1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
.\"
.\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for
.\" permission to reproduce portions of its copyrighted documentation.
.\" Original documentation from The Open Group can be obtained online at
.\" http://www.opengroup.org/bookstore/.
.\"
.\" The Institute of Electrical and Electronics Engineers and The Open
.\" Group, have given us permission to reprint portions of their
.\" documentation.
.\"
.\" In the following statement, the phrase ``this text'' refers to portions
.\" of the system documentation.
.\"
.\" Portions of this text are reprinted and reproduced in electronic form
.\" in the SunOS Reference Manual, from IEEE Std 1003.1, 2004 Edition,
.\" Standard for Information Technology -- Portable Operating System
.\" Interface (POSIX), The Open Group Base Specifications Issue 6,
.\" Copyright (C) 2001-2004 by the Institute of Electrical and Electronics
.\" Engineers, Inc and The Open Group. In the event of any discrepancy
.\" between these versions and the original IEEE and The Open Group
.\" Standard, the original IEEE and The Open Group Standard is the referee
.\" document. The original Standard can be obtained online at
.\" http://www.opengroup.org/unix/online.html.
.\"
.\" This notice shall appear on any product containing this material.
.\"
.\" The contents of this file are subject to the terms of the
.\" Common Development and Distribution License (the "License").
.\" You may not use this file except in compliance with the License.
.\"
.\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
.\" or http://www.opensolaris.org/os/licensing.
.\" See the License for the specific language governing permissions
.\" and limitations under the License.
.\"
.\" When distributing Covered Code, include this CDDL HEADER in each
.\" file and include the License file at usr/src/OPENSOLARIS.LICENSE.
.\" If applicable, add the following below this CDDL HEADER, with the
.\" fields enclosed by brackets "[]" replaced with your own identifying
.\" information: Portions Copyright [yyyy] [name of copyright owner]
.\"
.\"
.\" Copyright 1989 AT&T.
.\" Copyright (c) 2004, Sun Microsystems, Inc. All Rights Reserved.
.\"
.TH MATH.H 3HEAD "Aug 11, 2004"
.SH NAME
math.h, math \- mathematical declarations
.SH SYNOPSIS
.LP
.nf
\fB#include <math.h>\fR
.fi
.SH DESCRIPTION
.sp
.LP
The <\fBmath.h\fR> header includes definitions for the following types:
.sp
.ne 2
.na
\fB\fBfloat_t\fR\fR
.ad
.RS 12n
A real-floating type at least as wide as \fBfloat\fR.
.RE
.sp
.ne 2
.na
\fB\fBdouble_t\fR\fR
.ad
.RS 12n
A real-floating type at least as wide as \fBdouble\fR, and at least as wide as
\fBfloat_t\fR.
.RE
.sp
.LP
If \fBFLT_EVAL_METHOD\fR equals 0, \fBfloat_t\fR and \fBdouble_t\fR are
\fBfloat\fR and \fBdouble\fR, respectively. If \fBFLT_EVAL_METHOD\fR equals 1,
they are both \fBdouble\fR. If \fBFLT_EVAL_METHOD\fR equals 2, they are both be
\fBlong double\fR. Other values of \fBFLT_EVAL_METHOD\fR are
implementation-defined.
.sp
.LP
The <\fBmath.h\fR> header provides the following constants. The values are of
type \fBdouble\fR and are accurate within the precision of the \fBdouble\fR
type.
.sp
.ne 2
.na
\fB\fBM_E\fR\fR
.ad
.RS 14n
The base of natural logarithms (\fIe\fR).
.RE
.sp
.ne 2
.na
\fB\fBM_LOG2E\fR\fR
.ad
.RS 14n
The base-2 logarithm of \fIe\fR.
.RE
.sp
.ne 2
.na
\fB\fBM_LOG10E\fR\fR
.ad
.RS 14n
The base-10 logarithm of \fIe\fR.
.RE
.sp
.ne 2
.na
\fB\fBM_LN2\fR\fR
.ad
.RS 14n
The natural logarithm of 2.
.RE
.sp
.ne 2
.na
\fB\fBM_LN10\fR\fR
.ad
.RS 14n
The natural logarithm of 10.
.RE
.sp
.ne 2
.na
\fB\fBM_PI\fR\fR
.ad
.RS 14n
\c
.if n pi\c
.if t \(*p
\c
, the ratio of the circumference of a circle to its diameter.
.RE
.sp
.ne 2
.na
\fB\fBM_PI_2\fR\fR
.ad
.RS 14n
\c
.if n pi\c
.if t \(*p
\c
/2.
.RE
.sp
.ne 2
.na
\fB\fBM_PI_4\fR\fR
.ad
.RS 14n
\c
.if n pi\c
.if t \(*p
\c
/4.
.RE
.sp
.ne 2
.na
\fB\fBM_1_PI\fR\fR
.ad
.RS 14n
1/\c
.if n pi\c
.if t \(*p
\c
.
.RE
.sp
.ne 2
.na
\fB\fBM_2_PI\fR\fR
.ad
.RS 14n
2/\c
.if n pi\c
.if t \(*p
\c
.
.RE
.sp
.ne 2
.na
\fB\fBM_2_SQRTPI\fR\fR
.ad
.RS 14n
2 over the square root of \c
.if n pi\c
.if t \(*p
\c
.
.RE
.sp
.ne 2
.na
\fB\fBM_SQRT2\fR\fR
.ad
.RS 14n
The positive square root of 2.
.RE
.sp
.ne 2
.na
\fB\fBM_SQRT1_2\fR\fR
.ad
.RS 14n
The positive square root of 1/2.
.RE
.sp
.LP
The <\fBmath.h\fR> header defines the following symbolic constants:
.sp
.ne 2
.na
\fB\fBMAXFLOAT\fR\fR
.ad
.RS 13n
The maximum value of a non-infinite single-precision floating point number.
.RE
.sp
.ne 2
.na
\fB\fBHUGE_VAL\fR\fR
.ad
.RS 13n
A positive \fBdouble\fR expression, not necessarily representable as a float.
Used as an error value returned by the mathematics library. \fBHUGE_VAL\fR
evaluates to +infinity on systems supporting IEEE Std 754-1985.
.RE
.sp
.ne 2
.na
\fB\fBHUGE_VALF\fR\fR
.ad
.RS 13n
A positive \fBfloat\fR constant expression. Used as an error value returned by
the mathematics library. \fBHUGE_VALF\fR evaluates to +infinity on systems
supporting IEEE Std 754-1985.
.RE
.sp
.ne 2
.na
\fB\fBHUGE_VALL\fR\fR
.ad
.RS 13n
A positive \fBlong double\fR constant expression. Used as an error value
returned by the mathematics library. \fBHUGE_VALL\fR evaluates to +infinity on
systems supporting IEEE Std 754-1985.
.RE
.sp
.ne 2
.na
\fB\fBINFINITY\fR\fR
.ad
.RS 13n
A constant expression of type \fBfloat\fR representing positive or unsigned
infinity, if available; else a positive constant of type \fBfloat\fR that
overflows at translation time.
.RE
.sp
.ne 2
.na
\fB\fBNAN\fR\fR
.ad
.RS 13n
A constant expression of type float representing a quiet NaN. This symbolic
constant is only defined if the implementation supports quiet NaNs for the
\fBfloat\fR type.
.RE
.sp
.LP
The following macros are defined for number classification. They represent the
mutually-exclusive kinds of floating-point values. They expand to integer
constant expressions with distinct values
.sp
.in +2
.nf
FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO
.fi
.in -2
.sp
.LP
The following optional macros indicate whether the \fBfma()\fR family of
functions are fast compared with direct code:
.sp
.in +2
.nf
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL
.fi
.in -2
.sp
.LP
The \fBFP_FAST_FMA\fR macro is defined to indicate that the \fBfma()\fR
function generally executes about as fast as, or faster than, a multiply and an
add of \fBdouble\fR operands. The other macros have the equivalent meaning for
the \fBfloat\fR and \fBlong double\fR versions.
.sp
.LP
The following macros expand to integer constant expressions whose values are
returned by \fBilogb\fR(\fIx\fR) if \fIx\fR is zero or NaN, respectively. The
value of \fBFP_ILOGB0\fR is either {\fBINT_MIN\fR} or -{\fBINT_MAX\fR}. The
value of \fBFP_ILOGBNAN\fR is either {\fBINT_MAX\fR} or {\fBINT_MIN\fR}.
.sp
.in +2
.nf
FP_ILOGB0
FP_ILOGBNAN
.fi
.in -2
.sp
.LP
The following macros expand to the integer constants 1 and 2, respectively:
.sp
.in +2
.nf
MATH_ERRNO
MATH_ERREXCEPT
.fi
.in -2
.sp
.LP
The following macro expands to an expression that has type \fBint\fR and the
value \fBMATH_ERREXCEPT\fR:
.sp
.in +2
.nf
math_errhandling
.fi
.in -2
.sp
.LP
The value of the macro \fBmath_errhandling\fR is constant for the duration of
the program. If a macro definition is suppressed or a program defines an
identifier with the name \fBmath_errhandling\fR, the behavior is undefined.
.sp
.LP
The <\fBmath.h\fR> header defines he following external variable:
.sp
.in +2
.nf
extern int signgam;
.fi
.in -2
.sp
.LP
The <\fBmath.h\fR> header defines the structure and constants used by the
\fBmatherr\fR(3M) error-handling mechanisms.
.SH ATTRIBUTES
.sp
.LP
See \fBattributes\fR(5) for descriptions of the following attributes:
.sp
.sp
.TS
box;
c | c
l | l .
ATTRIBUTE TYPE ATTRIBUTE VALUE
_
Interface Stability Standard
.TE
.SH SEE ALSO
.sp
.LP
\fBIntro\fR(3), \fBfenv.h\fR(3HEAD), \fBlibm\fR(3LIB), \fBlimits.h\fR(3HEAD),
\fBmatherr\fR(3M), \fBattributes\fR(5), \fBstandards\fR(5)
|