1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
|
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2017 Joyent, Inc.
*/
/*
* Support for the signalfd facility, a Linux-borne facility for
* file descriptor-based synchronous signal consumption.
*
* As described on the signalfd(3C) man page, the general idea behind these
* file descriptors is that they can be used to synchronously consume signals
* via the read(2) syscall. While that capability already exists with the
* sigwaitinfo(3C) function, signalfd holds an advantage since it is file
* descriptor based: It is able use the event facilities (poll(2), /dev/poll,
* event ports) to notify interested parties when consumable signals arrive.
*
* The signalfd lifecycle begins When a process opens /dev/signalfd. A minor
* will be allocated for them along with an associated signalfd_state_t struct.
* It is there where the mask of desired signals resides.
*
* Reading from the signalfd is straightforward and mimics the kernel behavior
* for sigtimedwait(). Signals continue to live on either the proc's p_sig, or
* thread's t_sig, member. During a read operation, those which match the mask
* are consumed so they are no longer pending.
*
* The poll side is more complex. Every time a signal is delivered, all of the
* signalfds on the process need to be examined in order to pollwake threads
* waiting for signal arrival.
*
* When a thread polling on a signalfd requires a pollhead, several steps must
* be taken to safely ensure the proper result. A sigfd_proc_state_t is
* created for the calling process if it does not yet exist. It is there where
* a list of sigfd_poll_waiter_t structures reside which associate pollheads to
* signalfd_state_t entries. The sigfd_proc_state_t list is walked to find a
* sigfd_poll_waiter_t matching the signalfd_state_t which corresponds to the
* polled resource. If one is found, it is reused. Otherwise a new one is
* created, incrementing the refcount on the signalfd_state_t, and it is added
* to the sigfd_poll_waiter_t list.
*
* The complications imposed by fork(2) are why the pollhead is stored in the
* associated sigfd_poll_waiter_t instead of directly in the signalfd_state_t.
* More than one process can hold a reference to the signalfd at a time but
* arriving signals should wake only process-local pollers. Additionally,
* signalfd_close is called only when the last referencing fd is closed, hiding
* occurrences of preceeding threads which released their references. This
* necessitates reference counting on the signalfd_state_t so it is able to
* persist after close until all poll references have been cleansed. Doing so
* ensures that blocked pollers which hold references to the signalfd_state_t
* will be able to do clean-up after the descriptor itself has been closed.
*
* When a signal arrives in a process polling on signalfd, signalfd_pollwake_cb
* is called via the pointer in sigfd_proc_state_t. It will walk over the
* sigfd_poll_waiter_t entries present in the list, searching for any
* associated with a signalfd_state_t with a matching signal mask. The
* approach of keeping the poller list in p_sigfd was chosen because a process
* is likely to use few signalfds relative to its total file descriptors. It
* reduces the work required for each received signal.
*
* When matching sigfd_poll_waiter_t entries are encountered in the poller list
* during signalfd_pollwake_cb, they are dispatched into signalfd_wakeq to
* perform the pollwake. This is due to a lock ordering conflict between
* signalfd_poll and signalfd_pollwake_cb. The former acquires
* pollcache_t`pc_lock before proc_t`p_lock. The latter (via sigtoproc)
* reverses the order. Defering the pollwake into a taskq means it can be
* performed without proc_t`p_lock held, avoiding the deadlock.
*
* The sigfd_list is self-cleaning; as signalfd_pollwake_cb is called, the list
* will clear out on its own. Any remaining per-process state which remains
* will be cleaned up by the exit helper (signalfd_exit_helper).
*
* The structures associated with signalfd state are designed to operate
* correctly across fork, but there is one caveat that applies. Using
* fork-shared signalfd descriptors in conjuction with fork-shared caching poll
* descriptors (such as /dev/poll or event ports) will result in missed poll
* wake-ups. This is caused by the pollhead identity of signalfd descriptors
* being dependent on the process they are polled from. Because it has a
* thread-local cache, poll(2) is unaffected by this limitation.
*
* Lock ordering:
*
* 1. signalfd_lock
* 2. signalfd_state_t`sfd_lock
*
* 1. proc_t`p_lock (to walk p_sigfd)
* 2. signalfd_state_t`sfd_lock
* 2a. signalfd_lock (after sfd_lock is dropped, when sfd_count falls to 0)
*/
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/signalfd.h>
#include <sys/conf.h>
#include <sys/sysmacros.h>
#include <sys/filio.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <sys/schedctl.h>
#include <sys/id_space.h>
#include <sys/sdt.h>
#include <sys/disp.h>
#include <sys/taskq_impl.h>
typedef struct signalfd_state signalfd_state_t;
struct signalfd_state {
list_node_t sfd_list; /* node in global list */
kmutex_t sfd_lock; /* protects fields below */
uint_t sfd_count; /* ref count */
boolean_t sfd_valid; /* valid while open */
k_sigset_t sfd_set; /* signals for this fd */
};
typedef struct sigfd_poll_waiter {
list_node_t spw_list;
signalfd_state_t *spw_state;
pollhead_t spw_pollhd;
taskq_ent_t spw_taskent;
short spw_pollev;
} sigfd_poll_waiter_t;
/*
* Protects global state in signalfd_devi, signalfd_minor, signalfd_softstate,
* and signalfd_state (including sfd_list field of members)
*/
static kmutex_t signalfd_lock;
static dev_info_t *signalfd_devi; /* device info */
static id_space_t *signalfd_minor; /* minor number arena */
static void *signalfd_softstate; /* softstate pointer */
static list_t signalfd_state; /* global list of state */
static taskq_t *signalfd_wakeq; /* pollwake event taskq */
static void
signalfd_state_enter_locked(signalfd_state_t *state)
{
ASSERT(MUTEX_HELD(&state->sfd_lock));
ASSERT(state->sfd_count > 0);
VERIFY(state->sfd_valid == B_TRUE);
state->sfd_count++;
}
static void
signalfd_state_release(signalfd_state_t *state, boolean_t force_invalidate)
{
mutex_enter(&state->sfd_lock);
if (force_invalidate) {
state->sfd_valid = B_FALSE;
}
ASSERT(state->sfd_count > 0);
if (state->sfd_count == 1) {
VERIFY(state->sfd_valid == B_FALSE);
mutex_exit(&state->sfd_lock);
if (force_invalidate) {
/*
* The invalidation performed in signalfd_close is done
* while signalfd_lock is held.
*/
ASSERT(MUTEX_HELD(&signalfd_lock));
list_remove(&signalfd_state, state);
} else {
ASSERT(MUTEX_NOT_HELD(&signalfd_lock));
mutex_enter(&signalfd_lock);
list_remove(&signalfd_state, state);
mutex_exit(&signalfd_lock);
}
kmem_free(state, sizeof (*state));
return;
}
state->sfd_count--;
mutex_exit(&state->sfd_lock);
}
static sigfd_poll_waiter_t *
signalfd_wake_list_add(sigfd_proc_state_t *pstate, signalfd_state_t *state)
{
list_t *lst = &pstate->sigfd_list;
sigfd_poll_waiter_t *pw;
for (pw = list_head(lst); pw != NULL; pw = list_next(lst, pw)) {
if (pw->spw_state == state)
break;
}
if (pw == NULL) {
pw = kmem_zalloc(sizeof (*pw), KM_SLEEP);
mutex_enter(&state->sfd_lock);
signalfd_state_enter_locked(state);
pw->spw_state = state;
mutex_exit(&state->sfd_lock);
list_insert_head(lst, pw);
}
return (pw);
}
static sigfd_poll_waiter_t *
signalfd_wake_list_rm(sigfd_proc_state_t *pstate, signalfd_state_t *state)
{
list_t *lst = &pstate->sigfd_list;
sigfd_poll_waiter_t *pw;
for (pw = list_head(lst); pw != NULL; pw = list_next(lst, pw)) {
if (pw->spw_state == state) {
break;
}
}
if (pw != NULL) {
list_remove(lst, pw);
pw->spw_state = NULL;
signalfd_state_release(state, B_FALSE);
}
return (pw);
}
static void
signalfd_wake_list_cleanup(proc_t *p)
{
sigfd_proc_state_t *pstate = p->p_sigfd;
sigfd_poll_waiter_t *pw;
list_t *lst;
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(pstate != NULL);
lst = &pstate->sigfd_list;
while ((pw = list_remove_head(lst)) != NULL) {
signalfd_state_t *state = pw->spw_state;
pw->spw_state = NULL;
signalfd_state_release(state, B_FALSE);
pollwakeup(&pw->spw_pollhd, POLLERR);
pollhead_clean(&pw->spw_pollhd);
kmem_free(pw, sizeof (*pw));
}
list_destroy(lst);
p->p_sigfd = NULL;
kmem_free(pstate, sizeof (*pstate));
}
static void
signalfd_exit_helper(void)
{
proc_t *p = curproc;
mutex_enter(&p->p_lock);
signalfd_wake_list_cleanup(p);
mutex_exit(&p->p_lock);
}
/*
* Perform pollwake for a sigfd_poll_waiter_t entry.
* Thanks to the strict and conflicting lock orders required for signalfd_poll
* (pc_lock before p_lock) and signalfd_pollwake_cb (p_lock before pc_lock),
* this is relegated to a taskq to avoid deadlock.
*/
static void
signalfd_wake_task(void *arg)
{
sigfd_poll_waiter_t *pw = arg;
signalfd_state_t *state = pw->spw_state;
pw->spw_state = NULL;
signalfd_state_release(state, B_FALSE);
pollwakeup(&pw->spw_pollhd, pw->spw_pollev);
pollhead_clean(&pw->spw_pollhd);
kmem_free(pw, sizeof (*pw));
}
/*
* Called every time a signal is delivered to the process so that we can
* see if any signal stream needs a pollwakeup. We maintain a list of
* signal state elements so that we don't have to look at every file descriptor
* on the process. If necessary, a further optimization would be to maintain a
* signal set mask that is a union of all of the sets in the list so that
* we don't even traverse the list if the signal is not in one of the elements.
* However, since the list is likely to be very short, this is not currently
* being done. A more complex data structure might also be used, but it is
* unclear what that would be since each signal set needs to be checked for a
* match.
*/
static void
signalfd_pollwake_cb(void *arg0, int sig)
{
proc_t *p = (proc_t *)arg0;
sigfd_proc_state_t *pstate = (sigfd_proc_state_t *)p->p_sigfd;
list_t *lst;
sigfd_poll_waiter_t *pw;
ASSERT(MUTEX_HELD(&p->p_lock));
ASSERT(pstate != NULL);
lst = &pstate->sigfd_list;
pw = list_head(lst);
while (pw != NULL) {
signalfd_state_t *state = pw->spw_state;
sigfd_poll_waiter_t *next;
mutex_enter(&state->sfd_lock);
if (!state->sfd_valid) {
pw->spw_pollev = POLLERR;
} else if (sigismember(&state->sfd_set, sig)) {
pw->spw_pollev = POLLRDNORM | POLLIN;
} else {
mutex_exit(&state->sfd_lock);
pw = list_next(lst, pw);
continue;
}
mutex_exit(&state->sfd_lock);
/*
* Pull the sigfd_poll_waiter_t out of the list and dispatch it
* to perform a pollwake. This cannot be done synchronously
* since signalfd_poll and signalfd_pollwake_cb have
* conflicting lock orders which can deadlock.
*/
next = list_next(lst, pw);
list_remove(lst, pw);
taskq_dispatch_ent(signalfd_wakeq, signalfd_wake_task, pw, 0,
&pw->spw_taskent);
pw = next;
}
}
_NOTE(ARGSUSED(1))
static int
signalfd_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
{
signalfd_state_t *state, **sstate;
major_t major = getemajor(*devp);
minor_t minor = getminor(*devp);
if (minor != SIGNALFDMNRN_SIGNALFD)
return (ENXIO);
mutex_enter(&signalfd_lock);
minor = (minor_t)id_allocff(signalfd_minor);
if (ddi_soft_state_zalloc(signalfd_softstate, minor) != DDI_SUCCESS) {
id_free(signalfd_minor, minor);
mutex_exit(&signalfd_lock);
return (ENODEV);
}
state = kmem_zalloc(sizeof (*state), KM_SLEEP);
state->sfd_valid = B_TRUE;
state->sfd_count = 1;
list_insert_head(&signalfd_state, (void *)state);
sstate = ddi_get_soft_state(signalfd_softstate, minor);
*sstate = state;
*devp = makedevice(major, minor);
mutex_exit(&signalfd_lock);
return (0);
}
/*
* Consume one signal from our set in a manner similar to sigtimedwait().
* The block parameter is used to control whether we wait for a signal or
* return immediately if no signal is pending. We use the thread's t_sigwait
* member in the same way that it is used by sigtimedwait.
*
* Return 0 if we successfully consumed a signal or an errno if not.
*/
static int
consume_signal(k_sigset_t set, uio_t *uio, boolean_t block)
{
k_sigset_t oldmask;
kthread_t *t = curthread;
klwp_t *lwp = ttolwp(t);
proc_t *p = ttoproc(t);
timespec_t now;
timespec_t *rqtp = NULL; /* null means blocking */
int timecheck = 0;
int ret = 0;
k_siginfo_t info, *infop;
signalfd_siginfo_t ssi, *ssp = &ssi;
if (block == B_FALSE) {
timecheck = timechanged;
gethrestime(&now);
rqtp = &now; /* non-blocking check for pending signals */
}
t->t_sigwait = set;
mutex_enter(&p->p_lock);
/*
* set the thread's signal mask to unmask those signals in the
* specified set.
*/
schedctl_finish_sigblock(t);
oldmask = t->t_hold;
sigdiffset(&t->t_hold, &t->t_sigwait);
/*
* Based on rqtp, wait indefinitely until we take a signal in our set
* or return immediately if there are no signals pending from our set.
*/
while ((ret = cv_waituntil_sig(&t->t_delay_cv, &p->p_lock, rqtp,
timecheck)) > 0)
continue;
/* Restore thread's signal mask to its previous value. */
t->t_hold = oldmask;
t->t_sig_check = 1; /* so post_syscall sees new t_hold mask */
if (ret == -1) {
/* no signals pending */
mutex_exit(&p->p_lock);
sigemptyset(&t->t_sigwait);
return (EAGAIN); /* no signals pending */
}
/* Don't bother with signal if it is not in request set. */
if (lwp->lwp_cursig == 0 ||
!sigismember(&t->t_sigwait, lwp->lwp_cursig)) {
mutex_exit(&p->p_lock);
/*
* lwp_cursig is zero if pokelwps() awakened cv_wait_sig().
* This happens if some other thread in this process called
* forkall() or exit().
*/
sigemptyset(&t->t_sigwait);
return (EINTR);
}
if (lwp->lwp_curinfo) {
infop = &lwp->lwp_curinfo->sq_info;
} else {
infop = &info;
bzero(infop, sizeof (info));
infop->si_signo = lwp->lwp_cursig;
infop->si_code = SI_NOINFO;
}
lwp->lwp_ru.nsignals++;
DTRACE_PROC2(signal__clear, int, ret, ksiginfo_t *, infop);
lwp->lwp_cursig = 0;
lwp->lwp_extsig = 0;
mutex_exit(&p->p_lock);
/* Convert k_siginfo into external, datamodel independent, struct. */
bzero(ssp, sizeof (*ssp));
ssp->ssi_signo = infop->si_signo;
ssp->ssi_errno = infop->si_errno;
ssp->ssi_code = infop->si_code;
ssp->ssi_pid = infop->si_pid;
ssp->ssi_uid = infop->si_uid;
ssp->ssi_fd = infop->si_fd;
ssp->ssi_band = infop->si_band;
ssp->ssi_trapno = infop->si_trapno;
ssp->ssi_status = infop->si_status;
ssp->ssi_utime = infop->si_utime;
ssp->ssi_stime = infop->si_stime;
ssp->ssi_addr = (uint64_t)(intptr_t)infop->si_addr;
ret = uiomove(ssp, sizeof (*ssp), UIO_READ, uio);
if (lwp->lwp_curinfo) {
siginfofree(lwp->lwp_curinfo);
lwp->lwp_curinfo = NULL;
}
sigemptyset(&t->t_sigwait);
return (ret);
}
/*
* This is similar to sigtimedwait. Based on the fd mode we may wait until a
* signal within our specified set is posted. We consume as many available
* signals within our set as we can.
*/
_NOTE(ARGSUSED(2))
static int
signalfd_read(dev_t dev, uio_t *uio, cred_t *cr)
{
signalfd_state_t *state, **sstate;
minor_t minor = getminor(dev);
boolean_t block = B_TRUE;
k_sigset_t set;
boolean_t got_one = B_FALSE;
int res;
if (uio->uio_resid < sizeof (signalfd_siginfo_t))
return (EINVAL);
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
if (uio->uio_fmode & (FNDELAY|FNONBLOCK))
block = B_FALSE;
mutex_enter(&state->sfd_lock);
set = state->sfd_set;
mutex_exit(&state->sfd_lock);
if (sigisempty(&set))
return (set_errno(EINVAL));
do {
res = consume_signal(set, uio, block);
if (res == 0) {
/*
* After consuming one signal, do not block while
* trying to consume more.
*/
got_one = B_TRUE;
block = B_FALSE;
/*
* Refresh the matching signal set in case it was
* updated during the wait.
*/
mutex_enter(&state->sfd_lock);
set = state->sfd_set;
mutex_exit(&state->sfd_lock);
if (sigisempty(&set))
break;
}
} while (res == 0 && uio->uio_resid >= sizeof (signalfd_siginfo_t));
if (got_one)
res = 0;
return (res);
}
/*
* If ksigset_t's were a single word, we would do:
* return (((p->p_sig | t->t_sig) & set) & fillset);
*/
static int
signalfd_sig_pending(proc_t *p, kthread_t *t, k_sigset_t set)
{
return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
set.__sigbits[0]) |
((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
set.__sigbits[1]) |
(((p->p_sig.__sigbits[2] | t->t_sig.__sigbits[2]) &
set.__sigbits[2]) & FILLSET2));
}
static int
signalfd_poll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp)
{
signalfd_state_t *state, **sstate;
minor_t minor = getminor(dev);
kthread_t *t = curthread;
proc_t *p = ttoproc(t);
short revents = 0;
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
mutex_enter(&state->sfd_lock);
if (signalfd_sig_pending(p, t, state->sfd_set) != 0)
revents |= POLLRDNORM | POLLIN;
mutex_exit(&state->sfd_lock);
*reventsp = revents & events;
if ((*reventsp == 0 && !anyyet) || (events & POLLET)) {
sigfd_proc_state_t *pstate;
sigfd_poll_waiter_t *pw;
/*
* Enable pollwakeup handling.
*/
mutex_enter(&p->p_lock);
if ((pstate = (sigfd_proc_state_t *)p->p_sigfd) == NULL) {
mutex_exit(&p->p_lock);
pstate = kmem_zalloc(sizeof (*pstate), KM_SLEEP);
list_create(&pstate->sigfd_list,
sizeof (sigfd_poll_waiter_t),
offsetof(sigfd_poll_waiter_t, spw_list));
pstate->sigfd_pollwake_cb = signalfd_pollwake_cb;
/* Check again, after blocking for the alloc. */
mutex_enter(&p->p_lock);
if (p->p_sigfd == NULL) {
p->p_sigfd = pstate;
} else {
/* someone beat us to it */
list_destroy(&pstate->sigfd_list);
kmem_free(pstate, sizeof (*pstate));
pstate = p->p_sigfd;
}
}
pw = signalfd_wake_list_add(pstate, state);
*phpp = &pw->spw_pollhd;
mutex_exit(&p->p_lock);
}
return (0);
}
_NOTE(ARGSUSED(4))
static int
signalfd_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
{
signalfd_state_t *state, **sstate;
minor_t minor = getminor(dev);
sigset_t mask;
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
switch (cmd) {
case SIGNALFDIOC_MASK:
if (ddi_copyin((caddr_t)arg, (caddr_t)&mask, sizeof (sigset_t),
md) != 0)
return (set_errno(EFAULT));
mutex_enter(&state->sfd_lock);
sigutok(&mask, &state->sfd_set);
mutex_exit(&state->sfd_lock);
return (0);
default:
break;
}
return (ENOTTY);
}
_NOTE(ARGSUSED(1))
static int
signalfd_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
{
signalfd_state_t *state, **sstate;
sigfd_poll_waiter_t *pw = NULL;
minor_t minor = getminor(dev);
proc_t *p = curproc;
sstate = ddi_get_soft_state(signalfd_softstate, minor);
state = *sstate;
/* Make sure state is removed from this proc's pollwake list. */
mutex_enter(&p->p_lock);
if (p->p_sigfd != NULL) {
sigfd_proc_state_t *pstate = p->p_sigfd;
pw = signalfd_wake_list_rm(pstate, state);
if (list_is_empty(&pstate->sigfd_list)) {
signalfd_wake_list_cleanup(p);
}
}
mutex_exit(&p->p_lock);
if (pw != NULL) {
pollwakeup(&pw->spw_pollhd, POLLERR);
pollhead_clean(&pw->spw_pollhd);
kmem_free(pw, sizeof (*pw));
}
mutex_enter(&signalfd_lock);
*sstate = NULL;
ddi_soft_state_free(signalfd_softstate, minor);
id_free(signalfd_minor, minor);
signalfd_state_release(state, B_TRUE);
mutex_exit(&signalfd_lock);
return (0);
}
static int
signalfd_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
if (cmd != DDI_ATTACH || signalfd_devi != NULL)
return (DDI_FAILURE);
mutex_enter(&signalfd_lock);
signalfd_minor = id_space_create("signalfd_minor", 1, L_MAXMIN32 + 1);
if (signalfd_minor == NULL) {
cmn_err(CE_WARN, "signalfd couldn't create id space");
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
if (ddi_soft_state_init(&signalfd_softstate,
sizeof (signalfd_state_t *), 0) != 0) {
cmn_err(CE_WARN, "signalfd failed to create soft state");
id_space_destroy(signalfd_minor);
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
if (ddi_create_minor_node(devi, "signalfd", S_IFCHR,
SIGNALFDMNRN_SIGNALFD, DDI_PSEUDO, 0) == DDI_FAILURE) {
cmn_err(CE_NOTE, "/dev/signalfd couldn't create minor node");
ddi_soft_state_fini(&signalfd_softstate);
id_space_destroy(signalfd_minor);
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
ddi_report_dev(devi);
signalfd_devi = devi;
sigfd_exit_helper = signalfd_exit_helper;
list_create(&signalfd_state, sizeof (signalfd_state_t),
offsetof(signalfd_state_t, sfd_list));
signalfd_wakeq = taskq_create("signalfd_wake", 1, minclsyspri,
0, INT_MAX, TASKQ_PREPOPULATE);
mutex_exit(&signalfd_lock);
return (DDI_SUCCESS);
}
_NOTE(ARGSUSED(0))
static int
signalfd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
switch (cmd) {
case DDI_DETACH:
break;
default:
return (DDI_FAILURE);
}
mutex_enter(&signalfd_lock);
if (!list_is_empty(&signalfd_state)) {
/*
* There are dangling poll waiters holding signalfd_state_t
* entries on the global list. Detach is not possible until
* they purge themselves.
*/
mutex_exit(&signalfd_lock);
return (DDI_FAILURE);
}
list_destroy(&signalfd_state);
/*
* With no remaining entries in the signalfd_state list, the wake taskq
* should be empty with no possibility for new entries.
*/
taskq_destroy(signalfd_wakeq);
id_space_destroy(signalfd_minor);
ddi_remove_minor_node(signalfd_devi, NULL);
signalfd_devi = NULL;
sigfd_exit_helper = NULL;
ddi_soft_state_fini(&signalfd_softstate);
mutex_exit(&signalfd_lock);
return (DDI_SUCCESS);
}
_NOTE(ARGSUSED(0))
static int
signalfd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
int error;
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = (void *)signalfd_devi;
error = DDI_SUCCESS;
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
error = DDI_SUCCESS;
break;
default:
error = DDI_FAILURE;
}
return (error);
}
static struct cb_ops signalfd_cb_ops = {
signalfd_open, /* open */
signalfd_close, /* close */
nulldev, /* strategy */
nulldev, /* print */
nodev, /* dump */
signalfd_read, /* read */
nodev, /* write */
signalfd_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
signalfd_poll, /* poll */
ddi_prop_op, /* cb_prop_op */
0, /* streamtab */
D_NEW | D_MP /* Driver compatibility flag */
};
static struct dev_ops signalfd_ops = {
DEVO_REV, /* devo_rev */
0, /* refcnt */
signalfd_info, /* get_dev_info */
nulldev, /* identify */
nulldev, /* probe */
signalfd_attach, /* attach */
signalfd_detach, /* detach */
nodev, /* reset */
&signalfd_cb_ops, /* driver operations */
NULL, /* bus operations */
nodev, /* dev power */
ddi_quiesce_not_needed, /* quiesce */
};
static struct modldrv modldrv = {
&mod_driverops, /* module type (this is a pseudo driver) */
"signalfd support", /* name of module */
&signalfd_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
int
_init(void)
{
return (mod_install(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_fini(void)
{
return (mod_remove(&modlinkage));
}
|