summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/disp/cpucaps.c
blob: 46f53faab6872b2e9cca8c5a4d8df33fdfb1d8ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <sys/disp.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/atomic.h>
#include <sys/cpucaps_impl.h>
#include <sys/dtrace.h>
#include <sys/sdt.h>
#include <sys/debug.h>
#include <sys/rctl.h>
#include <sys/errno.h>

/*
 * CPU Caps implementation
 * =======================
 *
 * A CPU cap can be set on any project or any zone. Zone CPU cap limits the CPU
 * usage for all projects running inside the zone. If the zone CPU cap is set
 * below the project CPU cap, the latter will have no effect.
 *
 * When CPU usage of projects and/or zones reaches specified caps, threads in
 * them do not get scheduled and instead are placed on wait queues associated
 * with a cap. Such threads will start running again only when CPU usage drops
 * below the cap level. Each zone and each project has its own wait queue.
 *
 * When CPU cap is set, the kernel continously keeps track of CPU time used by
 * capped zones and/or projects over a short time interval and calculates their
 * current CPU usage as a percentage. When the accumulated usage reaches the CPU
 * cap, LWPs running in the user-land (when they are not holding any critical
 * kernel locks) are placed on special wait queues until their project's or
 * zone's CPU usage drops below the cap.
 *
 * The system maintains a list of all capped projects and all capped zones. On
 * every clock tick every active thread belonging to a capped project adds its
 * CPU usage to its project. Usage from all projects belonging to a capped zone
 * is aggregated to get the zone usage.
 *
 * When the current CPU usage is above the cap, a project or zone is considered
 * over-capped. Every user thread caught running in an over-capped project or
 * zone is marked by setting TS_PROJWAITQ flag in thread's t_schedflag field and
 * is requested to surrender its CPU. This causes scheduling class specific
 * CL_PREEMPT() callback to be invoked. The callback function places threads
 * marked as TS_PROJWAIT on a wait queue and calls switch().
 *
 * Threads are only placed on wait queues after trapping from user-land
 * (they could be holding some user locks, but no kernel locks) and while
 * returning from the trap back to the user-land when no kernel locks are held.
 * Putting threads on wait queues in random places while running in the
 * kernel might lead to all kinds of locking problems.
 *
 * Accounting
 * ==========
 *
 * Accounting of CPU usage is based on per-thread micro-state accounting data.
 * On every clock tick clock() adds new on-CPU time for every thread found on
 * CPU. Scheduling classes also add new on-CPU time for any thread leaving CPU.
 * New times means time since it was last accounted for. On-CPU times greater
 * than 1 tick are truncated to 1 tick.
 *
 * Project CPU usage is aggregated from all threads within the project.
 * Zone CPU usage is the sum of usages for all projects within the zone. Zone
 * CPU usage is calculated on every clock tick by walking list of projects and
 * adding their usage together.
 *
 * Decay
 * =====
 *
 * CPU usage is decayed by the caps_update() routine which is called once per
 * every clock tick. It walks lists of project caps and decays their usages by
 * one per cent. If CPU usage drops below cap levels, threads on the wait queue
 * are made runnable again, one thread per clock tick.
 *
 * Interfaces
 * ==========
 *
 * The CPU Caps facility provides the following interfaces to the rest of the
 * system:
 *
 *   cpucaps_project_add(kproject_t *)
 *
 * Notifies the framework of a new project. It should be put on the
 * capped_projects list if its zone has a cap.
 *
 *   cpucaps_project_remove(kproject_t *)
 *
 * Remove the association between the specified project and its cap.
 * Called right before the project is destroyed.
 *
 * cpucaps_project_set(kproject_t *, rctl_qty_t)
 *
 * Set project cap of the specified project to the specified value. Setting the
 * value to NOCAP is equivalent to removing the cap.
 *
 *   cpucaps_zone_set(zone_t *, rctl_qty_t)
 *
 * Set zone cap of the specified zone to the specified value. Setting the value
 * to NOCAP is equivalent to removing the cap.
 *
 *   cpucaps_zone_remove(zone_t *)
 *
 * Remove the association between the zone and its cap.
 *
 *   cpucaps_charge(kthread_id_t, caps_sc_t *, cpucaps_charge_t)
 *
 * Charges specified thread's project the amount of on-CPU time that it used.
 * If the third argument is CPUCAPS_CHARGE_ONLY returns False.
 * Otherwise returns True if project or zone should be penalized because its
 * project or zone is exceeding its cap. Also sets TS_PROJWAITQ or TS_ZONEWAITQ
 * bits in t_schedflag in this case.
 *
 *   CPUCAPS_ENFORCE(kthread_id_t *)
 *
 * Enforces CPU caps for a specified thread. Places LWPs running in LWP_USER
 * state on project or zone wait queues, as requested by TS_PROJWAITQ or
 * TS_ZONEWAITQ bits in t_schedflag. Returns True if the thread was placed on a
 * wait queue or False otherwise.
 *
 *   cpucaps_sc_init(caps_sc_t *)
 *
 * Initializes the scheduling-class specific CPU Caps data for a thread.
 *
 * LOCKS
 * =====
 *
 * all the individual caps structures and their lists are protected by a global
 * caps_lock mutex. The lock is grabbed either by clock() or by events modifying
 * caps, so it is usually uncontended. We avoid all blocking memory allocations
 * while holding caps_lock to prevent clock() from blocking.
 *
 * Thread state is protected by the thread lock. It protects the association
 * between a thread and its project and, as a consequence, to its zone. The
 * association can not break while thread lock is held, so the project or zone
 * cap are not going to disappear while thread lock is held.
 *
 * Cap usage field is protected by high-pil spin-lock cap_usagelock. It is
 * grabbed by scheduling classes already holding thread lock at high PIL and by
 * clock thread performing usage decay. We should do as little work as possible
 * while holding the lock since it may be very hot. All threads in the project
 * contend for the same cache line doing cap usage updates.
 */

/*
 * caps_lock protects list of capped projects and zones, changes in the cap
 * state and changes of the global cpucaps_enabled flag.
 *
 * Changing zone caps also sets cpucaps_busy to avoid races when a zone cap is
 * modified in parallel. This can be per-zone cap flag, but we don't keep any
 * cap state for now.
 */
static kmutex_t caps_lock;		/* lock to protect: */
static list_t capped_zones;		/* - list of zones with caps */
static list_t capped_projects;		/* - list of projects with caps */
boolean_t cpucaps_enabled;		/* - are there any caps defined? */
boolean_t cpucaps_busy;			/* - is framework busy? */

/*
 * The accounting is based on the number of nanoseconds threads spend running
 * during a tick which is kept in the cap_tick_cost variable.
 */
static hrtime_t cap_tick_cost;

/*
 * How much of the usage value is decayed every clock tick
 * Decay one per cent of value per tick
 */
#define	CAP_DECAY_FACTOR 100

/*
 * Scale the value and round it to the closest integer value
 */
#define	ROUND_SCALE(x, y) (((x) + (y) / 2) / (y))

static void caps_update();

/*
 * CAP kstats.
 */
struct cap_kstat {
	kstat_named_t	cap_value;
	kstat_named_t	cap_usage;
	kstat_named_t	cap_nwait;
	kstat_named_t	cap_below;
	kstat_named_t	cap_above;
	kstat_named_t	cap_maxusage;
	kstat_named_t	cap_zonename;
} cap_kstat = {
	{ "value",	KSTAT_DATA_UINT64 },
	{ "usage",	KSTAT_DATA_UINT64 },
	{ "nwait",	KSTAT_DATA_UINT64 },
	{ "below_sec",	KSTAT_DATA_UINT64 },
	{ "above_sec",	KSTAT_DATA_UINT64 },
	{ "maxusage",	KSTAT_DATA_UINT64 },
	{ "zonename",	KSTAT_DATA_STRING },
};


static kmutex_t cap_kstat_lock;
static int cap_kstat_update(kstat_t *, int);

/*
 * Initialize CPU caps infrastructure.
 *   - Initialize lists of capped zones and capped projects
 *   - Set cpucaps_clock_callout to NULL
 */
void
cpucaps_init()
{
	/*
	 * Initialize global variables
	 */
	cap_tick_cost = TICK_TO_NSEC((hrtime_t)1);

	list_create(&capped_zones, sizeof (cpucap_t),
	    offsetof(cpucap_t, cap_link));
	list_create(&capped_projects, sizeof (cpucap_t),
	    offsetof(cpucap_t, cap_link));

	cpucaps_enabled = B_FALSE;
	cpucaps_busy = B_FALSE;
	cpucaps_clock_callout = NULL;
}

/*
 * Initialize scheduling-class specific CPU Caps data.
 */
void
cpucaps_sc_init(caps_sc_t *csc)
{
	csc->csc_cputime = 0;
}

/*
 * Allocate and initialize cpucap structure
 */
static cpucap_t *
cap_alloc(void)
{
	cpucap_t *cap = kmem_zalloc(sizeof (cpucap_t), KM_SLEEP);

	DISP_LOCK_INIT(&cap->cap_usagelock);
	waitq_init(&cap->cap_waitq);

	return (cap);
}

/*
 * Free cpucap structure
 */
static void
cap_free(cpucap_t *cap)
{
	if (cap == NULL)
		return;

	/*
	 * This cap should not be active
	 */
	ASSERT(!list_link_active(&cap->cap_link));
	ASSERT(cap->cap_value == 0);
	ASSERT(!DISP_LOCK_HELD(&cap->cap_usagelock));

	waitq_fini(&cap->cap_waitq);
	DISP_LOCK_DESTROY(&cap->cap_usagelock);

	kmem_free(cap, sizeof (cpucap_t));
}

/*
 * Activate cap - insert into active list and unblock its
 * wait queue. Should be called with caps_lock held.
 * The cap_value field is set to the value supplied.
 */
static void
cap_enable(list_t *l, cpucap_t *cap, hrtime_t value)
{
	ASSERT(MUTEX_HELD(&caps_lock));

	/*
	 * Cap can not be already enabled
	 */
	ASSERT(!CAP_ENABLED(cap));
	ASSERT(!list_link_active(&cap->cap_link));

	list_insert_tail(l, cap);
	cap->cap_below = cap->cap_above = 0;
	cap->cap_maxusage = 0;
	cap->cap_usage = 0;
	cap->cap_value = value;
	waitq_unblock(&cap->cap_waitq);
	if (CPUCAPS_OFF()) {
		cpucaps_enabled = B_TRUE;
		cpucaps_clock_callout = caps_update;
	}
}

/*
 * Deactivate cap
 *   - Block its wait queue. This prevents any new threads from being
 *	enqueued there and moves all enqueued threads to the run queue.
 *   - Remove cap from list l.
 *   - Disable CPU caps globally if there are no capped projects or zones
 *
 * Should be called with caps_lock held.
 */
static void
cap_disable(list_t *l, cpucap_t *cap)
{
	ASSERT(MUTEX_HELD(&caps_lock));
	/*
	 * Cap should be currently active
	 */
	ASSERT(CPUCAPS_ON());
	ASSERT(list_link_active(&cap->cap_link));
	ASSERT(CAP_ENABLED(cap));

	waitq_block(&cap->cap_waitq);
	list_remove(l, cap);
	if (list_is_empty(&capped_projects) && list_is_empty(&capped_zones)) {
		cpucaps_enabled = B_FALSE;
		cpucaps_clock_callout = NULL;
	}
	cap->cap_value = 0;
	cap->cap_project = NULL;
	cap->cap_zone = NULL;
	if (cap->cap_kstat != NULL) {
		kstat_delete(cap->cap_kstat);
		cap->cap_kstat = NULL;
	}

}

/*
 * Enable cap for a project kpj
 * It is safe to enable already enabled project cap.
 * Should be called with caps_lock held.
 */
static void
cap_project_enable(kproject_t *kpj, hrtime_t value)
{
	cpucap_t *cap = kpj->kpj_cpucap;

	ASSERT(MUTEX_HELD(&caps_lock));
	ASSERT(cap != NULL);

	if (CAP_DISABLED(cap)) {
		ASSERT(cap->cap_kstat == NULL);
		cap_enable(&capped_projects, cap, value);
		cap->cap_project = kpj;
		cap->cap_zone = kpj->kpj_zone;

		/*
		 * Create cap kstats
		 */
		if ((cap->cap_kstat = rctl_kstat_create_project(kpj, "cpucaps",
		    KSTAT_TYPE_NAMED,
		    sizeof (cap_kstat) / sizeof (kstat_named_t),
		    KSTAT_FLAG_VIRTUAL)) != NULL) {
			cap->cap_kstat->ks_data_size +=
			    strlen(cap->cap_zone->zone_name) + 1;
			cap->cap_kstat->ks_lock = &cap_kstat_lock;
			cap->cap_kstat->ks_data = &cap_kstat;
			cap->cap_kstat->ks_update = cap_kstat_update;
			cap->cap_kstat->ks_private = cap;
			kstat_install(cap->cap_kstat);
		}
	}
}

/*
 * Disable project cap.
 * It is safe to disable already disabled project cap.
 * Should be called with caps_lock held.
 */
static void
cap_project_disable(kproject_t *kpj)
{
	cpucap_t *cap = kpj->kpj_cpucap;

	ASSERT(MUTEX_HELD(&caps_lock));
	ASSERT(cap != NULL);
	ASSERT(cap->cap_project == kpj);

	if (CAP_ENABLED(cap))
		cap_disable(&capped_projects, cap);
}

/*
 * Enable cap for a zone
 * It is safe to enable already enabled zone cap.
 * Should be called with caps_lock held.
 */
static void
cap_zone_enable(zone_t *zone, hrtime_t value)
{
	cpucap_t *cap = zone->zone_cpucap;

	ASSERT(MUTEX_HELD(&caps_lock));
	ASSERT(cap != NULL);

	if (CAP_DISABLED(cap)) {
		ASSERT(cap->cap_kstat == NULL);
		cap_enable(&capped_zones, cap, value);
		cap->cap_zone = zone;

		/*
		 * Create cap kstats
		 */
		if ((cap->cap_kstat = rctl_kstat_create_zone(zone, "cpucaps",
		    KSTAT_TYPE_NAMED,
		    sizeof (cap_kstat) / sizeof (kstat_named_t),
		    KSTAT_FLAG_VIRTUAL)) != NULL) {
			cap->cap_kstat->ks_data_size +=
			    strlen(cap->cap_zone->zone_name) + 1;
			cap->cap_kstat->ks_lock = &cap_kstat_lock;
			cap->cap_kstat->ks_data = &cap_kstat;
			cap->cap_kstat->ks_update = cap_kstat_update;
			cap->cap_kstat->ks_private = cap;
			kstat_install(cap->cap_kstat);
		}
	}
}

/*
 * Disable zone cap.
 * It is safe to disable already disabled zone cap.
 * Should be called with caps_lock held.
 */
static void
cap_zone_disable(zone_t *zone)
{
	cpucap_t *cap = zone->zone_cpucap;

	ASSERT(MUTEX_HELD(&caps_lock));
	ASSERT(cap != NULL);
	ASSERT(cap->cap_zone == zone);

	if (CAP_ENABLED(cap))
		cap_disable(&capped_zones, cap);
}

/*
 * Apply specified callback to all caps contained in the list `l'.
 */
static void
cap_walk(list_t *l, void (*cb)(cpucap_t *, int64_t))
{
	static uint64_t cpucap_walk_gen;
	cpucap_t *cap;

	ASSERT(MUTEX_HELD(&caps_lock));

	for (cap = list_head(l); cap != NULL; cap = list_next(l, cap)) {
		(*cb)(cap, cpucap_walk_gen);
	}

	atomic_inc_64(&cpucap_walk_gen);
}

/*
 * If cap limit is not reached, make one thread from wait queue runnable.
 * The waitq_isempty check is performed without the waitq lock. If a new thread
 * is placed on the waitq right after the check, it will be picked up during the
 * next invocation of cap_poke_waitq().
 */
/* ARGSUSED */
static void
cap_poke_waitq(cpucap_t *cap, int64_t gen)
{
	ASSERT(MUTEX_HELD(&caps_lock));

	if (cap->cap_usage >= cap->cap_value) {
		cap->cap_above++;
	} else {
		waitq_t *wq = &cap->cap_waitq;

		cap->cap_below++;

		if (!waitq_isempty(wq))
			waitq_runone(wq);
	}
}

/*
 * The callback function called for every cap on capped_projects list.
 * Decay cap usage by CAP_DECAY_FACTOR
 * Add this cap project usage to its zone usage.
 * Kick off a thread from the cap waitq if cap is not reached.
 */
static void
cap_project_usage_walker(cpucap_t *cap, int64_t gen)
{
	zone_t		*zone = cap->cap_zone;
	hrtime_t	cap_usage = cap->cap_usage;

	ASSERT(MUTEX_HELD(&caps_lock));
	ASSERT(cap->cap_project->kpj_cpucap == cap);
	ASSERT(zone == cap->cap_project->kpj_zone);
	ASSERT(CAP_ENABLED(cap));

	/*
	 * Set or clear the CAP_REACHED flag based on the current usage.
	 * Only projects having their own caps are ever marked as CAP_REACHED.
	 */
	cap_poke_waitq(cap, 0);

	/*
	 * Add project's CPU usage to our zone's CPU usage.
	 */
	if (ZONE_IS_CAPPED(zone)) {
		cpucap_t *zcap = zone->zone_cpucap;

		ASSERT(zcap->cap_zone == zone);

		/*
		 * If we haven't reset this zone's usage during this clock tick
		 * yet, then do it now. The cap_gen field is used to check
		 * whether this is the first zone's project we see during this
		 * tick or a subsequent one.
		 */
		if (zcap->cap_gen != gen) {
			if (zcap->cap_usage > zcap->cap_maxusage)
				zcap->cap_maxusage = zcap->cap_usage;
			zcap->cap_usage = 0;
			zcap->cap_gen = gen;
		}
		DTRACE_PROBE2(cpucaps__zusage, cpucap_t *, zcap,
		    hrtime_t, cap_usage);
		zcap->cap_usage += cap_usage;
		/* Check for overflows */
		if (zcap->cap_usage < 0)
			zcap->cap_usage = MAX_USAGE - 1;
	}

	/*
	 * Decay project usage.
	 */
	disp_lock_enter(&cap->cap_usagelock);
	cap->cap_usage -= ROUND_SCALE(cap_usage, CAP_DECAY_FACTOR);
	disp_lock_exit(&cap->cap_usagelock);
}

/*
 * On every clock tick walk the list of project caps and update the CPU usage.
 * Also walk the list of zone caps checking whether any threads should
 * transition from wait queue to run queue.
 *
 * This function gets called by the clock thread directly when there are any
 * defined caps. The only lock that it grabs is caps_lock. Nothing else grabs
 * caps_lock for long periods of time, so there should be almost no contention
 * for it.
 */
static void
caps_update()
{
	mutex_enter(&caps_lock);
	cap_walk(&capped_projects, cap_project_usage_walker);
	cap_walk(&capped_zones, cap_poke_waitq);
	mutex_exit(&caps_lock);
}

/*
 * The function is called for each project in a zone when the zone cap is
 * modified. It enables project caps if zone cap is enabled and disables if the
 * zone cap is disabled and project doesn't have its own cap.
 *
 * For each project that does not have cpucap structure allocated it allocates a
 * new structure and assigns to kpj->cpu_cap. The allocation is performed
 * without holding caps_lock to avoid using KM_SLEEP allocation with caps_lock
 * held.
 */
static int
cap_project_zone_modify_walker(kproject_t *kpj, void *arg)
{
	cpucap_t *project_cap = NULL;
	cpucap_t *zone_cap = (cpucap_t *)arg;

	ASSERT(zone_cap != NULL);

	if (kpj->kpj_cpucap == NULL) {
		/*
		 * This is the first time any cap was established for this
		 * project. Allocate a new cpucap structure for it.
		 */
		project_cap = cap_alloc();
	}

	mutex_enter(&caps_lock);

	/*
	 * Double-check that kpj_cpucap is still NULL - now with caps_lock held
	 * and assign the newly allocated cpucap structure to it.
	 */
	if (kpj->kpj_cpucap == NULL) {
		kpj->kpj_cpucap = project_cap;
	} else if (project_cap != NULL) {
		cap_free(project_cap);
	}

	project_cap = kpj->kpj_cpucap;

	if (CAP_DISABLED(zone_cap)) {
		/*
		 * Remove all projects in this zone without caps
		 * from the capped_projects list.
		 */
		if (project_cap->cap_value == MAX_USAGE) {
			cap_project_disable(kpj);
		}
	} else if (CAP_DISABLED(project_cap)) {
		/*
		 * Add the project to capped_projects list.
		 */
		ASSERT(project_cap->cap_value == 0);
		cap_project_enable(kpj, MAX_USAGE);
	}
	mutex_exit(&caps_lock);

	return (0);
}

/*
 * Set zone cap to cap_val
 * If cap_val is equal to NOCAP, disable zone cap.
 *
 * If this is the first time a cap is set on a zone, allocate cpucap structure
 * without holding caps_lock to avoid KM_SLEEP allocation with caps_lock held.
 */
int
cpucaps_zone_set(zone_t *zone, rctl_qty_t cap_val)
{
	cpucap_t *cap = NULL;
	hrtime_t value;

	if (cap_val == 0)
		return (EINVAL);

	ASSERT(cap_val <= MAXCAP);
	if (cap_val > MAXCAP)
		cap_val = MAXCAP;

	/*
	 * Nothing to do if trying to disable a cap on a zone when caps are off
	 * or a zone which does not have a cap yet.
	 */
	if ((CPUCAPS_OFF() || !ZONE_IS_CAPPED(zone)) && (cap_val == NOCAP))
		return (0);

	if (zone->zone_cpucap == NULL)
		cap = cap_alloc();

	mutex_enter(&caps_lock);

	if (cpucaps_busy) {
		mutex_exit(&caps_lock);
		return (EBUSY);
	}

	/*
	 * Double-check whether zone->zone_cpucap is NULL, now with caps_lock
	 * held. If it is still NULL, assign a newly allocated cpucap to it.
	 */
	if (zone->zone_cpucap == NULL) {
		zone->zone_cpucap = cap;
	} else if (cap != NULL) {
		cap_free(cap);
	}

	cap = zone->zone_cpucap;
	value = cap_val * cap_tick_cost;
	if (value < 0)
		value = MAX_USAGE;

	/* Nothing to do if the value is staying the same */
	if (value == cap->cap_value) {
		mutex_exit(&caps_lock);
		return (0);
	}

	/*
	 * Clear cap statistics since the cap value itself changes.
	 */
	cap->cap_above = cap->cap_below = 0;


	if (cap_val == NOCAP) {
		if (CAP_ENABLED(cap)) {
			/*
			 * Remove cap for the zone
			 */
			cap_zone_disable(zone);
			cpucaps_busy = B_TRUE;
			mutex_exit(&caps_lock);
			/*
			 * Disable caps for all project belonging to this zone
			 * unless they have their own cap.
			 */
			(void) project_walk_all(zone->zone_id,
			    cap_project_zone_modify_walker, cap);

			mutex_enter(&caps_lock);
			cpucaps_busy = B_FALSE;
		}
	} else if (CAP_DISABLED(cap)) {
		/*
		 * Set a cap on a zone which previously was not capped.
		 */
		cap_zone_enable(zone, value);
		cpucaps_busy = B_TRUE;
		mutex_exit(&caps_lock);

		/*
		 * Enable cap for all projects belonging to this zone.
		 */
		(void) project_walk_all(zone->zone_id,
		    cap_project_zone_modify_walker, cap);

		mutex_enter(&caps_lock);
		cpucaps_busy = B_FALSE;
	} else {
		/*
		 * No state transitions, just change the value
		 */
		cap->cap_value = value;
	}

	ASSERT(MUTEX_HELD(&caps_lock));
	ASSERT(!cpucaps_busy);
	mutex_exit(&caps_lock);

	return (0);
}

/*
 * The project is going away so disable its cap.
 */
void
cpucaps_project_remove(kproject_t *kpj)
{
	mutex_enter(&caps_lock);
	if (PROJECT_IS_CAPPED(kpj))
		cap_project_disable(kpj);
	if (kpj->kpj_cpucap != NULL) {
		cap_free(kpj->kpj_cpucap);
		kpj->kpj_cpucap = NULL;
	}
	mutex_exit(&caps_lock);
}

/*
 * The zone is going away, so disable its cap.
 */
void
cpucaps_zone_remove(zone_t *zone)
{
	mutex_enter(&caps_lock);
	while (ZONE_IS_CAPPED(zone)) {
		mutex_exit(&caps_lock);
		(void) cpucaps_zone_set(zone, NOCAP);
		mutex_enter(&caps_lock);
	}
	if (zone->zone_cpucap != NULL) {
		cap_free(zone->zone_cpucap);
		zone->zone_cpucap = NULL;
	}
	mutex_exit(&caps_lock);
}

/*
 * New project was created. It should be put on the capped_projects list if
 * its zone has a cap.
 */
void
cpucaps_project_add(kproject_t *kpj)
{
	cpucap_t *cap = NULL;

	if (CPUCAPS_OFF() || !ZONE_IS_CAPPED(kpj->kpj_zone))
		return;

	/*
	 * This project was never capped before, so allocate its cap structure.
	 */
	if (kpj->kpj_cpucap == NULL)
		cap = cap_alloc();

	mutex_enter(&caps_lock);
	/*
	 * Double-check with caps_lock held
	 */
	if (kpj->kpj_cpucap == NULL) {
		kpj->kpj_cpucap = cap;
	} else if (cap != NULL) {
		cap_free(cap);
	}

	if (ZONE_IS_CAPPED(kpj->kpj_zone))
		cap_project_enable(kpj, MAX_USAGE);

	mutex_exit(&caps_lock);
}

/*
 * Set project cap to cap_val
 * If cap_val is equal to NOCAP, disable project cap.
 *
 * If this is the first time a cap is set on a project, allocate cpucap
 * structure without holding caps_lock to avoid KM_SLEEP allocation with
 * caps_lock held.
 */
int
cpucaps_project_set(kproject_t *kpj, rctl_qty_t cap_val)
{
	cpucap_t *cap = NULL;
	hrtime_t value;

	if (cap_val == 0)
		return (EINVAL);

	ASSERT(cap_val <= MAXCAP);
	if (cap_val > MAXCAP)
		cap_val = MAXCAP;

	/*
	 * Nothing to do if trying to disable project cap and caps are not
	 * enabled or if trying to disable cap on a project that does not have
	 * cap enabled.
	 */
	if ((cap_val == NOCAP) && (CPUCAPS_OFF() || !PROJECT_IS_CAPPED(kpj)))
		return (0);

	if (kpj->kpj_cpucap == NULL) {
		/*
		 * This project was never capped before, so allocate its cap
		 * structure.
		 */
		cap = cap_alloc();
	}

	mutex_enter(&caps_lock);

	/*
	 * Double-check with caps_lock held.
	 */
	if (kpj->kpj_cpucap == NULL) {
		kpj->kpj_cpucap = cap;
	} else if (cap != NULL) {
		cap_free(cap);
	}

	/*
	 * Get the actual pointer to the project cap.
	 */
	cap = kpj->kpj_cpucap;
	value = cap_val * cap_tick_cost;
	if (value < 0)
		value = MAX_USAGE;

	/*
	 * Nothing to do if the value is not changing
	 */
	if (value == cap->cap_value) {
		mutex_exit(&caps_lock);
		return (0);
	}

	/*
	 * Clear cap statistics since the cap value itself changes.
	 */
	cap->cap_above = cap->cap_below = 0;
	cap->cap_maxusage = 0;

	if (cap_val != NOCAP) {
		/*
		 * Enable this cap if it is not already enabled.
		 */
		if (CAP_DISABLED(cap))
			cap_project_enable(kpj, value);
		else
			cap->cap_value = value;
	} else if (CAP_ENABLED(cap)) {
		/*
		 * User requested to drop a cap on the project. If it is part of
		 * capped zone, keep the cap and set the value to MAX_USAGE,
		 * otherwise disable the cap.
		 */
		if (ZONE_IS_CAPPED(kpj->kpj_zone)) {
			cap->cap_value = MAX_USAGE;
		} else {
			cap_project_disable(kpj);
		}
	}
	mutex_exit(&caps_lock);

	return (0);
}

/*
 * Get cap usage.
 */
static rctl_qty_t
cap_get(cpucap_t *cap)
{
	return (cap != NULL ? (rctl_qty_t)(cap->cap_usage / cap_tick_cost) : 0);
}

/*
 * Get current project usage.
 */
rctl_qty_t
cpucaps_project_get(kproject_t *kpj)
{
	return (cap_get(kpj->kpj_cpucap));
}

/*
 * Get current zone usage.
 */
rctl_qty_t
cpucaps_zone_get(zone_t *zone)
{
	return (cap_get(zone->zone_cpucap));
}

/*
 * Charge project of thread t the time thread t spent on CPU since previously
 * adjusted.
 *
 * Record the current on-CPU time in the csc structure.
 *
 * Do not adjust for more than one tick worth of time.
 *
 * It is possible that the project cap is being disabled while this routine is
 * executed. This should not cause any issues since the association between the
 * thread and its project is protected by thread lock.
 */
static void
caps_charge_adjust(kthread_id_t t, caps_sc_t *csc)
{
	kproject_t	*kpj = ttoproj(t);
	hrtime_t	new_usage;
	hrtime_t	usage_delta;

	ASSERT(THREAD_LOCK_HELD(t));
	ASSERT(kpj->kpj_cpucap != NULL);

	/* Get on-CPU time since birth of a thread */
	new_usage = mstate_thread_onproc_time(t);

	/* Time spent on CPU since last checked */
	usage_delta = new_usage - csc->csc_cputime;

	/* Save the accumulated on-CPU time */
	csc->csc_cputime = new_usage;

	/* Charge at most one tick worth of on-CPU time */
	if (usage_delta > cap_tick_cost)
		usage_delta = cap_tick_cost;

	/* Add usage_delta to the project usage value. */
	if (usage_delta > 0) {
		cpucap_t *cap = kpj->kpj_cpucap;

		DTRACE_PROBE2(cpucaps__project__charge,
		    kthread_id_t, t, hrtime_t, usage_delta);

		disp_lock_enter_high(&cap->cap_usagelock);
		cap->cap_usage += usage_delta;

		/* Check for overflows */
		if (cap->cap_usage < 0)
			cap->cap_usage = MAX_USAGE - 1;

		disp_lock_exit_high(&cap->cap_usagelock);

		/*
		 * cap_maxusage is only kept for observability. Move it outside
		 * the lock to reduce the time spent while holding the lock.
		 */
		if (cap->cap_usage > cap->cap_maxusage)
			cap->cap_maxusage = cap->cap_usage;
	}
}

/*
 * Charge thread's project and return True if project or zone should be
 * penalized because its project or zone is exceeding its cap. Also sets
 * TS_PROJWAITQ or TS_ZONEWAITQ in this case.
 *
 * It is possible that the project cap is being disabled while this routine is
 * executed. This should not cause any issues since the association between the
 * thread and its project is protected by thread lock. It will still set
 * TS_PROJECTWAITQ/TS_ZONEWAITQ in this case but cpucaps_enforce will not place
 * anything on the blocked wait queue.
 *
 */
boolean_t
cpucaps_charge(kthread_id_t t, caps_sc_t *csc, cpucaps_charge_t charge_type)
{
	kproject_t	*kpj = ttoproj(t);
	klwp_t		*lwp = t->t_lwp;
	zone_t		*zone;
	cpucap_t	*project_cap;
	boolean_t	rc = B_FALSE;

	ASSERT(THREAD_LOCK_HELD(t));

	/* Nothing to do for projects that are not capped. */
	if (lwp == NULL || !PROJECT_IS_CAPPED(kpj))
		return (B_FALSE);

	caps_charge_adjust(t, csc);

	/*
	 * The caller only requested to charge the project usage, no enforcement
	 * part.
	 */
	if (charge_type == CPUCAPS_CHARGE_ONLY)
		return (B_FALSE);

	project_cap = kpj->kpj_cpucap;

	if (project_cap->cap_usage >= project_cap->cap_value) {
		t->t_schedflag |= TS_PROJWAITQ;
		rc = B_TRUE;
	} else if (t->t_schedflag & TS_PROJWAITQ) {
		t->t_schedflag &= ~TS_PROJWAITQ;
	}

	zone = ttozone(t);
	if (!ZONE_IS_CAPPED(zone)) {
		if (t->t_schedflag & TS_ZONEWAITQ)
			t->t_schedflag &= ~TS_ZONEWAITQ;
	} else {
		cpucap_t *zone_cap = zone->zone_cpucap;

		if (zone_cap->cap_usage >= zone_cap->cap_value) {
			t->t_schedflag |= TS_ZONEWAITQ;
			rc = B_TRUE;
		} else if (t->t_schedflag & TS_ZONEWAITQ) {
			t->t_schedflag &= ~TS_ZONEWAITQ;
		}
	}


	return (rc);
}

/*
 * Enforce CPU caps. If got preempted in the user-land, we know that thread does
 * not hold any kernel locks, so enqueue ourselves on the waitq, if needed.
 *
 * CPU Caps are only enforced for user threads.
 *
 * Threads flagged with TS_PROJWAITQ are placed on their project wait queues and
 * threads marked with TS_ZONEWAITQ are placed on their zone wait queue.
 *
 * It is possible that by the time we enter cpucaps_enforce() the cap is already
 * disabled. In this case waitq_enqueue() fails and doesn't enqueue anything. We
 * still clear TS_PROJWAITQ/TS_ZONEWAITQ flags in this case since they no longer
 * apply.
 */
boolean_t
cpucaps_enforce(kthread_t *t)
{
	klwp_t *lwp = t->t_lwp;

	ASSERT(THREAD_LOCK_HELD(t));

	if (lwp != NULL && lwp->lwp_state == LWP_USER) {
		if (t->t_schedflag & TS_PROJWAITQ) {
			ASSERT(ttoproj(t)->kpj_cpucap != NULL);
			t->t_schedflag &= ~TS_ANYWAITQ;
			if (waitq_enqueue(&(ttoproj(t)->kpj_cpucap->cap_waitq),
			    t)) {
				return (B_TRUE);
			}
		}
		if (t->t_schedflag & TS_ZONEWAITQ) {
			ASSERT(ttozone(t)->zone_cpucap != NULL);
			t->t_schedflag &= ~TS_ZONEWAITQ;
			if (waitq_enqueue(&(ttozone(t)->zone_cpucap->cap_waitq),
			    t)) {
				return (B_TRUE);
			}
		}
	}

	/*
	 * The thread is not enqueued on the wait queue.
	 */
	return (B_FALSE);
}

/*
 * Convert internal cap statistics into values exported by cap kstat.
 */
static int
cap_kstat_update(kstat_t *ksp, int rw)
{
	struct cap_kstat *capsp = &cap_kstat;
	cpucap_t *cap = ksp->ks_private;
	clock_t	tick_sec = SEC_TO_TICK(1);
	char *zonename = cap->cap_zone->zone_name;

	if (rw == KSTAT_WRITE)
		return (EACCES);

	capsp->cap_value.value.ui64 =
	    ROUND_SCALE(cap->cap_value, cap_tick_cost);
	capsp->cap_usage.value.ui64 =
	    ROUND_SCALE(cap->cap_usage, cap_tick_cost);
	capsp->cap_maxusage.value.ui64 =
	    ROUND_SCALE(cap->cap_maxusage, cap_tick_cost);
	capsp->cap_nwait.value.ui64 = cap->cap_waitq.wq_count;
	capsp->cap_below.value.ui64 = ROUND_SCALE(cap->cap_below, tick_sec);
	capsp->cap_above.value.ui64 = ROUND_SCALE(cap->cap_above, tick_sec);
	kstat_named_setstr(&capsp->cap_zonename, zonename);

	return (0);
}