summaryrefslogtreecommitdiff
path: root/usr/src/uts/i86pc/ml/syscall_asm_amd64.s
blob: 8a68b4bcede1c37d8376fbdd3f9a0f07f054e4f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2019 Joyent, Inc.
 * Copyright (c) 2016 by Delphix. All rights reserved.
 */

#include <sys/asm_linkage.h>
#include <sys/asm_misc.h>
#include <sys/regset.h>
#include <sys/privregs.h>
#include <sys/psw.h>
#include <sys/machbrand.h>

#include <sys/segments.h>
#include <sys/pcb.h>
#include <sys/trap.h>
#include <sys/ftrace.h>
#include <sys/traptrace.h>
#include <sys/clock.h>
#include <sys/model.h>
#include <sys/panic.h>

#if defined(__xpv)
#include <sys/hypervisor.h>
#endif

#include "assym.h"

/*
 * We implement five flavours of system call entry points
 *
 * -	syscall/sysretq		(amd64 generic)
 * -	syscall/sysretl		(i386 plus SYSC bit)
 * -	sysenter/sysexit	(i386 plus SEP bit)
 * -	int/iret		(i386 generic)
 * -	lcall/iret		(i386 generic)
 *
 * The current libc included in Solaris uses int/iret as the base unoptimized
 * kernel entry method. Older libc implementations and legacy binaries may use
 * the lcall call gate, so it must continue to be supported.
 *
 * System calls that use an lcall call gate are processed in trap() via a
 * segment-not-present trap, i.e. lcalls are extremely slow(!).
 *
 * The basic pattern used in the 32-bit SYSC handler at this point in time is
 * to have the bare minimum of assembler, and get to the C handlers as
 * quickly as possible.
 *
 * The 64-bit handler is much closer to the sparcv9 handler; that's
 * because of passing arguments in registers.  The 32-bit world still
 * passes arguments on the stack -- that makes that handler substantially
 * more complex.
 *
 * The two handlers share a few code fragments which are broken
 * out into preprocessor macros below.
 *
 * XX64	come back and speed all this up later.  The 32-bit stuff looks
 * especially easy to speed up the argument copying part ..
 *
 *
 * Notes about segment register usage (c.f. the 32-bit kernel)
 *
 * In the 32-bit kernel, segment registers are dutifully saved and
 * restored on all mode transitions because the kernel uses them directly.
 * When the processor is running in 64-bit mode, segment registers are
 * largely ignored.
 *
 * %cs and %ss
 *	controlled by the hardware mechanisms that make mode transitions
 *
 * The remaining segment registers have to either be pointing at a valid
 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
 *
 * %ds and %es
 *	always ignored
 *
 * %fs and %gs
 *	fsbase and gsbase are used to control the place they really point at.
 *	The kernel only depends on %gs, and controls its own gsbase via swapgs
 *
 * Note that loading segment registers is still costly because the GDT
 * lookup still happens (this is because the hardware can't know that we're
 * not setting up these segment registers for a 32-bit program).  Thus we
 * avoid doing this in the syscall path, and defer them to lwp context switch
 * handlers, so the register values remain virtualized to the lwp.
 */

#if defined(SYSCALLTRACE)
#define	ORL_SYSCALLTRACE(r32)		\
	orl	syscalltrace(%rip), r32
#else
#define	ORL_SYSCALLTRACE(r32)
#endif

/*
 * In the 32-bit kernel, we do absolutely nothing before getting into the
 * brand callback checks.  In 64-bit land, we do swapgs and then come here.
 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
 * are still unused.
 *
 * Check if a brand_mach_ops callback is defined for the specified callback_id
 * type.  If so invoke it with the kernel's %gs value loaded and the following
 * data on the stack:
 *
 * stack:  --------------------------------------
 *      32 | callback pointer			|
 *    | 24 | user (or interrupt) stack pointer	|
 *    | 16 | lwp pointer			|
 *    v  8 | userland return address		|
 *       0 | callback wrapper return addr	|
 *         --------------------------------------
 *
 * Since we're pushing the userland return address onto the kernel stack
 * we need to get that address without accessing the user's stack (since we
 * can't trust that data).  There are different ways to get the userland
 * return address depending on how the syscall trap was made:
 *
 * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
 * b) For sys_sysenter the return address is in %rdx.
 * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
 *    the stack pointer points at the state saved when we took the interrupt:
 *	 ------------------------
 *    |  | user's %ss		|
 *    |  | user's %esp		|
 *    |  | EFLAGS register	|
 *    v  | user's %cs		|
 *       | user's %eip		|
 *	 ------------------------
 *
 * The 2nd parameter to the BRAND_CALLBACK macro is either the
 * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro.  These macros are
 * used to generate the proper code to get the userland return address for
 * each syscall entry point.
 *
 * The interface to the brand callbacks on the 64-bit kernel assumes %r15
 * is available as a scratch register within the callback.  If the callback
 * returns within the kernel then this macro will restore %r15.  If the
 * callback is going to return directly to userland then it should restore
 * %r15 before returning to userland.
 */
#define BRAND_URET_FROM_REG(rip_reg)					\
	pushq	rip_reg			/* push the return address	*/

/*
 * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
 * is currently pointing at the user return address (%eip).
 */
#define BRAND_URET_FROM_INTR_STACK()					\
	movq	%gs:CPU_RTMP_RSP, %r15	/* grab the intr. stack pointer	*/ ;\
	pushq	(%r15)			/* push the return address	*/

#define	BRAND_CALLBACK(callback_id, push_userland_ret)			    \
	movq	%rsp, %gs:CPU_RTMP_RSP	/* save the stack pointer	*/ ;\
	movq	%r15, %gs:CPU_RTMP_R15	/* save %r15			*/ ;\
	movq	%gs:CPU_THREAD, %r15	/* load the thread pointer	*/ ;\
	movq	T_STACK(%r15), %rsp	/* switch to the kernel stack	*/ ;\
	subq	$16, %rsp		/* save space for 2 pointers	*/ ;\
	pushq	%r14			/* save %r14			*/ ;\
	movq	%gs:CPU_RTMP_RSP, %r14					   ;\
	movq	%r14, 8(%rsp)		/* stash the user stack pointer	*/ ;\
	popq	%r14			/* restore %r14			*/ ;\
	movq	T_LWP(%r15), %r15	/* load the lwp pointer		*/ ;\
	pushq	%r15			/* push the lwp pointer		*/ ;\
	movq	LWP_PROCP(%r15), %r15	/* load the proc pointer	*/ ;\
	movq	P_BRAND(%r15), %r15	/* load the brand pointer	*/ ;\
	movq	B_MACHOPS(%r15), %r15	/* load the machops pointer	*/ ;\
	movq	_CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15		   ;\
	cmpq	$0, %r15						   ;\
	je	1f							   ;\
	movq	%r15, 16(%rsp)		/* save the callback pointer	*/ ;\
	push_userland_ret		/* push the return address	*/ ;\
	movq	24(%rsp), %r15		/* load callback pointer	*/ ;\
	INDIRECT_CALL_REG(r15)		/* call callback		*/ ;\
1:	movq	%gs:CPU_RTMP_R15, %r15	/* restore %r15			*/ ;\
	movq	%gs:CPU_RTMP_RSP, %rsp	/* restore the stack pointer	*/

#define	MSTATE_TRANSITION(from, to)		\
	movl	$from, %edi;			\
	movl	$to, %esi;			\
	call	syscall_mstate

/*
 * Check to see if a simple (direct) return is possible i.e.
 *
 *	if (t->t_post_sys_ast | syscalltrace |
 *	    lwp->lwp_pcb.pcb_rupdate == 1)
 *		do full version	;
 *
 * Preconditions:
 * -	t is curthread
 * Postconditions:
 * -	condition code NE is set if post-sys is too complex
 * -	rtmp is zeroed if it isn't (we rely on this!)
 * -	ltmp is smashed
 */
#define	CHECK_POSTSYS_NE(t, ltmp, rtmp)			\
	movq	T_LWP(t), ltmp;				\
	movzbl	PCB_RUPDATE(ltmp), rtmp;		\
	ORL_SYSCALLTRACE(rtmp);				\
	orl	T_POST_SYS_AST(t), rtmp;		\
	cmpl	$0, rtmp

/*
 * Fix up the lwp, thread, and eflags for a successful return
 *
 * Preconditions:
 * -	zwreg contains zero
 */
#define	SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg)		\
	movb	$LWP_USER, LWP_STATE(lwp);		\
	movw	zwreg, T_SYSNUM(t);			\
	andb	$_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)

/*
 * ASSERT(lwptoregs(lwp) == rp);
 *
 * This may seem obvious, but very odd things happen if this
 * assertion is false
 *
 * Preconditions:
 *	(%rsp is ready for normal call sequence)
 * Postconditions (if assertion is true):
 *	%r11 is smashed
 *
 * ASSERT(rp->r_cs == descnum)
 *
 * The code selector is written into the regs structure when the
 * lwp stack is created.  We use this ASSERT to validate that
 * the regs structure really matches how we came in.
 *
 * Preconditions:
 *	(%rsp is ready for normal call sequence)
 * Postconditions (if assertion is true):
 *	-none-
 *
 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
 *
 * If this is false, it meant that we returned to userland without
 * updating the segment registers as we were supposed to.
 *
 * Note that we must ensure no interrupts or other traps intervene
 * between entering privileged mode and performing the assertion,
 * otherwise we may perform a context switch on the thread, which
 * will end up setting pcb_rupdate to 1 again.
 *
 * ASSERT(%cr0 & CR0_TS == 0);
 * Preconditions:
 *	(%rsp is ready for normal call sequence)
 * Postconditions (if assertion is true):
 *      (specified register is clobbered)
 *
 * Check to make sure that we are returning to user land and that CR0.TS
 * is not set. This is required as part of the eager FPU (see
 * uts/intel/os/fpu.c for more information).
 */

#if defined(DEBUG)

__lwptoregs_msg:
	.string	"syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"

__codesel_msg:
	.string	"syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"

__no_rupdate_msg:
	.string	"syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"

__bad_ts_msg:
	.string "syscall_asm_amd64.s:%d CR0.TS set on user return"

#define	ASSERT_LWPTOREGS(lwp, rp)			\
	movq	LWP_REGS(lwp), %r11;			\
	cmpq	rp, %r11;				\
	je	7f;					\
	leaq	__lwptoregs_msg(%rip), %rdi;		\
	movl	$__LINE__, %esi;			\
	movq	lwp, %rdx;				\
	movq	%r11, %rcx;				\
	movq	rp, %r8;				\
	xorl	%eax, %eax;				\
	call	panic;					\
7:

#define	ASSERT_NO_RUPDATE_PENDING(lwp)			\
	testb	$0x1, PCB_RUPDATE(lwp);			\
	je	8f;					\
	movq	lwp, %rdx;				\
	leaq	__no_rupdate_msg(%rip), %rdi;		\
	movl	$__LINE__, %esi;			\
	xorl	%eax, %eax;				\
	call	panic;					\
8:

#define	ASSERT_CR0TS_ZERO(reg)				\
	movq	%cr0, reg;				\
	testq	$CR0_TS, reg;				\
	jz	9f;					\
	leaq	__bad_ts_msg(%rip), %rdi;		\
	movl	$__LINE__, %esi;			\
	xorl	%eax, %eax;				\
	call	panic;					\
9:

#else
#define	ASSERT_LWPTOREGS(lwp, rp)
#define	ASSERT_NO_RUPDATE_PENDING(lwp)
#define	ASSERT_CR0TS_ZERO(reg)
#endif

/*
 * Do the traptrace thing and restore any registers we used
 * in situ.  Assumes that %rsp is pointing at the base of
 * the struct regs, obviously ..
 */
#ifdef TRAPTRACE
#define	SYSCALL_TRAPTRACE(ttype)				\
	TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype);		\
	TRACE_REGS(%rdi, %rsp, %rbx, %rcx);			\
	TRACE_STAMP(%rdi);	/* rdtsc clobbers %eax, %edx */	\
	movq	REGOFF_RAX(%rsp), %rax;				\
	movq	REGOFF_RBX(%rsp), %rbx;				\
	movq	REGOFF_RCX(%rsp), %rcx;				\
	movq	REGOFF_RDX(%rsp), %rdx;				\
	movl	%eax, TTR_SYSNUM(%rdi);				\
	movq	REGOFF_RDI(%rsp), %rdi

#define	SYSCALL_TRAPTRACE32(ttype)				\
	SYSCALL_TRAPTRACE(ttype);				\
	/* paranoia: clean the top 32-bits of the registers */	\
	orl	%eax, %eax;					\
	orl	%ebx, %ebx;					\
	orl	%ecx, %ecx;					\
	orl	%edx, %edx;					\
	orl	%edi, %edi
#else	/* TRAPTRACE */
#define	SYSCALL_TRAPTRACE(ttype)
#define	SYSCALL_TRAPTRACE32(ttype)
#endif	/* TRAPTRACE */

/*
 * The 64-bit libc syscall wrapper does this:
 *
 * fn(<args>)
 * {
 *	movq	%rcx, %r10	-- because syscall smashes %rcx
 *	movl	$CODE, %eax
 *	syscall
 *	<error processing>
 * }
 *
 * Thus when we come into the kernel:
 *
 *	%rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
 *	%rax is the syscall number
 *	%r12-%r15 contain caller state
 *
 * The syscall instruction arranges that:
 *
 *	%rcx contains the return %rip
 *	%r11d contains bottom 32-bits of %rflags
 *	%rflags is masked (as determined by the SFMASK msr)
 *	%cs is set to UCS_SEL (as determined by the STAR msr)
 *	%ss is set to UDS_SEL (as determined by the STAR msr)
 *	%rip is set to sys_syscall (as determined by the LSTAR msr)
 *
 * Or in other words, we have no registers available at all.
 * Only swapgs can save us!
 *
 * Under the hypervisor, the swapgs has happened already.  However, the
 * state of the world is very different from that we're familiar with.
 *
 * In particular, we have a stack structure like that for interrupt
 * gates, except that the %cs and %ss registers are modified for reasons
 * that are not entirely clear.  Critically, the %rcx/%r11 values do
 * *not* reflect the usage of those registers under a 'real' syscall[1];
 * the stack, therefore, looks like this:
 *
 *	0x0(rsp)	potentially junk %rcx
 *	0x8(rsp)	potentially junk %r11
 *	0x10(rsp)	user %rip
 *	0x18(rsp)	modified %cs
 *	0x20(rsp)	user %rflags
 *	0x28(rsp)	user %rsp
 *	0x30(rsp)	modified %ss
 *
 *
 * and before continuing on, we must load the %rip into %rcx and the
 * %rflags into %r11.
 *
 * [1] They used to, and we relied on it, but this was broken in 3.1.1.
 * Sigh.
 */
#if defined(__xpv)
#define	XPV_SYSCALL_PROD						\
	movq	0x10(%rsp), %rcx;					\
	movq	0x20(%rsp), %r11;					\
	movq	0x28(%rsp), %rsp
#else
#define	XPV_SYSCALL_PROD /* nothing */
#endif

	ENTRY_NP2(brand_sys_syscall,_allsyscalls)
	SWAPGS				/* kernel gsbase */
	XPV_SYSCALL_PROD
	BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
	jmp	noprod_sys_syscall

	ALTENTRY(sys_syscall)
	SWAPGS				/* kernel gsbase */
	XPV_SYSCALL_PROD

noprod_sys_syscall:
	movq	%r15, %gs:CPU_RTMP_R15
	movq	%rsp, %gs:CPU_RTMP_RSP

	movq	%gs:CPU_THREAD, %r15
	movq	T_STACK(%r15), %rsp	/* switch from user to kernel stack */

	ASSERT_UPCALL_MASK_IS_SET

	movl	$UCS_SEL, REGOFF_CS(%rsp)
	movq	%rcx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
	movl	$UDS_SEL, REGOFF_SS(%rsp)

	movl	%eax, %eax			/* wrapper: sysc# -> %eax */
	movq	%rdi, REGOFF_RDI(%rsp)
	movq	%rsi, REGOFF_RSI(%rsp)
	movq	%rdx, REGOFF_RDX(%rsp)
	movq	%r10, REGOFF_RCX(%rsp)		/* wrapper: %rcx -> %r10 */
	movq	%r10, %rcx			/* arg[3] for direct calls */

	movq	%r8, REGOFF_R8(%rsp)
	movq	%r9, REGOFF_R9(%rsp)
	movq	%rax, REGOFF_RAX(%rsp)
	movq	%rbx, REGOFF_RBX(%rsp)

	movq	%rbp, REGOFF_RBP(%rsp)
	movq	%r10, REGOFF_R10(%rsp)
	movq	%gs:CPU_RTMP_RSP, %r11
	movq	%r11, REGOFF_RSP(%rsp)
	movq	%r12, REGOFF_R12(%rsp)

	movq	%r13, REGOFF_R13(%rsp)
	movq	%r14, REGOFF_R14(%rsp)
	movq	%gs:CPU_RTMP_R15, %r10
	movq	%r10, REGOFF_R15(%rsp)
	movq	$0, REGOFF_SAVFP(%rsp)
	movq	$0, REGOFF_SAVPC(%rsp)

	/*
	 * Copy these registers here in case we end up stopped with
	 * someone (like, say, /proc) messing with our register state.
	 * We don't -restore- them unless we have to in update_sregs.
	 *
	 * Since userland -can't- change fsbase or gsbase directly,
	 * and capturing them involves two serializing instructions,
	 * we don't bother to capture them here.
	 */
	xorl	%ebx, %ebx
	movw	%ds, %bx
	movq	%rbx, REGOFF_DS(%rsp)
	movw	%es, %bx
	movq	%rbx, REGOFF_ES(%rsp)
	movw	%fs, %bx
	movq	%rbx, REGOFF_FS(%rsp)
	movw	%gs, %bx
	movq	%rbx, REGOFF_GS(%rsp)

	/*
	 * If we're trying to use TRAPTRACE though, I take that back: we're
	 * probably debugging some problem in the SWAPGS logic and want to know
	 * what the incoming gsbase was.
	 *
	 * Since we already did SWAPGS, record the KGSBASE.
	 */
#if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
	movl	$MSR_AMD_KGSBASE, %ecx
	rdmsr
	movl	%eax, REGOFF_GSBASE(%rsp)
	movl	%edx, REGOFF_GSBASE+4(%rsp)
#endif

	/*
	 * Machine state saved in the regs structure on the stack
	 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
	 * %eax is the syscall number
	 * %rsp is the thread's stack, %r15 is curthread
	 * REG_RSP(%rsp) is the user's stack
	 */

	SYSCALL_TRAPTRACE($TT_SYSC64)

	movq	%rsp, %rbp

	movq	T_LWP(%r15), %r14
	ASSERT_NO_RUPDATE_PENDING(%r14)
	ENABLE_INTR_FLAGS

	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */

	ASSERT_LWPTOREGS(%r14, %rsp)

	movb	$LWP_SYS, LWP_STATE(%r14)
	incq	LWP_RU_SYSC(%r14)
	movb	$NORMALRETURN, LWP_EOSYS(%r14)

	incq	%gs:CPU_STATS_SYS_SYSCALL

	movw	%ax, T_SYSNUM(%r15)
	movzbl	T_PRE_SYS(%r15), %ebx
	ORL_SYSCALLTRACE(%ebx)
	testl	%ebx, %ebx
	jne	_syscall_pre

_syscall_invoke:
	movq	REGOFF_RDI(%rbp), %rdi
	movq	REGOFF_RSI(%rbp), %rsi
	movq	REGOFF_RDX(%rbp), %rdx
	movq	REGOFF_RCX(%rbp), %rcx
	movq	REGOFF_R8(%rbp), %r8
	movq	REGOFF_R9(%rbp), %r9

	cmpl	$NSYSCALL, %eax
	jae	_syscall_ill
	shll	$SYSENT_SIZE_SHIFT, %eax
	leaq	sysent(%rax), %rbx

	movq	SY_CALLC(%rbx), %rax
	INDIRECT_CALL_REG(rax)

	movq	%rax, %r12
	movq	%rdx, %r13

	/*
	 * If the handler returns two ints, then we need to split the
	 * 64-bit return value into two 32-bit values.
	 */
	testw	$SE_32RVAL2, SY_FLAGS(%rbx)
	je	5f
	movq	%r12, %r13
	shrq	$32, %r13	/* upper 32-bits into %edx */
	movl	%r12d, %r12d	/* lower 32-bits into %eax */
5:
	/*
	 * Optimistically assume that there's no post-syscall
	 * work to do.  (This is to avoid having to call syscall_mstate()
	 * with interrupts disabled)
	 */
	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)

	/*
	 * We must protect ourselves from being descheduled here;
	 * If we were, and we ended up on another cpu, or another
	 * lwp got in ahead of us, it could change the segment
	 * registers without us noticing before we return to userland.
	 */
	CLI(%r14)
	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
	jne	_syscall_post

	/*
	 * We need to protect ourselves against non-canonical return values
	 * because Intel doesn't check for them on sysret (AMD does).  Canonical
	 * addresses on current amd64 processors only use 48-bits for VAs; an
	 * address is canonical if all upper bits (47-63) are identical. If we
	 * find a non-canonical %rip, we opt to go through the full
	 * _syscall_post path which takes us into an iretq which is not
	 * susceptible to the same problems sysret is.
	 *
	 * We're checking for a canonical address by first doing an arithmetic
	 * shift. This will fill in the remaining bits with the value of bit 63.
	 * If the address were canonical, the register would now have either all
	 * zeroes or all ones in it. Therefore we add one (inducing overflow)
	 * and compare against 1. A canonical address will either be zero or one
	 * at this point, hence the use of ja.
	 *
	 * At this point, r12 and r13 have the return value so we can't use
	 * those registers.
	 */
	movq	REGOFF_RIP(%rsp), %rcx
	sarq	$47, %rcx
	incq	%rcx
	cmpq	$1, %rcx
	ja	_syscall_post


	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)

	movq	%r12, REGOFF_RAX(%rsp)
	movq	%r13, REGOFF_RDX(%rsp)

	/*
	 * Clobber %r11 as we check CR0.TS.
	 */
	ASSERT_CR0TS_ZERO(%r11)

	/*
	 * Unlike other cases, because we need to restore the user stack pointer
	 * before exiting the kernel we must clear the microarch state before
	 * getting here. This should be safe because it means that the only
	 * values on the bus after this are based on the user's registers and
	 * potentially the addresses where we stored them. Given the constraints
	 * of sysret, that's how it has to be.
	 */
	call	x86_md_clear

	/*
	 * To get back to userland, we need the return %rip in %rcx and
	 * the return %rfl in %r11d.  The sysretq instruction also arranges
	 * to fix up %cs and %ss; everything else is our responsibility.
	 */
	movq	REGOFF_RDI(%rsp), %rdi
	movq	REGOFF_RSI(%rsp), %rsi
	movq	REGOFF_RDX(%rsp), %rdx
	/* %rcx used to restore %rip value */

	movq	REGOFF_R8(%rsp), %r8
	movq	REGOFF_R9(%rsp), %r9
	movq	REGOFF_RAX(%rsp), %rax
	movq	REGOFF_RBX(%rsp), %rbx

	movq	REGOFF_RBP(%rsp), %rbp
	movq	REGOFF_R10(%rsp), %r10
	/* %r11 used to restore %rfl value */
	movq	REGOFF_R12(%rsp), %r12

	movq	REGOFF_R13(%rsp), %r13
	movq	REGOFF_R14(%rsp), %r14
	movq	REGOFF_R15(%rsp), %r15

	movq	REGOFF_RIP(%rsp), %rcx
	movl	REGOFF_RFL(%rsp), %r11d

#if defined(__xpv)
	addq	$REGOFF_RIP, %rsp
#else
	movq	REGOFF_RSP(%rsp), %rsp
#endif

        /*
         * There can be no instructions between the ALTENTRY below and
	 * SYSRET or we could end up breaking brand support. See label usage
         * in sn1_brand_syscall_callback for an example.
         */
	ASSERT_UPCALL_MASK_IS_SET
#if defined(__xpv)
	SYSRETQ
        ALTENTRY(nopop_sys_syscall_swapgs_sysretq)

	/*
	 * We can only get here after executing a brand syscall
	 * interposition callback handler and simply need to
	 * "sysretq" back to userland. On the hypervisor this
	 * involves the iret hypercall which requires us to construct
	 * just enough of the stack needed for the hypercall.
	 * (rip, cs, rflags, rsp, ss).
	 */
	movq    %rsp, %gs:CPU_RTMP_RSP		/* save user's rsp */
	movq	%gs:CPU_THREAD, %r11
	movq	T_STACK(%r11), %rsp

	movq	%rcx, REGOFF_RIP(%rsp)
	movl	$UCS_SEL, REGOFF_CS(%rsp)
	movq	%gs:CPU_RTMP_RSP, %r11
	movq	%r11, REGOFF_RSP(%rsp)
	pushfq
	popq	%r11				/* hypercall enables ints */
	movq	%r11, REGOFF_RFL(%rsp)
	movl	$UDS_SEL, REGOFF_SS(%rsp)
	addq	$REGOFF_RIP, %rsp
	/*
	 * XXPV: see comment in SYSRETQ definition for future optimization
	 *       we could take.
	 */
	ASSERT_UPCALL_MASK_IS_SET
	SYSRETQ
#else
        ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
	jmp	tr_sysretq
#endif
        /*NOTREACHED*/
        SET_SIZE(nopop_sys_syscall_swapgs_sysretq)

_syscall_pre:
	call	pre_syscall
	movl	%eax, %r12d
	testl	%eax, %eax
	jne	_syscall_post_call
	/*
	 * Didn't abort, so reload the syscall args and invoke the handler.
	 */
	movzwl	T_SYSNUM(%r15), %eax
	jmp	_syscall_invoke

_syscall_ill:
	call	nosys
	movq	%rax, %r12
	movq	%rdx, %r13
	jmp	_syscall_post_call

_syscall_post:
	STI
	/*
	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
	 * so that we can account for the extra work it takes us to finish.
	 */
	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
_syscall_post_call:
	movq	%r12, %rdi
	movq	%r13, %rsi
	call	post_syscall
	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
	jmp	_sys_rtt
	SET_SIZE(sys_syscall)
	SET_SIZE(brand_sys_syscall)

	ENTRY_NP(brand_sys_syscall32)
	SWAPGS				/* kernel gsbase */
	XPV_TRAP_POP
	BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
	jmp	nopop_sys_syscall32

	ALTENTRY(sys_syscall32)
	SWAPGS				/* kernel gsbase */
	XPV_TRAP_POP

nopop_sys_syscall32:
	movl	%esp, %r10d
	movq	%gs:CPU_THREAD, %r15
	movq	T_STACK(%r15), %rsp
	movl	%eax, %eax

	movl	$U32CS_SEL, REGOFF_CS(%rsp)
	movl	%ecx, REGOFF_RIP(%rsp)		/* syscall: %rip -> %rcx */
	movq	%r11, REGOFF_RFL(%rsp)		/* syscall: %rfl -> %r11d */
	movq	%r10, REGOFF_RSP(%rsp)
	movl	$UDS_SEL, REGOFF_SS(%rsp)

_syscall32_save:
	movl	%edi, REGOFF_RDI(%rsp)
	movl	%esi, REGOFF_RSI(%rsp)
	movl	%ebp, REGOFF_RBP(%rsp)
	movl	%ebx, REGOFF_RBX(%rsp)
	movl	%edx, REGOFF_RDX(%rsp)
	movl	%ecx, REGOFF_RCX(%rsp)
	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
	movq	$0, REGOFF_SAVFP(%rsp)
	movq	$0, REGOFF_SAVPC(%rsp)

	/*
	 * Copy these registers here in case we end up stopped with
	 * someone (like, say, /proc) messing with our register state.
	 * We don't -restore- them unless we have to in update_sregs.
	 *
	 * Since userland -can't- change fsbase or gsbase directly,
	 * we don't bother to capture them here.
	 */
	xorl	%ebx, %ebx
	movw	%ds, %bx
	movq	%rbx, REGOFF_DS(%rsp)
	movw	%es, %bx
	movq	%rbx, REGOFF_ES(%rsp)
	movw	%fs, %bx
	movq	%rbx, REGOFF_FS(%rsp)
	movw	%gs, %bx
	movq	%rbx, REGOFF_GS(%rsp)

	/*
	 * If we're trying to use TRAPTRACE though, I take that back: we're
	 * probably debugging some problem in the SWAPGS logic and want to know
	 * what the incoming gsbase was.
	 *
	 * Since we already did SWAPGS, record the KGSBASE.
	 */
#if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
	movl	$MSR_AMD_KGSBASE, %ecx
	rdmsr
	movl	%eax, REGOFF_GSBASE(%rsp)
	movl	%edx, REGOFF_GSBASE+4(%rsp)
#endif

	/*
	 * Application state saved in the regs structure on the stack
	 * %eax is the syscall number
	 * %rsp is the thread's stack, %r15 is curthread
	 * REG_RSP(%rsp) is the user's stack
	 */

	SYSCALL_TRAPTRACE32($TT_SYSC)

	movq	%rsp, %rbp

	movq	T_LWP(%r15), %r14
	ASSERT_NO_RUPDATE_PENDING(%r14)

	ENABLE_INTR_FLAGS

	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate call) */

	ASSERT_LWPTOREGS(%r14, %rsp)

	incq	 %gs:CPU_STATS_SYS_SYSCALL

	/*
	 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
	 * into 64-bit (long) arg slots, maintaining 16 byte alignment.  Or
	 * more succinctly:
	 *
	 *	SA(MAXSYSARGS * sizeof (long)) == 64
	 */
#define	SYS_DROP	64			/* drop for args */
	subq	$SYS_DROP, %rsp
	movb	$LWP_SYS, LWP_STATE(%r14)
	movq	%r15, %rdi
	movq	%rsp, %rsi
	call	syscall_entry

	/*
	 * Fetch the arguments copied onto the kernel stack and put
	 * them in the right registers to invoke a C-style syscall handler.
	 * %rax contains the handler address.
	 *
	 * Ideas for making all this go faster of course include simply
	 * forcibly fetching 6 arguments from the user stack under lofault
	 * protection, reverting to copyin_args only when watchpoints
	 * are in effect.
	 *
	 * (If we do this, make sure that exec and libthread leave
	 * enough space at the top of the stack to ensure that we'll
	 * never do a fetch from an invalid page.)
	 *
	 * Lots of ideas here, but they won't really help with bringup B-)
	 * Correctness can't wait, performance can wait a little longer ..
	 */

	movq	%rax, %rbx
	movl	0(%rsp), %edi
	movl	8(%rsp), %esi
	movl	0x10(%rsp), %edx
	movl	0x18(%rsp), %ecx
	movl	0x20(%rsp), %r8d
	movl	0x28(%rsp), %r9d

	movq	SY_CALLC(%rbx), %rax
	INDIRECT_CALL_REG(rax)

	movq	%rbp, %rsp	/* pop the args */

	/*
	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
	 * On the 32-bit kernel, they always return that value in %eax:%edx
	 * as required by the 32-bit ABI.
	 *
	 * Simulate the same behaviour by unconditionally splitting the
	 * return value in the same way.
	 */
	movq	%rax, %r13
	shrq	$32, %r13	/* upper 32-bits into %edx */
	movl	%eax, %r12d	/* lower 32-bits into %eax */

	/*
	 * Optimistically assume that there's no post-syscall
	 * work to do.  (This is to avoid having to call syscall_mstate()
	 * with interrupts disabled)
	 */
	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)

	/*
	 * We must protect ourselves from being descheduled here;
	 * If we were, and we ended up on another cpu, or another
	 * lwp got in ahead of us, it could change the segment
	 * registers without us noticing before we return to userland.
	 */
	CLI(%r14)
	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
	jne	_full_syscall_postsys32
	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)

	/*
	 * Clobber %r11 as we check CR0.TS.
	 */
	ASSERT_CR0TS_ZERO(%r11)

	/*
	 * Unlike other cases, because we need to restore the user stack pointer
	 * before exiting the kernel we must clear the microarch state before
	 * getting here. This should be safe because it means that the only
	 * values on the bus after this are based on the user's registers and
	 * potentially the addresses where we stored them. Given the constraints
	 * of sysret, that's how it has to be.
	 */
	call	x86_md_clear

	/*
	 * To get back to userland, we need to put the return %rip in %rcx and
	 * the return %rfl in %r11d.  The sysret instruction also arranges
	 * to fix up %cs and %ss; everything else is our responsibility.
	 */

	movl	%r12d, %eax			/* %eax: rval1 */
	movl	REGOFF_RBX(%rsp), %ebx
	/* %ecx used for return pointer */
	movl	%r13d, %edx			/* %edx: rval2 */
	movl	REGOFF_RBP(%rsp), %ebp
	movl	REGOFF_RSI(%rsp), %esi
	movl	REGOFF_RDI(%rsp), %edi

	movl	REGOFF_RFL(%rsp), %r11d		/* %r11 -> eflags */
	movl	REGOFF_RIP(%rsp), %ecx		/* %ecx -> %eip */
	movl	REGOFF_RSP(%rsp), %esp

	ASSERT_UPCALL_MASK_IS_SET
        ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
	jmp	tr_sysretl
        SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
	/*NOTREACHED*/

_full_syscall_postsys32:
	STI
	/*
	 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
	 * so that we can account for the extra work it takes us to finish.
	 */
	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
	movq	%r15, %rdi
	movq	%r12, %rsi			/* rval1 - %eax */
	movq	%r13, %rdx			/* rval2 - %edx */
	call	syscall_exit
	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
	jmp	_sys_rtt
	SET_SIZE(sys_syscall32)
	SET_SIZE(brand_sys_syscall32)

/*
 * System call handler via the sysenter instruction
 * Used only for 32-bit system calls on the 64-bit kernel.
 *
 * The caller in userland has arranged that:
 *
 * -	%eax contains the syscall number
 * -	%ecx contains the user %esp
 * -	%edx contains the return %eip
 * -	the user stack contains the args to the syscall
 *
 * Hardware and (privileged) initialization code have arranged that by
 * the time the sysenter instructions completes:
 *
 * - %rip is pointing to sys_sysenter (below).
 * - %cs and %ss are set to kernel text and stack (data) selectors.
 * - %rsp is pointing at the lwp's stack
 * - interrupts have been disabled.
 *
 * Note that we are unable to return both "rvals" to userland with
 * this call, as %edx is used by the sysexit instruction.
 *
 * One final complication in this routine is its interaction with
 * single-stepping in a debugger.  For most of the system call mechanisms, the
 * CPU automatically clears the single-step flag before we enter the kernel.
 * The sysenter mechanism does not clear the flag, so a user single-stepping
 * through a libc routine may suddenly find themself single-stepping through the
 * kernel.  To detect this, kmdb and trap() both compare the trap %pc to the
 * [brand_]sys_enter addresses on each single-step trap.  If it finds that we
 * have single-stepped to a sysenter entry point, it explicitly clears the flag
 * and executes the sys_sysenter routine.
 *
 * One final complication in this final complication is the fact that we have
 * two different entry points for sysenter: brand_sys_sysenter and sys_sysenter.
 * If we enter at brand_sys_sysenter and start single-stepping through the
 * kernel with kmdb, we will eventually hit the instruction at sys_sysenter.
 * kmdb cannot distinguish between that valid single-step and the undesirable
 * one mentioned above.  To avoid this situation, we simply add a jump over the
 * instruction at sys_sysenter to make it impossible to single-step to it.
 */

	ENTRY_NP(brand_sys_sysenter)
	SWAPGS				/* kernel gsbase */
	ALTENTRY(_brand_sys_sysenter_post_swapgs)

	BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
	/*
	 * Jump over sys_sysenter to allow single-stepping as described
	 * above.
	 */
	jmp	_sys_sysenter_post_swapgs

	ALTENTRY(sys_sysenter)
	SWAPGS				/* kernel gsbase */
	ALTENTRY(_sys_sysenter_post_swapgs)

	movq	%gs:CPU_THREAD, %r15

	movl	$U32CS_SEL, REGOFF_CS(%rsp)
	movl	%ecx, REGOFF_RSP(%rsp)		/* wrapper: %esp -> %ecx */
	movl	%edx, REGOFF_RIP(%rsp)		/* wrapper: %eip -> %edx */
	/*
	 * NOTE: none of the instructions that run before we get here should
	 * clobber bits in (R)FLAGS! This includes the kpti trampoline.
	 */
	pushfq
	popq	%r10
	movl	$UDS_SEL, REGOFF_SS(%rsp)

	/*
	 * Set the interrupt flag before storing the flags to the
	 * flags image on the stack so we can return to user with
	 * interrupts enabled if we return via sys_rtt_syscall32
	 */
	orq	$PS_IE, %r10
	movq	%r10, REGOFF_RFL(%rsp)

	movl	%edi, REGOFF_RDI(%rsp)
	movl	%esi, REGOFF_RSI(%rsp)
	movl	%ebp, REGOFF_RBP(%rsp)
	movl	%ebx, REGOFF_RBX(%rsp)
	movl	%edx, REGOFF_RDX(%rsp)
	movl	%ecx, REGOFF_RCX(%rsp)
	movl	%eax, REGOFF_RAX(%rsp)		/* wrapper: sysc# -> %eax */
	movq	$0, REGOFF_SAVFP(%rsp)
	movq	$0, REGOFF_SAVPC(%rsp)

	/*
	 * Copy these registers here in case we end up stopped with
	 * someone (like, say, /proc) messing with our register state.
	 * We don't -restore- them unless we have to in update_sregs.
	 *
	 * Since userland -can't- change fsbase or gsbase directly,
	 * we don't bother to capture them here.
	 */
	xorl	%ebx, %ebx
	movw	%ds, %bx
	movq	%rbx, REGOFF_DS(%rsp)
	movw	%es, %bx
	movq	%rbx, REGOFF_ES(%rsp)
	movw	%fs, %bx
	movq	%rbx, REGOFF_FS(%rsp)
	movw	%gs, %bx
	movq	%rbx, REGOFF_GS(%rsp)

	/*
	 * If we're trying to use TRAPTRACE though, I take that back: we're
	 * probably debugging some problem in the SWAPGS logic and want to know
	 * what the incoming gsbase was.
	 *
	 * Since we already did SWAPGS, record the KGSBASE.
	 */
#if defined(DEBUG) && defined(TRAPTRACE) && !defined(__xpv)
	movl	$MSR_AMD_KGSBASE, %ecx
	rdmsr
	movl	%eax, REGOFF_GSBASE(%rsp)
	movl	%edx, REGOFF_GSBASE+4(%rsp)
#endif

	/*
	 * Application state saved in the regs structure on the stack
	 * %eax is the syscall number
	 * %rsp is the thread's stack, %r15 is curthread
	 * REG_RSP(%rsp) is the user's stack
	 */

	SYSCALL_TRAPTRACE($TT_SYSENTER)

	movq	%rsp, %rbp

	movq	T_LWP(%r15), %r14
	ASSERT_NO_RUPDATE_PENDING(%r14)

	ENABLE_INTR_FLAGS

	/*
	 * Catch 64-bit process trying to issue sysenter instruction
	 * on Nocona based systems.
	 */
	movq	LWP_PROCP(%r14), %rax
	cmpq	$DATAMODEL_ILP32, P_MODEL(%rax)
	je	7f

	/*
	 * For a non-32-bit process, simulate a #ud, since that's what
	 * native hardware does.  The traptrace entry (above) will
	 * let you know what really happened.
	 */
	movq	$T_ILLINST, REGOFF_TRAPNO(%rsp)
	movq	REGOFF_CS(%rsp), %rdi
	movq	%rdi, REGOFF_ERR(%rsp)
	movq	%rsp, %rdi
	movq	REGOFF_RIP(%rsp), %rsi
	movl	%gs:CPU_ID, %edx
	call	trap
	jmp	_sys_rtt
7:

	MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
	movl	REGOFF_RAX(%rsp), %eax	/* (%rax damaged by mstate calls) */

	ASSERT_LWPTOREGS(%r14, %rsp)

	incq	%gs:CPU_STATS_SYS_SYSCALL

	/*
	 * Make some space for MAXSYSARGS (currently 8) 32-bit args
	 * placed into 64-bit (long) arg slots, plus one 64-bit
	 * (long) arg count, maintaining 16 byte alignment.
	 */
	subq	$SYS_DROP, %rsp
	movb	$LWP_SYS, LWP_STATE(%r14)
	movq	%r15, %rdi
	movq	%rsp, %rsi
	call	syscall_entry

	/*
	 * Fetch the arguments copied onto the kernel stack and put
	 * them in the right registers to invoke a C-style syscall handler.
	 * %rax contains the handler address.
	 */
	movq	%rax, %rbx
	movl	0(%rsp), %edi
	movl	8(%rsp), %esi
	movl	0x10(%rsp), %edx
	movl	0x18(%rsp), %ecx
	movl	0x20(%rsp), %r8d
	movl	0x28(%rsp), %r9d

	movq	SY_CALLC(%rbx), %rax
	INDIRECT_CALL_REG(rax)

	movq	%rbp, %rsp	/* pop the args */

	/*
	 * amd64 syscall handlers -always- return a 64-bit value in %rax.
	 * On the 32-bit kernel, the always return that value in %eax:%edx
	 * as required by the 32-bit ABI.
	 *
	 * Simulate the same behaviour by unconditionally splitting the
	 * return value in the same way.
	 */
	movq	%rax, %r13
	shrq	$32, %r13	/* upper 32-bits into %edx */
	movl	%eax, %r12d	/* lower 32-bits into %eax */

	/*
	 * Optimistically assume that there's no post-syscall
	 * work to do.  (This is to avoid having to call syscall_mstate()
	 * with interrupts disabled)
	 */
	MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)

	/*
	 * We must protect ourselves from being descheduled here;
	 * If we were, and we ended up on another cpu, or another
	 * lwp got int ahead of us, it could change the segment
	 * registers without us noticing before we return to userland.
	 *
	 * This cli is undone in the tr_sysexit trampoline code.
	 */
	cli
	CHECK_POSTSYS_NE(%r15, %r14, %ebx)
	jne	_full_syscall_postsys32
	SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)

	/*
	 * To get back to userland, load up the 32-bit registers and
	 * sysexit back where we came from.
	 */

	/*
	 * Interrupts will be turned on by the 'sti' executed just before
	 * sysexit.  The following ensures that restoring the user's rflags
	 * doesn't enable interrupts too soon.
	 */
	andq	$_BITNOT(PS_IE), REGOFF_RFL(%rsp)

	/*
	 * Clobber %r11 as we check CR0.TS.
	 */
	ASSERT_CR0TS_ZERO(%r11)

	/*
	 * (There's no point in loading up %edx because the sysexit
	 * mechanism smashes it.)
	 */
	movl	%r12d, %eax
	movl	REGOFF_RBX(%rsp), %ebx
	movl	REGOFF_RBP(%rsp), %ebp
	movl	REGOFF_RSI(%rsp), %esi
	movl	REGOFF_RDI(%rsp), %edi

	movl	REGOFF_RIP(%rsp), %edx	/* sysexit: %edx -> %eip */
	pushq	REGOFF_RFL(%rsp)
	popfq
	movl	REGOFF_RSP(%rsp), %ecx	/* sysexit: %ecx -> %esp */
        ALTENTRY(sys_sysenter_swapgs_sysexit)
	call	x86_md_clear
	jmp	tr_sysexit
	SET_SIZE(sys_sysenter_swapgs_sysexit)
	SET_SIZE(sys_sysenter)
	SET_SIZE(_sys_sysenter_post_swapgs)
	SET_SIZE(brand_sys_sysenter)

/*
 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
 * the generic i386 libc to do system calls. We do a small amount of setup
 * before jumping into the existing sys_syscall32 path.
 */

	ENTRY_NP(brand_sys_syscall_int)
	SWAPGS				/* kernel gsbase */
	XPV_TRAP_POP
	call	smap_enable
	BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
	jmp	nopop_syscall_int

	ALTENTRY(sys_syscall_int)
	SWAPGS				/* kernel gsbase */
	XPV_TRAP_POP
	call	smap_enable

nopop_syscall_int:
	movq	%gs:CPU_THREAD, %r15
	movq	T_STACK(%r15), %rsp
	movl	%eax, %eax
	/*
	 * Set t_post_sys on this thread to force ourselves out via the slow
	 * path. It might be possible at some later date to optimize this out
	 * and use a faster return mechanism.
	 */
	movb	$1, T_POST_SYS(%r15)
	CLEAN_CS
	jmp	_syscall32_save
	/*
	 * There should be no instructions between this label and SWAPGS/IRET
	 * or we could end up breaking branded zone support. See the usage of
	 * this label in lx_brand_int80_callback and sn1_brand_int91_callback
	 * for examples.
	 *
	 * We want to swapgs to maintain the invariant that all entries into
	 * tr_iret_user are done on the user gsbase.
	 */
	ALTENTRY(sys_sysint_swapgs_iret)
	call	x86_md_clear
	SWAPGS
	jmp	tr_iret_user
	/*NOTREACHED*/
	SET_SIZE(sys_sysint_swapgs_iret)
	SET_SIZE(sys_syscall_int)
	SET_SIZE(brand_sys_syscall_int)

/*
 * Legacy 32-bit applications and old libc implementations do lcalls;
 * we should never get here because the LDT entry containing the syscall
 * segment descriptor has the "segment present" bit cleared, which means
 * we end up processing those system calls in trap() via a not-present trap.
 *
 * We do it this way because a call gate unhelpfully does -nothing- to the
 * interrupt flag bit, so an interrupt can run us just after the lcall
 * completes, but just before the swapgs takes effect.   Thus the INTR_PUSH and
 * INTR_POP paths would have to be slightly more complex to dance around
 * this problem, and end up depending explicitly on the first
 * instruction of this handler being either swapgs or cli.
 */

	ENTRY_NP(sys_lcall32)
	SWAPGS				/* kernel gsbase */
	pushq	$0
	pushq	%rbp
	movq	%rsp, %rbp
	leaq	__lcall_panic_str(%rip), %rdi
	xorl	%eax, %eax
	call	panic
	SET_SIZE(sys_lcall32)

__lcall_panic_str:
	.string	"sys_lcall32: shouldn't be here!"

/*
 * Declare a uintptr_t which covers the entire pc range of syscall
 * handlers for the stack walkers that need this.
 */
	.align	CPTRSIZE
	.globl	_allsyscalls_size
	.type	_allsyscalls_size, @object
_allsyscalls_size:
	.NWORD	. - _allsyscalls
	SET_SIZE(_allsyscalls_size)

/*
 * These are the thread context handlers for lwps using sysenter/sysexit.
 */

	/*
	 * setting this value to zero as we switch away causes the
	 * stack-pointer-on-sysenter to be NULL, ensuring that we
	 * don't silently corrupt another (preempted) thread stack
	 * when running an lwp that (somehow) didn't get sep_restore'd
	 */
	ENTRY_NP(sep_save)
	xorl	%edx, %edx
	xorl	%eax, %eax
	movl	$MSR_INTC_SEP_ESP, %ecx
	wrmsr
	ret
	SET_SIZE(sep_save)

	/*
	 * Update the kernel stack pointer as we resume onto this cpu.
	 */
	ENTRY_NP(sep_restore)
	movq	%rdi, %rdx
	shrq	$32, %rdx
	movl	%edi, %eax
	movl	$MSR_INTC_SEP_ESP, %ecx
	wrmsr
	ret
	SET_SIZE(sep_restore)