1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
|
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2019, Joyent, Inc.
*/
/*
* ATR parsing routines shared between userland (ccidadm) and the kernel (CCID
* driver)
*/
#include "atr.h"
#include <sys/debug.h>
#include <sys/sysmacros.h>
#ifdef _KERNEL
#include <sys/inttypes.h>
#include <sys/sunddi.h>
#include <sys/kmem.h>
#else
#include <inttypes.h>
#include <strings.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#endif
/*
* The ATR must have at least 2 bytes and then may have up to 33 bytes. The
* first byte is always TS and the second required byte is T0.
*/
#define ATR_TS_IDX 0
#define ATR_T0_IDX 1
/*
* There are two valid values for TS. It must either be 0x3F or 0x3B. This is
* required per ISO/IEC 7816-3:2006 section 8.1.
*/
#define ATR_TS_INVERSE 0x3F
#define ATR_TS_DIRECT 0x3B
/*
* After TS, each word is used to indicate a combination of protocol and the
* number of bits defined for that protocol. The lower nibble is treated as the
* protocol. The upper nibble is treated to indicate which of four defined words
* are present. These are usually referred to as TA, TB, TC, and TD. TD is
* always used to indicate the next protocol and the number of bytes present for
* that. T0 works in a similar way, except that it defines the number of
* historical bytes present in its protocol section and then it refers to a set
* of pre-defined global bytes that may be present.
*/
#define ATR_TD_PROT(x) ((x) & 0x0f)
#define ATR_TD_NBITS(x) (((x) & 0xf0) >> 4)
#define ATR_TA_MASK 0x1
#define ATR_TB_MASK 0x2
#define ATR_TC_MASK 0x4
#define ATR_TD_MASK 0x8
#define ATR_TA1_FTABLE(x) (((x) & 0xf0) >> 4)
#define ATR_TA1_DITABLE(x) ((x) & 0x0f)
#define ATR_TA2_CANCHANGE(x) (((x) & 0x80) == 0)
#define ATR_TA2_HONORTA1(x) (((x) & 0x10) == 0)
#define ATR_TA2_PROTOCOL(x) ((x) & 0x0f)
/*
* When the checksum is required in the ATR, each byte must XOR to zero.
*/
#define ATR_CKSUM_TARGET 0
/*
* Maximum number of historic ATR bytes. This is limited by the fact that it's a
* 4-bit nibble.
*/
#define ATR_HISTORICAL_MAX 15
/*
* The maximum number of TA, TB, TC, and TD levels that can be encountered in a
* given structure. In the best case, there are 30 bytes available (TS, T0, and
* TCK use the others). Given that each one of these needs 4 bytes to be
* represented, the maximum number of layers that can fit is seven.
*/
#define ATR_TI_MAX 7
/*
* Defined protocol values. See ISO/IEC 7816-3:2006 8.2.3 for this list.
* Reserved values are noted but not defined.
*/
#define ATR_PROTOCOL_T0 0
#define ATR_PROTOCOL_T1 1
#define ATR_T1_TB0_CWI(x) ((x) & 0x0f)
#define ATR_T1_TB0_BWI(x) (((x) & 0xf0) >> 4)
#define ATR_T1_TC0_CRC(x) (((x) & 0x01) != 0)
/*
* T=2 and T=3 are reserved for future full-duplex operation.
* T=4 is reserved for enhanced half-duplex character transmission.
* T=5-13 are reserved for future use by ISO/IEC JTC 1/SC 17.
* T=14 is for protocols not standardized by ISO/IEC JTC 1/SC 17.
*/
#define ATR_PROTOCOL_T15 15
#define ATR_T15_TA0_CLOCK(x) (((x) & 0xc0) >> 6)
#define ATR_T15_TA0_VOLTAGE(x) ((x) & 0x3f)
#define ATR_T15_TB0_SPU_STANDARD(x) (((x & 0x80)) != 0)
/*
* Various definitions for the configuration of historical data. This comes from
* ISO/IEC 7816-4:2013 Section 12.1.1.
*/
/*
* The first historical byte is used to indicate the encoding of the data. Only
* values 0x00, 0x80-0x8f are defined. All others are proprietary. 0x81-0x8f are
* reserved for future use.
*/
#define ATR_HIST_CAT_MAND_STATUS 0x00
#define ATR_HIST_CAT_TLV_STATUS 0x80
#define ATR_HIST_CAT_RFU_MIN 0x81
#define ATR_HIST_CAT_RFU_MAX 0x8f
/*
* From ISO/IEC 7816-3:2006 Section 8.3.
*
* The default value for Fi is 372 which is table entry 1. The default value for
* Di is 1, which is table entry 1.
*/
#define ATR_FI_DEFAULT_INDEX 1
#define ATR_DI_DEFAULT_INDEX 1
#define ATR_EXTRA_GUARDTIME_DEFAULT 0
/*
* From ISO/IEC 7816-3:2006 Section 10.2.
*/
#define ATR_T0_WI_DEFAULT 10
/*
* From ISO/IEC 7816-3:2006 Section 11.4.3.
*/
#define ATR_T1_CWI_DEFAULT 13
/*
* From ISO/IEC 7816-3:2006 Section 11.4.3.
*/
#define ATR_T1_BWI_DEFAULT 4
/*
* From ISO/IEC 7816-3:2006 Section 11.4.2.
*/
#define ATR_T1_IFSC_DEFAULT 32
/*
* From ISO/IEC 7816-3:2006 Section 11.4.4
*/
#define ATR_T1_CHECKSUM_DEFAULT ATR_T1_CHECKSUM_LRC
/*
* Definitions for PPS construction. These are derived from ISO/IEC 7816-3:2006
* section 9, Protocol and parameters selection.
*/
#define PPS_LEN_MIN 3 /* PPSS, PPS0, PCK */
#define PPS_LEN_MAX PPS_BUFFER_MAX
#define PPS_PPSS_INDEX 0
#define PPS_PPSS_VAL 0xff
#define PPS_PPS0_INDEX 0x01
#define PPS_PPS0_PROT(x) ((x) & 0x0f)
#define PPS_PPS0_PPS1 (1 << 4)
#define PPS_PPS0_PPS2 (1 << 5)
#define PPS_PPS0_PPS3 (1 << 6)
#define PPS_PPS1_SETVAL(f, d) ((((f) & 0x0f) << 4) | ((d) & 0x0f))
/*
* This enum and subsequent structure is used to represent a single level of
* 'T'. This includes the possibility for all three values to be set and records
* the protocol.
*/
typedef enum atr_ti_flags {
ATR_TI_HAVE_TA = 1 << 0,
ATR_TI_HAVE_TB = 1 << 1,
ATR_TI_HAVE_TC = 1 << 2,
ATR_TI_HAVE_TD = 1 << 3
} atr_ti_flags_t;
typedef struct atr_ti {
uint8_t atrti_protocol;
uint8_t atrti_ti_val;
uint8_t atrti_td_idx;
atr_ti_flags_t atrti_flags;
uint8_t atrti_ta;
uint8_t atrti_tb;
uint8_t atrti_tc;
uint8_t atrti_td;
} atr_ti_t;
typedef enum atr_flags {
ATR_F_USES_DIRECT = 1 << 0,
ATR_F_USES_INVERSE = 1 << 1,
ATR_F_HAS_CHECKSUM = 1 << 2,
ATR_F_VALID = 1 << 3
} atr_flags_t;
struct atr_data {
atr_flags_t atr_flags;
uint8_t atr_nti;
atr_ti_t atr_ti[ATR_TI_MAX];
uint8_t atr_nhistoric;
uint8_t atr_historic[ATR_HISTORICAL_MAX];
uint8_t atr_cksum;
uint8_t atr_raw[ATR_LEN_MAX];
uint8_t atr_nraw;
};
/*
* These tables maps the bit values for Fi from 7816-3:2006 section 8.3 Table 7.
*/
static uint_t atr_fi_valtable[16] = {
372, /* 0000 */
372, /* 0001 */
558, /* 0010 */
744, /* 0011 */
1116, /* 0100 */
1488, /* 0101 */
1860, /* 0110 */
0, /* 0111 */
0, /* 1000 */
512, /* 1001 */
768, /* 1010 */
1024, /* 1011 */
1536, /* 1100 */
2048, /* 1101 */
0, /* 1110 */
0 /* 1111 */
};
static const char *atr_fi_table[16] = {
"372", /* 0000 */
"372", /* 0001 */
"558", /* 0010 */
"744", /* 0011 */
"1116", /* 0100 */
"1488", /* 0101 */
"1860", /* 0110 */
"RFU", /* 0111 */
"RFU", /* 1000 */
"512", /* 1001 */
"768", /* 1010 */
"1024", /* 1011 */
"1536", /* 1100 */
"2048", /* 1101 */
"RFU", /* 1110 */
"RFU", /* 1111 */
};
/*
* This table maps the bit values for f(max) from 7816-3:2006 section 8.3
* Table 7.
*/
static const char *atr_fmax_table[16] = {
"4", /* 0000 */
"5", /* 0001 */
"6", /* 0010 */
"8", /* 0011 */
"12", /* 0100 */
"16", /* 0101 */
"20", /* 0110 */
"-", /* 0111 */
"-", /* 1000 */
"5", /* 1001 */
"7.5", /* 1010 */
"10", /* 1011 */
"15", /* 1100 */
"20", /* 1101 */
"-", /* 1110 */
"-", /* 1111 */
};
/*
* This table maps the bit values for Di from 7816-3:2006 section 8.3 Table 8.
*/
static uint_t atr_di_valtable[16] = {
0, /* 0000 */
1, /* 0001 */
2, /* 0010 */
4, /* 0011 */
8, /* 0100 */
16, /* 0101 */
32, /* 0110 */
64, /* 0111 */
12, /* 1000 */
20, /* 1001 */
0, /* 1010 */
0, /* 1011 */
0, /* 1100 */
0, /* 1101 */
0, /* 1110 */
0 /* 1111 */
};
static const char *atr_di_table[16] = {
"RFU", /* 0000 */
"1", /* 0001 */
"2", /* 0010 */
"4", /* 0011 */
"8", /* 0100 */
"16", /* 0101 */
"32", /* 0110 */
"64", /* 0111 */
"12", /* 1000 */
"20", /* 1001 */
"RFU", /* 1010 */
"RFU", /* 1011 */
"RFU", /* 1100 */
"RFU", /* 1101 */
"RFU", /* 1110 */
"RFU", /* 1111 */
};
/*
* This table maps the bit values for the clock stop indicator from 7816-3:2006
* section 8.3 Table 9.
*/
static const char *atr_clock_table[4] = {
"disallowed", /* 00 */
"signal low", /* 01 */
"signal high", /* 10 */
"signal low or high" /* 11 */
};
uint_t
atr_fi_index_to_value(uint8_t val)
{
if (val >= ARRAY_SIZE(atr_fi_valtable)) {
return (0);
}
return (atr_fi_valtable[val]);
}
const char *
atr_fi_index_to_string(uint8_t val)
{
if (val >= ARRAY_SIZE(atr_fi_table)) {
return ("<invalid>");
}
return (atr_fi_table[val]);
}
const char *
atr_fmax_index_to_string(uint8_t val)
{
if (val >= ARRAY_SIZE(atr_fmax_table)) {
return ("<invalid>");
}
return (atr_fmax_table[val]);
}
uint_t
atr_di_index_to_value(uint8_t val)
{
if (val >= ARRAY_SIZE(atr_di_valtable)) {
return (0);
}
return (atr_di_valtable[val]);
}
const char *
atr_di_index_to_string(uint8_t val)
{
if (val >= ARRAY_SIZE(atr_di_table)) {
return ("<invalid>");
}
return (atr_di_table[val]);
}
const char *
atr_clock_stop_to_string(atr_clock_stop_t val)
{
if (val >= ARRAY_SIZE(atr_clock_table)) {
return ("<invalid>");
}
return (atr_clock_table[val]);
}
const char *
atr_protocol_to_string(atr_protocol_t prot)
{
if (prot == ATR_P_NONE) {
return ("none");
}
if ((prot & ATR_P_T0) == ATR_P_T0) {
return ("T=0");
} else if ((prot & ATR_P_T1) == ATR_P_T1) {
return ("T=1");
} else {
return ("T=0, T=1");
}
}
const char *
atr_convention_to_string(atr_convention_t conv)
{
if (conv == ATR_CONVENTION_DIRECT) {
return ("direct");
} else if (conv == ATR_CONVENTION_INVERSE) {
return ("inverse");
} else {
return ("<invalid convention>");
}
}
const char *
atr_strerror(atr_parsecode_t code)
{
switch (code) {
case ATR_CODE_OK:
return ("ATR parsed successfully");
case ATR_CODE_TOO_SHORT:
return ("Specified buffer too short");
case ATR_CODE_TOO_LONG:
return ("Specified buffer too long");
case ATR_CODE_INVALID_TS:
return ("ATR has invalid TS byte value");
case ATR_CODE_OVERRUN:
return ("ATR data requires more bytes than provided");
case ATR_CODE_UNDERRUN:
return ("ATR data did not use all provided bytes");
case ATR_CODE_CHECKSUM_ERROR:
return ("ATR data did not checksum correctly");
case ATR_CODE_INVALID_TD1:
return ("ATR data has invalid protocol in TD1");
default:
return ("Unknown Parse Code");
}
}
static uint_t
atr_count_cbits(uint8_t x)
{
uint_t ret = 0;
if (x & ATR_TA_MASK)
ret++;
if (x & ATR_TB_MASK)
ret++;
if (x & ATR_TC_MASK)
ret++;
if (x & ATR_TD_MASK)
ret++;
return (ret);
}
/*
* Parse out ATR values. Focus on only parsing it and not interpreting it.
* Interpretation should be done in other functions that can walk over the data
* and be more protocol-aware.
*/
atr_parsecode_t
atr_parse(const uint8_t *buf, size_t len, atr_data_t *data)
{
uint_t nhist, cbits, ncbits, idx, Ti, prot;
uint_t ncksum = 0;
atr_ti_t *atp;
/*
* Zero out data in case someone's come back around for another loop on
* the same data.
*/
bzero(data, sizeof (atr_data_t));
if (len < ATR_LEN_MIN) {
return (ATR_CODE_TOO_SHORT);
}
if (len > ATR_LEN_MAX) {
return (ATR_CODE_TOO_LONG);
}
if (buf[ATR_TS_IDX] != ATR_TS_INVERSE &&
buf[ATR_TS_IDX] != ATR_TS_DIRECT) {
return (ATR_CODE_INVALID_TS);
}
bcopy(buf, data->atr_raw, len);
data->atr_nraw = len;
if (buf[ATR_TS_IDX] == ATR_TS_DIRECT) {
data->atr_flags |= ATR_F_USES_DIRECT;
} else {
data->atr_flags |= ATR_F_USES_INVERSE;
}
/*
* The protocol of T0 is the number of historical bits present.
*/
nhist = ATR_TD_PROT(buf[ATR_T0_IDX]);
cbits = ATR_TD_NBITS(buf[ATR_T0_IDX]);
idx = ATR_T0_IDX + 1;
ncbits = atr_count_cbits(cbits);
/*
* Ti is used to track the current iteration of T[A,B,C,D] that we are
* on, as the ISO/IEC standard suggests. The way that values are
* interpreted depends on the value of Ti.
*
* When Ti is one, TA, TB, and TC represent global properties. TD's
* protocol represents the preferred protocol.
*
* When Ti is two, TA, TB, and TC also represent global properties.
* However, TC only has meaning if the protocol is T=0.
*
* When Ti is 15, it indicates more global properties.
*
* For all other values of Ti, the meaning depends on the protocol in
* question and they are all properties specific to that protocol.
*/
Ti = 1;
/*
* Initialize prot to an invalid protocol to help us deal with the
* normal workflow and make sure that we don't mistakenly do anything.
*/
prot = UINT32_MAX;
for (;;) {
atp = &data->atr_ti[data->atr_nti];
data->atr_nti++;
ASSERT3U(data->atr_nti, <=, ATR_TI_MAX);
/*
* Make sure that we have enough space to read all the cbits.
* idx points to the first cbit, which could also potentially be
* over the length of the buffer. This is why we subtract one
* from idx when doing the calculation.
*/
if (idx - 1 + ncbits >= len) {
return (ATR_CODE_OVERRUN);
}
ASSERT3U(Ti, !=, 0);
/*
* At the moment we opt to ignore reserved protocols.
*/
atp->atrti_protocol = prot;
atp->atrti_ti_val = Ti;
atp->atrti_td_idx = idx - 1;
if (cbits & ATR_TA_MASK) {
atp->atrti_flags |= ATR_TI_HAVE_TA;
atp->atrti_ta = buf[idx];
idx++;
}
if (cbits & ATR_TB_MASK) {
atp->atrti_flags |= ATR_TI_HAVE_TB;
atp->atrti_tb = buf[idx];
idx++;
}
if (cbits & ATR_TC_MASK) {
atp->atrti_flags |= ATR_TI_HAVE_TC;
atp->atrti_tc = buf[idx];
idx++;
}
if (cbits & ATR_TD_MASK) {
atp->atrti_flags |= ATR_TI_HAVE_TD;
atp->atrti_td = buf[idx];
cbits = ATR_TD_NBITS(buf[idx]);
prot = ATR_TD_PROT(buf[idx]);
ncbits = atr_count_cbits(cbits);
if (prot != 0)
ncksum = 1;
/*
* T=15 is not allowed in TD1 per 8.2.3.
*/
if (Ti == 1 && prot == 0xf)
return (ATR_CODE_INVALID_TD1);
idx++;
/*
* Encountering TD means that once we take the next loop
* and we need to increment Ti.
*/
Ti++;
} else {
break;
}
}
/*
* We've parsed all of the cbits. At this point, we should take into
* account all of the historical bits and potentially the checksum.
*/
if (idx - 1 + nhist + ncksum >= len) {
return (ATR_CODE_OVERRUN);
}
if (idx + nhist + ncksum != len) {
return (ATR_CODE_UNDERRUN);
}
if (nhist > 0) {
data->atr_nhistoric = nhist;
bcopy(&buf[idx], data->atr_historic, nhist);
}
if (ncksum > 0) {
size_t i;
uint8_t val;
/*
* Per ISO/IEC 7816-3:2006 Section 8.2.5 the checksum is all
* bytes excluding TS. Therefore, we must start at byte 1.
*/
for (val = 0, i = 1; i < len; i++) {
val ^= buf[i];
}
if (val != ATR_CKSUM_TARGET) {
return (ATR_CODE_CHECKSUM_ERROR);
}
data->atr_flags |= ATR_F_HAS_CHECKSUM;
data->atr_cksum = buf[len - 1];
}
data->atr_flags |= ATR_F_VALID;
return (ATR_CODE_OK);
}
uint8_t
atr_fi_default_index(void)
{
return (ATR_FI_DEFAULT_INDEX);
}
uint8_t
atr_di_default_index(void)
{
return (ATR_DI_DEFAULT_INDEX);
}
/*
* Parse the data to determine which protocols are supported in this atr data.
* Based on this, users can come and ask us to fill in protocol information.
*/
atr_protocol_t
atr_supported_protocols(atr_data_t *data)
{
uint_t i;
atr_protocol_t prot;
if ((data->atr_flags & ATR_F_VALID) == 0)
return (ATR_P_NONE);
/*
* Based on 8.2.3 of ISO/IEC 7816-3:2006, if TD1 is present, then that
* indicates the first protocol. However, if it is not present, then
* that implies that T=0 is the only supported protocol. Otherwise, all
* protocols are referenced in ascending order. The first entry in
* atr_ti refers to data from T0, so the protocol in the second entry
* would have the TD1 data.
*/
if (data->atr_nti < 2) {
return (ATR_P_T0);
}
prot = ATR_P_NONE;
for (i = 0; i < data->atr_nti; i++) {
switch (data->atr_ti[i].atrti_protocol) {
case ATR_PROTOCOL_T0:
prot |= ATR_P_T0;
break;
case ATR_PROTOCOL_T1:
prot |= ATR_P_T1;
break;
default:
/*
* T=15 is not a protocol, and all other protocol values
* are currently reserved for future use.
*/
continue;
}
}
/*
* It's possible we've found nothing specific in the above loop (for
* example, only T=15 global bits were found). In that case, the card
* defaults to T=0.
*/
if (prot == ATR_P_NONE)
prot = ATR_P_T0;
return (prot);
}
boolean_t
atr_params_negotiable(atr_data_t *data)
{
/* If for some reason we're called with invalid data, assume it's not */
if ((data->atr_flags & ATR_F_VALID) == 0)
return (B_FALSE);
/*
* Whether or not we're negotiable is in the second global page, so atr
* index 1. If TA2 is missing, then the card always is negotiable.
*/
if (data->atr_nti < 2 ||
(data->atr_ti[1].atrti_flags & ATR_TI_HAVE_TA) == 0) {
return (B_TRUE);
}
if (ATR_TA2_CANCHANGE(data->atr_ti[1].atrti_ta)) {
return (B_TRUE);
}
return (B_FALSE);
}
atr_protocol_t
atr_default_protocol(atr_data_t *data)
{
uint8_t prot;
if ((data->atr_flags & ATR_F_VALID) == 0)
return (ATR_P_NONE);
/*
* If we don't have an TA2 byte, then the system defaults to T=0.
*/
if (data->atr_nti < 2) {
return (ATR_P_T0);
}
/*
* If TA2 is present, then it encodes the default protocol. Otherwise,
* we have to grab the protocol value from TD1, which is called the
* 'first offered protocol'.
*/
if ((data->atr_ti[1].atrti_flags & ATR_TI_HAVE_TA) != 0) {
prot = ATR_TA2_PROTOCOL(data->atr_ti[1].atrti_ta);
} else {
prot = data->atr_ti[1].atrti_protocol;
}
switch (prot) {
case ATR_PROTOCOL_T0:
return (ATR_P_T0);
case ATR_PROTOCOL_T1:
return (ATR_P_T1);
default:
return (ATR_P_NONE);
}
}
uint8_t
atr_fi_index(atr_data_t *data)
{
if (data->atr_nti < 1) {
return (ATR_FI_DEFAULT_INDEX);
}
/*
* If TA is specified, it is present in TA1. TA2 may override its
* presence, so if it is here, check that first to determine whether or
* not we should check TA1.
*/
if (data->atr_nti >= 2 &&
(data->atr_ti[1].atrti_flags & ATR_TI_HAVE_TA) != 0) {
if (!ATR_TA2_HONORTA1(data->atr_ti[1].atrti_ta)) {
return (ATR_FI_DEFAULT_INDEX);
}
}
if ((data->atr_ti[0].atrti_flags & ATR_TI_HAVE_TA) != 0) {
return (ATR_TA1_FTABLE(data->atr_ti[0].atrti_ta));
}
return (ATR_FI_DEFAULT_INDEX);
}
uint8_t
atr_di_index(atr_data_t *data)
{
if (data->atr_nti < 1) {
return (ATR_DI_DEFAULT_INDEX);
}
/*
* If TA is specified, it is present in TA1. TA2 may override its
* presence, so if it is here, check that first to determine whether or
* not we should check TA1.
*/
if (data->atr_nti >= 2 &&
(data->atr_ti[1].atrti_flags & ATR_TI_HAVE_TA) != 0) {
if (!ATR_TA2_HONORTA1(data->atr_ti[1].atrti_ta)) {
return (ATR_DI_DEFAULT_INDEX);
}
}
if ((data->atr_ti[0].atrti_flags & ATR_TI_HAVE_TA) != 0) {
return (ATR_TA1_DITABLE(data->atr_ti[0].atrti_ta));
}
return (ATR_DI_DEFAULT_INDEX);
}
atr_convention_t
atr_convention(atr_data_t *data)
{
if ((data->atr_flags & ATR_F_USES_DIRECT) != 0) {
return (ATR_CONVENTION_DIRECT);
}
return (ATR_CONVENTION_INVERSE);
}
uint8_t
atr_extra_guardtime(atr_data_t *data)
{
if ((data->atr_flags & ATR_F_VALID) == 0)
return (ATR_EXTRA_GUARDTIME_DEFAULT);
if (data->atr_nti >= 1 &&
(data->atr_ti[0].atrti_flags & ATR_TI_HAVE_TC) != 0) {
return (data->atr_ti[0].atrti_tc);
}
return (ATR_EXTRA_GUARDTIME_DEFAULT);
}
uint8_t
atr_t0_wi(atr_data_t *data)
{
if ((data->atr_flags & ATR_F_VALID) == 0)
return (ATR_T0_WI_DEFAULT);
/*
* This is stored in the optional global byte in TC2; however, it only
* applies to T=0.
*/
if (data->atr_nti >= 2 &&
data->atr_ti[1].atrti_protocol == ATR_PROTOCOL_T0 &&
(data->atr_ti[1].atrti_flags & ATR_TI_HAVE_TC) != 0) {
return (data->atr_ti[1].atrti_tc);
}
return (ATR_T0_WI_DEFAULT);
}
uint8_t
atr_t1_cwi(atr_data_t *data)
{
uint8_t i;
if (data->atr_nti <= 2) {
return (ATR_T1_CWI_DEFAULT);
}
for (i = 2; i < data->atr_nti; i++) {
if (data->atr_ti[i].atrti_protocol == ATR_PROTOCOL_T1) {
if ((data->atr_ti[i].atrti_flags & ATR_TI_HAVE_TB) !=
0) {
uint8_t tb = data->atr_ti[i].atrti_tb;
return (ATR_T1_TB0_CWI(tb));
}
return (ATR_T1_CWI_DEFAULT);
}
}
return (ATR_T1_CWI_DEFAULT);
}
atr_clock_stop_t
atr_clock_stop(atr_data_t *data)
{
uint8_t i;
for (i = 0; i < data->atr_nti; i++) {
if (data->atr_ti[i].atrti_protocol == ATR_PROTOCOL_T15) {
if ((data->atr_ti[i].atrti_flags & ATR_TI_HAVE_TA) !=
0) {
uint8_t ta = data->atr_ti[i].atrti_ta;
return (ATR_T15_TA0_CLOCK(ta));
}
return (ATR_CLOCK_STOP_NONE);
}
}
return (ATR_CLOCK_STOP_NONE);
}
atr_t1_checksum_t
atr_t1_checksum(atr_data_t *data)
{
uint8_t i;
if (data->atr_nti <= 2) {
return (ATR_T1_CHECKSUM_DEFAULT);
}
for (i = 2; i < data->atr_nti; i++) {
if (data->atr_ti[i].atrti_protocol == ATR_PROTOCOL_T1) {
if ((data->atr_ti[i].atrti_flags & ATR_TI_HAVE_TC) !=
0) {
if (ATR_T1_TC0_CRC(data->atr_ti[i].atrti_tc)) {
return (ATR_T1_CHECKSUM_CRC);
} else {
return (ATR_T1_CHECKSUM_LRC);
}
}
return (ATR_T1_CHECKSUM_DEFAULT);
}
}
return (ATR_T1_CHECKSUM_DEFAULT);
}
uint8_t
atr_t1_bwi(atr_data_t *data)
{
uint8_t i;
if (data->atr_nti <= 2) {
return (ATR_T1_BWI_DEFAULT);
}
for (i = 2; i < data->atr_nti; i++) {
if (data->atr_ti[i].atrti_protocol == ATR_PROTOCOL_T1) {
if ((data->atr_ti[i].atrti_flags & ATR_TI_HAVE_TB) !=
0) {
uint8_t tb = data->atr_ti[i].atrti_tb;
return (ATR_T1_TB0_BWI(tb));
}
return (ATR_T1_BWI_DEFAULT);
}
}
return (ATR_T1_BWI_DEFAULT);
}
uint8_t
atr_t1_ifsc(atr_data_t *data)
{
uint8_t i;
if (data->atr_nti <= 2) {
return (ATR_T1_IFSC_DEFAULT);
}
for (i = 2; i < data->atr_nti; i++) {
if (data->atr_ti[i].atrti_protocol == ATR_PROTOCOL_T1) {
if ((data->atr_ti[i].atrti_flags & ATR_TI_HAVE_TA) !=
0) {
return (data->atr_ti[i].atrti_ta);
}
return (ATR_T1_IFSC_DEFAULT);
}
}
return (ATR_T1_IFSC_DEFAULT);
}
/*
* Attempt to determine which set of data rates we should be able to use for a
* given class of protocol. Here we want to do the calculation based on the CCID
* specification, section 9.4.x. To use these higher rates we need:
*
* + Reader's data rate > frequency * Di / Fi.
*
* To determine which rate and frequency we use, we look at the reader's
* features. If the reader supports both the Automatic baud rate and automatic
* ICC clock frequency change, then we use the _maximum_ rate. Otherwise we will
* indicate that we can use the ATR's properties, but will require changing the
* default data rate.
*
* Now, some ICC devices are not negotiable. In those cases, we'll see if we can
* fit it in with either the default or maximum data rates. If not, then we'll
* not be able to support this card.
*
* There are two wrinkles that exist in this. The first is supported frequencies
* and data rates. If there are no additional data rates supported, then all of
* the data rates between the default and max are supported. If not, then only
* those specified in the data rates array are supported.
*
* The second hurdle is that we need to do this division and try and avoid the
* pitfalls of floating point arithmetic, as floating point is not allowed in
* the kernel (and this is shared). Importantly that means only integers are
* allowed here.
*/
atr_data_rate_choice_t
atr_data_rate(atr_data_t *data, ccid_class_descr_t *class, uint32_t *rates,
uint_t nrates, uint32_t *dataratep)
{
uint_t nfeats = CCID_CLASS_F_AUTO_ICC_CLOCK | CCID_CLASS_F_AUTO_BAUD;
uint8_t di, fi;
uint_t dival, fival;
boolean_t autospeed, negotiable, exprates;
uint64_t maxval, defval;
if ((data->atr_flags & ATR_F_VALID) == 0)
return (ATR_RATE_UNSUPPORTED);
di = atr_di_index(data);
fi = atr_fi_index(data);
dival = atr_di_index_to_value(di);
fival = atr_fi_index_to_value(fi);
autospeed = (class->ccd_dwFeatures & nfeats) == nfeats;
exprates = class->ccd_bNumDataRatesSupported != 0;
negotiable = atr_params_negotiable(data);
/*
* We don't support cards with fixed rates at this time as it's not
* clear what that rate should be. If it's negotiable, we'll let them
* run at the default. Otherwise, we have to fail the request until
* we implement the logic to search their data rates.
*/
if (exprates) {
if (negotiable) {
return (ATR_RATE_USEDEFAULT);
}
return (ATR_RATE_UNSUPPORTED);
}
/*
* This indicates that the card gave us values that were reserved for
* future use. If we could negotiate it, then just stick with the
* default paramters. Otherwise, return that we can't support this ICC.
*/
if (dival == 0 || fival == 0) {
if (negotiable)
return (ATR_RATE_USEDEFAULT);
return (ATR_RATE_UNSUPPORTED);
}
/*
* Calculate the maximum and default values.
*/
maxval = class->ccd_dwMaximumClock * 1000;
maxval *= dival;
maxval /= fival;
defval = class->ccd_dwDefaultClock * 1000;
defval *= dival;
defval /= fival;
/*
* We're allowed any set of data rates between the default and the
* maximum. Check if the maximum data rate will work for either the
* default or maximum clock. If so, then we can use the cards rates.
*
* To account for the fact that we may have had a fractional value,
* we require a strict greater than comparison.
*/
if ((uint64_t)class->ccd_dwMaxDataRate > maxval ||
(uint64_t)class->ccd_dwMaxDataRate > defval) {
if (autospeed) {
return (ATR_RATE_USEATR);
}
}
/*
* If the CCID reader can't handle the ICC's proposed rates, then fall
* back to the defaults if we're allowed to negotiate. Otherwise, we're
* not able to use this ICC.
*/
if (negotiable) {
return (ATR_RATE_USEDEFAULT);
}
return (ATR_RATE_UNSUPPORTED);
}
void
atr_data_reset(atr_data_t *data)
{
bzero(data, sizeof (*data));
}
#ifdef _KERNEL
atr_data_t *
atr_data_alloc(void)
{
return (kmem_zalloc(sizeof (atr_data_t), KM_SLEEP));
}
void
atr_data_free(atr_data_t *data)
{
kmem_free(data, sizeof (atr_data_t));
}
/*
* Make sure that the response we got from the ICC is valid. It must pass
* checksum and have the PPSS value set correctly. The protocol must match
* what we requested; however, the PPS1-3 bits are a bit different. They may
* only be set in the response if we set them in the request. However, they
* do not have to be set in the response.
*/
boolean_t
atr_pps_valid(void *reqbuf, size_t reqlen, void *respbuf, size_t resplen)
{
uint8_t val, i, reqidx, respidx;
uint8_t *req = reqbuf, *resp = respbuf;
if (resplen > PPS_LEN_MAX || resplen < PPS_LEN_MIN)
return (B_FALSE);
/*
* Before we validate the data, make sure the checksum is valid.
*/
for (i = 0, val = 0; i < resplen; i++) {
val ^= resp[i];
}
/* Checksum failure */
if (val != 0) {
return (B_FALSE);
}
/*
* We should always have PPSS echoed back as we set it.
*/
if (resp[PPS_PPSS_INDEX] != PPS_PPSS_VAL) {
return (B_FALSE);
}
/*
* Go through and make sure the number of bytes present makes sense for
* the number of bits set in PPS1.
*/
val = PPS_LEN_MIN;
if (resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS1)
val++;
if (resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS2)
val++;
if (resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS3)
val++;
if (val != resplen)
return (B_FALSE);
/*
* Now we've finally verified that the response is syntactically valid.
* We must go through and make sure that it is semantically valid.
*/
if (PPS_PPS0_PROT(req[PPS_PPS0_INDEX]) !=
PPS_PPS0_PROT(resp[PPS_PPS0_INDEX])) {
return (B_FALSE);
}
/*
* When checking the PPS bit and extensions, we first check in the
* response as a bit in the request is allowed to not be in the
* response. But not the opposite way around. We also have to keep track
* of the fact that the index for values will vary.
*/
reqidx = respidx = PPS_PPS0_INDEX + 1;
if ((resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS1) != 0) {
if ((req[PPS_PPS0_INDEX] & PPS_PPS0_PPS1) == 0) {
return (B_FALSE);
}
if (req[reqidx] != resp[respidx]) {
return (B_FALSE);
}
reqidx++;
respidx++;
} else if ((req[PPS_PPS0_INDEX] & PPS_PPS0_PPS1) != 0) {
reqidx++;
}
if ((resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS2) != 0) {
if ((req[PPS_PPS0_INDEX] & PPS_PPS0_PPS2) == 0) {
return (B_FALSE);
}
if (req[reqidx] != resp[respidx]) {
return (B_FALSE);
}
reqidx++;
respidx++;
} else if ((req[PPS_PPS0_INDEX] & PPS_PPS0_PPS2) != 0) {
reqidx++;
}
if ((resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS3) != 0) {
/*
* At this time, we never specify PPS3 in a request. Therefore
* if it is present in the response, treat this as an invalid
* request.
*/
return (B_FALSE);
}
return (B_TRUE);
}
uint_t
atr_pps_generate(uint8_t *buf, size_t buflen, atr_protocol_t prot,
boolean_t pps1, uint8_t fi, uint8_t di, boolean_t pps2, uint8_t spu)
{
uint8_t protval, cksum, i;
uint_t len = 0;
if (buflen < PPS_BUFFER_MAX)
return (0);
buf[PPS_PPSS_INDEX] = PPS_PPSS_VAL;
switch (prot) {
case ATR_P_T0:
protval = 0;
break;
case ATR_P_T1:
protval = 1;
break;
default:
return (0);
}
buf[PPS_PPS0_INDEX] = PPS_PPS0_PROT(protval);
len = 2;
if (pps1) {
buf[PPS_PPS0_INDEX] |= PPS_PPS0_PPS1;
buf[len++] = PPS_PPS1_SETVAL(fi, di);
}
if (pps2) {
buf[PPS_PPS0_INDEX] |= PPS_PPS0_PPS2;
buf[len++] = spu;
}
/*
* The checksum must xor to zero.
*/
for (i = 0, cksum = 0; i < len; i++) {
cksum ^= buf[i];
}
buf[len++] = cksum;
return (len);
}
/*
* The caller of this wants to know if the Fi/Di values that they proposed were
* accepted. The caller must have already called atr_pps_valid(). At this point,
* we can say that the value was accepted if the PPS1 bit is set.
*/
boolean_t
atr_pps_fidi_accepted(void *respbuf, size_t len)
{
uint8_t *resp = respbuf;
return ((resp[PPS_PPS0_INDEX] & PPS_PPS0_PPS1) != 0);
}
#else /* !_KERNEL */
atr_data_t *
atr_data_alloc(void)
{
return (calloc(1, sizeof (atr_data_t)));
}
void
atr_data_free(atr_data_t *data)
{
if (data == NULL)
return;
free(data);
}
/*
* This table maps the bit values for Fi from 7816-3:2006 section 8.3 Table 9.
* The table is up to 6 bits wide. Entries not present are RFU. We use NULL as a
* sentinel to indicate that.
*/
static const char *atr_voltage_table[64] = {
NULL, /* 00 0000 */
"5V", /* 00 0001 */
"3V", /* 00 0010 */
"5V, 3V", /* 00 0011 */
"1.5V", /* 00 0100 */
NULL, /* 00 0101 */
"3V, 1.5V", /* 00 0110 */
"5V, 3V, 1.5V" /* 00 0111 */
};
static void
atr_data_dump_ta(atr_ti_t *atp, FILE *out, uint_t level)
{
uint8_t ta;
if (!(atp->atrti_flags & ATR_TI_HAVE_TA)) {
return;
}
ta = atp->atrti_ta;
(void) fprintf(out, " %c%c%c+-> TA%u 0x%02x",
atp->atrti_flags & ATR_TI_HAVE_TD ? '|' : ' ',
atp->atrti_flags & ATR_TI_HAVE_TC ? '|' : ' ',
atp->atrti_flags & ATR_TI_HAVE_TB ? '|' : ' ',
atp->atrti_ti_val, ta);
switch (atp->atrti_ti_val) {
case 1:
(void) fprintf(out, "; Fi: %s, F(max): %s MHz, Di: %s",
atr_fi_table[ATR_TA1_FTABLE(ta)],
atr_fmax_table[ATR_TA1_FTABLE(ta)],
atr_di_table[ATR_TA1_DITABLE(ta)]);
break;
case 2:
(void) fprintf(out, "; ICC in %s mode; %shonoring TA1; default "
"T=%u",
ATR_TA2_CANCHANGE(ta) ? "negotiable" : "specific",
ATR_TA2_HONORTA1(ta) ? "" : "not ",
ATR_TA2_PROTOCOL(ta));
break;
default:
switch (atp->atrti_protocol) {
case ATR_PROTOCOL_T1:
if (level != 0)
break;
if (ta == 0 || ta == 0xff) {
(void) fprintf(out, "; IFSC: RFU");
} else {
(void) fprintf(out, "; IFSC: %u", ta);
}
break;
case ATR_PROTOCOL_T15:
if (level != 0)
break;
(void) fprintf(out, "; Clock stop: %s, Supported "
"Voltage: %s",
atr_clock_table[ATR_T15_TA0_CLOCK(ta)],
atr_voltage_table[ATR_T15_TA0_VOLTAGE(ta)] != NULL ?
atr_voltage_table[ATR_T15_TA0_VOLTAGE(ta)] : "RFU");
break;
default:
break;
}
}
(void) fprintf(out, "\n");
}
static void
atr_data_dump_tb(atr_ti_t *atp, FILE *out, uint_t level)
{
uint8_t tb;
if (!(atp->atrti_flags & ATR_TI_HAVE_TB)) {
return;
}
tb = atp->atrti_tb;
(void) fprintf(out, " %c%c+--> TB%u 0x%02x",
atp->atrti_flags & ATR_TI_HAVE_TD ? '|' : ' ',
atp->atrti_flags & ATR_TI_HAVE_TC ? '|' : ' ',
atp->atrti_ti_val, tb);
switch (atp->atrti_ti_val) {
case 1:
case 2:
(void) fprintf(out, "; deprecated");
break;
default:
switch (atp->atrti_protocol) {
case ATR_PROTOCOL_T1:
if (level != 0)
break;
(void) fprintf(out, "; CWI: %u, BWI: %u\n",
ATR_T1_TB0_CWI(tb),
ATR_T1_TB0_BWI(tb));
break;
case ATR_PROTOCOL_T15:
if (level != 0)
break;
(void) fprintf(out, "; SPU: %s", tb == 0 ? "not used" :
ATR_T15_TB0_SPU_STANDARD(tb) ? "standard" :
"proprietary");
break;
default:
break;
}
}
(void) fprintf(out, "\n");
}
static void
atr_data_dump_tc(atr_ti_t *atp, FILE *out, uint_t level)
{
uint8_t tc;
if (!(atp->atrti_flags & ATR_TI_HAVE_TC)) {
return;
}
tc = atp->atrti_tc;
(void) fprintf(out, " %c+---> TC%u 0x%02x",
atp->atrti_flags & ATR_TI_HAVE_TD ? '|' : ' ',
atp->atrti_ti_val, tc);
switch (atp->atrti_ti_val) {
case 1:
(void) fprintf(out, "; Extra Guard Time Integer: %u", tc);
break;
case 2:
if (atp->atrti_protocol != ATR_PROTOCOL_T0) {
(void) fprintf(out, "; illegal value -- only valid for "
"T=0");
} else {
(void) fprintf(out, "; Waiting Time Integer: %u", tc);
}
break;
default:
switch (atp->atrti_protocol) {
case ATR_PROTOCOL_T1:
if (level != 0)
break;
(void) fprintf(out, "; Error Detection Code: %s",
ATR_T1_TC0_CRC(tc) ? "CRC" : "LRC");
break;
default:
break;
}
}
(void) fprintf(out, "\n");
}
void
atr_data_hexdump(const uint8_t *buf, size_t nbytes, FILE *out)
{
size_t i, j;
/* Print out the header */
(void) fprintf(out, "%*s 0", 4, "");
for (i = 1; i < 16; i++) {
if (i % 4 == 0 && i % 16 != 0) {
(void) fprintf(out, " ");
}
(void) fprintf(out, "%2x", i);
}
(void) fprintf(out, " 0123456789abcdef\n");
/* Print out data */
for (i = 0; i < nbytes; i++) {
if (i % 16 == 0) {
(void) fprintf(out, "%04x: ", i);
}
if (i % 4 == 0 && i % 16 != 0) {
(void) fprintf(out, " ");
}
(void) fprintf(out, "%02x", buf[i]);
if (i % 16 == 15 || i + 1 == nbytes) {
for (j = (i % 16) + 1; j < 16; j++) {
if (j % 4 == 0 && j % 16 != 0) {
(void) fprintf(out, " ");
}
(void) fprintf(out, " ");
}
(void) fprintf(out, " ");
for (j = i - (i % 16); j <= i; j++) {
(void) fprintf(out, "%c",
isprint(buf[j]) ? buf[j] : '.');
}
(void) printf("\n");
}
}
}
static void
atr_data_hexdump_historical(atr_data_t *data, FILE *out)
{
(void) fprintf(out, "Dumping raw historical bytes\n");
atr_data_hexdump(data->atr_historic, data->atr_nhistoric, out);
}
static void
atr_data_dump_historical(atr_data_t *data, FILE *out)
{
uint8_t cat;
(void) fprintf(out, "Historic Data: %u bytes", data->atr_nhistoric);
if (data->atr_nhistoric == 0) {
(void) fprintf(out, "\n");
return;
}
cat = data->atr_historic[0];
(void) fprintf(out, "; format (0x%02x) ", cat);
if (cat == ATR_HIST_CAT_MAND_STATUS) {
(void) fprintf(out, "card status, not shown");
} else if (cat == ATR_HIST_CAT_TLV_STATUS) {
(void) fprintf(out, "COMPACT-TLV, not shown");
} else if (cat >= ATR_HIST_CAT_RFU_MIN && cat <= ATR_HIST_CAT_RFU_MAX) {
(void) fprintf(out, "reserved\n");
atr_data_hexdump_historical(data, out);
return;
} else {
(void) fprintf(out, "proprietary\n");
atr_data_hexdump_historical(data, out);
return;
}
}
void
atr_data_dump(atr_data_t *data, FILE *out)
{
uint8_t i, level;
if ((data->atr_flags & ATR_F_VALID) == 0)
return;
(void) fprintf(out, "TS 0x%02u - ", data->atr_raw[0]);
if (data->atr_flags & ATR_F_USES_DIRECT) {
(void) fprintf(out, "direct convention\n");
} else {
(void) fprintf(out, "inverse convention\n");
}
level = 0;
for (i = 0; i < data->atr_nti; i++) {
atr_ti_t *atp = &data->atr_ti[i];
/*
* Various protocols may appear multiple times, indicating
* different sets of bits each time. When dealing with T0 and
* TD1, the protocol doesn't matter. Otherwise if we have the
* same value, we should increment this.
*/
if (i <= 2) {
level = 0;
} else if (atp->atrti_protocol ==
data->atr_ti[i - 1].atrti_protocol) {
level++;
} else {
level = 0;
}
if (i == 0) {
(void) fprintf(out, "T0 ");
} else {
(void) fprintf(out, "TD%u ", i);
}
(void) fprintf(out, "0x%02x\n",
data->atr_raw[atp->atrti_td_idx]);
(void) fprintf(out, " |+-> ");
if (i == 0) {
(void) fprintf(out, "%u historical bytes\n",
data->atr_nhistoric);
} else {
(void) fprintf(out, "protocol T=%u\n",
atp->atrti_protocol);
}
(void) fprintf(out, " v\n");
(void) fprintf(out, " 0r%u%u%u%u\n",
atp->atrti_flags & ATR_TI_HAVE_TD ? 1 : 0,
atp->atrti_flags & ATR_TI_HAVE_TC ? 1 : 0,
atp->atrti_flags & ATR_TI_HAVE_TB ? 1 : 0,
atp->atrti_flags & ATR_TI_HAVE_TA ? 1 : 0);
atr_data_dump_ta(atp, out, level);
atr_data_dump_tb(atp, out, level);
atr_data_dump_tc(atp, out, level);
if (atp->atrti_flags & ATR_TI_HAVE_TD) {
(void) fprintf(out, " v\n");
}
}
atr_data_dump_historical(data, out);
if (data->atr_flags & ATR_F_HAS_CHECKSUM) {
(void) fprintf(out, "TCK 0x%02x\n", data->atr_cksum);
} else {
(void) fprintf(out, "TCK ----; Checksum not present\n");
}
}
#endif /* _KERNEL */
|