAX */ +}; + +/* + * Allocate a gipt_t structure with corresponding page of memory to hold the + * PTEs which it contains. + */ +gipt_t * +gipt_alloc(void) +{ + gipt_t *pt; + void *page; + + pt = kmem_zalloc(sizeof (*pt), KM_SLEEP); + page = kmem_zalloc(PAGESIZE, KM_SLEEP); + pt->gipt_kva = page; + pt->gipt_pfn = hat_getpfnum(kas.a_hat, page); + + return (pt); +} + +/* + * Free a gipt_t structure along with its page of PTE storage. + */ +void +gipt_free(gipt_t *pt) +{ + void *page = pt->gipt_kva; + + ASSERT(pt->gipt_pfn != PFN_INVALID); + ASSERT(pt->gipt_kva != NULL); + + pt->gipt_pfn = PFN_INVALID; + pt->gipt_kva = NULL; + + kmem_free(page, PAGESIZE); + kmem_free(pt, sizeof (*pt)); +} + +/* + * Initialize a gipt_map_t with a max level (must be >= 1) and allocating its + * hash table based on a provided size (must be a power of 2). + */ +void +gipt_map_init(gipt_map_t *map, uint_t levels, uint_t hash_table_size, + const struct gipt_cbs *cbs, gipt_t *root) +{ + VERIFY(map->giptm_root == NULL); + VERIFY(map->giptm_hash == NULL); + VERIFY3U(levels, >, 0); + VERIFY3U(levels, <=, GIPT_MAX_LEVELS); + VERIFY(ISP2(hash_table_size)); + VERIFY(root != NULL); + + mutex_init(&map->giptm_lock, NULL, MUTEX_DEFAULT, NULL); + map->giptm_table_cnt = hash_table_size; + bcopy(cbs, &map->giptm_cbs, sizeof (*cbs)); + map->giptm_hash = kmem_alloc(sizeof (list_t) * map->giptm_table_cnt, + KM_SLEEP); + for (uint_t i = 0; i < hash_table_size; i++) { + list_create(&map->giptm_hash[i], sizeof (gipt_t), + offsetof(gipt_t, gipt_node)); + } + map->giptm_levels = levels; + + /* + * Insert the table root into the hash. It will be held in existence + * with an extra "valid" reference. This will prevent its clean-up + * during gipt_map_clean_parents() calls, even if it has no children. + */ + mutex_enter(&map->giptm_lock); + gipt_map_insert(map, root); + map->giptm_root = root; + root->gipt_valid_cnt++; + mutex_exit(&map->giptm_lock); +} + +/* + * Clean up a gipt_map_t by removing any lingering gipt_t entries referenced by + * it, and freeing its hash table. + */ +void +gipt_map_fini(gipt_map_t *map) +{ + const uint_t cnt = map->giptm_table_cnt; + const size_t sz = sizeof (list_t) * cnt; + + mutex_enter(&map->giptm_lock); + /* Clean up any lingering tables */ + for (uint_t i = 0; i < cnt; i++) { + list_t *list = &map->giptm_hash[i]; + gipt_t *pt; + + while ((pt = list_remove_head(list)) != NULL) { + gipt_free(pt); + } + ASSERT(list_is_empty(list)); + } + + kmem_free(map->giptm_hash, sz); + map->giptm_hash = NULL; + map->giptm_root = NULL; + map->giptm_levels = 0; + mutex_exit(&map->giptm_lock); + mutex_destroy(&map->giptm_lock); +} + +/* + * Look in the map for a gipt_t containing a given VA which is located at a + * specified level. + */ +gipt_t * +gipt_map_lookup(gipt_map_t *map, uint64_t va, uint_t lvl) +{ + gipt_t *pt; + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + ASSERT3U(lvl, <=, GIPT_MAX_LEVELS); + + /* + * Lookup gipt_t at the VA aligned to the next level up. For example, + * level 0 corresponds to a page table containing 512 PTEs which cover + * 4k each, spanning a total 2MB. As such, the base VA of that table + * must be aligned to the same 2MB. + */ + const uint64_t masked_va = va & gipt_level_mask[lvl + 1]; + const uint_t hash = GIPT_HASH(map, masked_va, lvl); + + /* Only the root is expected to be at the top level. */ + if (lvl == (map->giptm_levels - 1) && map->giptm_root != NULL) { + pt = map->giptm_root; + + ASSERT3U(pt->gipt_level, ==, lvl); + + /* + * It may be so that the VA in question is not covered by the + * range of the table root. + */ + if (pt->gipt_vaddr != masked_va) { + return (NULL); + } + + return (pt); + } + + list_t *list = &map->giptm_hash[hash]; + for (pt = list_head(list); pt != NULL; pt = list_next(list, pt)) { + if (pt->gipt_vaddr == masked_va && pt->gipt_level == lvl) + break; + } + return (pt); +} + +/* + * Look in the map for the deepest (lowest level) gipt_t which contains a given + * VA. This could still fail if the VA is outside the range of the table root. + */ +gipt_t * +gipt_map_lookup_deepest(gipt_map_t *map, uint64_t va) +{ + gipt_t *pt = NULL; + uint_t lvl; + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + + for (lvl = 0; lvl < map->giptm_levels; lvl++) { + pt = gipt_map_lookup(map, va, lvl); + if (pt != NULL) { + break; + } + } + return (pt); +} + +/* + * Given a VA inside a gipt_t, calculate (based on the level of that PT) the VA + * corresponding to the next entry in the table. It returns 0 if that VA would + * fall beyond the bounds of the table. + */ +static __inline__ uint64_t +gipt_next_va(gipt_t *pt, uint64_t va) +{ + const uint_t lvl = pt->gipt_level; + const uint64_t masked = va & gipt_level_mask[lvl]; + const uint64_t max = pt->gipt_vaddr + gipt_level_size[lvl+1]; + const uint64_t next = masked + gipt_level_size[lvl]; + + ASSERT3U(masked, >=, pt->gipt_vaddr); + ASSERT3U(masked, <, max); + + /* + * If the "next" VA would be outside this table, including cases where + * it overflowed, indicate an error result. + */ + if (next >= max || next <= masked) { + return (0); + } + return (next); +} + +/* + * For a given VA, find the next VA which corresponds to a valid page mapping. + * The gipt_t containing that VA will be indicated via 'ptp'. (The gipt_t of + * the starting VA can be passed in via 'ptp' for a minor optimization). If + * there is no valid mapping higher than 'va' but contained within 'max_va', + * then this will indicate failure with 0 returned. + */ +uint64_t +gipt_map_next_page(gipt_map_t *map, uint64_t va, uint64_t max_va, gipt_t **ptp) +{ + gipt_t *pt = *ptp; + uint64_t cur_va = va; + gipt_pte_type_cb_t pte_type = map->giptm_cbs.giptc_pte_type; + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + ASSERT3U(max_va, !=, 0); + ASSERT3U(ptp, !=, NULL); + + /* + * If a starting table is not provided, search the map for the deepest + * table which contains the VA. If for some reason that VA is beyond + * coverage of the map root, indicate failure. + */ + if (pt == NULL) { + pt = gipt_map_lookup_deepest(map, cur_va); + if (pt == NULL) { + goto fail; + } + } + + /* + * From the starting table (at whatever level that may reside), walk + * forward through the PTEs looking for a valid page mapping. + */ + while (cur_va < max_va) { + const uint64_t next_va = gipt_next_va(pt, cur_va); + if (next_va == 0) { + /* + * The end of this table has been reached. Ascend one + * level to continue the walk if possible. If already + * at the root, the end of the table means failure. + */ + if (pt->gipt_level >= map->giptm_levels) { + goto fail; + } + pt = gipt_map_lookup(map, cur_va, pt->gipt_level + 1); + if (pt == NULL) { + goto fail; + } + continue; + } else if (next_va >= max_va) { + /* + * Terminate the walk with a failure if the VA + * corresponding to the next PTE is beyond the max. + */ + goto fail; + } + cur_va = next_va; + + const uint64_t pte = GIPT_VA2PTE(pt, cur_va); + const gipt_pte_type_t ptet = pte_type(pte, pt->gipt_level); + if (ptet == PTET_EMPTY) { + continue; + } else if (ptet == PTET_PAGE) { + /* A valid page mapping: success. */ + *ptp = pt; + return (cur_va); + } else if (ptet == PTET_LINK) { + /* + * A child page table is present at this PTE. Look it + * up from the map. + */ + ASSERT3U(pt->gipt_level, >, 0); + pt = gipt_map_lookup(map, cur_va, pt->gipt_level - 1); + ASSERT3P(pt, !=, NULL); + break; + } else { + panic("unexpected PTE type %x @ va %p", ptet, cur_va); + } + } + + /* + * By this point, the above loop has located a table structure to + * descend into in order to find the next page. + */ + while (cur_va < max_va) { + const uint64_t pte = GIPT_VA2PTE(pt, cur_va); + const gipt_pte_type_t ptet = pte_type(pte, pt->gipt_level); + + if (ptet == PTET_EMPTY) { + const uint64_t next_va = gipt_next_va(pt, cur_va); + if (next_va == 0 || next_va >= max_va) { + goto fail; + } + cur_va = next_va; + continue; + } else if (ptet == PTET_PAGE) { + /* A valid page mapping: success. */ + *ptp = pt; + return (cur_va); + } else if (ptet == PTET_LINK) { + /* + * A child page table is present at this PTE. Look it + * up from the map. + */ + ASSERT3U(pt->gipt_level, >, 0); + pt = gipt_map_lookup(map, cur_va, pt->gipt_level - 1); + ASSERT3P(pt, !=, NULL); + } else { + panic("unexpected PTE type %x @ va %p", ptet, cur_va); + } + } + +fail: + *ptp = NULL; + return (0); +} + +/* + * Insert a gipt_t into the map based on its VA and level. It is up to the + * caller to ensure that a duplicate entry does not already exist in the map. + */ +void +gipt_map_insert(gipt_map_t *map, gipt_t *pt) +{ + const uint_t hash = GIPT_HASH(map, pt->gipt_vaddr, pt->gipt_level); + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + ASSERT(gipt_map_lookup(map, pt->gipt_vaddr, pt->gipt_level) == NULL); + VERIFY3U(pt->gipt_level, <, map->giptm_levels); + + list_insert_head(&map->giptm_hash[hash], pt); +} + +/* + * Remove a gipt_t from the map. + */ +void +gipt_map_remove(gipt_map_t *map, gipt_t *pt) +{ + const uint_t hash = GIPT_HASH(map, pt->gipt_vaddr, pt->gipt_level); + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + + list_remove(&map->giptm_hash[hash], pt); +} + +/* + * Given a VA, create any missing gipt_t entries from the specified level all + * the way up to (but not including) the root. This is done from lowest level + * to highest, and stops when an existing table covering that VA is found. + * References to any created gipt_t tables, plus the final "found" gipt_t are + * stored in 'pts'. The number of gipt_t pointers stored to 'pts' serves as + * the return value (1 <= val <= root level). It is up to the caller to + * populate linking PTEs to the newly created empty tables. + */ +static uint_t +gipt_map_ensure_chain(gipt_map_t *map, uint64_t va, uint_t lvl, gipt_t **pts) +{ + const uint_t root_lvl = map->giptm_root->gipt_level; + uint_t clvl = lvl, count = 0; + gipt_t *child_pt = NULL; + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + ASSERT3U(lvl, <, root_lvl); + ASSERT3P(map->giptm_root, !=, NULL); + + do { + const uint64_t pva = (va & gipt_level_mask[clvl + 1]); + gipt_t *pt; + + pt = gipt_map_lookup(map, pva, clvl); + if (pt != NULL) { + ASSERT3U(pva, ==, pt->gipt_vaddr); + + if (child_pt != NULL) { + child_pt->gipt_parent = pt; + } + pts[count++] = pt; + return (count); + } + + pt = gipt_alloc(); + pt->gipt_vaddr = pva; + pt->gipt_level = clvl; + if (child_pt != NULL) { + child_pt->gipt_parent = pt; + } + + gipt_map_insert(map, pt); + child_pt = pt; + pts[count++] = pt; + clvl++; + } while (clvl <= root_lvl); + + return (count); +} + +/* + * Ensure that a page table covering a VA at a specified level exists. This + * will create any necessary tables chaining up to the root as well. + */ +gipt_t * +gipt_map_create_parents(gipt_map_t *map, uint64_t va, uint_t lvl) +{ + gipt_t *pt, *pts[GIPT_MAX_LEVELS] = { 0 }; + gipt_pte_type_cb_t pte_type = map->giptm_cbs.giptc_pte_type; + gipt_pte_map_cb_t pte_map = map->giptm_cbs.giptc_pte_map; + uint64_t *ptep; + uint_t i, count; + + ASSERT(MUTEX_HELD(&map->giptm_lock)); + + count = gipt_map_ensure_chain(map, va, lvl, pts); + if (count == 1) { + /* Table already exists in the hierarchy */ + return (pts[0]); + } + ASSERT3U(count, >, 1); + + /* Make sure there is not already a large page mapping at the top */ + pt = pts[count - 1]; + if (pte_type(GIPT_VA2PTE(pt, va), pt->gipt_level) == PTET_PAGE) { + const uint_t end = count - 1; + + /* + * Nuke those gipt_t entries which were optimistically created + * for what was found to be a conflicted mapping. + */ + for (i = 0; i < end; i++) { + gipt_map_remove(map, pts[i]); + gipt_free(pts[i]); + } + return (NULL); + } + + /* Initialize the appropriate tables from bottom to top */ + for (i = 1; i < count; i++) { + pt = pts[i]; + ptep = GIPT_VA2PTEP(pt, va); + + /* + * Since gipt_map_ensure_chain() creates missing tables until + * it find a valid one, and that existing table has been + * checked for the existence of a large page, nothing should + * occupy this PTE. + */ + ASSERT3U(pte_type(*ptep, pt->gipt_level), ==, PTET_EMPTY); + + *ptep = pte_map(pts[i - 1]->gipt_pfn); + pt->gipt_valid_cnt++; + } + + return (pts[0]); +} + +/* + * If a page table is empty, free it from the map, as well as any parent tables + * that would subsequently become empty as part of the clean-up. As noted in + * gipt_map_init(), the table root is a special case and will remain in the + * map, even when empty. + */ +void +gipt_map_clean_parents(gipt_map_t *map, gipt_t *pt) +{ + ASSERT(MUTEX_HELD(&map->giptm_lock)); + + while (pt->gipt_valid_cnt == 0) { + gipt_t *parent = pt->gipt_parent; + uint64_t *ptep = GIPT_VA2PTEP(parent, pt->gipt_vaddr); + + ASSERT3S(map->giptm_cbs.giptc_pte_type(*ptep, + parent->gipt_level), ==, PTET_LINK); + + /* + * For now, it is assumed that all gipt consumers consider PTE + * zeroing as an adequate action for table unmap. + */ + *ptep = 0; + + parent->gipt_valid_cnt--; + gipt_map_remove(map, pt); + gipt_free(pt); + pt = parent; + } +} |