summaryrefslogtreecommitdiff
path: root/usr/src/uts/intel/ia32/os/sundep.c
blob: 8a5562f4adb71138c829350f4b81ab3fe4ea8e2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2021 Joyent, Inc.
 */

/*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
/*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
/*	All Rights Reserved   */

#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <sys/user.h>
#include <sys/mman.h>
#include <sys/class.h>
#include <sys/proc.h>
#include <sys/procfs.h>
#include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/cred.h>
#include <sys/archsystm.h>
#include <sys/vmparam.h>
#include <sys/prsystm.h>
#include <sys/reboot.h>
#include <sys/uadmin.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/session.h>
#include <sys/ucontext.h>
#include <sys/dnlc.h>
#include <sys/var.h>
#include <sys/cmn_err.h>
#include <sys/debugreg.h>
#include <sys/thread.h>
#include <sys/vtrace.h>
#include <sys/consdev.h>
#include <sys/psw.h>
#include <sys/regset.h>
#include <sys/privregs.h>
#include <sys/cpu.h>
#include <sys/stack.h>
#include <sys/swap.h>
#include <vm/hat.h>
#include <vm/anon.h>
#include <vm/as.h>
#include <vm/page.h>
#include <vm/seg.h>
#include <vm/seg_kmem.h>
#include <vm/seg_map.h>
#include <vm/seg_vn.h>
#include <sys/exec.h>
#include <sys/acct.h>
#include <sys/core.h>
#include <sys/corectl.h>
#include <sys/modctl.h>
#include <sys/tuneable.h>
#include <c2/audit.h>
#include <sys/bootconf.h>
#include <sys/brand.h>
#include <sys/dumphdr.h>
#include <sys/promif.h>
#include <sys/systeminfo.h>
#include <sys/kdi.h>
#include <sys/contract_impl.h>
#include <sys/x86_archext.h>
#include <sys/segments.h>
#include <sys/ontrap.h>
#include <sys/cpu.h>
#ifdef __xpv
#include <sys/hypervisor.h>
#endif

/*
 * Compare the version of boot that boot says it is against
 * the version of boot the kernel expects.
 */
int
check_boot_version(int boots_version)
{
	if (boots_version == BO_VERSION)
		return (0);

	prom_printf("Wrong boot interface - kernel needs v%d found v%d\n",
	    BO_VERSION, boots_version);
	prom_panic("halting");
	/*NOTREACHED*/
}

/*
 * Process the physical installed list for boot.
 * Finds:
 * 1) the pfn of the highest installed physical page,
 * 2) the number of pages installed
 * 3) the number of distinct contiguous regions these pages fall into.
 * 4) the number of contiguous memory ranges
 */
void
installed_top_size_ex(
	struct memlist *list,	/* pointer to start of installed list */
	pfn_t *high_pfn,	/* return ptr for top value */
	pgcnt_t *pgcnt,		/* return ptr for sum of installed pages */
	int	*ranges)	/* return ptr for the count of contig. ranges */
{
	pfn_t top = 0;
	pgcnt_t sumpages = 0;
	pfn_t highp;		/* high page in a chunk */
	int cnt = 0;

	for (; list; list = list->ml_next) {
		++cnt;
		highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
		if (top < highp)
			top = highp;
		sumpages += btop(list->ml_size);
	}

	*high_pfn = top;
	*pgcnt = sumpages;
	*ranges = cnt;
}

void
installed_top_size(
	struct memlist *list,	/* pointer to start of installed list */
	pfn_t *high_pfn,	/* return ptr for top value */
	pgcnt_t *pgcnt)		/* return ptr for sum of installed pages */
{
	int ranges;

	installed_top_size_ex(list, high_pfn, pgcnt, &ranges);
}

void
phys_install_has_changed(void)
{}

/*
 * Copy in a memory list from boot to kernel, with a filter function
 * to remove pages. The filter function can increase the address and/or
 * decrease the size to filter out pages.  It will also align addresses and
 * sizes to PAGESIZE.
 */
void
copy_memlist_filter(
	struct memlist *src,
	struct memlist **dstp,
	void (*filter)(uint64_t *, uint64_t *))
{
	struct memlist *dst, *prev;
	uint64_t addr;
	uint64_t size;
	uint64_t eaddr;

	dst = *dstp;
	prev = dst;

	/*
	 * Move through the memlist applying a filter against
	 * each range of memory. Note that we may apply the
	 * filter multiple times against each memlist entry.
	 */
	for (; src; src = src->ml_next) {
		addr = P2ROUNDUP(src->ml_address, PAGESIZE);
		eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE);
		while (addr < eaddr) {
			size = eaddr - addr;
			if (filter != NULL)
				filter(&addr, &size);
			if (size == 0)
				break;
			dst->ml_address = addr;
			dst->ml_size = size;
			dst->ml_next = 0;
			if (prev == dst) {
				dst->ml_prev = 0;
				dst++;
			} else {
				dst->ml_prev = prev;
				prev->ml_next = dst;
				dst++;
				prev++;
			}
			addr += size;
		}
	}

	*dstp = dst;
}

/*
 * Kernel setup code, called from startup().
 */
void
kern_setup1(void)
{
	proc_t *pp;

	pp = &p0;

	proc_sched = pp;

	/*
	 * Initialize process 0 data structures
	 */
	pp->p_stat = SRUN;
	pp->p_flag = SSYS;

	pp->p_pidp = &pid0;
	pp->p_pgidp = &pid0;
	pp->p_sessp = &session0;
	pp->p_tlist = &t0;
	pid0.pid_pglink = pp;
	pid0.pid_pgtail = pp;

	/*
	 * XXX - we asssume that the u-area is zeroed out except for
	 * ttolwp(curthread)->lwp_regs.
	 */
	PTOU(curproc)->u_cmask = (mode_t)CMASK;

	thread_init();		/* init thread_free list */
	pid_init();		/* initialize pid (proc) table */
	contract_init();	/* initialize contracts */

	init_pages_pp_maximum();
}

/*
 * Load a procedure into a thread.
 */
void
thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len)
{
	caddr_t sp;
	size_t framesz;
	caddr_t argp;
	long *p;
	extern void thread_start();

	/*
	 * Push a "c" call frame onto the stack to represent
	 * the caller of "start".
	 */
	sp = t->t_stk;
	ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0);
	if (len != 0) {
		/*
		 * the object that arg points at is copied into the
		 * caller's frame.
		 */
		framesz = SA(len);
		sp -= framesz;
		ASSERT(sp > t->t_stkbase);
		argp = sp + SA(MINFRAME);
		bcopy(arg, argp, len);
		arg = argp;
	}
	/*
	 * Set up arguments (arg and len) on the caller's stack frame.
	 */
	p = (long *)sp;

	*--p = 0;		/* fake call */
	*--p = 0;		/* null frame pointer terminates stack trace */
	*--p = (long)len;
	*--p = (intptr_t)arg;
	*--p = (intptr_t)start;

	/*
	 * initialize thread to resume at thread_start() which will
	 * turn around and invoke (*start)(arg, len).
	 */
	t->t_pc = (uintptr_t)thread_start;
	t->t_sp = (uintptr_t)p;

	ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0);
}

/*
 * load user registers into lwp.
 */
/*ARGSUSED2*/
void
lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr)
{
	struct regs *rp = lwptoregs(lwp);

	setgregs(lwp, grp);
	rp->r_ps = PSL_USER;

	/*
	 * For 64-bit lwps, we allow one magic %fs selector value, and one
	 * magic %gs selector to point anywhere in the address space using
	 * %fsbase and %gsbase behind the scenes.  libc uses %fs to point
	 * at the ulwp_t structure.
	 *
	 * For 32-bit lwps, libc wedges its lwp thread pointer into the
	 * ucontext ESP slot (which is otherwise irrelevant to setting a
	 * ucontext) and LWPGS_SEL value into gregs[REG_GS].  This is so
	 * syslwp_create() can atomically setup %gs.
	 *
	 * See setup_context() in libc.
	 */
#ifdef _SYSCALL32_IMPL
	if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) {
		if (grp[REG_GS] == LWPGS_SEL)
			(void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
	} else {
		/*
		 * See lwp_setprivate in kernel and setup_context in libc.
		 *
		 * Currently libc constructs a ucontext from whole cloth for
		 * every new (not main) lwp created.  For 64 bit processes
		 * %fsbase is directly set to point to current thread pointer.
		 * In the past (solaris 10) %fs was also set LWPFS_SEL to
		 * indicate %fsbase. Now we use the null GDT selector for
		 * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit
		 * processes. To ease transition we support older libcs in
		 * the newer kernel by forcing %fs or %gs selector to null
		 * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in
		 * the ucontext.  This is should be ripped out at some future
		 * date.  Another fix would be for libc to do a getcontext
		 * and inherit the null %fs/%gs from the current context but
		 * that means an extra system call and could hurt performance.
		 */
		if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */
			(void) lwp_setprivate(lwp, _LWP_FSBASE,
			    (uintptr_t)grp[REG_FSBASE]);

		if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */
			(void) lwp_setprivate(lwp, _LWP_GSBASE,
			    (uintptr_t)grp[REG_GSBASE]);
	}
#else
	if (grp[GS] == LWPGS_SEL)
		(void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
#endif

	lwp->lwp_eosys = JUSTRETURN;
	lwptot(lwp)->t_post_sys = 1;
}

/*
 * set syscall()'s return values for a lwp.
 */
void
lwp_setrval(klwp_t *lwp, int v1, int v2)
{
	lwptoregs(lwp)->r_ps &= ~PS_C;
	lwptoregs(lwp)->r_r0 = v1;
	lwptoregs(lwp)->r_r1 = v2;
}

/*
 * set syscall()'s return values for a lwp.
 */
void
lwp_setsp(klwp_t *lwp, caddr_t sp)
{
	lwptoregs(lwp)->r_sp = (intptr_t)sp;
}

/*
 * Copy regs from parent to child.
 */
void
lwp_forkregs(klwp_t *lwp, klwp_t *clwp)
{
#if defined(__amd64)
	struct pcb *pcb = &clwp->lwp_pcb;
	struct regs *rp = lwptoregs(lwp);

	if (!PCB_NEED_UPDATE_SEGS(pcb)) {
		pcb->pcb_ds = rp->r_ds;
		pcb->pcb_es = rp->r_es;
		pcb->pcb_fs = rp->r_fs;
		pcb->pcb_gs = rp->r_gs;
		PCB_SET_UPDATE_SEGS(pcb);
		lwptot(clwp)->t_post_sys = 1;
	}
	ASSERT(lwptot(clwp)->t_post_sys);
#endif

	fp_lwp_dup(clwp);

	bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs));
}

/*
 * This function is currently unused on x86.
 */
/*ARGSUSED*/
void
lwp_freeregs(klwp_t *lwp, int isexec)
{}

/*
 * This function is currently unused on x86.
 */
void
lwp_pcb_exit(void)
{}

/*
 * Lwp context ops for segment registers.
 */

/*
 * Every time we come into the kernel (syscall, interrupt or trap
 * but not fast-traps) we capture the current values of the user's
 * segment registers into the lwp's reg structure. This includes
 * lcall for i386 generic system call support since it is handled
 * as a segment-not-present trap.
 *
 * Here we save the current values from the lwp regs into the pcb
 * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest
 * of the kernel that the pcb copy of the segment registers is the
 * current one.  This ensures the lwp's next trip to user land via
 * update_sregs.  Finally we set t_post_sys to ensure that no
 * system call fast-path's its way out of the kernel via sysret.
 *
 * (This means that we need to have interrupts disabled when we
 * test t->t_post_sys in the syscall handlers; if the test fails,
 * we need to keep interrupts disabled until we return to userland
 * so we can't be switched away.)
 *
 * As a result of all this, we don't really have to do a whole lot
 * if the thread is just mucking about in the kernel, switching on
 * and off the cpu for whatever reason it feels like. And yet we
 * still preserve fast syscalls, cause if we -don't- get
 * descheduled, we never come here either.
 */

#define	VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \
	    (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL)

/*ARGSUSED*/
void
lwp_segregs_save(klwp_t *lwp)
{
#if defined(__amd64)
	pcb_t *pcb = &lwp->lwp_pcb;
	struct regs *rp;

	ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
	ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));

	if (!PCB_NEED_UPDATE_SEGS(pcb)) {
		rp = lwptoregs(lwp);

		/*
		 * If there's no update already pending, capture the current
		 * %ds/%es/%fs/%gs values from lwp's regs in case the user
		 * changed them; %fsbase and %gsbase are privileged so the
		 * kernel versions of these registers in pcb_fsbase and
		 * pcb_gsbase are always up-to-date.
		 */
		pcb->pcb_ds = rp->r_ds;
		pcb->pcb_es = rp->r_es;
		pcb->pcb_fs = rp->r_fs;
		pcb->pcb_gs = rp->r_gs;
		PCB_SET_UPDATE_SEGS(pcb);
		lwp->lwp_thread->t_post_sys = 1;
	}
#endif	/* __amd64 */

#if !defined(__xpv)	/* XXPV not sure if we can re-read gdt? */
	ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc,
	    sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0);
	ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc,
	    sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0);
#endif
}

#if defined(__amd64)

/*
 * Update the segment registers with new values from the pcb.
 *
 * We have to do this carefully, and in the following order,
 * in case any of the selectors points at a bogus descriptor.
 * If they do, we'll catch trap with on_trap and return 1.
 * returns 0 on success.
 *
 * This is particularly tricky for %gs.
 * This routine must be executed under a cli.
 */
int
update_sregs(struct regs *rp,  klwp_t *lwp)
{
	pcb_t *pcb = &lwp->lwp_pcb;
	ulong_t	kgsbase;
	on_trap_data_t	otd;
	int rc = 0;

	if (!on_trap(&otd, OT_SEGMENT_ACCESS)) {

#if defined(__xpv)
		/*
		 * On the hyervisor this is easy. The hypercall below will
		 * swapgs and load %gs with the user selector. If the user
		 * selector is bad the hypervisor will catch the fault and
		 * load %gs with the null selector instead. Either way the
		 * kernel's gsbase is not damaged.
		 */
		kgsbase = (ulong_t)CPU;
		if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL,
		    pcb->pcb_gs) != 0) {
				no_trap();
				return (1);
		}

		rp->r_gs = pcb->pcb_gs;
		ASSERT((cpu_t *)kgsbase == CPU);

#else	/* __xpv */

		/*
		 * A little more complicated running native.
		 */
		kgsbase = (ulong_t)CPU;
		__set_gs(pcb->pcb_gs);

		/*
		 * If __set_gs fails it's because the new %gs is a bad %gs,
		 * we'll be taking a trap but with the original %gs and %gsbase
		 * undamaged (i.e. pointing at curcpu).
		 *
		 * We've just mucked up the kernel's gsbase.  Oops.  In
		 * particular we can't take any traps at all.  Make the newly
		 * computed gsbase be the hidden gs via swapgs, and fix
		 * the kernel's gsbase back again. Later, when we return to
		 * userland we'll swapgs again restoring gsbase just loaded
		 * above.
		 */
		__asm__ __volatile__("mfence; swapgs");

		rp->r_gs = pcb->pcb_gs;

		/*
		 * Restore kernel's gsbase. Note that this also serializes any
		 * attempted speculation from loading the user-controlled
		 * %gsbase.
		 */
		wrmsr(MSR_AMD_GSBASE, kgsbase);

#endif	/* __xpv */

		/*
		 * Only override the descriptor base address if
		 * r_gs == LWPGS_SEL or if r_gs == NULL. A note on
		 * NULL descriptors -- 32-bit programs take faults
		 * if they deference NULL descriptors; however,
		 * when 64-bit programs load them into %fs or %gs,
		 * they DONT fault -- only the base address remains
		 * whatever it was from the last load.   Urk.
		 *
		 * XXX - note that lwp_setprivate now sets %fs/%gs to the
		 * null selector for 64 bit processes. Whereas before
		 * %fs/%gs were set to LWP(FS|GS)_SEL regardless of
		 * the process's data model. For now we check for both
		 * values so that the kernel can also support the older
		 * libc. This should be ripped out at some point in the
		 * future.
		 */
		if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) {
#if defined(__xpv)
			if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER,
			    pcb->pcb_gsbase)) {
				no_trap();
				return (1);
			}
#else
			wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase);
#endif
		}

		__set_ds(pcb->pcb_ds);
		rp->r_ds = pcb->pcb_ds;

		__set_es(pcb->pcb_es);
		rp->r_es = pcb->pcb_es;

		__set_fs(pcb->pcb_fs);
		rp->r_fs = pcb->pcb_fs;

		/*
		 * Same as for %gs
		 */
		if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) {
#if defined(__xpv)
			if (HYPERVISOR_set_segment_base(SEGBASE_FS,
			    pcb->pcb_fsbase)) {
				no_trap();
				return (1);
			}
#else
			wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase);
#endif
		}

	} else {
		cli();
		rc = 1;
	}
	no_trap();
	return (rc);
}

/*
 * Make sure any stale selectors are cleared from the segment registers
 * by putting KDS_SEL (the kernel's default %ds gdt selector) into them.
 * This is necessary because the kernel itself does not use %es, %fs, nor
 * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with
 * %gs - to point to the current cpu struct.) If we enter kmdb while in the
 * kernel and resume with a stale ldt or brandz selector sitting there in a
 * segment register, kmdb will #gp fault if the stale selector points to,
 * for example, an ldt in the context of another process.
 *
 * WARNING: Intel and AMD chips behave differently when storing
 * the null selector into %fs and %gs while in long mode. On AMD
 * chips fsbase and gsbase are not cleared. But on Intel chips, storing
 * a null selector into %fs or %gs has the side effect of clearing
 * fsbase or gsbase. For that reason we use KDS_SEL, which has
 * consistent behavor between AMD and Intel.
 *
 * Caller responsible for preventing cpu migration.
 */
void
reset_sregs(void)
{
	ulong_t kgsbase = (ulong_t)CPU;

	ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);

	cli();
	__set_gs(KGS_SEL);

	/*
	 * restore kernel gsbase
	 */
#if defined(__xpv)
	xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase);
#else
	wrmsr(MSR_AMD_GSBASE, kgsbase);
#endif

	sti();

	__set_ds(KDS_SEL);
	__set_es(0 | SEL_KPL);	/* selector RPL not ring 0 on hypervisor */
	__set_fs(KFS_SEL);
}

#endif	/* __amd64 */

#ifdef _SYSCALL32_IMPL

/*
 * Make it impossible for a process to change its data model.
 * We do this by toggling the present bits for the 32 and
 * 64-bit user code descriptors. That way if a user lwp attempts
 * to change its data model (by using the wrong code descriptor in
 * %cs) it will fault immediately. This also allows us to simplify
 * assertions and checks in the kernel.
 */

static void
gdt_ucode_model(model_t model)
{
	kpreempt_disable();
	if (model == DATAMODEL_NATIVE) {
		gdt_update_usegd(GDT_UCODE, &ucs_on);
		gdt_update_usegd(GDT_U32CODE, &ucs32_off);
	} else {
		gdt_update_usegd(GDT_U32CODE, &ucs32_on);
		gdt_update_usegd(GDT_UCODE, &ucs_off);
	}
	kpreempt_enable();
}

#endif	/* _SYSCALL32_IMPL */

/*
 * Restore lwp private fs and gs segment descriptors
 * on current cpu's GDT.
 */
static void
lwp_segregs_restore(klwp_t *lwp)
{
	pcb_t *pcb = &lwp->lwp_pcb;

	ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
	ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));

#ifdef	_SYSCALL32_IMPL
	gdt_ucode_model(DATAMODEL_NATIVE);
#endif

	gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
	gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);

}

#ifdef _SYSCALL32_IMPL

static void
lwp_segregs_restore32(klwp_t *lwp)
{
	/*LINTED*/
	cpu_t *cpu = CPU;
	pcb_t *pcb = &lwp->lwp_pcb;

	ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc));
	ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc));

	gdt_ucode_model(DATAMODEL_ILP32);
	gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
	gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
}

#endif	/* _SYSCALL32_IMPL */

/*
 * If this is a process in a branded zone, then we want it to use the brand
 * syscall entry points instead of the standard Solaris entry points.  This
 * routine must be called when a new lwp is created within a branded zone
 * or when an existing lwp moves into a branded zone via a zone_enter()
 * operation.
 */
void
lwp_attach_brand_hdlrs(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);

	ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));

	ASSERT(removectx(t, NULL, brand_interpositioning_disable,
	    brand_interpositioning_enable, NULL, NULL,
	    brand_interpositioning_disable, NULL) == 0);
	installctx(t, NULL, brand_interpositioning_disable,
	    brand_interpositioning_enable, NULL, NULL,
	    brand_interpositioning_disable, NULL, NULL);

	if (t == curthread) {
		kpreempt_disable();
		brand_interpositioning_enable();
		kpreempt_enable();
	}
}

/*
 * If this is a process in a branded zone, then we want it to disable the
 * brand syscall entry points.  This routine must be called when the last
 * lwp in a process is exiting in proc_exit().
 */
void
lwp_detach_brand_hdlrs(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);

	ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
	if (t == curthread)
		kpreempt_disable();

	/* Remove the original context handlers */
	VERIFY(removectx(t, NULL, brand_interpositioning_disable,
	    brand_interpositioning_enable, NULL, NULL,
	    brand_interpositioning_disable, NULL) != 0);

	if (t == curthread) {
		/* Cleanup our MSR and IDT entries. */
		brand_interpositioning_disable();
		kpreempt_enable();
	}
}

/*
 * Add any lwp-associated context handlers to the lwp at the beginning
 * of the lwp's useful life.
 *
 * All paths which create lwp's invoke lwp_create(); lwp_create()
 * invokes lwp_stk_init() which initializes the stack, sets up
 * lwp_regs, and invokes this routine.
 *
 * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
 * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
 * ends up in thread_free() which invokes freectx(t, 0) before
 * invoking lwp_stk_fini().  When the lwp is recycled from death
 * row, lwp_stk_fini() is invoked, then thread_free(), and thus
 * freectx(t, 0) as before.
 *
 * In the case of exec, the surviving lwp is thoroughly scrubbed
 * clean; exec invokes freectx(t, 1) to destroy associated contexts.
 * On the way back to the new image, it invokes setregs() which
 * in turn invokes this routine.
 */
void
lwp_installctx(klwp_t *lwp)
{
	kthread_t *t = lwptot(lwp);
	int thisthread = t == curthread;
#ifdef _SYSCALL32_IMPL
	void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
	    lwp_segregs_restore : lwp_segregs_restore32;
#else
	void (*restop)(klwp_t *) = lwp_segregs_restore;
#endif
	struct ctxop *ctx;

	/*
	 * Install the basic lwp context handlers on each lwp.
	 *
	 * On the amd64 kernel, the context handlers are responsible for
	 * virtualizing %ds, %es, %fs, and %gs to the lwp.  The register
	 * values are only ever changed via sys_rtt when the
	 * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only
	 * sys_rtt gets to clear the bit.
	 *
	 * On the i386 kernel, the context handlers are responsible for
	 * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
	 */
	ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
	    NULL, NULL, NULL, NULL) == 0);
	if (thisthread) {
		ctx = installctx_preallocate();
		kpreempt_disable();
	} else {
		ctx = NULL;
	}
	installctx(t, lwp, lwp_segregs_save, restop,
	    NULL, NULL, NULL, NULL, ctx);
	if (thisthread) {
		/*
		 * Since we're the right thread, set the values in the GDT
		 */
		restop(lwp);
		kpreempt_enable();
	}

	/*
	 * If we have sysenter/sysexit instructions enabled, we need
	 * to ensure that the hardware mechanism is kept up-to-date with the
	 * lwp's kernel stack pointer across context switches.
	 *
	 * sep_save zeros the sysenter stack pointer msr; sep_restore sets
	 * it to the lwp's kernel stack pointer (kstktop).
	 */
	if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
#if defined(__amd64)
		caddr_t kstktop = (caddr_t)lwp->lwp_regs;
#elif defined(__i386)
		caddr_t kstktop = ((caddr_t)lwp->lwp_regs - MINFRAME) +
		    SA(sizeof (struct regs) + MINFRAME);
#endif
		ASSERT(removectx(t, kstktop,
		    sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);

		if (thisthread) {
			ctx = installctx_preallocate();
			kpreempt_disable();
		} else {
			ctx = NULL;
		}
		installctx(t, kstktop,
		    sep_save, sep_restore, NULL, NULL, NULL, NULL, ctx);
		if (thisthread) {
			/*
			 * We're the right thread, so set the stack pointer
			 * for the first sysenter instruction to use
			 */
			sep_restore(kstktop);
			kpreempt_enable();
		}
	}

	if (PROC_IS_BRANDED(ttoproc(t)))
		lwp_attach_brand_hdlrs(lwp);
}

/*
 * Clear registers on exec(2).
 */
void
setregs(uarg_t *args)
{
	struct regs *rp;
	kthread_t *t = curthread;
	klwp_t *lwp = ttolwp(t);
	pcb_t *pcb = &lwp->lwp_pcb;
	greg_t sp;

	/*
	 * Initialize user registers
	 */
	(void) save_syscall_args();	/* copy args from registers first */
	rp = lwptoregs(lwp);
	sp = rp->r_sp;
	bzero(rp, sizeof (*rp));

	rp->r_ss = UDS_SEL;
	rp->r_sp = sp;
	rp->r_pc = args->entry;
	rp->r_ps = PSL_USER;

#if defined(__amd64)

	pcb->pcb_fs = pcb->pcb_gs = 0;
	pcb->pcb_fsbase = pcb->pcb_gsbase = 0;

	if (ttoproc(t)->p_model == DATAMODEL_NATIVE) {

		rp->r_cs = UCS_SEL;

		/*
		 * Only allow 64-bit user code descriptor to be present.
		 */
		gdt_ucode_model(DATAMODEL_NATIVE);

		/*
		 * Arrange that the virtualized %fs and %gs GDT descriptors
		 * have a well-defined initial state (present, ring 3
		 * and of type data).
		 */
		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;

		/*
		 * thrptr is either NULL or a value used by DTrace.
		 * 64-bit processes use %fs as their "thread" register.
		 */
		if (args->thrptr)
			(void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr);

	} else {

		rp->r_cs = U32CS_SEL;
		rp->r_ds = rp->r_es = UDS_SEL;

		/*
		 * only allow 32-bit user code selector to be present.
		 */
		gdt_ucode_model(DATAMODEL_ILP32);

		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;

		/*
		 * thrptr is either NULL or a value used by DTrace.
		 * 32-bit processes use %gs as their "thread" register.
		 */
		if (args->thrptr)
			(void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);

	}

	pcb->pcb_ds = rp->r_ds;
	pcb->pcb_es = rp->r_es;
	PCB_SET_UPDATE_SEGS(pcb);

#elif defined(__i386)

	rp->r_cs = UCS_SEL;
	rp->r_ds = rp->r_es = UDS_SEL;

	/*
	 * Arrange that the virtualized %fs and %gs GDT descriptors
	 * have a well-defined initial state (present, ring 3
	 * and of type data).
	 */
	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;

	/*
	 * For %gs we need to reset LWP_GSBASE in pcb and the
	 * per-cpu GDT descriptor. thrptr is either NULL
	 * or a value used by DTrace.
	 */
	if (args->thrptr)
		(void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
#endif

	lwp->lwp_eosys = JUSTRETURN;
	t->t_post_sys = 1;

	/*
	 * Add the lwp context handlers that virtualize segment registers,
	 * and/or system call stacks etc.
	 */
	lwp_installctx(lwp);

	/*
	 * Reset the FPU flags and then initialize the FPU for this lwp.
	 */
	fp_exec();
}

user_desc_t *
cpu_get_gdt(void)
{
	return (CPU->cpu_gdt);
}


#if !defined(lwp_getdatamodel)

/*
 * Return the datamodel of the given lwp.
 */
/*ARGSUSED*/
model_t
lwp_getdatamodel(klwp_t *lwp)
{
	return (lwp->lwp_procp->p_model);
}

#endif	/* !lwp_getdatamodel */

#if !defined(get_udatamodel)

model_t
get_udatamodel(void)
{
	return (curproc->p_model);
}

#endif	/* !get_udatamodel */