/* * This file is provided under a CDDLv1 license. When using or * redistributing this file, you may do so under this license. * In redistributing this file this license must be included * and no other modification of this header file is permitted. * * CDDL LICENSE SUMMARY * * Copyright(c) 1999 - 2007 Intel Corporation. All rights reserved. * * The contents of this file are subject to the terms of Version * 1.0 of the Common Development and Distribution License (the "License"). * * You should have received a copy of the License with this software. * You can obtain a copy of the License at * http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms of the CDDLv1. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * IntelVersion: HSD_2343720b_DragonLake3 v2007-06-14_HSD_2343720b_DragonLake3 */ /* * e1000_82571 * e1000_82572 * e1000_82573 */ #include "e1000_api.h" #include "e1000_82571.h" void e1000_init_function_pointers_82571(struct e1000_hw *hw); static s32 e1000_init_phy_params_82571(struct e1000_hw *hw); static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw); static s32 e1000_init_mac_params_82571(struct e1000_hw *hw); static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); static void e1000_release_nvm_82571(struct e1000_hw *hw); static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, boolean_t active); static s32 e1000_reset_hw_82571(struct e1000_hw *hw); static s32 e1000_init_hw_82571(struct e1000_hw *hw); static void e1000_clear_vfta_82571(struct e1000_hw *hw); static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count, u32 rar_used_count, u32 rar_count); static s32 e1000_setup_link_82571(struct e1000_hw *hw); static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw); static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); struct e1000_dev_spec_82571 { boolean_t laa_is_present; }; /* * e1000_init_phy_params_82571 - Init PHY func ptrs. * @hw: pointer to the HW structure * * This is a function pointer entry point called by the api module. */ static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; struct e1000_functions *func = &hw->func; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_init_phy_params_82571"); if (hw->media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; goto out; } phy->addr = 1; phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; func->acquire_phy = e1000_get_hw_semaphore_82571; func->check_polarity = e1000_check_polarity_igp; func->check_reset_block = e1000_check_reset_block_generic; func->release_phy = e1000_put_hw_semaphore_82571; func->reset_phy = e1000_phy_hw_reset_generic; func->set_d0_lplu_state = e1000_set_d0_lplu_state_82571; func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic; switch (hw->mac.type) { case e1000_82571: case e1000_82572: phy->type = e1000_phy_igp_2; func->get_cfg_done = e1000_get_cfg_done_82571; func->get_phy_info = e1000_get_phy_info_igp; func->force_speed_duplex = e1000_phy_force_speed_duplex_igp; func->get_cable_length = e1000_get_cable_length_igp_2; func->read_phy_reg = e1000_read_phy_reg_igp; func->write_phy_reg = e1000_write_phy_reg_igp; break; case e1000_82573: phy->type = e1000_phy_m88; func->get_cfg_done = e1000_get_cfg_done_generic; func->get_phy_info = e1000_get_phy_info_m88; func->commit_phy = e1000_phy_sw_reset_generic; func->force_speed_duplex = e1000_phy_force_speed_duplex_m88; func->get_cable_length = e1000_get_cable_length_m88; func->read_phy_reg = e1000_read_phy_reg_m88; func->write_phy_reg = e1000_write_phy_reg_m88; break; default: ret_val = -E1000_ERR_PHY; goto out; } /* This can only be done after all function pointers are setup. */ ret_val = e1000_get_phy_id_82571(hw); /* Verify phy id */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: if (phy->id != IGP01E1000_I_PHY_ID) { ret_val = -E1000_ERR_PHY; goto out; } break; case e1000_82573: if (phy->id != M88E1111_I_PHY_ID) { ret_val = -E1000_ERR_PHY; goto out; } break; default: ret_val = -E1000_ERR_PHY; goto out; } out: return (ret_val); } /* * e1000_init_nvm_params_82571 - Init NVM func ptrs. * @hw: pointer to the HW structure * * This is a function pointer entry point called by the api module. */ static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; struct e1000_functions *func = &hw->func; u32 eecd = E1000_READ_REG(hw, E1000_EECD); u16 size; DEBUGFUNC("e1000_init_nvm_params_82571"); nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } switch (hw->mac.type) { case e1000_82573: if (((eecd >> 15) & 0x3) == 0x3) { nvm->type = e1000_nvm_flash_hw; nvm->word_size = 2048; /* * Autonomous Flash update bit must be cleared due * to Flash update issue. */ eecd &= ~E1000_EECD_AUPDEN; E1000_WRITE_REG(hw, E1000_EECD, eecd); break; } /* Fall Through */ default: nvm->type = e1000_nvm_eeprom_spi; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* * Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; nvm->word_size = 1 << size; break; } /* Function Pointers */ func->acquire_nvm = e1000_acquire_nvm_82571; func->read_nvm = (hw->mac.type == e1000_82573) ? e1000_read_nvm_eerd : e1000_read_nvm_spi; func->release_nvm = e1000_release_nvm_82571; func->update_nvm = e1000_update_nvm_checksum_82571; func->validate_nvm = e1000_validate_nvm_checksum_82571; func->valid_led_default = e1000_valid_led_default_82571; func->write_nvm = e1000_write_nvm_82571; return (E1000_SUCCESS); } /* * e1000_init_mac_params_82571 - Init MAC func ptrs. * @hw: pointer to the HW structure * * This is a function pointer entry point called by the api module. */ static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_functions *func = &hw->func; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_init_mac_params_82571"); /* Set media type */ switch (hw->device_id) { case E1000_DEV_ID_82571EB_FIBER: case E1000_DEV_ID_82572EI_FIBER: case E1000_DEV_ID_82571EB_QUAD_FIBER: hw->media_type = e1000_media_type_fiber; break; case E1000_DEV_ID_82571EB_SERDES: case E1000_DEV_ID_82571EB_SERDES_DUAL: case E1000_DEV_ID_82571EB_SERDES_QUAD: case E1000_DEV_ID_82572EI_SERDES: hw->media_type = e1000_media_type_internal_serdes; break; default: hw->media_type = e1000_media_type_copper; break; } /* Set mta register count */ mac->mta_reg_count = 128; /* Set rar entry count */ mac->rar_entry_count = E1000_RAR_ENTRIES; /* Set if part includes ASF firmware */ mac->asf_firmware_present = TRUE; /* Set if manageability features are enabled. */ mac->arc_subsystem_valid = (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK) ? TRUE : FALSE; /* Function pointers */ /* bus type/speed/width */ func->get_bus_info = e1000_get_bus_info_pcie_generic; /* reset */ func->reset_hw = e1000_reset_hw_82571; /* hw initialization */ func->init_hw = e1000_init_hw_82571; /* link setup */ func->setup_link = e1000_setup_link_82571; /* physical interface link setup */ func->setup_physical_interface = (hw->media_type == e1000_media_type_copper) ? e1000_setup_copper_link_82571 : e1000_setup_fiber_serdes_link_82571; /* check for link */ switch (hw->media_type) { case e1000_media_type_copper: func->check_for_link = e1000_check_for_copper_link_generic; break; case e1000_media_type_fiber: func->check_for_link = e1000_check_for_fiber_link_generic; break; case e1000_media_type_internal_serdes: func->check_for_link = e1000_check_for_serdes_link_generic; break; default: ret_val = -E1000_ERR_CONFIG; goto out; } /* check management mode */ func->check_mng_mode = e1000_check_mng_mode_generic; /* multicast address update */ func->mc_addr_list_update = e1000_mc_addr_list_update_82571; /* writing VFTA */ func->write_vfta = e1000_write_vfta_generic; /* clearing VFTA */ func->clear_vfta = e1000_clear_vfta_82571; /* setting MTA */ func->mta_set = e1000_mta_set_generic; /* blink LED */ func->blink_led = e1000_blink_led_generic; /* setup LED */ func->setup_led = e1000_setup_led_generic; /* cleanup LED */ func->cleanup_led = e1000_cleanup_led_generic; /* turn on/off LED */ func->led_on = e1000_led_on_generic; func->led_off = e1000_led_off_generic; /* remove device */ func->remove_device = e1000_remove_device_generic; /* clear hardware counters */ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82571; /* link info */ func->get_link_up_info = (hw->media_type == e1000_media_type_copper) ? e1000_get_speed_and_duplex_copper_generic : e1000_get_speed_and_duplex_fiber_serdes_generic; hw->dev_spec_size = sizeof (struct e1000_dev_spec_82571); /* Device-specific structure allocation */ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size); out: return (ret_val); } /* * e1000_init_function_pointers_82571 - Init func ptrs. * @hw: pointer to the HW structure * * The only function explicitly called by the api module to initialize * all function pointers and parameters. */ void e1000_init_function_pointers_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_init_function_pointers_82571"); hw->func.init_mac_params = e1000_init_mac_params_82571; hw->func.init_nvm_params = e1000_init_nvm_params_82571; hw->func.init_phy_params = e1000_init_phy_params_82571; } /* * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. */ static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_get_phy_id_82571"); switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* * The 82571 firmware may still be configuring the PHY. * In this case, we cannot access the PHY until the * configuration is done. So we explicitly set the * PHY ID. */ phy->id = IGP01E1000_I_PHY_ID; break; case e1000_82573: ret_val = e1000_get_phy_id(hw); break; default: ret_val = -E1000_ERR_PHY; break; } return (ret_val); } /* * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM */ s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) { u32 swsm; s32 ret_val = E1000_SUCCESS; s32 timeout = hw->nvm.word_size + 1; s32 i = 0; DEBUGFUNC("e1000_get_hw_semaphore_82571"); /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { swsm = E1000_READ_REG(hw, E1000_SWSM); E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) break; usec_delay(50); } if (i == timeout) { /* Release semaphores */ e1000_put_hw_semaphore_generic(hw); DEBUGOUT("Driver can't access the NVM\n"); ret_val = -E1000_ERR_NVM; goto out; } out: return (ret_val); } /* * e1000_put_hw_semaphore_82571 - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM */ void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) { u32 swsm; DEBUGFUNC("e1000_put_hw_semaphore_82571"); swsm = E1000_READ_REG(hw, E1000_SWSM); swsm &= ~E1000_SWSM_SWESMBI; E1000_WRITE_REG(hw, E1000_SWSM, swsm); } /* * e1000_acquire_nvm_82571 - Request for access to the EEPROM * @hw: pointer to the HW structure * * To gain access to the EEPROM, first we must obtain a hardware semaphore. * Then for non-82573 hardware, set the EEPROM access request bit and wait * for EEPROM access grant bit. If the access grant bit is not set, release * hardware semaphore. */ static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) { s32 ret_val; DEBUGFUNC("e1000_acquire_nvm_82571"); ret_val = e1000_get_hw_semaphore_82571(hw); if (ret_val) goto out; if (hw->mac.type != e1000_82573) ret_val = e1000_acquire_nvm_generic(hw); if (ret_val) e1000_put_hw_semaphore_82571(hw); out: return (ret_val); } /* * e1000_release_nvm_82571 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit. */ static void e1000_release_nvm_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_release_nvm_82571"); e1000_release_nvm_generic(hw); e1000_put_hw_semaphore_82571(hw); } /* * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * For non-82573 silicon, write data to EEPROM at offset using SPI interface. * * If e1000_update_nvm_checksum is not called after this function, the * EEPROM will most likley contain an invalid checksum. */ static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_write_nvm_82571"); switch (hw->mac.type) { case e1000_82573: ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); break; case e1000_82571: case e1000_82572: ret_val = e1000_write_nvm_spi(hw, offset, words, data); break; default: ret_val = -E1000_ERR_NVM; break; } return (ret_val); } /* * e1000_update_nvm_checksum_82571 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. */ static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) { u32 eecd; s32 ret_val; u16 i; DEBUGFUNC("e1000_update_nvm_checksum_82571"); ret_val = e1000_update_nvm_checksum_generic(hw); if (ret_val) goto out; /* * If our nvm is an EEPROM, then we're done * otherwise, commit the checksum to the flash NVM. */ if (hw->nvm.type != e1000_nvm_flash_hw) goto out; /* Check for pending operations. */ for (i = 0; i < E1000_FLASH_UPDATES; i++) { msec_delay(1); if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0) break; } if (i == E1000_FLASH_UPDATES) { ret_val = -E1000_ERR_NVM; goto out; } /* Reset the firmware if using STM opcode. */ if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { /* * The enabling of and the actual reset must be done * in two write cycles. */ E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); E1000_WRITE_FLUSH(hw); E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); } /* Commit the write to flash */ eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; E1000_WRITE_REG(hw, E1000_EECD, eecd); for (i = 0; i < E1000_FLASH_UPDATES; i++) { msec_delay(1); if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD) == 0) break; } if (i == E1000_FLASH_UPDATES) { ret_val = -E1000_ERR_NVM; goto out; } out: return (ret_val); } /* * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. */ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_validate_nvm_checksum_82571"); if (hw->nvm.type == e1000_nvm_flash_hw) e1000_fix_nvm_checksum_82571(hw); return (e1000_validate_nvm_checksum_generic(hw)); } /* * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon * @hw: pointer to the HW structure * @offset: offset within the EEPROM to be written to * @words: number of words to write * @data: 16 bit word(s) to be written to the EEPROM * * After checking for invalid values, poll the EEPROM to ensure the previous * command has completed before trying to write the next word. After write * poll for completion. * * If e1000_update_nvm_checksum is not called after this function, the * EEPROM will most likley contain an invalid checksum. */ static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { struct e1000_nvm_info *nvm = &hw->nvm; u32 i, eewr = 0; s32 ret_val = 0; DEBUGFUNC("e1000_write_nvm_eewr_82571"); /* * A check for invalid values: offset too large, too many words, * and not enough words. */ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || (words == 0)) { DEBUGOUT("nvm parameter(s) out of bounds\n"); ret_val = -E1000_ERR_NVM; goto out; } for (i = 0; i < words; i++) { eewr = (data[i] << E1000_NVM_RW_REG_DATA) | ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | E1000_NVM_RW_REG_START; ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); if (ret_val) break; E1000_WRITE_REG(hw, E1000_EEWR, eewr); ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); if (ret_val) break; } out: return (ret_val); } /* * e1000_get_cfg_done_82571 - Poll for configuration done * @hw: pointer to the HW structure * * Reads the management control register for the config done bit to be set. */ static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; s32 ret_val = E1000_SUCCESS; DEBUGFUNC("e1000_get_cfg_done_82571"); while (timeout) { if (E1000_READ_REG(hw, E1000_EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) break; msec_delay(1); timeout--; } if (!timeout) { DEBUGOUT("MNG configuration cycle has not completed.\n"); goto out; } out: return (ret_val); } /* * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: TRUE to enable LPLU, FALSE to disable * * Sets the LPLU D0 state according to the active flag. When activating LPLU * this function also disables smart speed and vice versa. LPLU will not be * activated unless the device autonegotiation advertisement meets standards * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function * pointer entry point only called by PHY setup routines. */ static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, boolean_t active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; DEBUGFUNC("e1000_set_d0_lplu_state_82571"); ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) goto out; if (active) { data |= IGP02E1000_PM_D0_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else { data &= ~IGP02E1000_PM_D0_LPLU; ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); /* * LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } } out: return (ret_val); } /* * e1000_reset_hw_82571 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. This is a * function pointer entry point called by the api module. */ static s32 e1000_reset_hw_82571(struct e1000_hw *hw) { u32 ctrl, extcnf_ctrl, ctrl_ext, icr; s32 ret_val; u16 i = 0; DEBUGFUNC("e1000_reset_hw_82571"); /* * Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = e1000_disable_pcie_master_generic(hw); if (ret_val) { DEBUGOUT("PCI-E Master disable polling has failed.\n"); } DEBUGOUT("Masking off all interrupts\n"); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_RCTL, 0); E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); E1000_WRITE_FLUSH(hw); msec_delay(10); /* * Must acquire the MDIO ownership before MAC reset. * Ownership defaults to firmware after a reset. */ if (hw->mac.type == e1000_82573) { extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; do { E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) break; extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; msec_delay(2); i++; } while (i < MDIO_OWNERSHIP_TIMEOUT); } ctrl = E1000_READ_REG(hw, E1000_CTRL); DEBUGOUT("Issuing a global reset to MAC\n"); E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); if (hw->nvm.type == e1000_nvm_flash_hw) { usec_delay(10); ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_EE_RST; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); E1000_WRITE_FLUSH(hw); } ret_val = e1000_get_auto_rd_done_generic(hw); if (ret_val) /* We don't want to continue accessing MAC registers. */ goto out; /* * Phy configuration from NVM just starts after EECD_AUTO_RD is set. * Need to wait for Phy configuration completion before accessing * NVM and Phy. */ if (hw->mac.type == e1000_82573) msec_delay(25); /* Clear any pending interrupt events. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); icr = E1000_READ_REG(hw, E1000_ICR); out: return (ret_val); } /* * e1000_init_hw_82571 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. */ static s32 e1000_init_hw_82571(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 reg_data; s32 ret_val; u16 i, rar_count = mac->rar_entry_count; DEBUGFUNC("e1000_init_hw_82571"); e1000_initialize_hw_bits_82571(hw); /* Initialize identification LED */ ret_val = e1000_id_led_init_generic(hw); if (ret_val) { DEBUGOUT("Error initializing identification LED\n"); goto out; } /* Disabling VLAN filtering */ DEBUGOUT("Initializing the IEEE VLAN\n"); e1000_clear_vfta(hw); /* Setup the receive address. */ /* * If, however, a locally administered address was assigned to the * 82571, we must reserve a RAR for it to work around an issue where * resetting one port will reload the MAC on the other port. */ if (e1000_get_laa_state_82571(hw)) rar_count--; e1000_init_rx_addrs_generic(hw, rar_count); /* Zero out the Multicast HASH table */ DEBUGOUT("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); /* Setup link and flow control */ ret_val = e1000_setup_link(hw); /* Set the transmit descriptor write-back policy */ reg_data = E1000_READ_REG(hw, E1000_TXDCTL); reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, E1000_TXDCTL, reg_data); /* ...for both queues. */ if (mac->type != e1000_82573) { reg_data = E1000_READ_REG(hw, E1000_TXDCTL1); reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, E1000_TXDCTL1, reg_data); } else { e1000_enable_tx_pkt_filtering(hw); reg_data = E1000_READ_REG(hw, E1000_GCR); reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; E1000_WRITE_REG(hw, E1000_GCR, reg_data); } /* * Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82571(hw); out: return (ret_val); } /* * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits * @hw: pointer to the HW structure * * Initializes required hardware-dependent bits needed for normal operation. */ static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) { u32 reg; DEBUGFUNC("e1000_initialize_hw_bits_82571"); if (hw->mac.disable_hw_init_bits) return; /* Transmit Descriptor Control 0 */ reg = E1000_READ_REG(hw, E1000_TXDCTL); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL, reg); /* Transmit Descriptor Control 1 */ reg = E1000_READ_REG(hw, E1000_TXDCTL1); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL1, reg); /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC0); reg &= ~(0xF << 27); /* 30:27 */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); break; default: break; } E1000_WRITE_REG(hw, E1000_TARC0, reg); /* Transmit Arbitration Control 1 */ reg = E1000_READ_REG(hw, E1000_TARC1); switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg &= ~((1 << 29) | (1 << 30)); reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) reg &= ~(1 << 28); else reg |= (1 << 28); E1000_WRITE_REG(hw, E1000_TARC1, reg); break; default: break; } /* Device Control */ if (hw->mac.type == e1000_82573) { reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~(1 << 29); E1000_WRITE_REG(hw, E1000_CTRL, reg); } /* Extended Device Control */ if (hw->mac.type == e1000_82573) { reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~(1 << 23); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); } } /* * e1000_clear_vfta_82571 - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. */ static void e1000_clear_vfta_82571(struct e1000_hw *hw) { u32 offset; u32 vfta_value = 0; u32 vfta_offset = 0; u32 vfta_bit_in_reg = 0; DEBUGFUNC("e1000_clear_vfta_82571"); if (hw->mac.type == e1000_82573) { if (hw->mng_cookie.vlan_id != 0) { /* * The VFTA is a 4096b bit-field, each identifying * a single VLAN ID. The following operations * determine which 32b entry (i.e. offset) into the * array we want to set the VLAN ID (i.e. bit) of * the manageability unit. */ vfta_offset = (hw->mng_cookie.vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); } } for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { /* * If the offset we want to clear is the same offset of the * manageability VLAN ID, then clear all bits except that of * the manageability unit. */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); E1000_WRITE_FLUSH(hw); } } /* * e1000_mc_addr_list_update_82571 - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * @rar_used_count: the first RAR register free to program * @rar_count: total number of supported Receive Address Registers * * Updates the Receive Address Registers and Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. * The parameter rar_count will usually be hw->mac.rar_entry_count * unless there are workarounds that change this. */ static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count, u32 rar_used_count, u32 rar_count) { DEBUGFUNC("e1000_mc_addr_list_update_82571"); if (e1000_get_laa_state_82571(hw)) rar_count--; e1000_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count, rar_used_count, rar_count); } /* * e1000_setup_link_82571 - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. */ static s32 e1000_setup_link_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_setup_link_82571"); /* * 82573 does not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ if (hw->mac.type == e1000_82573) hw->mac.fc = e1000_fc_full; return (e1000_setup_link_generic(hw)); } /* * e1000_setup_copper_link_82571 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. */ static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) { u32 ctrl, led_ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_copper_link_82571"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); switch (hw->phy.type) { case e1000_phy_m88: ret_val = e1000_copper_link_setup_m88(hw); break; case e1000_phy_igp_2: ret_val = e1000_copper_link_setup_igp(hw); /* Setup activity LED */ led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl); break; default: ret_val = -E1000_ERR_PHY; break; } if (ret_val) goto out; ret_val = e1000_setup_copper_link_generic(hw); out: return (ret_val); } /* * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes * @hw: pointer to the HW structure * * Configures collision distance and flow control for fiber and serdes links. * Upon successful setup, poll for link. */ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) { DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* * If SerDes loopback mode is entered, there is no form * of reset to take the adapter out of that mode. So we * have to explicitly take the adapter out of loopback * mode. This prevents drivers from twidling their thumbs * if another tool failed to take it out of loopback mode. */ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); break; default: break; } return (e1000_setup_fiber_serdes_link_generic(hw)); } /* * e1000_valid_led_default_82571 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. */ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 * data) { s32 ret_val; DEBUGFUNC("e1000_valid_led_default_82571"); ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } if (hw->mac.type == e1000_82573 && *data == ID_LED_RESERVED_F746) *data = ID_LED_DEFAULT_82573; else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT; out: return (ret_val); } /* * e1000_get_laa_state_82571 - Get locally administered address state * @hw: pointer to the HW structure * * Retrieve and return the current locally administed address state. */ boolean_t e1000_get_laa_state_82571(struct e1000_hw *hw) { struct e1000_dev_spec_82571 *dev_spec; boolean_t state = FALSE; DEBUGFUNC("e1000_get_laa_state_82571"); if (hw->mac.type != e1000_82571) goto out; dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec; state = dev_spec->laa_is_present; out: return (state); } /* * e1000_set_laa_state_82571 - Set locally administered address state * @hw: pointer to the HW structure * @state: enable/disable locally administered address * * Enable/Disable the current locally administed address state. */ void e1000_set_laa_state_82571(struct e1000_hw *hw, boolean_t state) { struct e1000_dev_spec_82571 *dev_spec; DEBUGFUNC("e1000_set_laa_state_82571"); if (hw->mac.type != e1000_82571) return; dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec; dev_spec->laa_is_present = state; /* If workaround is activated... */ if (state) { /* * Hold a copy of the LAA in RAR[14] This is done so that * between the time RAR[0] gets clobbered and the time it * gets fixed, the actual LAA is in one of the RARs and no * incoming packets directed to this port are dropped. * Eventually the LAA will be in RAR[0] and RAR[14]. */ e1000_rar_set_generic(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); } } /* * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum * @hw: pointer to the HW structure * * Verifies that the EEPROM has completed the update. After updating the * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If * the checksum fix is not implemented, we need to set the bit and update * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, * we need to return bad checksum. */ static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_fix_nvm_checksum_82571"); if (nvm->type != e1000_nvm_flash_hw) goto out; /* * Check bit 4 of word 10h. If it is 0, firmware is done updating * 10h-12h. Checksum may need to be fixed. */ ret_val = e1000_read_nvm(hw, 0x10, 1, &data); if (ret_val) goto out; if (!(data & 0x10)) { /* * Read 0x23 and check bit 15. This bit is a 1 * when the checksum has already been fixed. If * the checksum is still wrong and this bit is a * 1, we need to return bad checksum. Otherwise, * we need to set this bit to a 1 and update the * checksum. */ ret_val = e1000_read_nvm(hw, 0x23, 1, &data); if (ret_val) goto out; if (!(data & 0x8000)) { data |= 0x8000; ret_val = e1000_write_nvm(hw, 0x23, 1, &data); if (ret_val) goto out; ret_val = e1000_update_nvm_checksum(hw); } } out: return (ret_val); } /* * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. */ static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) { volatile u32 temp; DEBUGFUNC("e1000_clear_hw_cntrs_82571"); e1000_clear_hw_cntrs_base_generic(hw); temp = E1000_READ_REG(hw, E1000_PRC64); temp = E1000_READ_REG(hw, E1000_PRC127); temp = E1000_READ_REG(hw, E1000_PRC255); temp = E1000_READ_REG(hw, E1000_PRC511); temp = E1000_READ_REG(hw, E1000_PRC1023); temp = E1000_READ_REG(hw, E1000_PRC1522); temp = E1000_READ_REG(hw, E1000_PTC64); temp = E1000_READ_REG(hw, E1000_PTC127); temp = E1000_READ_REG(hw, E1000_PTC255); temp = E1000_READ_REG(hw, E1000_PTC511); temp = E1000_READ_REG(hw, E1000_PTC1023); temp = E1000_READ_REG(hw, E1000_PTC1522); temp = E1000_READ_REG(hw, E1000_ALGNERRC); temp = E1000_READ_REG(hw, E1000_RXERRC); temp = E1000_READ_REG(hw, E1000_TNCRS); temp = E1000_READ_REG(hw, E1000_CEXTERR); temp = E1000_READ_REG(hw, E1000_TSCTC); temp = E1000_READ_REG(hw, E1000_TSCTFC); temp = E1000_READ_REG(hw, E1000_MGTPRC); temp = E1000_READ_REG(hw, E1000_MGTPDC); temp = E1000_READ_REG(hw, E1000_MGTPTC); temp = E1000_READ_REG(hw, E1000_IAC); temp = E1000_READ_REG(hw, E1000_ICRXOC); temp = E1000_READ_REG(hw, E1000_ICRXPTC); temp = E1000_READ_REG(hw, E1000_ICRXATC); temp = E1000_READ_REG(hw, E1000_ICTXPTC); temp = E1000_READ_REG(hw, E1000_ICTXATC); temp = E1000_READ_REG(hw, E1000_ICTXQEC); temp = E1000_READ_REG(hw, E1000_ICTXQMTC); temp = E1000_READ_REG(hw, E1000_ICRXDMTC); }