Age | Commit message (Collapse) | Author | Files | Lines |
|
and add a new helper target and script, "show-buildlink3", that outputs
a listing of the buildlink3.mk files included as well as the depth at
which they are included.
For example, "make show-buildlink3" in fonts/Xft2 displays:
zlib
fontconfig
iconv
zlib
freetype2
expat
freetype2
Xrender
renderproto
|
|
of the order in which buildlink3.mk files are (recursively) included
by a package Makefile.
|
|
Cutting planes of two new classes were implemented: mixed cover
cuts and clique cuts. On API level this feature can be enabled
by setting control parameter LPX_K_USECUTS passed to the routine
lpx_intopt. In glpsol this feature is available through the
command-line options --cover and --clique. For more details see
the reference manual.
Now the routines lpx_read_mps and lpx_read_freemps support LI
bound type. It is similar to LO, however, indicates the column
as of integer kind.
|
|
that they look nicer.
|
|
RECOMMENDED is removed. It becomes ABI_DEPENDS.
BUILDLINK_RECOMMENDED.foo becomes BUILDLINK_ABI_DEPENDS.foo.
BUILDLINK_DEPENDS.foo becomes BUILDLINK_API_DEPENDS.foo.
BUILDLINK_DEPENDS does not change.
IGNORE_RECOMMENDED (which defaulted to "no") becomes USE_ABI_DEPENDS
which defaults to "yes".
Added to obsolete.mk checking for IGNORE_RECOMMENDED.
I did not manually go through and fix any aesthetic tab/spacing issues.
I have tested the above patch on DragonFly building and packaging
subversion and pkglint and their many dependencies.
I have also tested USE_ABI_DEPENDS=no on my NetBSD workstation (where I
have used IGNORE_RECOMMENDED for a long time). I have been an active user
of IGNORE_RECOMMENDED since it was available.
As suggested, I removed the documentation sentences suggesting bumping for
"security" issues.
As discussed on tech-pkg.
I will commit to revbump, pkglint, pkg_install, createbuildlink separately.
Note that if you use wip, it will fail! I will commit to pkgsrc-wip
later (within day).
|
|
|
|
A MIP presolver were implemented (currently incomplete). It is
used internally in the routine lpx_intopt (see below).
An advanced branch-and-bound solver (the routine lpx_intopt)
were implemented.
The routine lpx_check_int to check MIP feasibility conditions
was added.
The routine lpx_print_mip was changed to print MIP feasibility
conditions.
The built-in functions sin, cos, atan, and atan2 were added to
the MathProg language.
Some typos were fixed.
Thanks to Minh Ha Duong <haduong@centre-cired.fr> (CIRED, CNRS).
|
|
USE_GNU_TOOLS -> USE_TOOLS
awk -> gawk
m4 -> gm4
make -> gmake
sed -> gsed
yacc -> bison
|
|
|
|
|
|
Core simplex method and interior-point method routines were
re-implemented and now they use a new, "storage-by-rows" sparse
matrix format (unlike previous versions where linked lists were
used to represent sparse matrices). For details see ChangeLog.
Also a minor bug was fixed in API routine lpx_read_cpxlp.
|
|
Now GLPK supports free MPS format. Two new API routines
lpx_read_freemps (to read problem data in free MPS format) and
lpx_write_freemps (to write problem data in free MPS format)
were added. This feature is also available in the solver glpsol
via new command-line options --freemps and --wfreemps. For more
details see the GLPK reference manual.
API routines lpx_read_cpxlp and lpx_write_cpxlp for reading and
writing problem data in CPLEX LP format were re-implemented to
allow long symbolic names (up to 255 characters).
The following three modules were temporarily removed from the
GLPK distribution due to licensing problems: DELI (an interface
module to Delphi), GLPKMEX (an interface module to Matlab), and
JNI (an interface module to Java).
|
|
|
|
|
|
Should anybody feel like they could be the maintainer for any of thewe packages,
please adjust.
|
|
|
|
<kent@tiamat.goathill.org>
with some changes and finishing of the package by me.
GLPK is a set of routines written in ANSI C and organized in the form
of a callable library. This package is intended for solving large-scale
linear programming (LP), mixed integer linear programming (MIP), and
other related problems.
GLPK includes the following main components:
* implementation of the primal/dual simplex method;
* implementation of the primal-dual interior point method;
* implementation of the branch-and-bound procedure (based on the dual
simplex method);
* application program interface (API);
* GLPK/L, a modeling language intended for writing LP/MIP models;
* GLPSOL, a stand-alone program intended for solving LP/MIP problems
either prepared in the MPS format or written in the GLPK/L modeling
language.
|