summaryrefslogtreecommitdiff
path: root/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c
blob: 9f729ab1a6aa0a72063be402783b5cc05332588c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright 2019 Joyent, Inc.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/link.h>
#include <libproc.h>
#include <proc_service.h>
#include <rtld_db.h>
#include <synch.h>

#include <sys/lx_brand.h>

/*
 * Overview of this library derived from the original "BrandZ" PSARC design
 * document.
 *
 * Since Linux binaries are standard ELF objects, Illumos debug tools (i.e. mdb
 * or ptools) are able to process them in essentially the same way that Illumos
 * binaries are processed. The main objective is to retrieve symbols and
 * thereby aid debugging and observability. Unfortunately, most Linux
 * distributions strip(1) their binaries as a misguided "optimization" so the
 * majority of the useful debugging information is lost.
 *
 * The debug tools use interfaces provided by librtld_db to debug live
 * processes and core files. librtld_db discovers ELF objects which have been
 * mapped into the target's address space and reports these back to the tool.
 * The librtld_db library understands enough of the internals of the Illumos
 * runtime linker to iterate over the linker's private link maps and process
 * the objects it finds. librtld_db allows our tools to debug the Illumos
 * portions of a branded process (e.g. the brand library, libc, etc.) but they
 * can't understand any Linux objects that are mapped into the address space
 * because the Illumos linker only has Illumos objects on its link maps.
 *
 * In order to give the tools visibility into Linux binaries, a brand helper
 * framework is implemented in librtld_db. When librtld_db is asked to examine
 * a branded target process or core file, it uses the AT_SUN_BRANDNAME aux
 * vector to get our brand name (lx). It then dlopen-s this lx_librtld_db.so
 * helper library.
 *
 * Once loaded, this helper library is responsible for finding any lx-specific
 * information it needs, such as the Linux equivalent LDDATA aux entry and
 * preparing to return details about the objects loaded into the address space
 * by the Linux linker.
 *
 * When a debug tool asks to know what objects are loaded in the target,
 * librtld_db walks the Illumos link maps and iterates over each object it
 * finds there, handing information about each to the tool. It then calls down
 * into this helper library, which does the same for the brand-specific objects
 * used by the target.
 *
 * This debug-helper code contains a bunch of helpful ps_plog calls. To enable
 * this output with the ptools (e.g. pmap) set LIBPROC_DEBUG=1 in your
 * environment. To enable it with mdb set MDB_DEBUG=psvc in your environment.
 */

/*
 * ATTENTION:
 *	Librtl_db brand plugin libraries should NOT directly invoke any
 *	libproc.so interfaces or be linked against libproc.  If a librtl_db
 *	brand plugin library uses libproc.so interfaces then it may break
 *	any other librtld_db consumers (like mdb) that tries to attach
 *	to a branded process.  The only safe interfaces that the a librtld_db
 *	brand plugin library can use to access a target process are the
 *	proc_service(3PROC) apis.
 */

/*
 * M_DATA comes from some streams header file but is also redifined in
 * _rtld_db.h, so nuke the old streams definition here.
 */
#ifdef M_DATA
#undef M_DATA
#endif /* M_DATA */

/*
 * For 32-bit versions of this library, this file gets compiled once.
 * For 64-bit versions of this library, this file gets compiled twice,
 * once with _ELF64 defined and once without.  The expectation is that
 * the 64-bit version of the library can properly deal with both 32-bit
 * and 64-bit elf files, hence in the 64-bit library there are two copies
 * of all the interfaces in this file, one set named *32 and one named *64.
 *
 * This also means that we need to be careful when declaring local pointers
 * that point to objects in another processes address space, since these
 * pointers may not match the current processes pointer width.  Basically,
 * we should avoid using data types that change size between 32 and 64 bit
 * modes like: long, void *, uintptr_t, caddr_t, psaddr_t, size_t, etc.
 * Instead we should declare all pointers as uint32_t.  Then when we
 * are compiled to deal with 64-bit targets we'll re-define uint32_t
 * to be a uint64_t.
 */
#ifdef _LP64
#ifdef _ELF64
#define	lx_ldb_get_dyns32		lx_ldb_get_dyns64
#define	lx_ldb_init32			lx_ldb_init64
#define	lx_ldb_fini32			lx_ldb_fini64
#define	lx_ldb_loadobj_iter32		lx_ldb_loadobj_iter64
#define	lx_ldb_getauxval32		lx_ldb_getauxval64
#define	lx_elf_props32			lx_elf_props64
#define	_rd_get_dyns32			_rd_get_dyns64
#define	_rd_get_ehdr32			_rd_get_ehdr64
#define	uint32_t			uint64_t
#define	Elf32_Dyn			Elf64_Dyn
#define	Elf32_Ehdr			Elf64_Ehdr
#define	Elf32_Phdr			Elf64_Phdr
#define	Elf32_Sym			Elf64_Sym
#endif /* _ELF64 */
#endif /* _LP64 */

/* Included from usr/src/cmd/sgs/librtld_db/common */
#include <_rtld_db.h>

typedef struct lx_rd {
	rd_agent_t		*lr_rap;
	struct ps_prochandle	*lr_php;	/* proc handle pointer */
	uint32_t		lr_rdebug;	/* address of lx r_debug */
	uint32_t		lr_exec;	/* base address of executable */
} lx_rd_t;

typedef struct lx_link_map {
	uint32_t lxm_addr;	/* Base address shared object is loaded at.  */
	uint32_t lxm_name;	/* Absolute file name object was found in.  */
	uint32_t lxm_ld;	/* Dynamic section of the shared object.  */
	uint32_t lxm_next;	/* Chain of loaded objects.  */
} lx_link_map_t;

typedef struct lx_r_debug {
	int r_version;		/* Version number for this protocol.  */
	uint32_t	r_map;	/* Head of the chain of loaded objects. */

	/*
	 * This is the address of a function internal to the run-time linker,
	 * that will always be called when the linker begins to map in a
	 * library or unmap it, and again when the mapping change is complete.
	 * The debugger can set a breakpoint at this address if it wants to
	 * notice shared object mapping changes.
	 */
	uint32_t	r_brk;
	r_state_e	r_state; /* defined the same way between lx/solaris */
	uint32_t	r_ldbase; /* Base address the linker is loaded at. */
} lx_r_debug_t;

static uint32_t
lx_ldb_getauxval32(struct ps_prochandle *php, int type)
{
	const auxv_t		*auxvp = NULL;

	if (ps_pauxv(php, &auxvp) != PS_OK)
		return ((uint32_t)-1);

	while (auxvp->a_type != AT_NULL) {
		if (auxvp->a_type == type)
			return ((uint32_t)(uintptr_t)auxvp->a_un.a_ptr);
		auxvp++;
	}
	return ((uint32_t)-1);
}

/*
 * A key difference between the linux linker and ours' is that the linux
 * linker adds the base address of segments to certain values in the
 * segments' ELF header. As an example, look at the address of the
 * DT_HASH hash table in a Solaris section - it is a relative address
 * which locates the start of the hash table, relative to the beginning
 * of the ELF file. However, when the linux linker loads a section, it
 * modifies the in-memory ELF image by changing address of the hash
 * table to be an absolute address. This is only done for libraries - not for
 * executables.
 *
 * Solaris tools expect the relative address to remain relative, so
 * here we will modify the in-memory ELF image so that it once again
 * contains relative addresses.
 *
 * To accomplish this, we walk through all sections in the target.
 * Linux sections are identified by pointing to the linux linker or libc in the
 * DT_NEEDED section. For all matching sections, we subtract the segment
 * base address to get back to relative addresses.
 */
static rd_err_e
lx_ldb_get_dyns32(rd_helper_data_t rhd,
    psaddr_t addr, void **dynpp, size_t *dynpp_sz)
{
	lx_rd_t			*lx_rd = (lx_rd_t *)rhd;
	rd_agent_t		*rap = lx_rd->lr_rap;
	Elf32_Ehdr		ehdr;
	Elf32_Dyn		*dynp = NULL;
	size_t			dynp_sz;
	uint_t			ndyns;
	int			i;

	ps_plog("lx_ldb_get_dyns: invoked for object at 0x%p", addr);

	/* Read in a copy of the ehdr */
	if (_rd_get_ehdr32(rap, addr, &ehdr, NULL) != RD_OK) {
		ps_plog("lx_ldb_get_dyns: _rd_get_ehdr() failed");
		return (RD_ERR);
	}

	/* read out the PT_DYNAMIC elements for this object */
	if (_rd_get_dyns32(rap, addr, &dynp, &dynp_sz) != RD_OK) {
		ps_plog("lx_ldb_get_dyns: _rd_get_dyns() failed");
		return (RD_ERR);
	}

	/*
	 * From here on out if we encounter an error we'll just return
	 * success and pass back the unmolested dynamic elements that
	 * we've already obtained.
	 */
	if (dynpp != NULL)
		*dynpp = dynp;
	if (dynpp_sz != NULL)
		*dynpp_sz = dynp_sz;
	ndyns = dynp_sz / sizeof (Elf32_Dyn);

	/* If this isn't a dynamic object, there's nothing left todo */
	if (ehdr.e_type != ET_DYN) {
		ps_plog("lx_ldb_get_dyns: done: not a shared object");
		return (RD_OK);
	}

	/*
	 * Before we blindly start changing dynamic section addresses
	 * we need to figure out if the current object that we're looking
	 * at is a linux object or a solaris object.  To do this first
	 * we need to find the string tab dynamic section element.
	 */
	for (i = 0; i < ndyns; i++) {
		if (dynp[i].d_tag == DT_STRTAB)
			break;
	}
	if (i == ndyns) {
		ps_plog("lx_ldb_get_dyns: "
		    "failed to find string tab in the dynamic section");
		return (RD_OK);
	}

	/*
	 * Check if the strtab value looks like an offset or an address.
	 * It's an offset if the value is less then the base address that
	 * the object is loaded at, or if the value is less than the offset
	 * of the section headers in the same elf object.  This check isn't
	 * perfect, but in practice it's good enough.
	 */
	if ((dynp[i].d_un.d_ptr < addr) ||
	    (dynp[i].d_un.d_ptr < ehdr.e_shoff)) {
		ps_plog("lx_ldb_get_dyns: "
		    "doesn't appear to be an lx object");
		return (RD_OK);
	}

	/*
	 * This seems to be a a linux object, so we'll patch up the dynamic
	 * section addresses
	 */
	ps_plog("lx_ldb_get_dyns: "
	    "patching up lx object dynamic section addresses");
	for (i = 0; i < ndyns; i++) {
		switch (dynp[i].d_tag) {
		case DT_PLTGOT:
		case DT_HASH:
		case DT_STRTAB:
		case DT_SYMTAB:
		case DT_RELA:
		case DT_REL:
		case DT_DEBUG:
		case DT_JMPREL:
		case DT_VERSYM:
			if (dynp[i].d_un.d_val > addr) {
				dynp[i].d_un.d_ptr -= addr;
			}
			break;
		default:
			break;
		}
	}
	return (RD_OK);
}

static void
lx_ldb_fini32(rd_helper_data_t rhd)
{
	lx_rd_t *lx_rd = (lx_rd_t *)rhd;
	ps_plog("lx_ldb_fini: cleaning up lx helper");
	free(lx_rd);
}

/*
 * The linux linker has an r_debug structure somewhere in its data section that
 * contains the address of the head of the link map list. To find this, we will
 * use the DT_DEBUG token in the executable's dynamic section. The linux linker
 * wrote the address of its r_debug structure to the DT_DEBUG dynamic entry. We
 * get the address of the executable's program headers from the
 * AT_SUN_BRAND_LX_PHDR aux vector entry. From there, we calculate the
 * address of the Elf header, and from there we can easily get to the DT_DEBUG
 * entry.
 */
static rd_helper_data_t
lx_ldb_init32(rd_agent_t *rap, struct ps_prochandle *php)
{
	lx_rd_t		*lx_rd;
	uint32_t	addr, phdr_addr, dyn_addr;
	uint32_t	symtab, strtab, offs;
	uint32_t	vaddr, memsz;
	caddr_t		mem;
	Elf32_Dyn	*dyn;
	Elf32_Phdr	phdr, *ph, *dph, *phdrs;
	Elf32_Ehdr	ehdr;
	Elf32_Sym	*sym;
	int		i, dyn_count;

	lx_rd = calloc(sizeof (lx_rd_t), 1);
	if (lx_rd == NULL) {
		ps_plog("lx_ldb_init: cannot allocate memory");
		return (NULL);
	}
	lx_rd->lr_rap = rap;
	lx_rd->lr_php = php;

	phdr_addr = lx_ldb_getauxval32(php, AT_SUN_BRAND_LX_PHDR);
	if (phdr_addr == (uint32_t)-1) {
		ps_plog("lx_ldb_init: no LX_PHDR found in aux vector");
		return (NULL);
	}
	ps_plog("lx_ldb_init: found LX_PHDR auxv phdr at: 0x%p",
	    phdr_addr);

	if (ps_pread(php, phdr_addr, &phdr, sizeof (phdr)) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read phdr at 0x%p",
		    phdr_addr);
		free(lx_rd);
		return (NULL);
	}

	/* The ELF header should be before the program header in memory */
	lx_rd->lr_exec = addr = phdr_addr - phdr.p_offset;
	if (ps_pread(php, addr, &ehdr, sizeof (ehdr)) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read ehdr at 0x%p",
		    lx_rd->lr_exec);
		free(lx_rd);
		return (NULL);
	}
	ps_plog("lx_ldb_init: read ehdr at: 0x%p", addr);
	ps_plog("lx_ldb_init: ehdr t %d ent 0x%p poff 0x%p psize %d pnum %d",
	    ehdr.e_type, ehdr.e_entry, ehdr.e_phoff, ehdr.e_phentsize,
	    ehdr.e_phnum);

	if ((phdrs = malloc(ehdr.e_phnum * ehdr.e_phentsize)) == NULL) {
		ps_plog("lx_ldb_init: couldn't alloc phdrs memory");
		free(lx_rd);
		return (NULL);
	}

	if (ps_pread(php, phdr_addr, phdrs, ehdr.e_phnum * ehdr.e_phentsize) !=
	    PS_OK) {
		ps_plog("lx_ldb_init: couldn't read phdrs at 0x%p",
		    phdr_addr);
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}

	/* program headers */
	ps_plog("lx_ldb_init: read %d phdrs at: 0x%p",
	    ehdr.e_phnum, phdr_addr);

	for (i = 0, ph = phdrs; i < ehdr.e_phnum; i++,
	    /*LINTED */
	    ph = (Elf32_Phdr *)((char *)ph + ehdr.e_phentsize)) {
		ps_plog("lx_ldb_init: ph[%d] 0x%p type %d", i,
		    (phdr_addr + ((char *)ph - (char *)phdrs)), ph->p_type);
		if (ph->p_type == PT_DYNAMIC)
			break;
	}
	if (i == ehdr.e_phnum) {
		ps_plog("lx_ldb_init: no PT_DYNAMIC in executable");
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}
	ps_plog("lx_ldb_init: found PT_DYNAMIC phdr[%d] at: 0x%p",
	    i, (phdr_addr + ((char *)ph - (char *)phdrs)));
	ps_plog("lx_ldb_init: ph t 0x%x f 0x%x o 0x%p v 0x%p s %d",
	    ph->p_type, ph->p_flags, ph->p_offset, ph->p_vaddr, ph->p_filesz);

	if ((dyn = malloc(ph->p_filesz)) == NULL) {
		ps_plog("lx_ldb_init: couldn't alloc for PT_DYNAMIC");
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}

	/*
	 * Unclear why the dyn_addr works sometimes with one value and
	 * sometimes for the other, so we handle both cases.
	 */

	dyn_count = ph->p_filesz / sizeof (Elf32_Dyn);
	ps_plog("lx_ldb_init: dyn_count %d %d", dyn_count, sizeof (Elf32_Dyn));
	dyn_addr = addr + ph->p_vaddr;
	ps_plog("lx_ldb_init: dyn_addr 0x%p 0x%x = 0x%p",
	    addr, ph->p_offset, dyn_addr);
	if (ps_pread(php, dyn_addr, dyn, ph->p_filesz) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read dynamic at 0x%p, "
		    "trying dyn_addr 0x%p",
		    dyn_addr, ph->p_vaddr);

		dyn_addr = ph->p_vaddr;
		if (ps_pread(php, dyn_addr, dyn, ph->p_filesz) != PS_OK) {
			ps_plog("lx_ldb_init: couldn't read dynamic at 0x%p",
			    dyn_addr);

			free(lx_rd);
			free(phdrs);
			free(dyn);
			return (NULL);
		}
	}
	ps_plog("lx_ldb_init: read %d dynamic headers at: 0x%p",
	    dyn_count, dyn_addr);

	for (i = 0; i < dyn_count; i++) {
		if (dyn[i].d_tag == DT_DEBUG) {
			lx_rd->lr_rdebug = dyn[i].d_un.d_ptr;
			break;
		}
	}
	free(phdrs);
	free(dyn);

	if (lx_rd->lr_rdebug != 0) {
		ps_plog("lx_ldb_init: found DT_DEBUG: 0x%p", lx_rd->lr_rdebug);
		return ((rd_helper_data_t)lx_rd);
	}

	ps_plog("lx_ldb_init: no DT_DEBUG found in exe; looking for r_debug");

	/*
	 * If we didn't find DT_DEBUG, we're going to employ the same fallback
	 * as gdb:  pawing through the dynamic linker's symbol table looking
	 * for the r_debug symbol.
	 */
	addr = lx_ldb_getauxval32(php, AT_SUN_BRAND_LX_INTERP);

	if (addr == (uint32_t)-1) {
		ps_plog("lx_ldb_init: no interpreter; failing");
		free(lx_rd);
		return (NULL);
	}

	ps_plog("lx_ldb_init: reading interp ehdr at 0x%p", addr);

	if (ps_pread(php, addr, &ehdr, sizeof (ehdr)) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read interp ehdr at 0x%p", addr);
		free(lx_rd);
		return (NULL);
	}

	if (ehdr.e_type != ET_DYN) {
		ps_plog("lx_ldb_init: interp ehdr not of type ET_DYN");
		free(lx_rd);
		return (NULL);
	}

	phdr_addr = addr + ehdr.e_phoff;

	if ((phdrs = malloc(ehdr.e_phnum * ehdr.e_phentsize)) == NULL) {
		ps_plog("lx_ldb_init: couldn't alloc interp phdrs memory");
		free(lx_rd);
		return (NULL);
	}

	if (ps_pread(php, phdr_addr, phdrs,
	    ehdr.e_phnum * ehdr.e_phentsize) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read interp phdrs at 0x%p",
		    phdr_addr);
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}

	ps_plog("lx_ldb_init: read %d interp phdrs at: 0x%p",
	    ehdr.e_phnum, phdr_addr);

	vaddr = (uint32_t)-1;
	memsz = 0;

	for (i = 0, ph = phdrs, dph = NULL; i < ehdr.e_phnum; i++,
	    /*LINTED */
	    ph = (Elf32_Phdr *)((char *)ph + ehdr.e_phentsize)) {
		/*
		 * Keep track of our lowest PT_LOAD address, as this segment
		 * contains the DT_SYMTAB and DT_STRTAB.
		 */
		if (ph->p_type == PT_LOAD && ph->p_vaddr < vaddr) {
			vaddr = ph->p_vaddr;
			memsz = ph->p_memsz;
		}

		if (ph->p_type == PT_DYNAMIC)
			dph = ph;
	}

	if (vaddr == (uint32_t)-1 || memsz == 0) {
		ps_plog("lx_ldb_init: no PT_LOAD section in interp");
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}

	ps_plog("lx_ldb_init: found interp PT_LOAD to be %d bytes at 0x%p",
	    memsz, vaddr);

	if ((ph = dph) == NULL) {
		ps_plog("lx_ldb_init: no PT_DYNAMIC in interp");
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}

	ps_plog("lx_ldb_init: found interp PT_DYNAMIC phdr[%d] at: 0x%p",
	    i, (phdr_addr + ((char *)ph - (char *)phdrs)));

	if ((dyn = malloc(ph->p_filesz)) == NULL) {
		ps_plog("lx_ldb_init: couldn't alloc for interp PT_DYNAMIC");
		free(lx_rd);
		free(phdrs);
		return (NULL);
	}

	dyn_addr = addr + ph->p_offset;
	dyn_count = ph->p_filesz / sizeof (Elf32_Dyn);

	if (ps_pread(php, dyn_addr, dyn, ph->p_filesz) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read interp dynamic at 0x%p",
		    dyn_addr);
		free(lx_rd);
		free(phdrs);
		free(dyn);
		return (NULL);
	}

	free(phdrs);

	ps_plog("lx_ldb_init: read %d interp dynamic headers at: 0x%p",
	    dyn_count, dyn_addr);

	/*
	 * As noted in lx_ldb_get_dyns32(), in Linux, the PT_DYNAMIC table
	 * is adjusted to represent absolute addresses instead of offsets.
	 * This is not true for the interpreter, however -- where the values
	 * will be represented as offsets from the lowest PT_LOAD p_vaddr.
	 */
	symtab = strtab = (uint32_t)-1;

	for (i = 0; i < dyn_count; i++) {
		if (dyn[i].d_tag == DT_STRTAB)
			strtab = dyn[i].d_un.d_ptr - vaddr;

		if (dyn[i].d_tag == DT_SYMTAB)
			symtab = dyn[i].d_un.d_ptr - vaddr;
	}

	free(dyn);

	if (strtab == (uint32_t)-1 || strtab > memsz) {
		ps_plog("lx_ldb_init: didn't find valid interp strtab");
		free(lx_rd);
		return (NULL);
	}

	if (symtab == (uint32_t)-1 || symtab > memsz) {
		ps_plog("lx_ldb_init: didn't find valid interp symtab");
		free(lx_rd);
		return (NULL);
	}

	ps_plog("lx_ldb_init: strtab is 0x%p, symtab is 0x%p",
	    addr + strtab, addr + symtab);

	if ((mem = malloc(memsz)) == NULL) {
		ps_plog("lx_ldb_init: couldn't allocate interp "
		    "buffer of 0x%p bytes", memsz);
		free(lx_rd);
		return (NULL);
	}

	if (ps_pread(php, addr, mem, memsz) != PS_OK) {
		ps_plog("lx_ldb_init: couldn't read interp at 0x%p", addr);
		free(lx_rd);
		free(mem);
		return (NULL);
	}

	/*
	 * We make an assumption that is made elsewhere in the Linux linker:
	 * that the DT_SYMTAB immediately precedes the DT_STRTAB.
	 */
	for (offs = symtab; offs < strtab; offs += sizeof (Elf32_Sym)) {
		uint32_t p;

		sym = (Elf32_Sym *)&mem[offs];

		if (sym->st_name > memsz) {
			ps_plog("lx_ldb_init: invalid st_name at sym 0x%p",
			    addr + offs);
			continue;
		}

		p = sym->st_name;

		if (strtab + p > memsz) {
			ps_plog("lx_ldb_init: invalid symbol address 0x%p, "
			    "memsz 0x%p", strtab + p, memsz);
			continue;
		}

		if (mem[strtab + p] == '\0')
			continue;

		/* Sometimes we're pointing into the middle of a symbol? */
		while ((strtab + p) > 0 && (strtab + p) < memsz &&
		    mem[strtab + p] != '\0')
			p--;
		p++;

		ps_plog("lx_ldb_init: interp symbol (0x%p) %s",
		    strtab + p, &mem[strtab + p]);

		if (strcmp(&mem[strtab + p], "_r_debug") == 0)
			break;
	}

	if (offs >= strtab) {
		ps_plog("lx_ldb_init: no _r_debug found in interpreter");
		free(mem);
		free(lx_rd);
		return (NULL);
	}

	lx_rd->lr_rdebug = (sym->st_value - vaddr) + addr;
	ps_plog("lx_ldb_init: found _r_debug at 0x%p", lx_rd->lr_rdebug);
	free(mem);

	return ((rd_helper_data_t)lx_rd);
}

/*
 * Given the address of an ELF object in the target, return its size and
 * the proper link map ID.
 */
static size_t
lx_elf_props32(struct ps_prochandle *php, uint32_t addr, psaddr_t *data_addr)
{
	Elf32_Ehdr	ehdr;
	Elf32_Phdr	*phdrs, *ph;
	int		i;
	uint32_t	min = (uint32_t)-1;
	uint32_t	max = 0;
	size_t		sz = 0;

	if (ps_pread(php, addr, &ehdr, sizeof (ehdr)) != PS_OK) {
		ps_plog("lx_elf_props: Couldn't read ELF header at 0x%p",
		    addr);
		return (0);
	}

	if ((phdrs = malloc(ehdr.e_phnum * ehdr.e_phentsize)) == NULL)
		return (0);

	if (ps_pread(php, addr + ehdr.e_phoff, phdrs, ehdr.e_phnum *
	    ehdr.e_phentsize) != PS_OK) {
		ps_plog("lx_elf_props: Couldn't read program headers at 0x%p",
		    addr + ehdr.e_phoff);
		return (0);
	}

	for (i = 0, ph = phdrs; i < ehdr.e_phnum; i++,
	    /*LINTED */
	    ph = (Elf32_Phdr *)((char *)ph + ehdr.e_phentsize)) {

		if (ph->p_type != PT_LOAD)
			continue;

		if ((ph->p_flags & (PF_W | PF_R)) == (PF_W | PF_R)) {
			*data_addr = ph->p_vaddr;
			if (ehdr.e_type == ET_DYN)
				*data_addr += addr;
			if (*data_addr & (ph->p_align - 1))
				*data_addr = *data_addr & (~(ph->p_align -1));
		}

		if (ph->p_vaddr < min)
			min = ph->p_vaddr;

		if (ph->p_vaddr > max) {
			max = ph->p_vaddr;
			sz = ph->p_memsz + max - min;
			if (sz & (ph->p_align - 1))
				sz = (sz & (~(ph->p_align - 1))) + ph->p_align;
		}
	}

	free(phdrs);
	return (sz);
}

static int
lx_ldb_loadobj_iter32(rd_helper_data_t rhd, rl_iter_f *cb, void *client_data)
{
	lx_rd_t			*lx_rd = (lx_rd_t *)rhd;
	struct ps_prochandle	*php = lx_rd->lr_php;
	lx_r_debug_t		r_debug;
	lx_link_map_t		map;
	uint32_t		p = (uint32_t)(uintptr_t)NULL;
	int			rc;
	rd_loadobj_t		exec;

	if ((rc = ps_pread(php, (psaddr_t)lx_rd->lr_rdebug, &r_debug,
	    sizeof (r_debug))) != PS_OK) {
		ps_plog("lx_ldb_loadobj_iter: "
		    "Couldn't read linux r_debug at 0x%p", lx_rd->lr_rdebug);
		return (rc);
	}

	p = r_debug.r_map;

	/*
	 * The first item on the link map list is for the executable, but it
	 * doesn't give us any useful information about it. We need to
	 * synthesize a rd_loadobj_t for the client.
	 *
	 * Linux doesn't give us the executable name, so we'll get it from
	 * the AT_EXECNAME entry instead.
	 */
	if ((rc = ps_pread(php, (psaddr_t)p, &map, sizeof (map))) != PS_OK) {
		ps_plog("lx_ldb_loadobj_iter: "
		    "Couldn't read linux link map at 0x%p", p);
		return (rc);
	}

	bzero(&exec, sizeof (exec));
	exec.rl_base = lx_rd->lr_exec;
	exec.rl_dynamic = map.lxm_ld;
	exec.rl_nameaddr = lx_ldb_getauxval32(php, AT_SUN_EXECNAME);
	exec.rl_lmident = LM_ID_BASE;

	exec.rl_bend = exec.rl_base +
	    lx_elf_props32(php, lx_rd->lr_exec, &exec.rl_data_base);

	if ((*cb)(&exec, client_data) == 0) {
		ps_plog("lx_ldb_loadobj_iter: "
		    "client callb failed for executable");
		return (PS_ERR);
	}
	ps_plog("lx_ldb_loadobj_iter: exec base 0x%p dyn 0x%p",
	    exec.rl_base, exec.rl_dynamic);

	for (p = map.lxm_next; p != (uint32_t)(uintptr_t)NULL;
	    p = map.lxm_next) {
		rd_loadobj_t	obj;

		if ((rc = ps_pread(php, (psaddr_t)p, &map, sizeof (map))) !=
		    PS_OK) {
			ps_plog("lx_ldb_loadobj_iter: "
			    "Couldn't read lk map at %p", p);
			return (rc);
		}

		/*
		 * The linux link map has less information than the Solaris one.
		 * We need to go fetch the missing information from the ELF
		 * headers.
		 */

		obj.rl_nameaddr = (psaddr_t)map.lxm_name;
		obj.rl_base = map.lxm_addr;
		obj.rl_refnameaddr = (psaddr_t)map.lxm_name;
		obj.rl_plt_base = (psaddr_t)NULL;
		obj.rl_plt_size = 0;
		obj.rl_lmident = LM_ID_BASE;

		ps_plog("lx_ldb_loadobj_iter: map base 0x%p 0x%p",
		    obj.rl_base, obj.rl_nameaddr);

		/*
		 * Ugh - we have to walk the ELF stuff, find the PT_LOAD
		 * sections, and calculate the end of the file's mappings
		 * ourselves.
		 */

		obj.rl_bend = map.lxm_addr +
		    lx_elf_props32(php, map.lxm_addr, &obj.rl_data_base);
		obj.rl_padstart = obj.rl_base;
		obj.rl_padend = obj.rl_bend;
		obj.rl_dynamic = map.lxm_ld;
		obj.rl_tlsmodid = 0;

		ps_plog("lx_ldb_loadobj_iter: 0x%p to 0x%p",
		    obj.rl_base, obj.rl_bend);

		if ((*cb)(&obj, client_data) == 0) {
			ps_plog("lx_ldb_loadobj_iter: "
			    "Client callback failed on %s", map.lxm_name);
			return (rc);
		}
	}
	return (RD_OK);
}

/*
 * Librtld_db plugin linkage struct.
 *
 * When we get loaded by librtld_db, it will look for the symbol below
 * to find our plugin entry points.
 */
rd_helper_ops_t RTLD_DB_BRAND_OPS = {
	LM_ID_BRAND,
	lx_ldb_init32,
	lx_ldb_fini32,
	lx_ldb_loadobj_iter32,
	lx_ldb_get_dyns32
};