summaryrefslogtreecommitdiff
path: root/usr/src/uts/intel/io/amdzen/smntemp.c
blob: 43ef57f34eefa49d6e5e46deb6bac1416a161995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/*
 * This file and its contents are supplied under the terms of the
 * Common Development and Distribution License ("CDDL"), version 1.0.
 * You may only use this file in accordance with the terms of version
 * 1.0 of the CDDL.
 *
 * A full copy of the text of the CDDL should have accompanied this
 * source.  A copy of the CDDL is also available via the Internet at
 * http://www.illumos.org/license/CDDL.
 */

/*
 * Copyright 2019, Joyent, Inc.
 * Copyright 2022 Oxide Computer Company
 */

/*
 * This implements a temperature sensor for AMD Zen family products that rely
 * upon the SMN framework for getting temperature information.
 */

#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/types.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/cmn_err.h>
#include <sys/x86_archext.h>
#include <sys/cpuvar.h>
#include <sys/sensors.h>
#include <sys/sysmacros.h>
#include <sys/amdzen/smn.h>
#include <amdzen_client.h>

/*
 * The following are register offsets and the meaning of their bits related to
 * temperature. These addresses reside in the System Management Network which is
 * accessed through the northbridge. They are not addresses in PCI configuration
 * space.
 */
#define	SMN_SMU_THERMAL_CURTEMP			SMN_MAKE_REG(0x00059800)
#define	SMN_SMU_THERMAL_CURTEMP_TEMPERATURE(x)	((x) >> 21)
#define	SMN_SMU_THERMAL_CURTEMP_RANGE_SEL		(1 << 19)

#define	SMN_SMU_THERMAL_CURTEMP_RANGE_ADJ		(-49)
#define	SMN_SMU_THERMAL_CURTEMP_DECIMAL_BITS		3
#define	SMN_SMU_THERMAL_CURTEMP_BITS_MASK		0x7

/*
 * The temperature sensor in Family 17 is measured in terms of 0.125 C steps.
 */
#define	SMN_THERMAL_GRANULARITY	8

typedef enum {
	SMNTEMP_F_MUTEX	= 1 << 0
} smntemp_flags_t;

typedef struct {
	uint_t stt_dfno;
	id_t stt_ksensor;
	struct smntemp *stt_smn;
	smntemp_flags_t stt_flags;
	kmutex_t stt_mutex;
	hrtime_t stt_last_read;
	uint32_t stt_reg;
	int64_t stt_temp;
} smntemp_temp_t;

typedef struct smntemp {
	dev_info_t *smn_dip;
	uint_t smn_ntemps;
	int smn_offset;
	smntemp_temp_t *smn_temps;
} smntemp_t;

static smntemp_t smntemp_data;

/*
 * AMD processors report a control temperature (called Tctl) which may be
 * different from the junction temperature, which is the value that is actually
 * measured from the die (sometimes called Tdie or Tjct). This is done so that
 * socket-based environmental monitoring can be consistent from a platform
 * perspective, but doesn't help us. Unfortunately, these values aren't in
 * datasheets that we can find, but have been documented partially in a series
 * of blog posts by AMD when discussing their 'Ryzen Master' monitoring software
 * for Windows.
 *
 * The brand strings below may contain partial matches such in the Threadripper
 * cases so we can match the entire family of processors. The offset value is
 * the quantity in degrees that we should adjust Tctl to reach Tdie.
 */
typedef struct {
	const char	*sto_brand;
	uint_t		sto_family;
	int		sto_off;
} smntemp_offset_t;

static const smntemp_offset_t smntemp_offsets[] = {
	{ "AMD Ryzen 5 1600X", 0x17, -20 },
	{ "AMD Ryzen 7 1700X", 0x17, -20 },
	{ "AMD Ryzen 7 1800X", 0x17, -20 },
	{ "AMD Ryzen 7 2700X", 0x17, -10 },
	{ "AMD Ryzen Threadripper 19", 0x17, -27 },
	{ "AMD Ryzen Threadripper 29", 0x17, -27 },
	{ NULL }
};

static int
smntemp_temp_update(smntemp_t *smn, smntemp_temp_t *stt)
{
	int ret;
	uint32_t reg;
	int64_t raw, decimal;

	ASSERT(MUTEX_HELD((&stt->stt_mutex)));

	if ((ret = amdzen_c_smn_read(stt->stt_dfno, SMN_SMU_THERMAL_CURTEMP,
	    &reg)) != 0) {
		return (ret);
	}

	stt->stt_last_read = gethrtime();
	stt->stt_reg = reg;
	raw = SMN_SMU_THERMAL_CURTEMP_TEMPERATURE(reg) >>
	    SMN_SMU_THERMAL_CURTEMP_DECIMAL_BITS;
	decimal = SMN_SMU_THERMAL_CURTEMP_TEMPERATURE(reg) &
	    SMN_SMU_THERMAL_CURTEMP_BITS_MASK;
	if ((reg & SMN_SMU_THERMAL_CURTEMP_RANGE_SEL) != 0) {
		raw += SMN_SMU_THERMAL_CURTEMP_RANGE_ADJ;
	}
	raw += smn->smn_offset;
	stt->stt_temp = raw << SMN_SMU_THERMAL_CURTEMP_DECIMAL_BITS;
	stt->stt_temp += decimal;

	return (0);
}

static int
smntemp_temp_read(void *arg, sensor_ioctl_scalar_t *temp)
{
	int ret;
	smntemp_temp_t *stt = arg;
	smntemp_t *smn = stt->stt_smn;

	mutex_enter(&stt->stt_mutex);
	if ((ret = smntemp_temp_update(smn, stt)) != 0) {
		mutex_exit(&stt->stt_mutex);
		return (ret);
	}

	temp->sis_unit = SENSOR_UNIT_CELSIUS;
	temp->sis_value = stt->stt_temp;
	temp->sis_gran = SMN_THERMAL_GRANULARITY;
	mutex_exit(&stt->stt_mutex);

	return (0);
}

static const ksensor_ops_t smntemp_temp_ops = {
	.kso_kind = ksensor_kind_temperature,
	.kso_scalar = smntemp_temp_read
};

static void
smntemp_cleanup(smntemp_t *smn)
{
	if (smn->smn_temps != NULL) {
		uint_t i;

		(void) ksensor_remove(smn->smn_dip, KSENSOR_ALL_IDS);
		for (i = 0; i < smn->smn_ntemps; i++) {
			if ((smn->smn_temps[i].stt_flags & SMNTEMP_F_MUTEX) !=
			    0) {
				mutex_destroy(&smn->smn_temps[i].stt_mutex);
				smn->smn_temps[i].stt_flags &= ~SMNTEMP_F_MUTEX;
			}
		}
		kmem_free(smn->smn_temps, sizeof (smntemp_temp_t) *
		    smn->smn_ntemps);
		smn->smn_temps = NULL;
		smn->smn_ntemps = 0;
	}

	if (smn->smn_dip != NULL) {
		ddi_remove_minor_node(smn->smn_dip, NULL);
		ddi_set_driver_private(smn->smn_dip, NULL);
		smn->smn_dip = NULL;
	}
}

static boolean_t
smntemp_find_offset(smntemp_t *smn)
{
	uint_t i, family;
	char buf[256];

	if (cpuid_getbrandstr(CPU, buf, sizeof (buf)) >= sizeof (buf)) {
		dev_err(smn->smn_dip, CE_WARN, "!failed to read processor "
		    "brand string, brand larger than internal buffer");
		return (B_FALSE);
	}

	family = cpuid_getfamily(CPU);

	for (i = 0; i < ARRAY_SIZE(smntemp_offsets); i++) {
		if (family != smntemp_offsets[i].sto_family)
			continue;
		if (strncmp(buf, smntemp_offsets[i].sto_brand,
		    strlen(smntemp_offsets[i].sto_brand)) == 0) {
			smn->smn_offset = smntemp_offsets[i].sto_off;
			break;
		}
	}

	return (B_TRUE);
}

static int
smntemp_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
	uint_t i;
	smntemp_t *smntemp = &smntemp_data;

	if (cmd == DDI_RESUME) {
		return (DDI_SUCCESS);
	} else if (cmd != DDI_ATTACH) {
		return (DDI_FAILURE);
	}

	if (smntemp->smn_dip != NULL) {
		dev_err(dip, CE_WARN, "!smntemp already attached");
		return (DDI_FAILURE);
	}
	smntemp->smn_dip = dip;
	ddi_set_driver_private(dip, smntemp);

	if (!smntemp_find_offset(smntemp)) {
		goto err;
	}

	smntemp->smn_ntemps = amdzen_c_df_count();
	if (smntemp->smn_ntemps == 0) {
		dev_err(dip, CE_WARN, "!found zero DFs, can't attach smntemp");
		goto err;
	}
	smntemp->smn_temps = kmem_zalloc(sizeof (smntemp_temp_t) *
	    smntemp->smn_ntemps, KM_SLEEP);
	for (i = 0; i < smntemp->smn_ntemps; i++) {
		int ret;
		char buf[128];

		smntemp->smn_temps[i].stt_smn = smntemp;
		smntemp->smn_temps[i].stt_dfno = i;
		mutex_init(&smntemp->smn_temps[i].stt_mutex, NULL, MUTEX_DRIVER,
		    NULL);
		smntemp->smn_temps[i].stt_flags |= SMNTEMP_F_MUTEX;

		if (snprintf(buf, sizeof (buf), "procnode.%u", i) >=
		    sizeof (buf)) {
			dev_err(dip, CE_WARN, "!unexpected buffer name overrun "
			    "assembling temperature minor %u", i);
			goto err;
		}

		if ((ret = ksensor_create(dip, &smntemp_temp_ops,
		    &smntemp->smn_temps[i], buf, DDI_NT_SENSOR_TEMP_CPU,
		    &smntemp->smn_temps[i].stt_ksensor)) != 0) {
			dev_err(dip, CE_WARN, "!failed to create sensor %s: %d",
			    buf, ret);
			goto err;
		}
	}

	return (DDI_SUCCESS);

err:
	smntemp_cleanup(smntemp);
	return (DDI_FAILURE);
}

static int
smntemp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
	smntemp_t *smntemp = &smntemp_data;

	if (cmd == DDI_SUSPEND) {
		return (DDI_SUCCESS);
	} else if (cmd != DDI_DETACH) {
		return (DDI_FAILURE);
	}

	if (smntemp->smn_dip == NULL) {
		dev_err(smntemp->smn_dip, CE_WARN, "!asked to detach smn "
		    "instance %d that was never attached",
		    ddi_get_instance(dip));
		return (DDI_FAILURE);
	}

	smntemp_cleanup(smntemp);
	return (DDI_SUCCESS);
}

static struct dev_ops smntemp_dev_ops = {
	.devo_rev = DEVO_REV,
	.devo_refcnt = 0,
	.devo_getinfo = nodev,
	.devo_identify = nulldev,
	.devo_probe = nulldev,
	.devo_attach = smntemp_attach,
	.devo_detach = smntemp_detach,
	.devo_reset = nodev,
	.devo_quiesce = ddi_quiesce_not_needed,
};

static struct modldrv smntemp_modldrv = {
	.drv_modops = &mod_driverops,
	.drv_linkinfo = "AMD SMN Temperature Driver",
	.drv_dev_ops = &smntemp_dev_ops
};

static struct modlinkage smntemp_modlinkage = {
	.ml_rev = MODREV_1,
	.ml_linkage = { &smntemp_modldrv, NULL }
};

int
_init(void)
{
	return (mod_install(&smntemp_modlinkage));
}

int
_info(struct modinfo *modinfop)
{
	return (mod_info(&smntemp_modlinkage, modinfop));
}

int
_fini(void)
{
	return (mod_remove(&smntemp_modlinkage));
}