summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/vm_pageout.c
blob: c675a4dfb8d78c6bd1031f51ae9bac4e96fb89f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2021 Oxide Computer Company
 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
 */

/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 * Copyright 2018 Joyent, Inc.
 */

/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */

/*
 * University Copyright- Copyright (c) 1982, 1986, 1988
 * The Regents of the University of California
 * All Rights Reserved
 *
 * University Acknowledgment- Portions of this document are derived from
 * software developed by the University of California, Berkeley, and its
 * contributors.
 */

#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/mman.h>
#include <sys/cred.h>
#include <sys/vnode.h>
#include <sys/vm.h>
#include <sys/vmparam.h>
#include <sys/vtrace.h>
#include <sys/cmn_err.h>
#include <sys/cpuvar.h>
#include <sys/user.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/callb.h>
#include <sys/tnf_probe.h>
#include <sys/mem_cage.h>
#include <sys/time.h>
#include <sys/zone.h>
#include <sys/stdbool.h>

#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/seg_kmem.h>

/*
 * FREE MEMORY MANAGEMENT
 *
 * Management of the pool of free pages is a tricky business.  There are
 * several critical threshold values which constrain our allocation of new
 * pages and inform the rate of paging out of memory to swap.  These threshold
 * values, and the behaviour they induce, are described below in descending
 * order of size -- and thus increasing order of severity!
 *
 *   +---------------------------------------------------- physmem (all memory)
 *   |
 *   | Ordinarily there are no particular constraints placed on page
 *   v allocation.  The page scanner is not running and page_create_va()
 *   | will effectively grant all page requests (whether from the kernel
 *   | or from user processes) without artificial delay.
 *   |
 *   +------------------------ lotsfree (1.56% of physmem, min. 16MB, max. 2GB)
 *   |
 *   | When we have less than "lotsfree" pages, pageout_scanner() is
 *   v signalled by schedpaging() to begin looking for pages that can
 *   | be evicted to disk to bring us back above lotsfree.  At this
 *   | stage there is still no constraint on allocation of free pages.
 *   |
 *   | For small systems, we set a lower bound of 16MB for lotsfree;
 *   v this is the natural value for a system with 1GB memory.  This is
 *   | to ensure that the pageout reserve pool contains at least 4MB
 *   | for use by ZFS.
 *   |
 *   | For systems with a large amount of memory, we constrain lotsfree
 *   | to be at most 2GB (with a pageout reserve of around 0.5GB), as
 *   v at some point the required slack relates more closely to the
 *   | rate at which paging can occur than to the total amount of memory.
 *   |
 *   +------------------- desfree (1/2 of lotsfree, 0.78% of physmem, min. 8MB)
 *   |
 *   | When we drop below desfree, a number of kernel facilities will
 *   v wait before allocating more memory, under the assumption that
 *   | pageout or reaping will make progress and free up some memory.
 *   | This behaviour is not especially coordinated; look for comparisons
 *   | of desfree and freemem.
 *   |
 *   | In addition to various attempts at advisory caution, clock()
 *   | will wake up the thread that is ordinarily parked in sched().
 *   | This routine is responsible for the heavy-handed swapping out
 *   v of entire processes in an attempt to arrest the slide of free
 *   | memory.  See comments in sched.c for more details.
 *   |
 *   +----- minfree & throttlefree (3/4 of desfree, 0.59% of physmem, min. 6MB)
 *   |
 *   | These two separate tunables have, by default, the same value.
 *   v Various parts of the kernel use minfree to signal the need for
 *   | more aggressive reclamation of memory, and sched() is more
 *   | aggressive at swapping processes out.
 *   |
 *   | If free memory falls below throttlefree, page_create_va() will
 *   | use page_create_throttle() to begin holding most requests for
 *   | new pages while pageout and reaping free up memory.  Sleeping
 *   v allocations (e.g., KM_SLEEP) are held here while we wait for
 *   | more memory.  Non-sleeping allocations are generally allowed to
 *   | proceed, unless their priority is explicitly lowered with
 *   | KM_NORMALPRI.
 *   |
 *   +------- pageout_reserve (3/4 of throttlefree, 0.44% of physmem, min. 4MB)
 *   |
 *   | When we hit throttlefree, the situation is already dire.  The
 *   v system is generally paging out memory and swapping out entire
 *   | processes in order to free up memory for continued operation.
 *   |
 *   | Unfortunately, evicting memory to disk generally requires short
 *   | term use of additional memory; e.g., allocation of buffers for
 *   | storage drivers, updating maps of free and used blocks, etc.
 *   | As such, pageout_reserve is the number of pages that we keep in
 *   | special reserve for use by pageout() and sched() and by any
 *   v other parts of the kernel that need to be working for those to
 *   | make forward progress such as the ZFS I/O pipeline.
 *   |
 *   | When we are below pageout_reserve, we fail or hold any allocation
 *   | that has not explicitly requested access to the reserve pool.
 *   | Access to the reserve is generally granted via the KM_PUSHPAGE
 *   | flag, or by marking a thread T_PUSHPAGE such that all allocations
 *   | can implicitly tap the reserve.  For more details, see the
 *   v NOMEMWAIT() macro, the T_PUSHPAGE thread flag, the KM_PUSHPAGE
 *   | and VM_PUSHPAGE allocation flags, and page_create_throttle().
 *   |
 *   +---------------------------------------------------------- no free memory
 *   |
 *   | If we have arrived here, things are very bad indeed.  It is
 *   v surprisingly difficult to tell if this condition is even fatal,
 *   | as enough memory may have been granted to pageout() and to the
 *   | ZFS I/O pipeline that requests for eviction that have already been
 *   | made will complete and free up memory some time soon.
 *   |
 *   | If free memory does not materialise, the system generally remains
 *   | deadlocked.  The pageout_deadman() below is run once per second
 *   | from clock(), seeking to limit the amount of time a single request
 *   v to page out can be blocked before the system panics to get a crash
 *   | dump and return to service.
 *   |
 *   +-------------------------------------------------------------------------
 */

/*
 * The following parameters control operation of the page replacement
 * algorithm.  They are initialized to 0, and then computed at boot time based
 * on the size of the system; see setupclock().  If they are patched non-zero
 * in a loaded vmunix they are left alone and may thus be changed per system
 * using "mdb -kw" on the loaded system.
 */
pgcnt_t		slowscan = 0;
pgcnt_t		fastscan = 0;

static pgcnt_t	handspreadpages = 0;

/*
 * looppages:
 *     Cached copy of the total number of pages in the system (total_pages).
 *
 * loopfraction:
 *     Divisor used to relate fastscan to looppages in setupclock().
 */
static uint_t	loopfraction = 2;
static pgcnt_t	looppages;

static uint_t	min_percent_cpu = 4;
static uint_t	max_percent_cpu = 80;
static pgcnt_t	maxfastscan = 0;
static pgcnt_t	maxslowscan = 100;

#define		MEGABYTES		(1024ULL * 1024ULL)

/*
 * pageout_threshold_style:
 *     set to 1 to use the previous default threshold size calculation;
 *     i.e., each threshold is half of the next largest value.
 */
uint_t		pageout_threshold_style = 0;

/*
 * The operator may override these tunables to request a different minimum or
 * maximum lotsfree value, or to change the divisor we use for automatic
 * sizing.
 *
 * By default, we make lotsfree 1/64th of the total memory in the machine.  The
 * minimum and maximum are specified in bytes, rather than pages; a zero value
 * means the default values (below) are used.
 */
uint_t		lotsfree_fraction = 64;
pgcnt_t		lotsfree_min = 0;
pgcnt_t		lotsfree_max = 0;

#define		LOTSFREE_MIN_DEFAULT	(16 * MEGABYTES)
#define		LOTSFREE_MAX_DEFAULT	(2048 * MEGABYTES)

/*
 * If these tunables are set to non-zero values in /etc/system, and provided
 * the value is not larger than the threshold above, the specified value will
 * be used directly without any additional calculation or adjustment.  The boot
 * time value of these overrides is preserved in the "clockinit" struct.  More
 * detail is available in the comment at the top of the file.
 */
pgcnt_t		maxpgio = 0;
pgcnt_t		minfree = 0;
pgcnt_t		desfree = 0;
pgcnt_t		lotsfree = 0;
pgcnt_t		needfree = 0;
pgcnt_t		throttlefree = 0;
pgcnt_t		pageout_reserve = 0;
pri_t		pageout_pri;

pgcnt_t		deficit;
pgcnt_t		nscan;
pgcnt_t		desscan;

/* kstats */
uint64_t low_mem_scan;
uint64_t zone_cap_scan;

#define	MAX_PSCAN_THREADS	16

/*
 * Values for min_pageout_nsec, max_pageout_nsec, pageout_nsec and
 * zone_pageout_nsec are the number of nanoseconds in each wakeup cycle
 * that gives the equivalent of some underlying %CPU duty cycle.
 *
 * min_pageout_nsec:
 *     nanoseconds/wakeup equivalent of min_percent_cpu.
 *
 * max_pageout_nsec:
 *     nanoseconds/wakeup equivalent of max_percent_cpu.
 *
 * pageout_nsec:
 *     Number of nanoseconds budgeted for each wakeup cycle.
 *     Computed each time around by schedpaging().
 *     Varies between min_pageout_nsec and max_pageout_nsec,
 *     depending on memory pressure or zones over their cap.
 *
 * zone_pageout_nsec:
 *      Number of nanoseconds budget for each cycle when a zone
 *      is over its memory cap. If this is zero, then the value
 *      of max_pageout_nsec is used instead.
 */
static hrtime_t	min_pageout_nsec;
static hrtime_t	max_pageout_nsec;
static hrtime_t	pageout_nsec;
static hrtime_t	zone_pageout_nsec;

static boolean_t	reset_hands[MAX_PSCAN_THREADS];

#define	PAGES_POLL_MASK	1023
#define	SCHEDPAGING_HZ	4

/*
 * despagescanners:
 *	The desired number of page scanner threads. The value can be set in
 *	/etc/system or tuned directly with 'mdb -kw'.  The system will bring
 *	the actual number of threads into line with the desired number. If set
 *	to an invalid value, the system will correct the setting.
 */
uint_t despagescanners = 0;

/*
 * pageout_sample_lim:
 *     The limit on the number of samples needed to establish a value for new
 *     pageout parameters: fastscan, slowscan, pageout_new_spread, and
 *     handspreadpages.
 *
 * pageout_sample_cnt:
 *     Current sample number.  Once the sample gets large enough, set new
 *     values for handspreadpages, pageout_new_spread, fastscan and slowscan.
 *
 * pageout_sample_pages:
 *     The accumulated number of pages scanned during sampling.
 *
 * pageout_sample_etime:
 *     The accumulated nanoseconds for the sample.
 *
 * pageout_rate:
 *     Rate in pages/nanosecond, computed at the end of sampling.
 *
 * pageout_new_spread:
 *     Initially zero while the system scan rate is measured by
 *     pageout_scanner(), which then sets this value once per system boot after
 *     enough samples have been recorded (pageout_sample_cnt).  Once set, this
 *     new value is used for fastscan and handspreadpages.
 */
typedef hrtime_t hrrate_t;

static uint64_t	pageout_sample_lim = 4;
static uint64_t	pageout_sample_cnt = 0;
static pgcnt_t	pageout_sample_pages = 0;
static hrtime_t	pageout_sample_etime = 0;
static hrrate_t	pageout_rate = 0;
static pgcnt_t	pageout_new_spread = 0;

/* True if the page scanner is first starting up */
#define	PAGE_SCAN_STARTUP	(pageout_sample_cnt < pageout_sample_lim)

/* The current number of page scanner threads */
static uint_t n_page_scanners = 1;
/* The number of page scanner threads that are actively scanning. */
static uint_t pageouts_running;

/*
 * Record number of times a pageout_scanner() wakeup cycle finished because it
 * timed out (exceeded its CPU budget), rather than because it visited
 * its budgeted number of pages. This is only done when scanning under low
 * free memory conditions, not when scanning for zones over their cap.
 */
uint64_t	pageout_timeouts = 0;

#ifdef VM_STATS
static struct pageoutvmstats_str {
	ulong_t	checkpage[3];
} pageoutvmstats;
#endif /* VM_STATS */

/*
 * Threads waiting for free memory use this condition variable and lock until
 * memory becomes available.
 */
kmutex_t	memavail_lock;
kcondvar_t	memavail_cv;

typedef enum pageout_hand {
	POH_FRONT = 1,
	POH_BACK,
} pageout_hand_t;

typedef enum {
	CKP_INELIGIBLE,
	CKP_NOT_FREED,
	CKP_FREED,
} checkpage_result_t;

static checkpage_result_t checkpage(page_t *, pageout_hand_t);

static struct clockinit {
	bool ci_init;
	pgcnt_t ci_lotsfree_min;
	pgcnt_t ci_lotsfree_max;
	pgcnt_t ci_lotsfree;
	pgcnt_t ci_desfree;
	pgcnt_t ci_minfree;
	pgcnt_t ci_throttlefree;
	pgcnt_t ci_pageout_reserve;
	pgcnt_t ci_maxpgio;
	pgcnt_t ci_maxfastscan;
	pgcnt_t ci_fastscan;
	pgcnt_t ci_slowscan;
	pgcnt_t ci_handspreadpages;
	uint_t  ci_despagescanners;
} clockinit = { .ci_init = false };

static inline pgcnt_t
clamp(pgcnt_t value, pgcnt_t minimum, pgcnt_t maximum)
{
	if (value < minimum) {
		return (minimum);
	} else if (value > maximum) {
		return (maximum);
	} else {
		return (value);
	}
}

static pgcnt_t
tune(pgcnt_t initval, pgcnt_t initval_ceiling, pgcnt_t defval)
{
	if (initval == 0 || initval >= initval_ceiling) {
		return (defval);
	} else {
		return (initval);
	}
}

/*
 * Local boolean to control scanning when zones are over their cap. Avoids
 * accessing the zone_num_over_cap variable except within schedpaging(), which
 * only runs periodically. This is here only to reduce our access to
 * zone_num_over_cap, since it is already accessed a lot during paging, and
 * the page scanner accesses the zones_over variable on each page during a
 * scan. There is no lock needed for zone_num_over_cap since schedpaging()
 * doesn't modify the variable, it only cares if the variable is 0 or non-0.
 */
static boolean_t zones_over = B_FALSE;

/*
 * On large memory systems, multiple instances of the page scanner are run,
 * each responsible for a separate region of memory. This speeds up page
 * invalidation under low memory conditions.
 *
 * despagescanners can be set in /etc/system or via mdb and it will
 * be used as a guide for how many page scanners to create; the value
 * will be adjusted if it is not sensible. Otherwise, the number of
 * page scanners is determined dynamically based on handspreadpages.
 */
static void
recalc_pagescanners(void)
{
	pgcnt_t sz;
	uint_t des;

	/* If the initial calibration has not been done, take no action. */
	if (pageout_new_spread == 0)
		return;

	/*
	 * If the desired number of scanners is set in /etc/system
	 * then try to use it.
	 */
	if (despagescanners == 0 && clockinit.ci_despagescanners != 0)
		despagescanners = clockinit.ci_despagescanners;

	if (despagescanners != 0) {
		/*
		 * We have a desired number of page scanners, either from
		 * /etc/system or set via mdb. Try and use it (it will be
		 * clamped below).
		 */
		des = despagescanners;
	} else {
		/*
		 * Calculate the number of desired scanners based on the
		 * system's memory size.
		 *
		 * A 64GiB region size is used as the basis for calculating how
		 * many scanner threads should be created. For systems with up
		 * to 64GiB of RAM, a single thread is used; for very large
		 * memory systems the threads are limited to MAX_PSCAN_THREADS.
		 */
		sz = btop(64ULL << 30);

		if (sz > looppages) {
			des = 1;
		} else {
			pgcnt_t tmp = sz;

			for (des = 1; tmp < looppages; des++)
				tmp += sz;
		}
	}

	/*
	 * clamp the number of scanners so that we are under MAX_PSCAN_THREADS
	 * and so that each scanner covers at least 10% more than
	 * handspreadpages.
	 */
	des = clamp(des, 1,
	    looppages / (handspreadpages + handspreadpages / 10));
	despagescanners = clamp(des, 1, MAX_PSCAN_THREADS);
}

/*
 * Set up the paging constants for the clock algorithm used by
 * pageout_scanner(), and by the virtual memory system overall.  See the
 * comments at the top of this file for more information about the threshold
 * values and system responses to memory pressure.
 *
 * This routine is called once by main() at startup, after the initial size of
 * physical memory is determined.  It may be called again later if memory is
 * added to or removed from the system, or if new measurements of the page scan
 * rate become available.
 */
void
setupclock(void)
{
	bool half = (pageout_threshold_style == 1);
	bool recalc = true;

	looppages = total_pages;

	/*
	 * The operator may have provided specific values for some of the
	 * tunables via /etc/system.  On our first call, we preserve those
	 * values so that they can be used for subsequent recalculations.
	 *
	 * A value of zero for any tunable means we will use the default
	 * sizing.
	 */
	if (!clockinit.ci_init) {
		clockinit.ci_init = true;

		clockinit.ci_lotsfree_min = lotsfree_min;
		clockinit.ci_lotsfree_max = lotsfree_max;
		clockinit.ci_lotsfree = lotsfree;
		clockinit.ci_desfree = desfree;
		clockinit.ci_minfree = minfree;
		clockinit.ci_throttlefree = throttlefree;
		clockinit.ci_pageout_reserve = pageout_reserve;
		clockinit.ci_maxpgio = maxpgio;
		clockinit.ci_maxfastscan = maxfastscan;
		clockinit.ci_fastscan = fastscan;
		clockinit.ci_slowscan = slowscan;
		clockinit.ci_handspreadpages = handspreadpages;
		clockinit.ci_despagescanners = despagescanners;

		/*
		 * The first call does not trigger a recalculation, only
		 * subsequent calls.
		 */
		recalc = false;
	}

	/*
	 * Configure paging threshold values.  For more details on what each
	 * threshold signifies, see the comments at the top of this file.
	 */
	lotsfree_max = tune(clockinit.ci_lotsfree_max, looppages,
	    btop(LOTSFREE_MAX_DEFAULT));
	lotsfree_min = tune(clockinit.ci_lotsfree_min, lotsfree_max,
	    btop(LOTSFREE_MIN_DEFAULT));

	lotsfree = tune(clockinit.ci_lotsfree, looppages,
	    clamp(looppages / lotsfree_fraction, lotsfree_min, lotsfree_max));

	desfree = tune(clockinit.ci_desfree, lotsfree,
	    lotsfree / 2);

	minfree = tune(clockinit.ci_minfree, desfree,
	    half ? desfree / 2 : 3 * desfree / 4);

	throttlefree = tune(clockinit.ci_throttlefree, desfree,
	    minfree);

	pageout_reserve = tune(clockinit.ci_pageout_reserve, throttlefree,
	    half ? throttlefree / 2 : 3 * throttlefree / 4);

	/*
	 * Maxpgio thresholds how much paging is acceptable.
	 * This figures that 2/3 busy on an arm is all that is
	 * tolerable for paging.  We assume one operation per disk rev.
	 *
	 * XXX - Does not account for multiple swap devices.
	 */
	if (clockinit.ci_maxpgio == 0) {
		maxpgio = (DISKRPM * 2) / 3;
	} else {
		maxpgio = clockinit.ci_maxpgio;
	}

	/*
	 * The clock scan rate varies between fastscan and slowscan
	 * based on the amount of free memory available.  Fastscan
	 * rate should be set based on the number pages that can be
	 * scanned per sec using ~10% of processor time.  Since this
	 * value depends on the processor, MMU, Mhz etc., it is
	 * difficult to determine it in a generic manner for all
	 * architectures.
	 *
	 * Instead of trying to determine the number of pages scanned
	 * per sec for every processor, fastscan is set to be the smaller
	 * of 1/2 of memory or MAXHANDSPREADPAGES and the sampling
	 * time is limited to ~4% of processor time.
	 *
	 * Setting fastscan to be 1/2 of memory allows pageout to scan
	 * all of memory in ~2 secs.  This implies that user pages not
	 * accessed within 1 sec (assuming, handspreadpages == fastscan)
	 * can be reclaimed when free memory is very low.  Stealing pages
	 * not accessed within 1 sec seems reasonable and ensures that
	 * active user processes don't thrash.
	 *
	 * Smaller values of fastscan result in scanning fewer pages
	 * every second and consequently pageout may not be able to free
	 * sufficient memory to maintain the minimum threshold.  Larger
	 * values of fastscan result in scanning a lot more pages which
	 * could lead to thrashing and higher CPU usage.
	 *
	 * Fastscan needs to be limited to a maximum value and should not
	 * scale with memory to prevent pageout from consuming too much
	 * time for scanning on slow CPU's and avoid thrashing, as a
	 * result of scanning too many pages, on faster CPU's.
	 * The value of 64 Meg was chosen for MAXHANDSPREADPAGES
	 * (the upper bound for fastscan) based on the average number
	 * of pages that can potentially be scanned in ~1 sec (using ~4%
	 * of the CPU) on some of the following machines that currently
	 * run Solaris 2.x:
	 *
	 *			average memory scanned in ~1 sec
	 *
	 *	25 Mhz SS1+:		23 Meg
	 *	LX:			37 Meg
	 *	50 Mhz SC2000:		68 Meg
	 *
	 *	40 Mhz 486:		26 Meg
	 *	66 Mhz 486:		42 Meg
	 *
	 * When free memory falls just below lotsfree, the scan rate
	 * goes from 0 to slowscan (i.e., pageout starts running).  This
	 * transition needs to be smooth and is achieved by ensuring that
	 * pageout scans a small number of pages to satisfy the transient
	 * memory demand.  This is set to not exceed 100 pages/sec (25 per
	 * wakeup) since scanning that many pages has no noticible impact
	 * on system performance.
	 *
	 * In addition to setting fastscan and slowscan, pageout is
	 * limited to using ~4% of the CPU.  This results in increasing
	 * the time taken to scan all of memory, which in turn means that
	 * user processes have a better opportunity of preventing their
	 * pages from being stolen.  This has a positive effect on
	 * interactive and overall system performance when memory demand
	 * is high.
	 *
	 * Thus, the rate at which pages are scanned for replacement will
	 * vary linearly between slowscan and the number of pages that
	 * can be scanned using ~4% of processor time instead of varying
	 * linearly between slowscan and fastscan.
	 *
	 * Also, the processor time used by pageout will vary from ~1%
	 * at slowscan to ~4% at fastscan instead of varying between
	 * ~1% at slowscan and ~10% at fastscan.
	 *
	 * The values chosen for the various VM parameters (fastscan,
	 * handspreadpages, etc) are not universally true for all machines,
	 * but appear to be a good rule of thumb for the machines we've
	 * tested.  They have the following ranges:
	 *
	 *	cpu speed:	20 to 70 Mhz
	 *	page size:	4K to 8K
	 *	memory size:	16M to 5G
	 *	page scan rate:	4000 - 17400 4K pages per sec
	 *
	 * The values need to be re-examined for machines which don't
	 * fall into the various ranges (e.g., slower or faster CPUs,
	 * smaller or larger pagesizes etc) shown above.
	 *
	 * On an MP machine, pageout is often unable to maintain the
	 * minimum paging thresholds under heavy load.  This is due to
	 * the fact that user processes running on other CPU's can be
	 * dirtying memory at a much faster pace than pageout can find
	 * pages to free.  The memory demands could be met by enabling
	 * more than one CPU to run the clock algorithm in such a manner
	 * that the various clock hands don't overlap.  This also makes
	 * it more difficult to determine the values for fastscan, slowscan
	 * and handspreadpages.
	 *
	 * The swapper is currently used to free up memory when pageout
	 * is unable to meet memory demands by swapping out processes.
	 * In addition to freeing up memory, swapping also reduces the
	 * demand for memory by preventing user processes from running
	 * and thereby consuming memory.
	 */
	if (clockinit.ci_maxfastscan == 0) {
		if (pageout_new_spread != 0) {
			maxfastscan = pageout_new_spread;
		} else {
			maxfastscan = MAXHANDSPREADPAGES;
		}
	} else {
		maxfastscan = clockinit.ci_maxfastscan;
	}

	if (clockinit.ci_fastscan == 0) {
		fastscan = MIN(looppages / loopfraction, maxfastscan);
	} else {
		fastscan = clockinit.ci_fastscan;
	}

	if (fastscan > looppages / loopfraction) {
		fastscan = looppages / loopfraction;
	}

	/*
	 * Set slow scan time to 1/10 the fast scan time, but
	 * not to exceed maxslowscan.
	 */
	if (clockinit.ci_slowscan == 0) {
		slowscan = MIN(fastscan / 10, maxslowscan);
	} else {
		slowscan = clockinit.ci_slowscan;
	}

	if (slowscan > fastscan / 2) {
		slowscan = fastscan / 2;
	}

	/*
	 * Handspreadpages is the distance (in pages) between front and back
	 * pageout daemon hands.  The amount of time to reclaim a page
	 * once pageout examines it increases with this distance and
	 * decreases as the scan rate rises. It must be < the amount
	 * of pageable memory.
	 *
	 * Since pageout is limited to ~4% of the CPU, setting handspreadpages
	 * to be "fastscan" results in the front hand being a few secs
	 * (varies based on the processor speed) ahead of the back hand
	 * at fastscan rates.  This distance can be further reduced, if
	 * necessary, by increasing the processor time used by pageout
	 * to be more than ~4% and preferrably not more than ~10%.
	 *
	 * As a result, user processes have a much better chance of
	 * referencing their pages before the back hand examines them.
	 * This also significantly lowers the number of reclaims from
	 * the freelist since pageout does not end up freeing pages which
	 * may be referenced a sec later.
	 */
	if (clockinit.ci_handspreadpages == 0) {
		handspreadpages = fastscan;
	} else {
		handspreadpages = clockinit.ci_handspreadpages;
	}

	/*
	 * Make sure that back hand follows front hand by at least
	 * 1/SCHEDPAGING_HZ seconds.  Without this test, it is possible for the
	 * back hand to look at a page during the same wakeup of the pageout
	 * daemon in which the front hand cleared its ref bit.
	 */
	if (handspreadpages >= looppages) {
		handspreadpages = looppages - 1;
	}

	/*
	 * Establish the minimum and maximum length of time to be spent
	 * scanning pages per wakeup, limiting the scanner duty cycle.  The
	 * input percentage values (0-100) must be converted to a fraction of
	 * the number of nanoseconds in a second of wall time, then further
	 * scaled down by the number of scanner wakeups in a second.
	 */
	min_pageout_nsec = MAX(1,
	    NANOSEC * min_percent_cpu / 100 / SCHEDPAGING_HZ);
	max_pageout_nsec = MAX(min_pageout_nsec,
	    NANOSEC * max_percent_cpu / 100 / SCHEDPAGING_HZ);

	/*
	 * If not called for recalculation, return and skip the remaining
	 * steps.
	 */
	if (!recalc)
		return;

	/*
	 * Set a flag to re-evaluate the clock hand positions.
	 */
	for (uint_t i = 0; i < MAX_PSCAN_THREADS; i++)
		reset_hands[i] = B_TRUE;

	recalc_pagescanners();
}

/*
 * Pageout scheduling.
 *
 * Schedpaging controls the rate at which the page out daemon runs by
 * setting the global variables nscan and desscan SCHEDPAGING_HZ
 * times a second.  Nscan records the number of pages pageout has examined
 * in its current pass; schedpaging() resets this value to zero each time
 * it runs.  Desscan records the number of pages pageout should examine
 * in its next pass; schedpaging() sets this value based on the amount of
 * currently available memory.
 */

static kmutex_t	pageout_mutex;

/*
 * Pool of available async pageout putpage requests.
 */
static struct async_reqs *push_req;
static struct async_reqs *req_freelist;	/* available req structs */
static struct async_reqs *push_list;	/* pending reqs */
static kmutex_t push_lock;		/* protects req pool */
static kcondvar_t push_cv;

/*
 * If pageout() is stuck on a single push for this many seconds,
 * pageout_deadman() will assume the system has hit a memory deadlock.  If set
 * to 0, the deadman will have no effect.
 *
 * Note that we are only looking for stalls in the calls that pageout() makes
 * to VOP_PUTPAGE().  These calls are merely asynchronous requests for paging
 * I/O, which should not take long unless the underlying strategy call blocks
 * indefinitely for memory.  The actual I/O request happens (or fails) later.
 */
uint_t pageout_deadman_seconds = 90;

static uint_t pageout_stucktime = 0;
static bool pageout_pushing = false;
static uint64_t pageout_pushcount = 0;
static uint64_t pageout_pushcount_seen = 0;

static int async_list_size = 8192;	/* number of async request structs */

static void pageout_scanner(void *);

/*
 * If a page is being shared more than "po_share" times
 * then leave it alone- don't page it out.
 */
#define	MIN_PO_SHARE	(8)
#define	MAX_PO_SHARE	((MIN_PO_SHARE) << 24)
ulong_t	po_share = MIN_PO_SHARE;

/*
 * Schedule rate for paging.
 * Rate is linear interpolation between
 * slowscan with lotsfree and fastscan when out of memory.
 */
static void
schedpaging(void *arg)
{
	spgcnt_t vavail;

	if (freemem < lotsfree + needfree + kmem_reapahead)
		kmem_reap();

	if (freemem < lotsfree + needfree)
		seg_preap();

	if (kcage_on && (kcage_freemem < kcage_desfree || kcage_needfree))
		kcage_cageout_wakeup();

	if (mutex_tryenter(&pageout_mutex)) {

		if (pageouts_running != 0)
			goto out;

		/* No pageout scanner threads running. */
		nscan = 0;
		vavail = freemem - deficit;
		if (pageout_new_spread != 0)
			vavail -= needfree;
		vavail = clamp(vavail, 0, lotsfree);

		if (needfree > 0 && pageout_new_spread == 0) {
			/*
			 * If we've not yet collected enough samples to
			 * calculate a spread, use the old logic of kicking
			 * into high gear anytime needfree is non-zero.
			 */
			desscan = fastscan / SCHEDPAGING_HZ;
		} else {
			/*
			 * Once we've calculated a spread based on system
			 * memory and usage, just treat needfree as another
			 * form of deficit.
			 */
			spgcnt_t faststmp, slowstmp, result;

			slowstmp = slowscan * vavail;
			faststmp = fastscan * (lotsfree - vavail);
			result = (slowstmp + faststmp) /
			    nz(lotsfree) / SCHEDPAGING_HZ;
			desscan = (pgcnt_t)result;
		}

		pageout_nsec = min_pageout_nsec + (lotsfree - vavail) *
		    (max_pageout_nsec - min_pageout_nsec) / nz(lotsfree);

		DTRACE_PROBE2(schedpage__calc, pgcnt_t, desscan, hrtime_t,
		    pageout_nsec);

		if (pageout_new_spread != 0 && despagescanners != 0 &&
		    despagescanners != n_page_scanners) {
			/*
			* We have finished the pagescan initialisation and the
			* desired number of page scanners has changed, either
			* because initialisation just finished, because of a
			* memory DR, or because despagescanners has been
			* modified on the fly (i.e. by mdb).
			*/
			uint_t i, curr_nscan = n_page_scanners;

			/* Re-validate despagescanners */
			recalc_pagescanners();

			n_page_scanners = despagescanners;

			for (i = 0; i < MAX_PSCAN_THREADS; i++)
				reset_hands[i] = B_TRUE;

			/* If we need more scanners, start them now. */
			if (n_page_scanners > curr_nscan) {
				for (i = curr_nscan; i < n_page_scanners; i++) {
					(void) lwp_kernel_create(proc_pageout,
					    pageout_scanner,
					    (void *)(uintptr_t)i, TS_RUN,
					    pageout_pri);
				}
			}

			/*
			 * If the number of scanners has decreased, trigger a
			 * wakeup so that the excess threads will terminate.
			 */
			if (n_page_scanners < curr_nscan) {
				WAKE_PAGEOUT_SCANNER();
			}
		}

		zones_over = B_FALSE;

		if (PAGE_SCAN_STARTUP) {
			/*
			 * We still need to measure the rate at which the
			 * system is able to scan pages of memory. Each of
			 * these initial samples is a scan of as much system
			 * memory as practical, regardless of whether or not we
			 * are experiencing memory pressure.
			 */
			desscan = total_pages;
			pageout_nsec = max_pageout_nsec;

			DTRACE_PROBE(schedpage__wake__sample);
			WAKE_PAGEOUT_SCANNER();
		} else if (freemem < lotsfree + needfree) {
			/*
			 * We need more memory.
			 */
			low_mem_scan++;

			DTRACE_PROBE(schedpage__wake__low);
			WAKE_PAGEOUT_SCANNER();
		} else if (zone_num_over_cap > 0) {
			/*
			 * One of more zones are over their cap.
			 */

			/* No page limit */
			desscan = total_pages;

			/*
			* Increase the scanning CPU% to the max. This implies
			* 80% of one CPU/sec if the scanner can run each
			* opportunity. Can also be tuned via setting
			* zone_pageout_nsec in /etc/system or with mdb.
			*/
			pageout_nsec = (zone_pageout_nsec != 0) ?
			   zone_pageout_nsec : max_pageout_nsec;

			zones_over = B_TRUE;
			zone_cap_scan++;

			DTRACE_PROBE(schedpage__wake__zone);
			WAKE_PAGEOUT_SCANNER();
		} else {
			/*
			 * There are enough free pages, no need to
			 * kick the scanner thread.  And next time
			 * around, keep more of the `highly shared'
			 * pages.
			 */
			cv_signal_pageout();
			if (po_share > MIN_PO_SHARE) {
				po_share >>= 1;
			}
		}
out:
		mutex_exit(&pageout_mutex);
	}

	/*
	 * Signal threads waiting for available memory.
	 * NOTE: usually we need to grab memavail_lock before cv_broadcast, but
	 * in this case it is not needed - the waiters will be waken up during
	 * the next invocation of this function.
	 */
	if (kmem_avail() > 0)
		cv_broadcast(&memavail_cv);

	(void) timeout(schedpaging, arg, hz / SCHEDPAGING_HZ);
}

pgcnt_t		pushes;
ulong_t		push_list_size;		/* # of requests on pageout queue */

/*
 * Paging out should always be enabled.  This tunable exists to hold pageout
 * for debugging purposes.  If set to 0, pageout_scanner() will go back to
 * sleep each time it is woken by schedpaging().
 */
uint_t dopageout = 1;

/*
 * The page out daemon, which runs as process 2.
 *
 * The daemon treats physical memory as a circular array of pages and scans
 * the pages using a 'two-handed clock' algorithm. The front hand moves
 * through the pages, clearing the reference bit. The back hand travels a
 * distance (handspreadpages) behind the front hand, freeing the pages that
 * have not been referenced in the time since the front hand passed. If
 * modified, they are first written to their backing store before being
 * freed.
 *
 * In order to make page invalidation more responsive on machines with
 * larger memory, multiple pageout_scanner threads may be created. In this
 * case, each thread is given a segment of the memory "clock face" so that
 * memory can be reclaimed more quickly.
 *
 * As long as there are at least lotsfree pages, or no zones over their
 * cap, then pageout_scanner threads are not run. When pageout_scanner
 * threads are running for case (a), all pages are considered for pageout.
 * For case (b), only pages belonging to a zone over its cap will be
 * considered for pageout.
 *
 * There are multiple threads that act on behalf of the pageout process. A
 * set of threads scan pages (pageout_scanner) and frees them up if they
 * don't require any VOP_PUTPAGE operation. If a page must be written back
 * to its backing store, the request is put on a list and the other
 * (pageout) thread is signaled. The pageout thread grabs VOP_PUTPAGE
 * requests from the list, and processes them. Some filesystems may require
 * resources for the VOP_PUTPAGE operations (like memory) and hence can
 * block the pageout thread, but the scanner thread can still operate.
 * There is still no guarantee that memory deadlocks cannot occur.
 */
void
pageout()
{
	struct async_reqs *arg;
	int i;
	pgcnt_t max_pushes;
	callb_cpr_t cprinfo;

	proc_pageout = ttoproc(curthread);
	proc_pageout->p_cstime = 0;
	proc_pageout->p_stime =  0;
	proc_pageout->p_cutime =  0;
	proc_pageout->p_utime = 0;
	bcopy("pageout", PTOU(curproc)->u_psargs, 8);
	bcopy("pageout", PTOU(curproc)->u_comm, 7);

	/*
	 * Create pageout scanner thread
	 */
	mutex_init(&pageout_mutex, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&push_lock, NULL, MUTEX_DEFAULT, NULL);

	/*
	 * Allocate and initialize the async request structures
	 * for pageout.
	 */
	push_req = (struct async_reqs *)
	    kmem_zalloc(async_list_size * sizeof (struct async_reqs), KM_SLEEP);

	req_freelist = push_req;
	for (i = 0; i < async_list_size - 1; i++) {
		push_req[i].a_next = &push_req[i + 1];
	}

	pageout_pri = curthread->t_pri - 1;

	/* Create the first pageout scanner thread. */
	(void) lwp_kernel_create(proc_pageout, pageout_scanner,
	    (void *)0,	/* this is instance 0, not NULL */
	    TS_RUN, pageout_pri);

	/*
	 * kick off pageout scheduler.
	 */
	schedpaging(NULL);

	/*
	 * Create kernel cage thread.
	 * The kernel cage thread is started under the pageout process
	 * to take advantage of the less restricted page allocation
	 * in page_create_throttle().
	 */
	kcage_cageout_init();

	/*
	 * Limit pushes to avoid saturating pageout devices.
	 */
	max_pushes = maxpgio / SCHEDPAGING_HZ;
	CALLB_CPR_INIT(&cprinfo, &push_lock, callb_generic_cpr, "pageout");

	for (;;) {
		mutex_enter(&push_lock);

		while ((arg = push_list) == NULL || pushes > max_pushes) {
			CALLB_CPR_SAFE_BEGIN(&cprinfo);
			cv_wait(&push_cv, &push_lock);
			pushes = 0;
			CALLB_CPR_SAFE_END(&cprinfo, &push_lock);
		}
		push_list = arg->a_next;
		arg->a_next = NULL;
		pageout_pushing = true;
		mutex_exit(&push_lock);

		DTRACE_PROBE(pageout__push);

		if (VOP_PUTPAGE(arg->a_vp, (offset_t)arg->a_off,
		    arg->a_len, arg->a_flags, arg->a_cred, NULL) == 0) {
			pushes++;
		}

		/* vp held by checkpage() */
		VN_RELE(arg->a_vp);

		mutex_enter(&push_lock);
		pageout_pushing = false;
		pageout_pushcount++;
		arg->a_next = req_freelist;	/* back on freelist */
		req_freelist = arg;
		push_list_size--;
		mutex_exit(&push_lock);
	}
}

/*
 * Kernel thread that scans pages looking for ones to free
 */
static void
pageout_scanner(void *a)
{
	struct page *fronthand, *backhand, *fronthandstart;
	struct page *regionstart, *regionend;
	uint_t laps;
	callb_cpr_t cprinfo;
	pgcnt_t	nscan_cnt, tick;
	pgcnt_t	pcount;
	bool bhwrapping, fhwrapping;
	hrtime_t sample_start, sample_end;
	uint_t inst = (uint_t)(uintptr_t)a;

	VERIFY3U(inst, <, MAX_PSCAN_THREADS);

	CALLB_CPR_INIT(&cprinfo, &pageout_mutex, callb_generic_cpr, "poscan");
	mutex_enter(&pageout_mutex);

	/*
	 * The restart case does not attempt to point the hands at roughly
	 * the right point on the assumption that after one circuit things
	 * will have settled down, and restarts shouldn't be that often.
	 */
	reset_hands[inst] = B_TRUE;

	pageouts_running++;
	mutex_exit(&pageout_mutex);

loop:
	cv_signal_pageout();

	mutex_enter(&pageout_mutex);
	pageouts_running--;
	CALLB_CPR_SAFE_BEGIN(&cprinfo);
	cv_wait(&proc_pageout->p_cv, &pageout_mutex);
	CALLB_CPR_SAFE_END(&cprinfo, &pageout_mutex);
	pageouts_running++;
	mutex_exit(&pageout_mutex);

	/*
	 * Check if pageout has been disabled for debugging purposes.
	 */
	if (!dopageout) {
		goto loop;
	}

	/*
	 * One may reset the clock hands and scanned region for debugging
	 * purposes. Hands will also be reset on first thread startup, if
	 * the number of scanning threads (n_page_scanners) changes, or if
	 * memory is added to, or removed from, the system.
	 */
	if (reset_hands[inst]) {
		struct page *first;

		reset_hands[inst] = B_FALSE;

		if (inst >= n_page_scanners) {
			/*
			* The desired number of page scanners has been
			* reduced and this instance is no longer wanted.
			* Exit the lwp.
			*/
			VERIFY3U(inst, !=, 0);
			DTRACE_PROBE1(pageout__exit, uint_t, inst);
			mutex_enter(&pageout_mutex);
			pageouts_running--;
			mutex_exit(&pageout_mutex);
			mutex_enter(&curproc->p_lock);
			lwp_exit();
			/* NOTREACHED */
		}

		first = page_first();

		/*
		 * Each scanner thread gets its own sector of the memory
		 * clock face.
		 */
		pgcnt_t span, offset;

		span = looppages / n_page_scanners;
		VERIFY3U(span, >, handspreadpages);

		offset = inst * span;
		regionstart = page_nextn(first, offset);
		if (inst == n_page_scanners - 1) {
			/* The last instance goes up to the last page */
			regionend = page_nextn(first, looppages - 1);
		} else {
			regionend = page_nextn(regionstart, span - 1);
		}

		backhand = regionstart;
		fronthand = page_nextn(backhand, handspreadpages);
		tick = 1;

		bhwrapping = fhwrapping = B_FALSE;

		DTRACE_PROBE4(pageout__reset, uint_t, inst,
		    pgcnt_t, regionstart, pgcnt_t, regionend,
		    pgcnt_t, fronthand);
	}

	/*
	 * This CPU kstat is only incremented here and we're obviously
	 * on this CPU, so no lock.
	 */
	CPU_STATS_ADDQ(CPU, vm, pgrrun, 1);

	/*
	 * Keep track of the number of times we have scanned all the way around
	 * the loop on this wakeup.
	 */
	laps = 0;

	/*
	 * Track the number of pages visited during this scan so that we can
	 * periodically measure our duty cycle.
	 */
	nscan_cnt = 0;
	pcount = 0;

	DTRACE_PROBE5(pageout__start, uint_t, inst, pgcnt_t, desscan,
	    hrtime_t, pageout_nsec, page_t *, backhand, page_t *, fronthand);

	/*
	 * Record the initial position of the front hand for this cycle so
	 * that we can detect when the hand wraps around.
	 */
	fronthandstart = fronthand;

	sample_start = gethrtime();

	/*
	 * Scan the appropriate number of pages for a single duty cycle.
	 */
	while (nscan_cnt < desscan) {
		checkpage_result_t rvfront, rvback;

		/*
		 * Only scan while at least one of these is true:
		 *  1) one or more zones is over its cap
		 *  2) there is not enough free memory
		 *  3) during page scan startup when determining sample data
		 */
		if (!PAGE_SCAN_STARTUP && freemem >= lotsfree + needfree &&
		    !zones_over) {
			/*
			 * We are not sampling and enough memory has become
			 * available that scanning is no longer required.
			 */
			DTRACE_PROBE1(pageout__memfree, uint_t, inst);
			break;
		}

		DTRACE_PROBE2(pageout__loop, uint_t, inst, pgcnt_t, pcount);

		/*
		 * Periodically check to see if we have exceeded the CPU duty
		 * cycle for a single wakeup.
		 */
		if ((pcount & PAGES_POLL_MASK) == PAGES_POLL_MASK) {
			hrtime_t pageout_cycle_nsec;

			pageout_cycle_nsec = gethrtime() - sample_start;
			if (pageout_cycle_nsec >= pageout_nsec) {
				if (!zones_over)
					atomic_inc_64(&pageout_timeouts);
				DTRACE_PROBE1(pageout__timeout, uint_t, inst);
				break;
			}
		}

		/*
		 * If checkpage manages to add a page to the free list,
		 * we give ourselves another couple of trips around the loop.
		 */
		if ((rvfront = checkpage(fronthand, POH_FRONT)) == CKP_FREED) {
			laps = 0;
		}
		if ((rvback = checkpage(backhand, POH_BACK)) == CKP_FREED) {
			laps = 0;
		}

		++pcount;

		/*
		 * This CPU kstat is only incremented here and we're obviously
		 * on this CPU, so no lock.
		 */
		CPU_STATS_ADDQ(CPU, vm, scan, 1);

		/*
		 * Don't include ineligible pages in the number scanned.
		 */
		if (rvfront != CKP_INELIGIBLE || rvback != CKP_INELIGIBLE) {
			nscan_cnt++;
		}

		if (bhwrapping) {
			backhand = regionstart;
			bhwrapping = B_FALSE;
		} else {
			backhand = page_nextn(backhand, tick);
			if (backhand == regionend)
				bhwrapping = B_TRUE;
		}

		if (fhwrapping) {
			fronthand = regionstart;
			fhwrapping = B_FALSE;
		} else {
			fronthand = page_nextn(fronthand, tick);
			if (fronthand == regionend)
				fhwrapping = B_TRUE;
		}

		/*
		 * The front hand has wrapped around during this wakeup.
		 */
		if (fronthand == fronthandstart) {
			laps++;
			DTRACE_PROBE2(pageout__hand__wrap, uint_t, inst,
			    uint_t, laps);

			/*
			 * This CPU kstat is only incremented here and we're
			 * obviously on this CPU, so no lock.
			 */
			CPU_STATS_ADDQ(CPU, vm, rev, 1);

			/*
			 * then when we wraparound memory we want to try to
			 * reclaim more pages.
			 * If scanning only because zones are over their cap,
			 * then wrapping is common and we simply keep going.
			*/
			if (laps > 1 && freemem < lotsfree + needfree) {
				/*
				 * Extremely unlikely, but it happens.
				 * We went around the loop at least once
				 * and didn't get far enough.
				 * If we are still skipping `highly shared'
				 * pages, skip fewer of them.  Otherwise,
				 * give up till the next clock tick.
				 */
				if (po_share < MAX_PO_SHARE) {
					po_share <<= 1;
				} else {
					break;
				}
			}
		}
	}

	sample_end = gethrtime();
	atomic_add_long(&nscan, nscan_cnt);

	DTRACE_PROBE4(pageout__end, uint_t, inst, uint_t, laps,
	    pgcnt_t, nscan_cnt, pgcnt_t, pcount)

	/*
	 * The global variables used below are only modified by this thread and
	 * only during initial scanning when there is a single page scanner
	 * thread running.
	 */
	if (pageout_new_spread == 0) {
		VERIFY3U(inst, ==, 0);

		if (PAGE_SCAN_STARTUP) {
			/*
			 * Continue accumulating samples until we have enough
			 * to get a reasonable value for average scan rate.
			 */
			pageout_sample_pages += pcount;
			pageout_sample_etime += sample_end - sample_start;
			++pageout_sample_cnt;
		}

		if (!PAGE_SCAN_STARTUP) {
			/*
			 * We have enough samples, set the spread.
			 */
			pageout_rate = (hrrate_t)pageout_sample_pages *
			    (hrrate_t)(NANOSEC) / pageout_sample_etime;
			pageout_new_spread = pageout_rate / 10;
			setupclock();
		}
	}

	goto loop;
}

/*
 * The pageout deadman is run once per second by clock().
 */
void
pageout_deadman(void)
{
	if (panicstr != NULL) {
		/*
		 * There is no pageout after panic.
		 */
		return;
	}

	if (pageout_deadman_seconds == 0) {
		/*
		 * The deadman is not enabled.
		 */
		return;
	}

	if (!pageout_pushing) {
		goto reset;
	}

	/*
	 * We are pushing a page.  Check to see if it is the same call we saw
	 * last time we looked:
	 */
	if (pageout_pushcount != pageout_pushcount_seen) {
		/*
		 * It is a different call from the last check, so we are not
		 * stuck.
		 */
		goto reset;
	}

	if (++pageout_stucktime >= pageout_deadman_seconds) {
		panic("pageout_deadman: stuck pushing the same page for %d "
		    "seconds (freemem is %lu)", pageout_deadman_seconds,
		    freemem);
	}

	return;

reset:
	/*
	 * Reset our tracking state to reflect that we are not stuck:
	 */
	pageout_stucktime = 0;
	pageout_pushcount_seen = pageout_pushcount;
}

/*
 * Look at the page at hand.  If it is locked (e.g., for physical i/o),
 * system (u., page table) or free, then leave it alone.  Otherwise,
 * if we are running the front hand, turn off the page's reference bit.
 * If the proc is over maxrss, we take it.  If running the back hand,
 * check whether the page has been reclaimed.  If not, free the page,
 * pushing it to disk first if necessary.
 *
 * Return values:
 *	CKP_INELIGIBLE if the page is not a candidate at all,
 *	CKP_NOT_FREED  if the page was not freed, or
 *	CKP_FREED      if we freed it.
 */
static checkpage_result_t
checkpage(struct page *pp, pageout_hand_t whichhand)
{
	int ppattr;
	int isfs = 0;
	int isexec = 0;
	int pagesync_flag;
	zoneid_t zid = ALL_ZONES;

	/*
	 * Skip pages:
	 *	- associated with the kernel vnode since
	 *	    they are always "exclusively" locked.
	 *	- that are free
	 *	- that are shared more than po_share'd times
	 *	- its already locked
	 *
	 * NOTE:  These optimizations assume that reads are atomic.
	 */

	if (PP_ISKAS(pp) || PAGE_LOCKED(pp) || PP_ISFREE(pp) ||
	    pp->p_lckcnt != 0 || pp->p_cowcnt != 0 ||
	    hat_page_checkshare(pp, po_share)) {
		return (CKP_INELIGIBLE);
	}

	if (!page_trylock(pp, SE_EXCL)) {
		/*
		 * Skip the page if we can't acquire the "exclusive" lock.
		 */
		return (CKP_INELIGIBLE);
	} else if (PP_ISFREE(pp)) {
		/*
		 * It became free between the above check and our actually
		 * locking the page.  Oh well, there will be other pages.
		 */
		page_unlock(pp);
		return (CKP_INELIGIBLE);
	}

	/*
	 * Reject pages that cannot be freed. The page_struct_lock
	 * need not be acquired to examine these
	 * fields since the page has an "exclusive" lock.
	 */
	if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
		page_unlock(pp);
		return (CKP_INELIGIBLE);
	}

	if (zones_over) {
		ASSERT(pp->p_zoneid == ALL_ZONES ||
		    pp->p_zoneid >= 0 && pp->p_zoneid <= MAX_ZONEID);
		if (pp->p_zoneid == ALL_ZONES ||
		    zone_pdata[pp->p_zoneid].zpers_over == 0) {
			/*
			* Cross-zone shared page, or zone not over it's cap.
			* Leave the page alone.
			*/
			page_unlock(pp);
			return (CKP_INELIGIBLE);
		}
		zid = pp->p_zoneid;
	}

	/*
	 * Maintain statistics for what we are freeing
	 */
	if (pp->p_vnode != NULL) {
		if (pp->p_vnode->v_flag & VVMEXEC)
			isexec = 1;

		if (!IS_SWAPFSVP(pp->p_vnode))
			isfs = 1;
	}

	/*
	 * Turn off REF and MOD bits with the front hand.
	 * The back hand examines the REF bit and always considers
	 * SHARED pages as referenced.
	 */
	if (whichhand == POH_FRONT) {
		pagesync_flag = HAT_SYNC_ZERORM;
	} else {
		pagesync_flag = HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_REF |
		    HAT_SYNC_STOPON_SHARED;
	}

	ppattr = hat_pagesync(pp, pagesync_flag);

recheck:
	/*
	 * If page is referenced; make unreferenced but reclaimable.
	 * If this page is not referenced, then it must be reclaimable
	 * and we can add it to the free list.
	 */
	if (ppattr & P_REF) {
		DTRACE_PROBE2(pageout__isref, page_t *, pp,
		    pageout_hand_t, whichhand);

		if (whichhand == POH_FRONT) {
			/*
			 * Checking of rss or madvise flags needed here...
			 *
			 * If not "well-behaved", fall through into the code
			 * for not referenced.
			 */
			hat_clrref(pp);
		}

		/*
		 * Somebody referenced the page since the front
		 * hand went by, so it's not a candidate for
		 * freeing up.
		 */
		page_unlock(pp);
		return (CKP_NOT_FREED);
	}

	VM_STAT_ADD(pageoutvmstats.checkpage[0]);

	/*
	 * If large page, attempt to demote it. If successfully demoted,
	 * retry the checkpage.
	 */
	if (pp->p_szc != 0) {
		if (!page_try_demote_pages(pp)) {
			VM_STAT_ADD(pageoutvmstats.checkpage[1]);
			page_unlock(pp);
			return (CKP_INELIGIBLE);
		}

		ASSERT(pp->p_szc == 0);
		VM_STAT_ADD(pageoutvmstats.checkpage[2]);

		/*
		 * Since page_try_demote_pages() could have unloaded some
		 * mappings it makes sense to reload ppattr.
		 */
		ppattr = hat_page_getattr(pp, P_MOD | P_REF);
	}

	/*
	 * If the page is currently dirty, we have to arrange to have it
	 * cleaned before it can be freed.
	 *
	 * XXX - ASSERT(pp->p_vnode != NULL);
	 */
	if ((ppattr & P_MOD) && pp->p_vnode != NULL) {
		struct vnode *vp = pp->p_vnode;
		u_offset_t offset = pp->p_offset;

		/*
		 * XXX - Test for process being swapped out or about to exit?
		 * [Can't get back to process(es) using the page.]
		 */

		/*
		 * Hold the vnode before releasing the page lock to
		 * prevent it from being freed and re-used by some
		 * other thread.
		 */
		VN_HOLD(vp);
		page_unlock(pp);

		/*
		 * Queue I/O request for the pageout thread.
		 */
		if (!queue_io_request(vp, offset)) {
			VN_RELE(vp);
			return (CKP_NOT_FREED);
		}
		if (isfs) {
			zone_pageout_stat(zid, ZPO_DIRTY);
		} else {
			zone_pageout_stat(zid, ZPO_ANONDIRTY);
		}
		return (CKP_FREED);
	}

	/*
	 * Now we unload all the translations and put the page back on to the
	 * free list.  If the page was used (referenced or modified) after the
	 * pagesync but before it was unloaded we catch it and handle the page
	 * properly.
	 */
	DTRACE_PROBE2(pageout__free, page_t *, pp, pageout_hand_t, whichhand);
	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
	ppattr = hat_page_getattr(pp, P_MOD | P_REF);
	if ((ppattr & P_REF) || ((ppattr & P_MOD) && pp->p_vnode != NULL)) {
		goto recheck;
	}

	VN_DISPOSE(pp, B_FREE, 0, kcred);

	CPU_STATS_ADD_K(vm, dfree, 1);

	if (isfs) {
		if (isexec) {
			CPU_STATS_ADD_K(vm, execfree, 1);
		} else {
			CPU_STATS_ADD_K(vm, fsfree, 1);
		}
		zone_pageout_stat(zid, ZPO_FS);
	} else {
		CPU_STATS_ADD_K(vm, anonfree, 1);
		zone_pageout_stat(zid, ZPO_ANON);
	}

	return (CKP_FREED);
}

/*
 * Queue async i/o request from pageout_scanner and segment swapout
 * routines on one common list.  This ensures that pageout devices (swap)
 * are not saturated by pageout_scanner or swapout requests.
 * The pageout thread empties this list by initiating i/o operations.
 */
int
queue_io_request(vnode_t *vp, u_offset_t off)
{
	struct async_reqs *arg;

	/*
	 * If we cannot allocate an async request struct,
	 * skip this page.
	 */
	mutex_enter(&push_lock);
	if ((arg = req_freelist) == NULL) {
		mutex_exit(&push_lock);
		return (0);
	}
	req_freelist = arg->a_next;		/* adjust freelist */
	push_list_size++;

	arg->a_vp = vp;
	arg->a_off = off;
	arg->a_len = PAGESIZE;
	arg->a_flags = B_ASYNC | B_FREE;
	arg->a_cred = kcred;		/* always held */

	/*
	 * Add to list of pending write requests.
	 */
	arg->a_next = push_list;
	push_list = arg;

	if (req_freelist == NULL) {
		/*
		 * No free async requests left. The lock is held so we
		 * might as well signal the pusher thread now.
		 */
		cv_signal(&push_cv);
	}
	mutex_exit(&push_lock);
	return (1);
}

/*
 * Wakeup pageout to initiate i/o if push_list is not empty.
 */
void
cv_signal_pageout()
{
	if (push_list != NULL) {
		mutex_enter(&push_lock);
		cv_signal(&push_cv);
		mutex_exit(&push_lock);
	}
}